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Abstract. The purpose of this paper is to analyze regularity properties of local solutions to free
discontinuity problems characterized by the presence of multiple phases. The key feature of the

problem is related to the way in which two neighboring phases interact: the contact is penalized
at jump points, while no cost is assigned to no-jump interfaces which may occur at the zero level

of the corresponding state functions. Our main results state that the phases are open and the
jump set (globally considered for all the phases) is essentially closed and Ahlfors regular. The
proof relies on a multiphase monotonicity formula and on a sharp collective Sobolev extension

result for functions with disjoint supports on a sphere, which may be of independent interest.
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1. Introduction and statement of the main result

Free discontinuity problems characterized by the presence of multiple phases arise naturally in
different contexts, such as image reconstruction or models in thermo-elasticity.

The aim of the paper is to study a class of these multiphase free discontinuity problems which,
in view of the interaction of the different phases, exhibit also some features similar to those of free
boundary problems. In particular we will focus on regularity properties of local solutions.

Before entering into the description of the results, let us briefly address two model problems.
It is not our purpose to solve or describe these problems in full details, but just to serve them as
meaningful motivations to attack the study of local minimizers to multiphase free discontinuity
problems. Further examples can be drawn from the analysis of different phenomena in applied sci-
ences, such as for instance quasistatic crack evolution (Francfort-Marigo [20]) or columnar jointing
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of cooling lava (Jungen [23]), clusters of Cheeger sets (Caroccia [10]) or spectral partition problems
related to the Robin Laplacian [3].

Multiphase Mumford-Shah problem. As a first prototype example, one can consider the cel-
ebrated segmentation problem by Mumford and Shah (see [21, 18] for a review). Actually, the
original formulation of the problem presented in [25] was of multiphase type, the primary under-
lying idea being that of decomposing the domain of an input image into different regions, and
then reconstructing a new image allowed to have jumps across the boundaries of such regions.
The ensuing developments via different approaches (by De Giorgi-Carriero-Leaci [17] or Dal Maso-
Morel-Solimini [15]) led genuinely to a single phase problem, in which the boundaries of the different
regions are seen as the jump set of a single state function. By this way the notion of phase is fatally
lost, because the jump set of the state function has no a priory reason to decompose the original
image into disconnected regions. Nevertheless, the necessity to extract distinct objects (possibly
exhibiting themselves inner jumps) is highly present in image reconstruction, as testified by the
abundant literature devoted to the attempt of forcing phase separation in the original spirit by
Mumford and Shah. With no attempt of completeness, see [11, 26, 12, 22, 24, 27, 28] and refer-
ences therein. It is however an evidence that these models refer essentially to the simplistic case of
piecewise constant functions, and are mainly focused on the numerical side. Thus, a satisfactory
mathematical study of the Mumford-Shah functional in a multiphase context seemed to be missing.
To fill this gap, in our recent paper [4] we introduced a relaxed multiphase Mumford-Shah problem;
given an open bounded set Ω ⊆ R

d, positive coefficients αi, βi, and a function f on Ω with values
into [0, 1], it reads as follows:

(1.1) inf
{
MMS(ω,U) : (ω,U) ∈ Ak(Ω)×F(ω)

}
,

where

Ak(Ω) :=
{
ω := (Ω1, . . . ,Ωk) : (Ω1, . . . ,Ωk) is a Caccioppoli partition of Ω

}

F(ω) =
{
U := (u1, . . . , uk) ∈ (SBV (Rd))k : ui = 0 a.e. on Ωc

i for every i = 1, . . . , k
}
,

with

MMS(ω,U) :=
k∑

i=1

(∫

Ωi

αi|∇ui|2 + βiHd−1 ((∂eΩi ∪ Jui) ∩ Ω)

)
+

k∑
i=1

Ei(Ωi, ui) .

Here ∂eΩi and Jui denote respectively the essential boundary of Ωi and the jump set of ui, while
the energies Ei are fidelity terms to the image f (see [4]). SBV (Rd) stands for the space of special
functions of bounded variation in R

d.
We point out that, in problem (1.1), the full perimeter of each phase is penalised in the energy.

In spite, the purpose of this paper is to analyse hybrid interactions between phases, in which the
jump part of the contact between the neighbouring phases is penalised, while interfaces occuring
at the zero level of the state function are not. A multiphase Mumford-Shah problem which is
essentially different from (1.1) and fits the framework of this paper can be formulated as

(1.2) min
ui ∈ SBV (Ω)

ui · uj = 0 for i �= j

k∑
i=1

[
αi

∫

Ω

|∇ui|2dx+ βiHd−1(Jui)

]
+

∫

Ω

( k∑
i=1

ui − f
)2

dx.

Notice that, precisely because in (1.2) the contact at zero level is not penalized in terms of energy
interface, the situation is locally similar to the interaction of the free boundaries, and such a
problem is appropriate to reconstruct images having some constant background.

Multiphase thermal insulation problem. As a second example, let us address the thermal in-
sulation of multiple obstacles, in the spirit of Caffarelli-Kriventsov [9] (see also [19] for a related
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problem). As above, we consider a bounded open set Ω ⊆ R
d, in which we now place a family

of compact, pairwise disjoint subsets G1, . . . , Gk representing the obstacles. We assume that the
background temperature is 0, while the temperature of the obstacles is 1. Then, if each obstacle is
isolated by a conducting material with unitary cost m > 0 which is enveloped with an insulating
thin layer of characteristic β > 0 and of unitary cost l, the multiphase insulation problem reads

(1.3) min
k∑

i=1

[∫

Ω

|∇ui|2dx+ β

∫

Jui

(u+
i )

2 + (u−
i )

2dHd−1 + lHd−1(Jui) +m|{ui > 0}|
]
,

the minimization being carried in the class{
ui ∈ SBV (Ω) : ui = 1 on Gi, ui · uj = 0 for i �= j

}
.

As well as in case of problem (1.2), let us point out that, in problem (1.3), the interaction
between the neighbouring phases involves no penalty of the interface when the contact occurs at
the zero level of the state function.

Let us now get to the heart of the matter, and drive our attention to the generic, local formulation
of the problem. Since we deal with multiple phases, each one with possible free discontinuities, the
natural functional framework is given by the class

(1.4) U(Ω) :=
{
u = (u1, . . . , uk) ∈ (SBV (Ω))k : ui · uj = 0 in Ω for i �= j

}
.

Here, as in the models described above, Ω is a bounded open subset of Rd, and SBV (Ω) denotes
the space of special functions of bounded variation in Ω introduced by De Giorgi-Ambrosio [16];
we refer to [1] for a detailed account of the mathematical background.

Minimizers of the previous model problems fit naturally into the following notion of multiphase
local minimizers.

Definition 1.1 (Multiphase local almost quasi-minimizers). We say that u = (u1, . . . uk) ∈
U(Ω) is a multiphase local almost-quasi minimizer at the point x ∈ Ω (with parameters (Λ, α, cα)),
if there exist constants Λ ≥ 1, α > 0, and cα ≥ 0 such that, for every ball Bρ(x) ⊂ Ω and every
(v1, . . . , vk) ∈ U(Ω) such that

⋃
i{vi �= ui} ⊆ Bρ(x), it holds

k∑
i=1

(∫

Bρ(x)

|∇ui|2 dx+Hd−1(Jui ∩Bρ(x))

)

≤
k∑

i=1

(∫

Bρ(x)

|∇vi|2 dx+ ΛHd−1(Jvi ∩Bρ(x))

)
+ cαρ

d−1+α .

The words “almost” and “quasi” in the terminology refer respectively to the presence of the
coefficient Λ ≥ 1 in front of the jump terms and to power decay of order higher than (d − 1) of
the deviation from minimality. The definition above is a natural multiphase analogue of the one
introduced in [5] for a single phase problem.

The main result of the paper is the following.

Theorem 1.2 (Regularity of multiphase local almost-quasi minimizers). Let u = (u1, . . . uk) ∈
U(Ω) be a local almost-quasi minimizer of a multiphase free discontinuity problem at every point
x ∈ Ω.

– The function u is Hölder continuous on Ω \
⋃

i Jui , so that each phase

Ωi :=

⎧
⎨
⎩x ∈ Ω \

⋃
j

Juj : ui �= 0

⎫
⎬
⎭

is open in R
d.
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– The union of the jump sets
⋃

i Jui is essentially closed and Ahlfors regular, meaning re-
spectively that

Hd−1

(⋃
i

Jui \
⋃
i

Jui

)
= 0 ,

and that there exist c > 0 and ρ0 > 0 such that, for every x ∈
⋃

i Jui and every Bρ(x) ⊂ Ω
with ρ < ρ0, it holds

(1.5) cρd−1 ≤ Hd−1

(⋃
i

Jui ∩Bρ(x)

)
≤ 1

c
ρd−1 .

Before commenting on the proof of Theorem 1.2, some words are in order about “no-jump
interfaces”. To clarify what we mean, if we associate with an element u = (u1, . . . , uk) in U(Ω)
the k phases Ωi = {ui �= 0}, the interaction between two distinct phases Ωi,Ωj may be of different
nature, according to whether it occurs at jump points of the state functions ui, uj , or at their zero
level. A complete analysis of local minimizers to multiphase free discontinuity problems should
include also the study of the regularity of such no-jump interfaces. At this level, since the length
of the boundaries of the phases are not counted in our notion of multiphase local almost-quasi
minimizers, the problem becomes of free boundary type, with the distinguished feature of dealing
with quasi-minimality instead of minimality. However, if we go back to the model problems (1.2)
and (1.3), the regularity of the no-jump interfaces can be derived from the analysis of multiphase
free boundary problems (see for instance [7], [8], [14]).

We prove Theorem 1.2 by extending to the multiphase context the techniques developed in [5]
concerning the monotonicity formula for the Mumford-Shah functional, and the decay estimate of
[17] for local minimizers. These tools lead quickly, as in the one phase case, to the closedness and
the Ahlfors regularity of the (global) jump set: however, in view of the interactions of the phases,
these extensions turn out to involve quite delicate issues.

A pivotal ingredient in the proof of the monotonicity formula of [5] is the following sharp
estimate:

(1.6)

∫

Bρ

|∇w̃|2dx ≤ ρ

d− 1

∫

∂Bρ

|∇τw|2dHd−1,

where Bρ is a ball of radius ρ, w ∈ H1(∂Bρ), w̃ is the harmonic extension of w in Bρ, and
∇τ stands for the tangential gradient. A multiphase version of the previous inequality is also
fundamental to address the monotonicity issue for the associated multiphase free discontinuity
problem. Establishing such an inequality, interesting in itself, turns out to be very delicate. In
Theorem 2.1, we prove that for every (w1, . . . , wk) ∈ (H1(∂Bρ))

k, with wi ·wj = 0 on ∂Bρ, we can
extend them to functions (w̃1, . . . , w̃k) ∈ (H1(Bρ))

k, with w̃i · w̃j = 0 inside Bρ, in such a way that

(1.7)

k∑
i=1

∫

Bρ

|∇w̃i|2dx ≤ ρ

d− 1

k∑
i=1

∫

∂Bρ

|∇τwi|2dHd−1.

The difficult part in the proof of the previous result is to show that the inequality holds true
with the sharp constant ρ/(d − 1) for every given setting of data on ∂Bρ. In this respect, let
us stress that the radial extensions are not enough accurate to obtain the inequality, as there
are equality cases in which the optimal functions w̃i’s are not radial (equality occurs for k = 1, 2,
corresponding to positive and negative parts of an affine function). Actually, the optimal extension
of the boundary functions is based on the solution of a multiphase free boundary problem with
homogeneous Dirichlet conditions (see Definition 2.2), which has been firstly considered in [14]. We
get the result by manipulating some integral identities for the solution to this problem, which take
into account in a subtle way their fine regularity properties established by Conti-Terracini-Verzini
[14] and Caffarelli-Lin [8, 7].
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The interaction of the various phases plays a delicate role also in adapting in our version of the
decay estimate of De Giorgi, Carriero and Leaci [17], which is the content of our Theorem 4.1.

In the classical case, the decay estimate follows from the analysis of the asymptotic behavior
of sequences of configurations with vanishing jump set and vanishing deviation from minimality:
through a suitable truncation procedure (involving a Poincaré estimate in SBV ), a limit configura-
tion arises which turns out to be a local minimizer of the Dirichlet energy (jumps are disappearing,
and the deviation vanishes), and this provides the crucial energetic information for the conclusion.

In the multiphase setting, the analysis requires to distinguish the cases when the sequence of
functions mantains its multiphase character in the limit (see Proposition 4.5) from that in which
one phase prevails onto the others (see Proposition 4.6). The crucial information in the first
alternative is provided by the analysis of local multiphase minimizers of the Dirchlet energy (see
Proposition 4.3).

The paper is organized as follows. In Section 2, we establish the sharp extension estimate
(1.7) (see Theorem 2.1). Section 3 contains the monotonicity formula for multiphase local almost
quasi-miminizers. The decay estimate is addressed in Section 4, while the proof of Theorem 1.2 is
contained in Section 5.

Notation. Throughout the paper, for every pair of closed sets A,B ⊆ R
d we will denote with

dist(A,B) the distance between A and B. We will also write A ⊂⊂ B if the closure Ā is compact
and contained in B. If E ⊆ R

d, |E| will denote its Lebesgue measure, while Hα(E) will stand
for its α-dimensional Hausdorff measure. Bρ(x) will stand for the open ball of center x ∈ R

d and
radius ρ > 0. When x = 0, we will write simply Bρ: we set ωd := |B1|.

Concerning functional spaces, if A ⊆ R
d is open, H1(A) will stand for the usual space Sobolev

functions which are square integrable together with their weak partial derivatives, while SBV (A)
will denote the space of special functions of bounded variation on A. We will consider also functions
in H1 or SBV on open subsets of spheres, which are defined locally through coordinate systems.

Finally for a, b ∈ R, we set a ∧ b := min{a, b}.

2. The multiphase extension theorem

The present Section is devoted to establish the following sharp multiphase gradient extension
estimate.

Theorem 2.1 (Multiphase sharp gradient estimate). For every w = (w1, . . . wk) ∈ (H1(∂Bρ))
k

with wi · wj = 0 on ∂Bρ, it holds

min

{
k∑

i=1

∫

Bρ

|∇w̃i|2 dx : (w̃1, . . . , w̃k) ∈ (H1(Bρ))
k, w̃i|∂Bρ = wi , w̃i · w̃j = 0 in Bρ

}

≤ ρ

d− 1

k∑
i=1

∫

∂Bρ

|∇τwi|2 dHd−1 ,

where ∇τ denotes the tangential gradient.

Up to rescaling and by considering positive and negative parts, it is not restrictive in the proof
of Theorem 2.1 to assume

(2.1) ρ = 1 and wi ≥ 0 for i = 1, . . . , k.

Notice indeed that if wiwj = 0, then w+
i w

+
j = w+

i w
−
j = w−

i w
+
j = w−

i w
−
j = 0.

In order to prove Theorem 2.1, we focus our attention on the following variational problem.
Below, we say that w is an admissible datum if w = (w1, . . . wk) ∈ (H1(∂B1))

k, with wi ≥ 0 and
wi · wj = 0 on ∂B1.
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Definition 2.2 (Multiphase extension problem). For every admissible datum w = (w1, . . . wk) ∈
(H1(∂B1))

k, i.e., such that wi ≥ 0 and wi · wj = 0 on ∂B1, we denote with P(w) the following
minimal energy extension problem

(2.2) min
{ k∑

i=1

∫

B1

|∇w̃i|2 dx : w̃i ∈ H1(B1) , w̃i|∂B1 = wi , w̃i · w̃j = 0 in B1

}
.

Notice that the family of extensions is not empty: indeed one can consider for example radial
extensions of the form

ŵi(x) := |x|wi

(
x

|x|

)
x �= 0

which however, as noticed in the Introduction, turn out to be not optimal.
The proposition below collects some (known) properties of the solution to problem (2.2).

Proposition 2.3 (Properties of the solution to the multiphase extension problem). Let
w be an admissible datum. Then the following items hold true.

(i) Problem P(w) admits a unique solution.

(ii) The solution w̃ to problem P(w) is Lipschitz in B1, and it is Lipschitz up to the boundary
in case w is smooth.

(iii) For every i = 1, . . . , k, the set Ωi := {x ∈ B1 : w̃i(x) > 0} is open and

Δw̃i = 0 in Ωi.

(iv) Let x ∈ B1 be such that {i : |Ωi ∩Br(x)| > 0 for r small enough} = {i1, i2}. Then

lim
Ωi1

�y→x
∇w̃i1(y) = − lim

Ωi2
�y→x

∇w̃i2(y) .

(v) The family of walls (∪k
i=1∂Ωi) ∩ B1 is the disjoint union of a finite number of analytic

hypersurfaces, and a relatively closed set having Hausdorff dimension at most d − 2 and
zero capacity. We shall refer to the latter as to the singular set of w̃.

(vi) If a sequence of admissible boundary data wn converges strongly to some w in H1/2(∂B1),
the sequence of solutions w̃n to problems P(wn) converges strongly in H1(B1) to the solu-
tion w̃ to problem P(w).

Proof. For items (i)-(ii)-(iii)-(iv), we refer to [14], see respectively Theorem 3.1, Theorem 4.2,
Theorem 5.1, Theorems 8.3 and 8.4, Remark 6.4. For item (v), we refer to [7, Section 1.6]. For
item (vi), see again [14], Theorem 3.2. �

In order to establish Theorem 2.1 in the non restrictive situation (2.1), it suffices to prove that
for the solution w̃ of problem P(w) we have

(2.3)

k∑
i=1

∫

B1

|∇w̃i|2 dx ≤ 1

d− 1

k∑
i=1

∫

∂B1

|∇τwi|2 dHd−1.

The proof of the previous inequality relies essentially on integration by parts of the full gradient
term on each phase. More precisely, we start from the following observations:

(a) Thanks to point (v), each phase Ωi has a smooth boundary inside B1 except for a set
with zero capacity, which consequently plays a negligible role in the computation. The
contributions of the inner interfaces to the integration by parts turn out to cancel in view
of property (iv).

(b) The sets ∂Ωi ∩ ∂B1 do not enjoy a priori regularity properties, since they depend on the
given data (w1, . . . , wk). Even if the data are smooth, the separation “lines” ∂Ωi∩∂Ωj∩∂B1

between the phases on the external boundary could be highly irregular, so that removing
them through capacity arguments is not feasible.

In view of the above remarks, we are going to proceed as follows:
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– In a first step, we prove inequality (2.3) for the class of smooth admissible data which
determine a smooth partition of ∂B1 except for a set with zero capacity, see Subsection
2.1 (we prove indeed in this case a stronger property, cf. identity (2.9) below).

– Then we prove that each admissible data can be approximated by elements of this class,
see Subsection 2.2.

– Finally we can obtain (2.3) in its full generality, see Subsection 2.3.

2.1. The case of regular admissible data. In this section we are going to focus attention on a
particular class of admissible data. Namely we will consider

(2.4) v ∈ C∞(∂B1)
k, vi ≥ 0 on B1

such that, setting

(2.5) Si := {x ∈ ∂B1 : vi(x) > 0},
we have

(2.6) ∂B1 = E ∪
k⋃

i=1

Si, Si ∩ Sj = ∅, E is a smooth submanifold of dimension d− 2.

The following result holds true.

Proposition 2.4. Let v be an admissible datum satisfying (2.4) and (2.6), and let
ṽ = (ṽ1, . . . , ṽk) be the solution to P(v). Set Ωi := {ṽi > 0}, and denote by n the outer nor-
mal to ∂B1. Then

(2.7)
k∑

i=1

∫

∂B1

|∇ṽi|2 dHd−1 = d
k∑

i=1

∫

B1

|∇ṽi|2 dx+
k∑

i=1

∫

Ωi

(1− |x|2)|D2ṽi|2 dx .

and

(2.8) (d− 2)
k∑

i=1

∫

B1

|∇ṽi|2 dx =

k∑
i=1

∫

∂B1

|∇ṽi|2 dHd−1 − 2

k∑
i=1

∫

∂B1

∣∣∣∣
∂ṽi
∂n

∣∣∣∣
2

dHd−1,

As a consequence, denoting by ∇τ the tangential gradient, we have

(2.9)
k∑

i=1

∫

∂B1

|∇τvi|2 dHd−1 = (d− 1)
k∑

i=1

∫

B1

|∇ṽi|2 dx+
1

2

k∑
i=1

∫

Ωi

(1− |x|2)|D2ṽi|2 dx.

In particular, we get∫

Ωi

(1− |x|2)|D2ṽi|2 dx < +∞ for every i = 1, . . . , k.

Proof. Let us set up a geometric construction which will be exploited in the proof of identities
(2.7) and (2.8). Let Σ be the singular set of ṽ according to Proposition 2.3 (v). From point (ii) of
Proposition 2.3, we infer that Σ ∩ ∂B1 ⊂ E: indeed if x ∈ Si so that vi(x) > 0, then by Lipschitz
continuity of ṽi on B̄1 we infer ṽi > 0 in Br(x) ∩B1 for r small enough, which yields x �∈ Σ.

We deduce in particular that Σ has zero capacity. Consequently, we can find a sequence
(Uε, ϕε)ε>0 satisfying the following conditions:

– Uε is a sequence of open neighborhoods of Σ (in R
d), monotone decreasing with respect

to inclusions with
⋂

ε>0 Uε = Σ, such that ∂Uε is a smooth hypersurface and ∂Uε ∩ ∂Ωi is

Hd−1-negligible;
– ϕε is a sequence of piecewise smooth functions in B2, pointwise monotone increasing, such
that, for every ε:

ϕε = 1 on ∂B2, ϕε ≡ 0 in Uε , Δϕε = 0 in B2 \ Uε ,

and, in the limit as ε → 0+,

ϕε → 1 in H1(B2) .
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In particular, thanks to the regularity of ∂Ωi \ Σ and since ṽi is harmonic on Ωi, for every ε > 0
we have

(2.10) ṽi ∈ C∞(Ωi \ Uε).

Indeed, ∂Ωi\Σ is composed of relatively open inner regular hypersurfaces (see point (v) of Proposi-
tion 2.3) on which ṽi has zero trace, and the relatively open subset Si of ∂B1, on which ṽi has trace
given by vi. Then by classical elliptic regularity, ṽi is smooth on Br(x) ∩Ωi for every x belonging
to these parts of ∂Ωi provided that r is sufficiently small. Then (2.10) follows. In particular, we
see that the integrals involving the full gradient and the normal derivative on the right hand side
of (2.8) are well defined.

Proof of identity (2.7). Let i be a fixed index in {1, . . . , k}. We are going to compute, for every
ε > 0,

(2.11)

∫

Ωi

ϕε(1− |x|2) |D2ṽi|2 dx =

∫

Ωi\Uε

ϕε(1− |x|2) |D2ṽi|2 dx,

where Ωi := {ṽi > 0}, while Uε and ϕε are defined as above.
We point out that, by construction (due to Proposition 2.3 (v) and the choice of Uε), we have

∂Ωi \ Uε ⊂ Si ∪ Γi,

where Si ⊆ ∂B1 is given in (2.5) while Γi ⊂ B1 is a smooth hypersurface.

In the following computations, we adopt Einstein convention on repeated indices. Moreover, for
simplicity and with an abuse of notation, until otherwise stated we set v := ṽi, S = Si, Γ := Γi,
U := Uε, and ϕ := ϕε; further, we denote by n the unit outer normal vector defined (everywhere)
on ∂Ω \ U .

Notice that we can perform integration by parts on the right hand side of (2.11) thanks to (2.10)
and since Ω \ U is piecewise regular with a singular part which is Hd−1-negligible (in particular it
has finite perimeter): since boundary integrals take place only on S ∪Γ (as ϕ = 0 in U), we obtain

∫

Ω

ϕ(1− |x|2) |D2v|2 dx =

∫

Ω\U
ϕ(1− |x|2) |D2v|2 dx

=

∫

S

ϕ(1− xkxk) ∂ijv ∂jv ni dHd−1 +

∫

Γ

ϕ(1− xkxk) ∂ijv ∂jv ni dHd−1

−
∫

Ω

∂iϕ(1− xkxk) ∂ijv ∂jv dx+ 2

∫

Ω

ϕxi ∂ijv ∂jv dx−
∫

Ω

ϕ(1− xkxk) ∂iijv ∂jv dx .

The first and last integrals in the latter sum vanish, respectively because |x| = 1 on S ⊆ ∂B1, and
because v is harmonic in Ω. Thus we have

(2.12)

∫

Ω

ϕ(1− |x|2) |D2v|2 dx = IA + IB + IC ,

being

IA :=

∫

Γ

ϕ(1− |x|2) ∂ijv ∂jv ni dHd−1

IB := −
∫

Ω

∂iϕ(1− |x|2) ∂ijv ∂jv dx

IC := 2

∫

Ω

ϕxi ∂ijv ∂jv dx .

We now analyze separately the three integrals above.

(a) Computation of IA. Recall the general formula

Δv = ΔΓv + (d− 1)
∂v

∂n
HΓ +

∂2v

∂n2
on Γ,
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being HΓ the scalar mean curvature. Since v is harmonic in Ω and vanishes on Γ, we get

∇v = −|∇v|n and (d− 1)
∂v

∂n
HΓ +

∂2v

∂n2
= 0 on Γ.

Moreover we may write

∂ijv∂jvni = −|∇v|(∂ijv)ninj = −|∇v| ∂
2v

∂n2
,

so that

(2.13) IA = −(d− 1)

∫

Γ

ϕ(1− |x|2)HΓ |∇v|2 dHd−1 .

(b) Computation of IB . We perform a further integration by parts. Exploiting the equality
|x| = 1 on ∂B1, and the fact that ϕ is harmonic in Ω \ U , we get

IB = −
∫

Γ

∂iϕni(1− |x|2)∂jv∂jv dHd−1 − 2

∫

Ω

∂iϕxi∂jv∂jv dx− IB ,

so that

(2.14) IB = −1

2

∫

Γ

∂ϕ

∂n
(1− |x|2)|∇v|2 dHd−1 −

∫

Ω

(∇ϕ · x)|∇v|2 dx .

(c) Computation of IC . Also in this case, we perform a further integration by parts. Exploiting
the equality x = n on ∂B1, and the identity div(x) = d, we get

IC = 2

∫

S

ϕ∂jv∂jvnini dHd−1 + 2

∫

Γ

ϕ∂jv∂jvxini dHd−1 − 2

∫

Ω

∂iϕxi|∇v|2 dx

− 2d

∫

Ω

ϕ|∂jv|2 dx− IC

so that

(2.15) IC =

∫

S

ϕ|∇v|2 dHd−1 +

∫

Γ

ϕ|∇v|2(x · n) dHd−1

−
∫

Ω

(∇ϕ · x)|∇v|2 dx− d

∫

Ω

ϕ|∇v|2 dx .

Now, we sum up the equalities (2.12) over all the phases, that we resume to denote by ṽi, for
i = 1, . . . , k. Notice carefully that, in doing so, we have cancellations of all the integrals over the
hypersurfaces Γi coming from the expressions of IA, IB and IC as computed respectively in (2.13),
(2.14), and (2.15). Namely

(d− 1)

k∑
i=1

∫

Γi

ϕ(1− |x|2)HΓi |∇ṽi|2 dHd−1 =

k∑
i=1

∫

Γi

∂ϕ

∂n
(1− |x|2)|∇ṽi|2 dHd−1

=
k∑

i=1

∫

Γi

ϕ|∇ṽi|2(x · n) dHd−1 = 0 .

Indeed, for two adjacent phases, all the integrands above have the same modulus (thanks to

Proposition 2.3 (iv)), and opposite sign (due to the sign change respectively of the terms HΓi ,
∂ϕ
∂n ,

and (x · n) when passing from a phase to an adjacent one).
So far, we have obtained

k∑
i=1

∫

Ωi

ϕ(1− |x|2)|D2ṽi|2 dx =
k∑

i=1

∫

∂B1

ϕ|∇ṽi|2 dHd−1 − d
k∑

i=1

∫

B1

ϕ|∇ṽi|2 dx

−2
k∑

i=1

∫

Ωi

(∇ϕ · x)|∇ṽi|2 dx .



10

Finally, we recall that ϕ = ϕε, and obtain the lemma by passing to the limit as ε → 0 in the
identity above. Indeed, since the sequence {ϕε} converges increasingly to 1 as ε → 0+, by monotone
convergence we can pass to the limit in the first three integrals above. On the other hand, since
∇ϕε → 0 strongly in L2(B1) and |∇ṽi| ≤ M (thanks to the smoothness of the boundary data v
and to Proposition 2.3 (iii)), we can pass to the limit also in the fourth integral and see that it is
infinitesimal as ε → 0.

Proof of identity (2.8). In the case of a single harmonic function in the ball, the proof of the
lemma is standard and can be found, for instance, in [13, Appendix A]. In the multiphase context,
the proof is still based on the same key, namely the minimality of the total Dirichlet energy,
but contains some additional technical difficulties, due to the presence of the interfaces and their
singularities.

For t ∈ (−τ, τ), consider a one-parameter family of bi-Lipschitz homeomorphisms of B1 into
itself of the form

Φt(x) = x+ tΨε,δ(x) , x ∈ B1,

where

Ψε,δ(x) = ϕε(x)γδ(|x|)x , x ∈ B1.

Above ϕε is defined as done just above Lemma 2.4, while γδ : R → R is an even function defined,
for δ ∈ (0, 1/2), by

γδ(t) :=

⎧
⎪⎨
⎪⎩

1 if 0 ≤ t ≤ 1− δ
1
δ (1− t) if 1− δ ≤ t ≤ 1

0 if t ≥ 1 .

Throughout the proof, for simplicity and by abuse of notation we simply write vi in place of ṽi.
Set

vti(x) := vi(Φt(x)) , x ∈ B1 .

By the minimality of v = (v1, . . . , vk), the map t �→ E(t) :=
∑k

i=1

∫
B1

|∇vti |2 dx has a critical point

at t = 0. In order to compute E′(0), we can argue in the same way as in the classical case of
harmonic functions (see [13]). Indeed, the functions vi are smooth on the support of Ψε,δ (by the
presence of the cut-off function ϕε in the definition of Ψε,δ itself). Thus, starting from the identity

∇vti(x) = ∇vi(Φt(x))
(
I + tDΨε,δ(x)

)
, x ∈ B1 ,

and, letting Ωi := {vi > 0}, we get

E′(0) =
k∑

i=1

∫

B1

d

dt
|∇vti |2

∣∣∣
t=0

dx

= 2

k∑
i=1

∫

Ωi

(D2vi · ∇vi) ·Ψε,δ dx+ 2
k∑

i=1

∫

B1

∇vi · (DΨε,δ · ∇vi) dx

= −
k∑

i=1

∫

B1

|∇vi|2 divΨε,δ dx+ 2

k∑
i=1

∫

B1

∇vi · (DΨε,δ · ∇vi) dx .

(The last equality follows by noticing that
∑k

i=1 2
∫
B1

(D2vi ·∇vi ·Ψε,δ) dx is the derivative at t = 0

of the map t �→
∑k

i=1

∫
B1

|∇vi(Φt(x))|2 dx =
∑k

i=1

∫
B1

|∇vi|2det(DΦt)
−1(x) dx).

Thus the stationarity condition E′(0) = 0 gives us the identity

(2.16)

k∑
i=1

∫

B1

|∇vi|2 divΨε,δ dx = 2

k∑
i=1

∫

B1

∇vi · (DΨε,δ · ∇vi) dx .

It is straightforward to compute divΨε,δ and DΨε,δ as
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divΨε,δ = dϕε(x)γδ(|x|) + ϕε(x)γ
′
δ(|x|)|x|+ γδ(|x|)

(
x · ∇ϕε(x)

)

DΨε,δ = ϕε(x)γδ(|x|)I + γδ(|x|)(x⊗∇ϕε(x)) + γ′
δ(|x|)ϕε(x)

(
x⊗ x

|x|

)
.

Since γ′
δ(|x|) = −1/δ on B1 \B1−δ and γ′

δ(|x|) = 0 on B1−δ, we infer that

k∑
i=1

∫

B1

|∇vi|2 divΨε,δ dx = d
k∑

i=1

∫

B1

ϕε(x)γδ(|x|)|∇vi(x)|2 dx

+
k∑

i=1

∫

B1

γδ(|x|)
(
x · ∇ϕε(x)

)
|∇vi(x)|2 dx

−1

δ

k∑
i=1

∫

B1\B1−δ

ϕε(x)|x||∇vi(x)|2 dx,

and

2

k∑
i=1

∫

B1

∇viDΨε,δ · ∇vi dx = 2

k∑
i=1

∫

B1

ϕε(x)γδ(|x|)|∇vi(x)|2 dx

+2

k∑
i=1

∫

B1

γδ(|x|)
(
x · ∇vi(x)

)(
∇vi(x) · ∇ϕε(x)

)
dx

−2

δ

k∑
i=1

∫

B1\B1−δ

ϕε(x)
1

|x|
(
∇vi(x) · x

)2
dx .

Passing to the limit as δ → 0 in (2.16), we obtain

k∑
i=1

d

∫

B1

ϕε(x)|∇vi(x)|2 dx+
k∑

i=1

∫

B1

(
x · ∇ϕε(x)

)
|∇vi(x)|2 dx

−
k∑

i=1

∫

∂B1

ϕε(x)|∇vi(x)|2 dHd−1 =
k∑

i=1

2

∫

B1

ϕε(x)|∇vi(x)|2 dx

+
k∑

i=1

2

∫

B1

(
x · ∇vi(x)

)(
∇vi(x) · ∇ϕε(x)

)
−

k∑
i=1

2

∫

∂B1

ϕε(x)
(∂vi
∂n

)2

dHd−1 .

Eventually, we obtain the lemma by passing to the limit as ε → 0 in the above equality, since
ϕε → 1 strongly in H1(B1), and since |∇vi| ≤ M (thanks to the smoothness of the boundary data
v and to Proposition 2.3 (ii)).

Proof of identity (2.9). Setting

T :=

k∑
i=1

∫

∂B1

|∇τ ṽi|2 dHd−1 , N :=
k∑

i=1

∫

∂B1

∣∣∣∣
∂ṽi
∂n

∣∣∣∣
2

dHd−1

from Lemma 2.4 we have respectively

T +N = d

k∑
i=1

∫

B1

|∇ṽi|2 dx+

k∑
i=1

∫

Ωi

(1− |x|2)|D2ṽi|2 dx

T −N = (d− 2)

k∑
i=1

∫

B1

|∇ṽi|2 dx .

Solving in (T,N), we find (2.9). �
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2.2. Approximation of admissible data. In this section we prove that any admissible data
w = (w1, . . . , wk) ∈ (H1(∂B1))

k for the extension Problem 2.2 can be approximated through the
regular configurations analyzed in Subsection 2.1, satisfying (2.4) and (2.6).

We shall need the following technical lemma, which employs the tool of γ-convergence of quasi-
open sets. Here we limit ourselves to recall that, by definition, a sequence of equi-bounded quasi-
open sets Ωn γ-converges to Ω if the corresponding torsion functions wΩn , namely the unique
minimizers in H1

0 (Ωn) of the functional

J(u) =

∫

Rd

(
1

2
|∇u|2 − u

)
dx

converge in L1(Rd) to wΩ. More details on the notion of γ-convergence and its applications in
variational problems can be found in [2].

Lemma 2.5. Let D be an open bounded subset of Rd. Given two quasi-open subsets A1, A2 of
D such that cap(A1 ∩ A2) = 0, there exist two sequences (An

1 , A
n
2 ) of open subsets of D such that

An
1 ∩An

2 = ∅ for every n and, as n → +∞, (An
1 , A

n
2 ) → (A1, A2) in the sense of γ-convergence.

Proof. For i = 1, 2, let wi denote the torsion function of the quasi-open set Ai, defined as above.
By [6, Proposition 2.1], every point of Rd is a Lebesgue point of wi and (the Lebsgue representative
of) wi is upper-semicontinuous on R

d.
For a fixed ε > 0, we consider the set

F ε
1 := {w1 ≥ ε} .

By the upper semicontinuity of w1, this set is closed. Moreover, since F ε
1 ⊂ A1, cap(A1 ∩A2) = 0,

and w2 = 0 q.e. on D \A2, we have that w2 = 0 q.e. on F ε
1 , or equivalently w2 ∈ H1

0 (D \ F ε
1 ).

Then, since the set D \ F ε
1 is open, the quasi-open set A2 can be approximated in the sense of

γ-convergence by a sequence Aε,n
2 of open sets contained into D \ F ε

1 (see e.g. [2, Lemma 4.3.15]).

Further, possibly passing to smaller open sets Ãε,n
2 ⊂ Aε,n

2 such that dist(Ãε,n
2 , ∂Aε,n

2 ) > 0 and still

Ãε,n
2 → A2 in the sense of γ-convergence, we can assume that

{w1 > ε} ⊂ D \Aε,n
2 .

Then the quasi-open set {w1 > ε} can be approximated in the sense of γ-convergence by a sequence

Aε,n
1 of open sets contained into D\Aε,n

2 . Again, possibly replacing Aε,n
1 by smaller open sets Ãε,n

1 ,
we can assume that

dist(∂Aε,n
1 , ∂Aε,n

2 ) > 0 .

So far, for every ε > 0 we have found two sequences (Aε,n
1 , Aε,n

2 ) of open subsets of D such that
Aε,n

1 ∩Aε,n
2 = ∅ for every n and, as n → +∞, γ-converge to ({w1 > ε}, A2).

The proof is achieved by letting ε → 0 and taking diagonal sequences. �

Proposition 2.6. Any admissible datum w = (w1, . . . , wk) can be approximated, in the strong
topology of (H1(∂B1))

k, by a sequence vn = (vn1 , . . . , v
n
k ) of admissible data satisfying (2.4) and

(2.6).

Proof. We prove the statement for k = 2 phases, being the proof the same if k > 2. So we consider
the case of two functions (w1, w2) ∈ (H1(∂B1))

2, with wi ≥ 0 and w1 · w2 = 0 on ∂B1.

Step 1: There exist two sequences (wn
1 , w

n
2 ) ∈ (C∞(∂B1))

2 such that wn
i ≥ 0 on ∂B1 (i = 1, 2),

dist
(
{wn

1 > 0}, {wn
2 > 0}

)
> 0

and

(wn
1 , w

n
2 ) → (w1, w2) strongly in (H1(∂B1))

2.

This is obtained as an immediate consequence of Lemma 2.5 (applied replacing D with ∂B1 by
local coordinates). Indeed, the sets Ai := {wi > 0} are quasi-open and satisfy the condition
cap(A1∩A2) = 0 (since w1·w2 = 0 on ∂B1). Then Lemma 2.5 ensures the existence of two sequences
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of open sets (An
1 , A

n
2 ) such that An

1 ∩ An
2 = ∅ for every n and, as n → +∞, (An

1 , A
n
2 ) → (A1, A2)

in the sense of γ-convergence. In particular, since wi ∈ H1
0 (Ai), by the Mosco-convergence of the

spaces H1
0 (A

n
i ) to H1

0 (Ai) (cf. [2, Proposition 4.5.3]), we can find (vn1 , v
n
2 ) ∈ H1

0 (A
n
1 ) × H1

0 (A
n
2 )

which converge to (w1, w2) strongly in (H1(∂B1))
2. Possibly passing to max{vni , 0} it is not

restrictive to assume that vni ≥ 0 (i = 1, 2). In turn, since the sets An
i are open, for every fixed

n we can find sequences (ϕn,k
1 , ϕn,k

2 ) ⊂ C∞
c (An

1 ) × C∞
c (An

2 ) (still with non-negative values), which
converge to (vn1 , v

n
2 ) strongly in H1

0 (A
n
1 ) × H1

0 (A
n
2 ) as k → +∞. Passing to a diagonal sequence

(wn
1 , w

n
2 ) := (ϕ

n,k(n)
1 , ϕ

n,k(n)
2 ) we get the claim of Step 1.

Step 2: Let (wn
1 , w

n
2 ) ∈ (C∞(∂B1))

2 be as in Step 1. For every fixed n, there exists (ϕn,k
1 , ϕn,k

2 )k∈N ∈
(C∞(∂B1))

2 with

(ϕn,k
1 , ϕn,k

2 ) → (wn
1 , w

n
2 ) strongly in (H1(∂B1))

2

such that, for every k, setting Sn,k
i := {ϕn,k

i > 0} it holds

∂B1 = Sn,k
1 ∪ Sn,k

2 ∪ En,k,

where En,k is a smooth (d−2)-dimensional submanifold, and the sets Sn,k
1 , Sn,k

2 , En,k are mutually
disjoint.

Indeed, we can proceed as follows. Considering the well separated compact sets {wn
i > 0}i=1,2,

we can find a relatively open set with smooth boundary Sn
1 ⊆ ∂B1 such that

{wn
1 > 0} ⊂ Sn

1 and {wn
2 > 0} ⊂ ∂B1 \ Sn

1 := Sn
2 .

Through a partition of unity argument, we can construct ψn
i ∈ C∞(∂B1) with ψn

i ≥ 0 and such
that

Sn
i = {ψn

i > 0} i = 1, 2.

The conclusion follows by setting

ϕn,k
i := wn

i +
1

k
ψn
i , Sn,k

i := Sn
i and En,k := ∂Sn

i ,

where the boundary is taken clearly in the relative topology of ∂B1.

Step 3: Conclusion. Let (ϕn,k
1 , ϕn,k

2 ) ∈ (C∞(∂B1))
2 be as in Step 2. Passing to a diagonal

sequence, namely setting

(vn1 , v
n
2 ) := (ϕ

n,k(n)
1 , ϕ

n,k(n)
2 )

we obtain the proposition. Indeed, by construction, (vn1 , v
n
2 ) are admissible data satisfying (2.4)

and (2.6), and converging strongly to (w1, w2) in H1(∂B1). �

2.3. Proof of the multiphase extension theorem. Let w = (w1, . . . , wk) ∈ (H1(∂B1))
k be an

admissible datum. Let vn = (vn1 , . . . , v
n
k ) ⊂ (C∞(∂B1))

k be a sequence as given by Proposition 2.6.
By Proposition 2.4, for every n a solution ṽn = (ṽn1 , . . . , ṽ

n
k ) to problem P(vn) satisfies

(2.17)

k∑
i=1

∫

∂B1

|∇τv
n
i |2 dHd−1 = (d− 1)

k∑
i=1

∫

B1

|∇ṽni |2 dx+
1

2

k∑
i=1

∫

Ωn
i

(1− |x|2)|D2ṽni |2 dx ,

where Ωn
i := {ṽni > 0}. Moreover, by Proposition 2.3 (vi), the sequence {ṽn = (ṽn1 , . . . , ṽ

n
k )}

converges strongly in (H1(B1))
k to the solution w̃ = (w̃1, . . . , w̃k) to problem P(v).

Then we pass to the limit as n → +∞ in (2.17). Since the quantities
∫

∂B1

|∇τvi|2 dx and

∫

B1

|∇ṽi|2 dx
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are strongly continuous respectively in H1(∂B1) and in H1(B1), we obtain

k∑
i=1

∫

∂B1

|∇τwi|2 dHd−1 = (d− 1)
k∑

i=1

∫

B1

|∇w̃i|2 dx+
1

2
lim inf

n

k∑
i=1

∫

Ωn
i

(1− |x|2)|D2ṽni |2 dx

≥ (d− 1)min
{ k∑

i=1

∫

B1

|∇w̃i|2 dx : w̃i|∂B1 = wi , w̃i · w̃j = 0 in B1

}
.

3. The monotonicity formula

In this section we establish the following multiphase version of the monotonicity formula in [5].

Theorem 3.1 (Multiphase monotonicity formula). There exists a dimensional constant cd
such that, if (u1, . . . , uk) ∈ U(Ω) is a multiphase local almost-quasi minimizer at x ∈ Ω, with
parameters (Λ, α, cα) according to Definition 1.1, then the mapping

ρ �→ Fu(ρ) :=

[
1

ρd−1

k∑
i=1

(∫

Bρ(x)

|∇ui|2 dx+Hd−1(Jui ∩Bρ(x))

)]
∧ cdΛ

2−d

d− 1
+ (d− 1)

cα
α
ρα

is non decreasing on (0, dist(x, ∂Ω)).

As mentioned in the Introduction, the above result is obtained along the same proof line of [5].
In particular, one establishes the result for d = 2, and then obtains the general case by induction
on the space dimension. We emphasize that the key point is to replace inequality (1.6) by the
sharp gradient multiphase estimate given by Theorem 2.1. With this weapon in hand, the proof
given in [5] can be followed line by line, making purely formal adjustments. For this reason we
omit the proof in its full length, and we limit ourselves to present it in the 2d case, both for the
sake of the reader, and because the 2d setting includes already several interesting applications, for
instance in image segmentation.

Below we assume d = 2. In this case we can set c2 := 1. Moreover, it is not restrictive to consider
x = 0. Let (u1, . . . , uk) ∈ U(Ω) be a local (Λ, α, cα)-almost-quasi minimizer of a multiphase free
discontinuity problem at 0. For ρ ∈ I := (0, dist(0, ∂Ω)), we can write Fu(ρ) as

Fu(ρ) =
Eu(ρ)

ρ
∧ 1 +

cα
α
ρα,

where

Eu(ρ) :=
k∑

i=1

(∫

Bρ(0)

|∇ui|2 dx+H1(Jui ∩Bρ(0))

)
.

In the remaining of the proof, we write for brevity F,E in place of Fu, Eu.
Since the map ρ �→ E(ρ) is non decreasing on I, we have that E belongs to BVloc(I). As a

consequence the distributional derivative of E is a nonnegative measure DE such that

DE = E′ dρ+ μE ,

where E′ denotes the density of the absolutely continuous part of DE, and

μE = [E+ − E−]H0 JE +DcE

stands for its singular part.
From the chain rule in BV (see [1, Theorem 3.99]), we have that F ∈ BVloc(I), with

DF = F ′ dρ+ μF ,

where

F ′(ρ) =

⎧
⎪⎨
⎪⎩

cαρ
α−1 L1-a.e. on I+ :=

{
E(ρ) > ρ

}

E′(ρ)

ρ
− E(ρ)

ρ2
+ cαρ

α−1 L1-a.e. on I− :=
{
E(ρ) < ρ

}
.
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and

μF =

(
E+(ρ)− E−(ρ)

ρ
∧ c2

)
H0 JE +

(
E(ρ)

ρ
∧ c2

)
DcE ≥ 0.

Hence, in order to show that F is non decreasing, it is enough to prove that the density F ′ ≥ 0
a.e. on I.

Clearly F ′(ρ) ≥ 0 L1-a.e. on I+. Let us show that the same holds true also on I−. Assume by
contradiction that

F ′(ρ) < 0 L1 -a.e. on a subset J ,

where J ⊂ I− with L1(J) > 0. In this case, for L1-a.e. ρ ∈ J , we have

(3.1) E′(ρ) <
E(ρ)

ρ
− cαρ

α < 1.

In view of the coarea formula for rectifiable sets (see [1, Theorem 2.93]), we obtain that for a.e.
ρ ∈ J

(3.2) 1 > E′(ρ) =
k∑

i=1

[∫

∂Bρ

|∇ui|2 dH1 + lim
h→0+

H1(Jui ∩Bρ+h)−H1(Jui ∩Bρ)

h

]

≥
k∑

i=1

[∫

∂Bρ

|∇τui|2 dH1 + lim
h→0+

1

h

∫ ρ+h

ρ

H0(Jui ∩ ∂Bs) ds

]

=

k∑
i=1

[∫

∂Bρ

|∇τui|2 dH1 +H0(Jui ∩ ∂Bρ)

]
,

from which we get
∑k

i=1 H0(Jui ∩ ∂Bρ) = 0 and consequently

u|∂Bρ
∈ (H1(∂Bρ))

k.

By Theorem 2.1, we get the existence of a function w̃ ∈ (H1(Bρ))
k with w̃|∂Bρ

= u|∂Bρ
, w̃i · w̃j = 0

and such that
k∑

i=1

∫

Bρ

|∇w̃i|2 dx ≤ ρ
k∑

i=1

∫

∂Bρ

|∇τui|2 dH1.

Coming back to (3.2) and (3.1) we deduce

k∑
i=1

∫

Bρ

|∇w̃i|2 dx ≤ ρE′(ρ) < E(ρ)− cαρ
α+1,

that is
k∑

i=1

∫

Bρ

|∇w̃i|2 dx+ cαρ
α+1 < E(ρ).

But this is against the fact the u is a local almost-quasi minimizer (by taking the trial function
z = (z1, . . . , zk) defined by zi = w̃iχBρ + uiχΩ\Bρ

), so that the result follows.

4. The decay estimate

In this section we establish a multiphase extension of the decay estimate of De Giorgi, Carriero
and Leaci [17].

For any u := (u1, . . . , uk) ∈ U(Ω) (see (1.4)), A ⊆ Ω, and c ≥ 0, we define

Φ(u, c, A) :=

k∑
i=1

[∫

A

|∇ui|2 dx+ cHd−1 (Jui ∩A)

]
,

and we set Dev(u, c, A) the minimum λ ≥ 0 such that

(4.1) Φ(u, c, A) ≤ Φ(v, c, A) + λ
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for every competitor v ∈ U(Ω) such that {u �= v} ⊂⊂ A. For c = 1 we write simply Φ(u,A) and
Dev(u,A).

The decay estimate is the following.

Theorem 4.1 (Multiphase decay estimate). There exists Cd > 0 such that for every τ ∈]0, 1[
there exist ε(τ), ϑ(τ) such that if u = (u1, . . . , uk) ∈ U(Ω), Bρ(x) ⊂ Ω and

k∑
i=1

Hd−1(Jui ∩Bρ(x)) < ε(τ)ρd−1, Dev(u,Bρ(x)) ≤ ϑ(τ)Φ(u,Bρ(x)),

then

(4.2) Φ(u,Bτρ(x)) ≤ Cdτ
dΦ(u,Bρ(x)).

Loosely speaking, the argument to prove the decay estimate in the classical case is as follows
(see the presentation of [1, Chapter 7]). One proceeds by contradiction: by rescaling, one is led to
consider a sequence (un)n∈N on B1 with vanishing jump set and vanishing deviation along which
(4.2) is violated. If (un) admits a limit configuration u, one expects u to be a Sobolev function
(jumps are vanishing) which is a local minimizer of the Dirichlet energy (deviation is going to

zero). In particular u is harmonic on B1, so that the energy in Bτ behaves like Ĉdτ
d with Ĉd a

dimensional constant, and this yields to a contradiction if (4.2) is assumed to be violated. The
limit configuration is obtained through suitable truncations, employing Poincaré type inequalities
in SBV .

We adapt the same procedure to the multiphase setting as follows.

(a) In Section 4.1 (Proposition 4.3), we prove an auxiliary result about a subharmonicity
property of local multiphase minimizers for the Dirichlet energy on B1.

(b) In Section 4.2, we describe the asymptotic behaviour of a sequence of elements in U(B1)
for which the deviation from minimality and the total length of the jumps go to zero: we
will treat separately the cases where more than one or just one phase are prevailing in the
limit (see Propositions 4.5 and 4.6). Limit configurations are recovered which are local
minimizers of the multiphase or the scalar Dirichlet energy.

(c) Finally in Section 4.3 we give the proof of Theorem 4.1.

4.1. A subarmonicity result for multiphase local minimizers of the Dirichlet energy.
We set the following Definition.

Definition 4.2 (Multiphase local minimizer of the Dirichlet energy). We say that u =
(u1, . . . , um) ∈ H1(B1;R

m) with ui ·uj = 0 for i �= j is a multiphase local minimizer of the Dirichlet
energy if

m∑
i=1

∫

B1

|∇ui|2 dx ≤
m∑
i=1

∫

B1

|∇vi|2 dx

for every v = (v1, . . . , vm) ∈ H1(B1;R
m) with vi · vj = 0 and {v �= u} ⊂⊂ B1.

In the case m = 1, the preceding definition reduces to the usual one of local minimizer of the
Dirichlet energy.

We will need the following subarmonicity result.

Proposition 4.3. Let (v1, v2, . . . , vm) ∈ H1(B1;R
m) be a local multiphase minimizer of the Dirich-

let energy. Then the function
∑m

i=1 |∇vi|2 is subharmonic in B1.

Proof. It is not restrictive to assume that the functions are positive (considering positive and
negative parts, we obtain a (2m)-multiphase local minimizer of the Dirichlet energy). To get the
conclusion, it suffices to check that

−Δ

(
m∑
i=1

|∇vi|2
)

≤ 0 in the sense of distributions on B1,
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i.e.,

(4.3)

m∑
i=1

∫

B1

Δϕ|∇vi|2 dx ≥ 0

for every ϕ ∈ C∞
c (B1) with ϕ ≥ 0.

Let us denote with Γ the interfaces in B1 associated to (v1, v2, . . . , vm). By Proposition 2.3 we
have that Γ is the disjoint union of analytic hypersurfaces and a relatively closed set Γ0 having
Hausdorff dimension at most d− 2 and zero capacity: indeed for every ρ < 1, (v1, v2, . . . , vm) is a
solution to problem (2.2) on Bρ with respect to its own boundary data. We may therefore proceed
integrating by parts on each phase, disregarding the set Γ0 which plays no role since it has zero
capacity.

We may write integrating by parts

m∑
i=1

∫

B1

Δϕ|∇vi|2 dx =
m∑
i=1

d∑
k,j=1

∫

B1

|∂kvi|2∂jjϕdx

=
m∑
i=1

d∑
k,j=1

[∫

Γ

|∂kvi|2∂jϕnj dHd−1 − 2

∫

B1

∂kvi∂kjvi∂jϕdx

]
.

Notice that
m∑
i=1

d∑
k,j=1

∫

Γ

|∂kvi|2∂jϕnj dHd−1 =

m∑
i=1

∫

Γ

|∇vi|2
∂ϕ

∂n
dHd−1 = 0

since at the interface between vi and vj we have ∇vi = −∇vj (see Proposition 2.3), while the
normals are oppositely oriented. We infer integrating again by parts, taking into account that each
vi is harmonic on its phase

(4.4)

m∑
i=1

∫

B1

Δϕ|∇vi|2 dx = −2
m∑
i=1

d∑
k,j=1

[∫

Γ

∂kvi∂kjviϕnj dHd−1 +

∫

B1

|∂kjvi|2ϕdx

]
.

Since vi = 0 on Γ, we have

∂kvi =
∂vi
∂n

nk and

d∑
k,j=1

∂kjvinknj = −(d− 1)
∂vi
∂n

HΓ on Γ,

where HΓ stands for the mean curvature. Again by cancellation due to the different sign of HΓ on
the two sides of the interfaces we deduce

m∑
i=1

d∑
k,j=1

∫

Γ

∂kvi∂kjviϕnj dHd−1 =
m∑
i=1

d∑
k,j=1

∫

Γ

∂vi
∂n

nk∂kjvjϕnj dHd−1

= −(d− 1)
m∑
i=1

∫

Γ

HΓ

(
∂vi
∂n

)2

ϕdHd−1 = 0.

Equality (4.4) thus yields

m∑
i=1

∫

B1

Δϕ|∇vi|2 dx = −2

m∑
i=1

d∑
k,j=1

∫

B1

|∂kjvi|2ϕdx ≤ 0

so that (4.3) follows, and the proof is complete. �
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4.2. Asymptotic behaviour of sequences with vanishing jumps and deviation. We begin
with a useful lemma:

Lemma 4.4. Let (un)n∈N be a sequence in SBV (B1) with un ≥ 0,∫

B1

|∇un|2 dx ≤ C, Hd−1(Jun) → 0

and such that

(4.5) lim inf
n

|{un = 0}| > 0.

Then there exist a subsequence (unk
)k∈N, τnk

≥ 0, u ∈ H1(B1) and c > 0 such that setting

ūnk
:= unk

∧ τnk

we have

|{unk
�= ūnk

}| ≤ c
(
Hd−1(Junk

)
)d/d−1

,

ūnk
→ u strongly in L2(B1),

and ∫

B1

|∇u|2 dx ≤ lim inf
k

∫

B1

|∇ūnk
|2 dx.

Proof. The result is a variant of [1, Proposition 7.5], where the conclusion is proved for

[(un ∧ τ+(un, B1) ∨ τ−(un, B1)]−mn,

where mn is a median for un, while τ±(un, B1) are truncation levels associated to the Poincaré
inequality in SBV (see [1, Theorem 4.14]). In our situation, truncation from below is not necessary
since the functions are positive, and the use of the median can be avoided because un vanishes on
a nontrivial part of B1.

We proceed in two steps.

Step 1. Up to a subsequence we may assume that for every n ∈ N

(4.6) |{un = 0}| ≥ δ > 0.

Let us set following [17]

τn := τ+(un, B1) := inf
{
t ≥ 0 : |{u < t}| > ωd − [2γδHd−1(Jun)]

d
d−1

}
,

where γδ is the constant for which the isoperimetric inequality

(4.7) γδPer(E,B1) ≥ |E|
d−1
d

holds true for every set E ⊂ B1 such that |E| ≤ ωd − δ: here Per(E,B1) denotes the perimeter of
E in B1.

Let us set ūn := un ∧ τn so that

(4.8) |{un �= ūn}| ≤ [2γδHd−1(Jun)]
d

d−1 .

We may write

(4.9) |Dūn|(B1) ≤
∫

B1

|∇ūn| dx+ τnHd−1(Jun),

while using the coarea formula and the isoperimetric inequality (4.7) we have

|Dūn|(B1) =

∫ +∞

0

Per({ūn > t}, B1) dt =

∫ τn

0

Per({un > t}, B1) dt

≥ 1

γδ

∫ τn

0

|{un > t}|
d−1
d dt.
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Notice that the use of the isoperimetric inequality is allowed since

|{un > t}| = ωd − |{un ≤ t}| ≤ ωd − |{un = 0}| ≤ ωd − δ.

Since by the very definition of τn we have

|{un > t}|
d−1
d ≥ 2γδHd−1(Jun) for every 0 ≤ t < τn,

we conclude
|Dūn|(B1) ≥ 2τnHd−1(Jun)

which together with (4.9) yields

(4.10) |Dūn|(B1) ≤ 2

∫

B1

|∇ūn| dx.

In view of (4.6), Poincaré-Sobolev inequality in BV holds true for ūn (without subtracting a
median), so that we may write

(4.11)

(∫

B1

ū
d

d−1
n dx

) d−1
d

≤ ηδ|Dūn|(B1) ≤ 2ηδ

∫

B1

|∇ūn| dx ≤ 2ηδ

∫

B1

|∇un| dx

for some ηδ > 0.

Let d ≥ 3. Applying the previous inequality to vn := u
2(d−1)
d−2

n , being τ+(vn, B1) = [τ+(un, B1)]
2(d−1)
d−2

we deduce by a straightforward calculation

(4.12) ‖ūn‖L2∗ ≤ cδ‖∇un‖L2 .

for some cδ > 0, where as usual 2∗ := 2d
d−2 .

If d = 2, for any q > 2 Poincaré-Sobolev inequality together with (4.10) yields

(4.13) ‖ūn‖Lq ≤ ηδ,q|Dūn|(B1) ≤ 2ηδ,q

∫

B1

|∇ūn| dx ≤ 2ηδ,q|B1|1/2‖∇un‖L2 .

Step 2. Thanks to (4.10), (4.11) and (4.12) ((4.13) if d = 2), in view of the compact embedding
of BV into L1, there exist u ∈ BV (B1) ∩ L2(B1) and {unk

}k∈N such that

ūnk
→ u strongly in L2(B1).

Using Ambrosio’s theorem on ūn ∧ M for any M > 0 as in [1, Proposition 7.5], we infer that
u ∈ H1(B1), so that the conclusion follows (take into account (4.8)).

�
Proposition 4.5. Let un := (un

1 , u
n
2 , . . . , u

n
k ) ∈ U(B1) and cn > 0 be such that

(4.14)

k∑
i=1

Hd−1
(
Jun

i

)
→ 0, Φ(un, cn, B1) ≤ C, Dev(un, cn, B1) → 0.

Assume that, for some 2 ≤ m ≤ k,

(4.15) lim inf
n

|{un
i �=0}| > 0 i = 1, . . . ,m

and

(4.16) lim
n

|{un
i �=0}| = 0 i = m+ 1, . . . , k.

Then up to a subsequence

(un
1 , . . . , u

n
m) → (u1, . . . , um) ∈ H1(B1;R

m) a.e. in B1,

where (u1, . . . , um) is a multiphase local minimizer for the Dirichlet energy with

(4.17)
m∑
i=1

∫

Bρ

|∇ui|2 dx = lim
n

Φ(un, cn, Bρ)

for every 0 ≤ ρ < 1.
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Proof. We follow [1, Theorem 7.7] adapting the arguments to our multiphase setting. We divide
the proof in several steps.

Step 1: Compactness. By Helly’s theorem we may assume that up to a subsequence for every
ρ ∈ [0, 1]

lim
n

Φ(un, cn, Bρ) = α(ρ),

where α : [0, 1] → [0,+∞[ is non decreasing. Moreover we may assume cn → c∞ ∈ [0,+∞].
In view of (4.14), (4.15) and (4.16), by Lemma 4.4 (applied to the positive and negative parts

of un) we get that up to a subsequence, for i = 1, . . . ,m

ūn
i → ui ∈ H1(B1) strongly in L2(B1),

while for i = m+ 1, . . . , k (notice that the set on which they vanish converges to B1 in measure)

ūn
i → 0 strongly in L2(B1).

More precisely, ūn
i := (ui

n)
+ ∧ τni,+ − (ui

n)
− ∧ τni,− with τni,± > 0 and

|{un
i �= ūn

i }| ≤ cd
(
Hd−1(Jun

i
)
)d/d−1 → 0.

This means that

un → (u1, . . . , um, 0, . . . , 0) a.e. in B1,

with ui · uj = 0 a.e. in B1 for i �= j, while

ūn := (ūn
1 , . . . , ū

n
k ) → (u1, . . . , um, 0, . . . , 0) strongly in L2(B1;R

k).

Finally, thanks again to Lemma 4.4 for every ρ ∈ [0, 1]

(4.18)
m∑
i=1

∫

Bρ

|∇ui|2 dx ≤ lim inf
n

m∑
i=1

∫

Bρ

|∇ūn
i |2 dx ≤ α(ρ).

Step 2: Local minimality for ūn. We may write thanks to (4.14)

cn

∫ 1

0

Hd−1({un
i �= ūn

i } ∩ ∂Bρ) dρ = cn|{un
i �= ūn

i } ∩B1| ≤ ccn
(
Hd−1(Jun

i
)
)d/d−1

= ccnHd−1(Jun
i
)
[
Hd−1(Jun

i
)
]1/d−1 → 0.

Thus up to a further subsequence, we may assume that for every i = 1, . . . , k and for a.e. ρ ∈ [0, 1]

cnHd−1({un
i �= ūn

i } ∩ ∂Bρ) → 0.

Since Hd−1(Jūn
i
∩ ∂Bρ) = 0 for a.e. ρ ∈ [0, 1], by comparing un with

vn := (vn1 , . . . , v
n
k )

where

vni := ūn
i 1Bρ + un

i 1B1\Bρ
, ρ ∈ [0, 1[,

we get

Φ(ūn, cn, Bρ) ≤ Φ(un, cn, Bρ)

≤ Φ(ūn, cn, Bρ) +
k∑

i=1

cnHd−1({un
i �= ūn

i } ∩ ∂Bρ) +Dev(un, cn, B1).

We conclude that for a.e. ρ ∈ [0, 1[

(4.19) Φ(ūn, cn, Bρ) → α(ρ),
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and since (see e.g. [1, Lemma 7.3])

Dev(ūn, cn, Bρ) ≤ Φ(ūn, cn, Bρ)− Φ(un, cn, Bρ)

+
k∑

i=1

cnHd−1({un
i �= ūn

i } ∩ ∂Bρ) +Dev(un, cn, B1),

we infer

(4.20) Dev(ūn, cn, Bρ) → 0 for a.e. ρ ∈ [0, 1[.

Step 3: Multiphase local minimality in the limit. Let us consider

(v1, . . . , vm) ∈ H1(B1;R
m)

admissible multiphase competitor for (u1, . . . , um). Let us choose ρ < ρ′ < 1 such that

{(v1, . . . , vm) �= (u1, . . . , um)} ⊂⊂ Bρ,

the function α is continuous at ρ′, the convergences (4.19) and (4.20) hold true at ρ and ρ′.
Let us set

wn
i := ϕvi + (1− ϕ)ūn

i i = 1, . . . ,m

and

wn
j := (1− ϕ)ūn

j j = m+ 1, . . . , k,

where ϕ is a smooth cut-off function such that ϕ = 1 on Bρ, the support of ϕ is contained in Bρ′ ,
and such that |∇ϕ| ≤ C/(ρ′ − ρ).

Notice that wn := (wn
1 , . . . , w

n
k ) is not a priori a good competitor for ūn since we have no control

on the supports of the components. Following [14] we set

vni :=

⎛
⎝(wn

i )
+ −

∑
j �=i

|wn
j |

⎞
⎠

+

−

⎛
⎝(wn

i )
− −

∑
j �=i

|wn
j |

⎞
⎠

+

.

Notice that vn := (vn1 , . . . , v
n
k ) coincides with ūn on B1 \ Bρ. Moreover the supports of vni are

mutually disjoint. Indeed if for example vni (x) > 0, then for h �= i

|wn
i (x)| = (wn

i )
+(x) >

∑
i�=j

|wn
j |(x) ≥ |wn

h |(x) = (wn
h)

+(x) + (wn
h)

−(x),

which yields immediately vnh(x) = 0.
We conclude that vn is an admissible competitor for ūn with

vn → (v1, . . . , vm, 0, . . . , 0) strongly in L2(B1)

and

vn = (v1, . . . , vm, 0, . . . , 0) in Bρ.

Comparing vn with ūn we get easily for some c > 0 (see e.g. [1, Lemma 7.4])

Φ(ūn, cn, Bρ) ≤
m∑
i=1

∫

Bρ

|∇vi|2 dx

+ c

[
Φ(ūn, cn, Bρ′ \Bρ) +

m∑
i=1

∫

Bρ′\Bρ

|∇vi|2 dx+
1

(ρ′ − ρ)2

k∑
i=1

∫

Bρ′\Bρ

|ūn
i − vni |2 dx

]

+Dev(ūn, cn, Bρ′),
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so that, in the limit as n → +∞,

α(ρ) ≤
m∑
i=1

∫

Bρ

|∇vi|2 dx

+ c

[
α(ρ′)− α(ρ) +

m∑
i=1

∫

Bρ′\Bρ

|∇vi|2 dx+
1

(ρ′ − ρ)2

m∑
i=1

∫

Bρ′\Bρ

|ui − vi|2 dx
]
.

Letting ρ → ρ′, and since ui = vi on Bρ′ \Bρ, we infer

α(ρ′) ≤
m∑
i=1

∫

Bρ′

|∇vi|2 dx.

Choosing vi = ui and recalling (4.18) we deduce that

m∑
i=1

∫

Bρ′

|∇ui|2 dx = α(ρ′),

which yields in particular the multiphase local minimality of the limit configuration (u1, . . . , um).
If ρ ∈ [0, 1[, we can choose ρ′ > ρ satisfying the relation above, so that by monotonicity

α(ρ) ≤ α(ρ′) =

m∑
i=1

∫

Bρ′

|∇ui|2 dx.

For ρ′ → ρ we deduce relation (4.17) and the proof is concluded. �

Proposition 4.6. Let un := (un
1 , u

n
2 , . . . , u

n
k ) ∈ U(B1) and cn > 0 be such that

k∑
i=1

Hd−1
(
Jun

i

)
→ 0, Φ(un, cn, B1) ≤ C, Dev(un, cn, B1) → 0.

Assume that for every 2 ≤ i ≤ k

lim
n

|{un
i �= 0}| = 0.

Then up to a subsequence

un
1 −mn → u1 ∈ H1(B1) a.e. in B1,

where mn is a median of un
1 , and u1 is a local minimizer for the Dirichlet energy with

∫

Bρ

|∇u1|2 dx = lim
n

Φ(un, cn, Bρ)

for every 0 ≤ ρ < 1.

Proof. The proof is a variant of that of Proposition 4.5. We need to employ a median for un
1 since

we have no control on the size of its zero set.
By Helly’s theorem we may assume that up to a subsequence for every ρ ∈ [0, 1]

lim
n

Φ(un, cn, Bρ) = α(ρ),

where α : [0, 1] → [0,+∞[ is non decreasing. Moreover we may assume cn → c∞ ∈ [0,+∞].
We divide the proof in several steps.

Step 1: Truncation for (un
2 , . . . , u

n
k ). We can repeat Step 1 and Step 2 of the proof of Proposition

4.5 working on (un
2 , . . . , u

n
k ) for which we know that the corresponding zero set is converging in

measure the entire B1. We infer that

ūn := (un
1 , ū

n
2 , . . . , ū

n
k )
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is such that for a.e. ρ ∈ [0, 1[

(4.21) Φ(ūn, cn, Bρ) → α(ρ)

and

(4.22) Dev(ūn, cn, Bρ) → 0.

Here ūn
i := (ui

n)
+ ∧ τni,+ − (ui

n)
− ∧ τni,− with τni,± > 0,

ūn
i → 0 strongly in L2(B1)

and

|{un
i �= ūn

i }| ≤ cd
(
Hd−1(Jun

i
)
)d/d−1 → 0.

Step 2: Local minimality for un
1 . Let us fix ρ ∈ [0, 1[ satisfying (4.21), (4.22) and such that α

is continuous at ρ. Let vn ∈ SBV (B1) be such that

{vn �= un
1} ⊂⊂ Bρ.

Let us consider ρ′ > ρ satisfying (4.21), (4.22), and let us compare ūn with (vn, ϕū
n
2 , . . . , ϕū

n
k ),

where ϕ is a smooth cut-off function such that ϕ = 0 on Bρ, ϕ = 1 on B1\Bρ′ , and |∇ϕ| ≤ 2/(ρ′−ρ).
We get

Φ(ūn, cn, Bρ′) ≤
∫

Bρ′

|∇vn|2 dx+ 2
k∑

i=2

∫

Bρ′

[ϕ2|∇ūn
i |2 + (ūn

i )
2|∇ϕ|2] dx

+cnHd−1(Jvn ∩Bρ′) + cn

k∑
i=2

Hd−1(Jϕūn
i
∩Bρ′) +Dev(ūn, cn, Bρ′),

so that

(4.23) Φ(ūn, cn, Bρ) ≤
∫

Bρ

|∇vn|2 dx+ cnHd−1(Jvn ∩Bρ) + en(ρ, ρ
′),

where

en(ρ, ρ
′) := 2Φ(ūn, cn, Bρ′ \Bρ) +

8

(ρ′ − ρ)2

k∑
i=2

∫

B1

|ūn
i |2 dx+Dev(ūn, cn, Bρ′).

In particular we may write∫

Bρ

|∇un
1 |2 dx+ cnHd−1(Jun

1
∩Bρ) ≤

∫

Bρ

|∇vn|2 dx+ cnHd−1(Jvn ∩Bρ) + en(ρ, ρ
′).

Notice that in view of (4.21) and (4.22) we have

lim sup
n

en(ρ, ρ
′) ≤ 2[α(ρ′)− α(ρ)].

Choosing ρ′ of the form ρ′ := (1 + an)ρ with a suitable an > 0, we deduce that for a.e. ρ ∈ [0, 1[∫

Bρ

|∇un
1 |2 dx+ cnHd−1(Jun

1
∩Bρ) ≤

∫

Bρ

|∇vn|2 dx+ cnHd−1(Jvn ∩Bρ) + ên(ρ)

with ên(ρ) → 0 and (choose vn = un
1 in (4.23))∫

Bρ

|∇un
1 |2 dx+ cnHd−1(Jun

1
∩Bρ) → α(ρ).

Step 3: Conclusion. In view of Step 2, the function un
1 enjoys a local minimality property for

the Mumford Shah energy with constant cn which is independent of the other phases (un
2 , . . . , u

n
k ).

We are thus in the classical setting of [1, Theorem 7.7]: truncating (from above and below) and
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translating with a median mn, we get the convergence almost everywhere to some function u ∈
H1(B1) which is a local minimizer for the Dirichlet energy. The proof is thus concluded. �

4.3. Proof of the decay estimate. If 1/2 ≤ τ < 1, the result follows by choosing Cd ≥ 2d. Let
us thus consider the case 0 < τ < 1/2, and let Cd > 0 to be fixed below.

Assume by contradiction that there exist εn, ϑn → 0, Bρn(xn) ⊂ Ω and un = (un
1 , . . . , u

n
k ) ∈

U(Ω) such that

k∑
i=1

Hd−1(Jun
i
∩Bρn(xn)) = εnρ

d−1
n , Dev(un, Bρn(xn)) = ϑnΦ(un, Bρn(xn)),

and
Φ(un, Bτρn(xn)) > Cdτ

dΦ(un, Bρn(xn)).

Setting

vn(y) :=

√
cn
ρn

un(xn + ρny), y ∈ B1, cn :=
ρd−1
n

Φ(un, Bρn(xn))
,

we obtain vn = (vn1 , . . . , v
n
k ) ∈ U(B1) with

Φ(vn, cn, B1) = 1,
k∑

i=1

Hd−1(Jvn
i
) = εn, Dev(vn, cn, B1) = ϑn

and

(4.24) Φ(vn, cn, Bτ ) > Cdτ
d.

If the phases vary according to Proposition 4.5, up to a subsequence we have

(vn1 , . . . , v
n
m) → (v1, . . . , vm) ∈ H1(B1;R

m) a.e. in B1

with
m∑
i=1

∫

Bρ

|∇vi|2 dx = lim
n

Φ(vn, cn, Bρ) ≤ 1

for every ρ ∈ [0, 1[, where (v1, . . . , vm) is a local multiphase minimizer of the Dirichlet energy.
Since in view of Proposition 4.3

m∑
i=1

|∇vi|2 is subharmonic on B1,

we deduce that for every ρ ∈ [0, 1/2]

1

ωdρd

m∑
i=1

∫

Bρ

|∇vi|2 dx ≤
m∑
i=1

∫

B1

|∇vi|2 dx ≤ 1

so that
m∑
i=1

∫

Bρ

|∇vi|2 dx ≤ ωdρ
d.

Passing to the limit in (4.24) we get
m∑
i=1

∫

Bτ

|∇vi|2 dx ≥ Cdτ
d

which yields a contradiction if we choose Cd > ωd.
If the phases vary according to Proposition 4.6, up to a subsequence we have

un
1 −mn → u1 ∈ H1(B1) a.e. in B1,

with ∫

Bρ

|∇u1|2 dx = lim
n

Φ(vn, cn, Bρ) ≤ 1
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for every ρ ∈ [0, 1[, where mn is a median of un
1 , and u1 is a local minimizer for the Dirichlet

energy. This means that u1 is harmonic in B1, so that the function |∇u1|2 is subharmonic in B1.
We can thus adapt the previous arguments to get again a contradiction provided that Cd > ωd.

�

5. Proof of Theorem 1.2

In this section we finally prove our main result. Let u = (u1, . . . uk) ∈ U(Ω) be a local almost-
quasi minimizer of a multiphase free discontinuity problem at every point x ∈ Ω.

We proceed in three steps.

Step 1: Hölder continuity of u and openness of the phases. We denote by Jr
ui

the set of
regular points of Jui (namely points of density 1), and we set

C :=
⋃
i

Jr
ui

.

Since C is a closed set such that Hd−1(Juh
\ C) = 0 for every h = 1, . . . , k, we deduce that

ui ∈ H1
loc(Ω \C). Moreover, thanks to the local minimality, we get that, for every Bρ(x) ⊂ Ω \C,∫

Bρ(x)

|∇ui|2 dx ≤ Λdωdρ
d−1 + cαρ

d−1+α.

By Poincaré inequality we infer∫

Bρ(x)

|ui − (ui)x,ρ|2 dx ≤ Cdρ
2

∫

Bρ(x)

|∇ui|2 dx ≤ Cd(Λdωdρ
d+1 + cαρ

d+1+α),

where (ui)x,ρ denotes the integral mean of ui on Bρ(x). Thanks to Campanato’s criterion (see e.g.
[1, Theorem 7.51]), we deduce that ui is locally Hölder continuous (with exponent 1/2) in Ω \ C.
In particular we obtain Jui \ C = ∅, so that

⋃
i

Jui ⊆ C ⊆
⋃
i

Jui ,

which entails (C is closed)

(5.1)
⋃
i

Jui = C.

From the local Hölder continuity of u in Ω\
⋃

i Jui , we infer that the phases Ωi := {x ∈ Ω\
⋃

j Juj :

ui(x) �= 0} are open sets, whose boundary is composed either of jump points of ui or of regular
points for which ui = 0.

Step 2: Essential closedness of the union of jump sets. In view of (5.1), in order to obtain
the essential closedness of

⋃
i Jui , it is enough to show that

(5.2) Hd−1
(⋃

i

Jr
ui

\
⋃
i

Jui

)
= 0 .

Let x ∈
⋃

i J
r
ui
, and let Fu(ρ) be defined as in Theorem 3.1. By Theorem 3.1, comparing Fu(ρ)

with its behaviour as ρ → 0+, we obtain, for ρ ∈ (0, dist(x, ∂Ω))
[

1

ρd−1

k∑
i=1

(∫

Bρ(x)

|∇ui|2 dx+Hd−1(Jui ∩Bρ(x))

)]
+ (d− 1)

cα
α
ρα ≥ ωd−1 ∧

cdΛ
2−d

d− 1
.

Hence there exists ρ0 > 0 and C0 > 0 (independent of x) such that for every ρ < dist(x, ∂Ω) ∧ ρ0

(5.3)
k∑

i=1

(∫

Bρ(x)

|∇ui|2 dx+Hd−1(Jui ∩Bρ(x))

)
≥ C0ρ

d−1.
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By continuity, we can extend the above inequality to points x ∈
⋃

i J
r
ui
.

Now we recall the well-known fact that, since ui ∈ SBV (Ω), it holds

lim
ρ→0+

ρ1−d
k∑

i=1

(∫

Bρ(y)

|∇ui|2 dx+Hd−1(Jui ∩Bρ(y))
)
= 0

for Hd−1-a.e. y ∈ Ω \
⋃

i Jui (see for instance [17, Theorem 3.6]). In view of this fact, the validity

of inequality (5.3) for points x ∈
⋃

i J
r
ui

tells us that

⋃
i

Jr
ui

⊆
⋃
i

Jui ∪A ,

for some set A with Hd−1(A) = 0, which implies (5.2).

Step 3: Ahlfors regularity of the union of jump sets. Firstly observe that there exist c′ > 0
and ρ′0 > 0 such that, for every x ∈

⋃
i Jui and every Bρ(x) ⊂ Ω with ρ < ρ′0, it holds

c′ρd−1 ≤
k∑

i=1

(∫

Bρ(x)

|∇ui|2 dx+Hd−1(Jui ∩Bρ(x))

)
≤ 1

c′
ρd−1 .

Namely, the estimate from above follows immediately from the almost-quasi minimality of u,
whereas the estimate from below follows by arguing as in Step 2 (cf. (5.1) and (5.3)). A simple
monotonicity by inclusion argument yields also

(5.4) c′ρd−1 ≤
k∑

i=1

(∫

Bρ(x)

|∇ui|2 dx+Hd−1(Jui ∩Bρ(x))

)
≤ 1

c′
ρd−1 .

As a consequence of (5.4), we immediately obtain the upper bound inequality in (1.5). In
order to show the lower bound inequality in (1.5), we argue by contradiction. Assume there exist
sequences {xn} ⊂

⋃
i Jui , ρn → 0, cn → 0 such that

Hd−1
(⋃

i

Jui ∩Bρn(xn)
)
≤ cnρ

d−1
n

and hence

(5.5)
k∑

i=1

Hd−1
(
Jui ∩Bρn(xn)

)
≤ kcnρ

d−1
n .

In view of (5.4), this implies that there exists a sequence εn → 0 such that

k∑
i=1

Hd−1(Jui ∩Bρn(xn)) ≤ εn

k∑
i=1

∫

Bρn (xn)

|∇ui|2 dx ≤ εn
c′
ρd−1
n .

Using the above inequality and the almost-quasi minimality of u, we get, for every (v1, . . . , vk) ∈
U(Ω) such that

⋃
i{vi �= ui} ⊂⊂ Bρn(xn)

k∑
i=1

(∫

Bρn (xn)

|∇ui|2 dx+ ΛHd−1(Jui ∩Bρn(xn))
)

=

k∑
i=1

(∫

Bρn (xn)

|∇ui|2 dx+Hd−1(Jui ∩Bρn(xn))
)
+

k∑
i=1

(Λ− 1)Hd−1(Jui ∩Bρn(xn))
)

≤
k∑

i=1

(∫

Bρn (xn)

|∇vi|2 dx+ ΛHd−1(Jvi ∩Bρn(xn))
)
+ cαρ

d−1+α
n + (Λ− 1)

εn
c′
ρd−1
n .
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Setting

Φ(u,Λ, A) :=
k∑

i=1

[∫

A

|∇ui|2 dx+ ΛHd−1(Jui ∩A)

]
,

the previous inequality reads

Φ(u,Λ, Bρn(xn)) ≤ Φ(v,Λ, Bρn(xn)) + cαρ
d−1+α
n + (Λ− 1)

εn
c′
ρd−1
n ,

which means that the associated deviation from minimality (with coefficient Λ) of u in Bρn(xn)
(see (4.1)) satisfies

Dev(u,Λ, Bρn(xn)) ≤
[
(Λ− 1)

εn
c′

+ cαρ
α
n

]
ρd−1
n .

Recalling (5.4), this implies

(5.6) Dev(u,Λ, Bρn(xn)) ≤ θnΦ(u,Λ, Bρn(xn)) ,

for an infinitesimal sequence θn. By (5.5) and (5.6), applying Theorem 4.1 (Λ is fixed), for every
τ ∈ (0, 1) and n large enough, we obtain that

Φ(u,Λ, Bτρn(xn)) ≤ Cdτ
dΦ(u,Λ, Bρn(xn)) .

This contradicts the energy estimate (5.4) as soon as τ is chosen small enough.
�
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