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semi-analytical Durand-Claye’s method. For bench-
mark case studies, such as symmetric masonry arches 
and domes with specific stereotomies subjected to 
axi-symmetrical load conditions, the set of statically 
admissible solutions compatible with equilibrium and 
strength requirements is graphically determined in 
terms of the horizontal thrust and its eccentricity at 
the crown, examining the shape of the stability area. 
Assuming an infinite value for the friction coefficient, 
the collapse condition is reached when the stability 
area shrinks to a single point. The results obtained 
from both of these methods are in excellent agree-
ment. The influence of compressive strength on the 
bearing capacity of the structures is also discussed.

Keywords Limit analysis · Funicular analysis · 
Masonry arches · Masonry domes · Stereotomy · 
Crushing

1 Introduction

The research proposed here aims at studying the col-
lapse behavior of masonry arches and domes, with 
particular attention to the influence of the compres-
sive strength. In the framework of the lower bound 
theorem of limit analysis, the maximum static col-
lapse load is determined by solving an optimization 
problem using an algorithm developed specifically 
based on the concept of force density [3, 53]. The 
results are validated through a modern semi-analytical 

Abstract This study, framed within the context 
of the lower bound theorem of limit analysis, aims 
to assess the anti-funicular equilibrium of masonry 
arches and domes using a computational approach 
based on the constrained force density method. In 
contrast to the commonly adopted classical Hey-
man’s assumptions, the approach proposed here con-
siders the effects of finite compressive strength in 
the material. Assuming a fixed plan projection for a 
network with independent sets of branches, a suit-
able set of local constraints is enforced at each joint 
to account for the limit bending moment resulting 
from the material’s assumptions, including limited 
compressive strength and zero tensile strength. Addi-
tionally, the stereotomy of the voussoirs is considered 
by assigning a geometric law to the joint inclina-
tion. The collapse load is determined by formulat-
ing a multi-constrained maximization problem. The 
method is validated using a modern version of the 
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formulation of the graphical Durand-Claye’s method 
[4, 6, 20–22].

The objectives of this research arise from a some-
what paradoxical situation, which will be better illus-
trated in the following Sections. While the complex-
ity of the mechanical response of masonry poses 
undoubted challenges in the modeling of masonry 
elements and structures, there is an increasingly cur-
rent demand for fast methods for the limit analysis of 
such structures, particularly arches and vaults. These 
methods prove to be useful tools in the preservation 
of architectural heritage.

Faced with this framework, this contribution is 
configured as an attempt to consider more refined 
hypotheses compared to Heyman’s assumptions [33] 
in order to take into account the limited compressive 
strength of masonry. Moreover, both approaches are 
capable of taking stereotomy (that is, the art of cut-
ting stones) into account.

1.1  A challenging topic: modelling the masonry 
material

Structural analysis of masonry arches and domes is 
a challenging subject due to the complex behavior of 
masonry, a heterogeneous material, and the geometry 
of the voussoirs that compose these structures.

As noted by [11], defining the concept of 
‘masonry’ is not a straightforward task, as it encom-
passes various materials depending on the compo-
nents used (brickwork, stonework, etc.), block types, 
assembly method, the presence or absence of mor-
tar, and the influence of workmanship. An in-depth 
examination of the approaches used in the scientific 
literature to describe masonry behavior is beyond 
the scope of this work. Interested readers can refer to 
[37], which highlights the challenges in conducting 
advanced experimental tests to determine masonry 
properties, given the unique characteristics of this 
material.

While not an exhaustive list, several stud-
ies, including those by [42, 51, 54], have aimed 
to model the compressive strength of masonry. 
The first contribution, focusing on unreinforced 
masonry, derives compressive strength from com-
ponent and mortar properties, employing a phe-
nomenological approach within a discrete frame-
work. It uses a fictitious microstructure composed 
of linear elastic particles and non-linear interface 

elements. [54] proposes simple homogenized mod-
els for characterizing masonry behavior, utilizing a 
representative volume element and a finite element 
micromodelling approach. Finally, the work by [42] 
introduces various techniques for determining the 
homogenized strength domain of running or header 
bond masonry walls, either subjected to in-plane or 
transverse loads. The contributions cited above aim 
to develop models close to reality, capable of accu-
rately capturing the structural response of masonry 
structures (or masonry elements). However, a draw-
back is the high uncertainty on the properties of 
the material, which makes it difficult to choose the 
appropriate mechanical parameters. Another diffi-
culty lies in the computational effort required when 
adopting complex constitutive relations.

1.2  Classical limit analysis: Heyman’s hypotheses

Faced with the issues described in the previous 
Section—together with the observation that one of 
the most notable characteristics of masonry is its 
uncertain tensile strength, which is often signifi-
cantly lower than its compressive strength—a sim-
plified approach can be followed, by assuming that 
masonry transfers only compressive stresses. As is 
well known, the simplest hypotheses on masonry 
are those proposed by Heyman [33], according to 
whom masonry can be modeled considering zero 
tensile strength, infinite compressive strength and 
an infinite value of the friction coefficient between 
the blocks. In the theoretical context of limit analy-
sis, these hypotheses are recognized as an accept-
able description of the behavior of masonry, such 
as to allow an adequate assessment of the stability 
of masonry structures, as well as the interpreta-
tion of crack patterns. As regards curved masonry 
structures, the safe theorem [33], deriving from this 
framework and exploiting the lower bound theorem 
of limit analysis, claims that stability is guaranteed 
if a thrust line can be found that is in equilibrium 
with the external loads and is located inside the 
vault.

It should be noted, however, that assuming an 
infinite compressive strength for masonry may lead 
to an overestimation of the collapse load, since the 
mechanical properties of the material are not ade-
quately taken into consideration.
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1.3  Simplified models considering the compressive 
strength

With respect to the approach described in Sect.  1.2, 
it is observed that, in particular for some typologies 
of masonry structures (for example segmental arches 
and domes with depressed profile), considering the 
influence of a limited compressive strength is crucial 
from a mechanical and engineering point of view.

To overcome this drawback, some authors have 
conducted studies on the impact of limited compres-
sive strength on the mechanical behavior of masonry 
structures, including masonry arches and vaults. They 
have proposed straightforward mechanical models for 
the material and simplified structural frameworks.

In the context of the lower bound theorem of limit 
analysis, the semi-analytical graphical procedure 
developed by Durand-Claye [21, 22] for evaluating 
masonry arches and domes of revolution with sym-
metric geometry and loading conditions can be refer-
enced. According to its modern version, as developed 
by [4, 8], the bearing capacity of such structures can 
be rigorously determined by considering the limit 
bending moment at the joints, which depends on the 
limited compressive strength of the material.

Other approaches, utilizing the upper bound 
theorem of limit analysis, attempt to account, albeit 
approximately, for the effects of limited compressive 
strength through geometrical criteria. For instance, 
[32] discusses the mechanisms that arise in masonry 
arches by introducing a geometric safety factor, 
while [17] examines the collapse load of (reinforced) 
masonry arches with limited compressive strength. In 
the event of a collapse mechanism, crushing is mod-
eled as interpenetration between the blocks, resulting 
in hinges formed at internal points of the joints.

Furthermore, there are contributions proposing 
non-linear elastic analyses. These analyses start by 
defining a constitutive relation for masonry-like mate-
rials with bounded compressive strength, and the 
non-linearity of this relation implies that loads are 
assigned incrementally in the applications. For cer-
tain case studies of masonry arches, represented as 
non-linear elastic beams, the solution is found either 
numerically [38], or explicitly [5].

In light of the complex context described above, 
the method presented here is theoretically grounded 
in the lower bound theorem of limit analysis. Its aim 
is to address masonry vaulted structures with intricate 

shapes, while considering both strength and geomet-
ric requirements. This approach conceptually aligns 
with funicular methods and thrust network analysis.

1.4  From graphic statics to the modern funicular 
approaches

Before delving deeper, a brief historical overview is 
crucial to recognize the roots of this approach in fun-
damental contributions centered around the thrust line 
concept, further developed in the context of graphical 
analysis. For more detailed insights, refer to [2].

In masonry arches, Robert Hooke [35] pioneered 
their structural assessment through graphical analy-
sis, introducing the inverted hanging chain analogy. 
The thrust line concept was formalized by Gerstner 
[30], distinguishing the ‘line of resistance’ and ‘line 
of pressure’. In the eighteenth century, this method 
extended to masonry domes, incorporating the effects 
of hoop forces, utilizing thrust line analysis, graphic 
statics, and membrane theory. Eddy [23] made the 
first graphical analysis contribution to masonry 
domes, studying the equilibrium of a hemispherical 
dome through graphical reinterpretation of membrane 
theory. Lévy [39] and Wolfe [57] followed, with 
recent contributions revisiting these methods, includ-
ing [29, 50, 58].

This graphical approach laid the foundation for 
various computational procedures modeling thrust 
networks. Recent studies by [13, 47], and [46] adhere 
to Heyman’s hypotheses. Within this framework, [40] 
focuses on computational aspects, offering iterative 
procedures for both vertical and horizontal loads. 
Other static methods model masonry vaults as no-
tension membranes [26, 28, 52] or derive truss-like 
stress paths from Airy stress functions [9, 10, 27, 
31, 43], using mathematical tools for approximating 
stress in continuous bodies through discrete force 
networks.

Modern computerized static approaches facilitate 
the study of structures with complex geometry. Sig-
nificant applications on spiral stairs by [12, 48] show-
case advanced computational strategies and consid-
eration of non-trivial load conditions. The interest in 
methods based on the lower bound theorem of limit 
analysis is demonstrated by recent contributions like 
[44, 45], performing limit analysis of masonry domes 
subjected to pseudo-static seismic forces, includ-
ing graphical equilibrium methods such as the one 
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provided by [49], basing its analysis on the safe theo-
rem proposed by Heyman.

1.5  Collapse behavior: funicular versus stability area 
methods

Unlike the previously mentioned contributions, the 
numerical method presented here stands out for its 
ability to rigorously account for the limited compres-
sive strength of masonry and the stereotomy of the 
voussoirs. In contrast to the advancements in this area 
proposed by [24, 25], the current approach tackles 
this challenge through mathematical programming, 
enabling the management of networks with various 
topologies, building upon the procedure introduced 
by [14]. A comprehensive description of this funicu-
lar method is available in [3], with a specific empha-
sis on identifying the funicular networks correspond-
ing to the minimum thrust and exploring a range of 
statically admissible solutions.

Unlike the paper just mentioned [3], the contribu-
tion proposed in the present work extends the funicu-
lar method to the limit analysis of vaulted masonry 
structures, providing a new specifically developed 
formulation. The aim is to determine the collapse 
load multiplier as the maximum of the static multi-
pliers. To achieve this, an ad hoc multi-constrained 
maximization problem is implemented.

The investigation focuses on arches and domes 
with a predetermined stereotomy, subjected to self-
weight and a vertical point load at the crown, with 
varying intensity. Equilibrium is represented by a 
three-dimensional network consisting of branches, 
which experience axial forces exclusively, and nodes 
situated along vertical straight lines passing through 
the centers of gravity of the voussoirs composing 
the vault. These nodes are constrained to have fixed 
horizontal coordinates, thereby ensuring a fixed plan 
projection, and preserving the lines of action of the 
vertical loads during the optimization process. Local 
constraints are applied at each joint to consider both 
the limited compressive strength of masonry and the 
stereotomy of the voussoirs.

As previously mentioned, this approach also con-
siders the influence of the stereotomy of the vous-
soirs on the collapse load. As emphasized by [1], 
stereotomy significantly affects the behavior of a 
masonry vaulted structure when assuming finite 
or zero friction coefficients. However, the collapse 

condition is influenced by the stereotomy even under 
the assumption of an infinite friction coefficient, 
given the absence of tensile strength and the presence 
of finite compressive strength, as the cross-sectional 
area between the voussoirs varies depending on the 
stereotomy.

The validation of this numerical funicular method 
is performed using the aforementioned semi-ana-
lytical stability area method [21, 22] in its modern 
version [4, 8]. This method enables the determina-
tion of all statically admissible solutions for sym-
metric masonry arches and axisymmetric domes of 
revolution.

The collapse load multiplier is determined by 
means of an iterative procedure. The analysis of sev-
eral reference case studies is presented, demonstrat-
ing a strong agreement between the two approaches.

1.6  Paper outline

The article is organized as follows. Section  2 out-
lines the procedure employed to formalize the limit 
analysis optimization problem using the force den-
sity method and mathematical programming; it pro-
vides an overview of the forces, eccentricities, and 
constraints at the joints. In Sect. 3 the Durand-Claye 
method is discussed, focusing on the determination of 
the collapse load multiplier for symmetric arches and 
domes. Section  4 presents the results of numerical 
simulations and a validation of the funicular numeri-
cal approach using the two methods; additionally, it 
explores the impact of a finite compressive strength 
on the mechanical behavior of arches and domes. 
Finally, Sect.  5 provides some concluding remarks, 
along with insights into ongoing research.

2  Limit analysis using the force density method 
and mathematical programming

2.1  Force density method

The equilibrium of funicular networks is managed 
using the “force density method” [53]. A three-
dimensional network is considered, consisting of m 
elements (subjected to axial forces only) and ns nodes. 
The network is situated within a Cartesian reference 
system Oxyz, z being the vertical axis. The arrays xs , 
ys , and zs collect the coordinates of the ns nodes. x , y , 
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and z represent the subsets related to the n unre-
strained nodes, which are those subjected to external 
loading. In contrast, xf  , yf  , and zf  pertain to the nf  
restrained nodes. The topology of the spatial network 
is described by the connectivity matrix Cs , where the 
submatrix C corresponds to the unrestrained nodes, 
while Cf  relates to the restrained ones. The arrays 
u = Csxs , v = Csys , and w = Cszs collect the differ-
ences in coordinates between the ends of each ele-
ment along the x, y, and z axes, respectively. The 
length of each member of the network can be calcu-
lated as li =

√
u2
i
+ v2

i
+ w2

i
 , and these values are col-

lected in the array l , or equivalently in the matrix 
L = diag(l) . With s denoting the array that gathers the 
forces in the m elements, the force density vector, 
which stores the force-to-length ratios for each mem-
ber of the spatial network, is expressed as q = L−1s.

For networks with a fixed plan projection, see e.g. 
[13–15, 36], the horizontal equilibrium of the unre-
strained nodes can be written as:

where xs0 and ys0 are the arrays collecting the pre-
scribed x and y coordinates of the nodes, whereas px 
and py gather the nodal forces along the x and y axes, 
respectively. Equation  (1) implies that m − r inde-
pendent force densities exist, stored in � , being r the 
rank of the coefficient matrix. The r dependent force 
densities in �̃ read:

where B and d are matrices whose constant entries 
can be derived by performing Gauss-Jordan elimina-
tion on Eq. (1).

(1)
[
CTdiag(Csxs0)

CTdiag(Csys0)

]
q =

[
px
py

]
,

(2)�̃ = B� + d,

In the context of implementing limit analysis proce-
dures, the array that collects the vertical nodal forces, 
denoted as pz , can be expressed as:

where pzd (respectively, pzl ) represents dead loads 
(resp., live loads), being � a load multiplier. Hence, 
upon introduction of Q = diag(q) , the equilibrium 
along the z axis reads:

For any given set of � , �̃ can be determined using 
Eqs. (2), and (4) can then be solved to calculate zf .

2.2  Limit condition at the joints

The i-th joint, which separates two adjacent blocks, is 
highlighted in bold in Fig. 1. This section is intersected 
by the line of action of the funicular force Fi at point Pi , 
while Ci represents the centroid of the rectangular joint. 
In Sect.  4, non-rectangular sections are addressed by 
considering the largest rectangle that can be inscribed 
within the original shape of the joint. The principal 
axes of inertia of the rectangular section are denoted as 
�i and �i , with ni as the normal vector. The dimensions 
of the rectangle are given by li,� × li,� . Using ex , ey , and 
ez as unit vectors aligned with the x, y, and z directions, 
respectively, the expression for the funicular force Fi is 
as follows:

The magnitude of the normal component of Fi , 
referred to as Ni , can be found as Ni = Fi ⋅ ni . Its 

(3)pz(�) = pzd + �pzl,

(4)CTQCz + CTQCf zf = pz(�).

(5)
Fi =si

(
ui

li
ex +

vi

li
ey +

wi

li
ez

)
=

=qi
(
ui ex + vi ey + wi ez

)
.

Fig. 1  The i-th joint 
between two adjacent vous-
soirs of a dome



 Meccanica

1 3
Vol:. (1234567890)

eccentricity with respect to �i can be evaluated by 
computing the moment of Ni about the same axis, 
Mi,� , and scaling by Ni , i.e.:

In the above expression, abs (⋅) is the absolute value 
of the scalar argument, while ri is the vector drawn 
from Ci to any point belonging to the line of action of 
Fi . Similarly, the eccentricity of Ni with respect to �i 
reads:

see [3] for further details.
According to [4, 24, 38], when Mi,� = 0 , the limit 

state related to any i-th no-tension joint is characterized 
by the limiting value of the (positive) bending moment, 
Mlim

i,�
 . This limit is expressed as a function of the axial 

force, Ni ≤ 0 , the compressive strength, 𝜎c < 0 , and the 
section’s dimensions, li,� × li,�:

This expression will be used in Sects. 3 and 4 for the 
collapse analysis of the benchmark case studies using 
Durand-Claye’s method (i.e., symmetric masonry 
arches and domes of revolution loaded with axi-sym-
metric loads), characterized by unidirectional bending 
moment Mi,� and compressive axial force Ni.

For the implementation of the funicular method, 
a more general criterion is required to account for 
cases of combined bending and compression, see the 
proposal by [41]. According to this condition, a uni-
form distribution of compressive stress, equal to �c , is 
assumed within a limited region of joint i, which resists 
the eccentric normal force Ni ≤ 0 . This area, with 
dimensions 

(
li,� − 2ei,�

)
×
(
li,� − 2ei,�

)
 , is shown in 

Fig. 1 around Pi . Thus, the limit condition is:

which is fully equivalent to (8) when ei,� = 0.

(6)ei,� = abs

(
Mi,�

Ni

)
= abs

(
�i ⋅ (ri × Fi)

Ni

)
.

(7)ei,� = abs

(
Mi,�

Ni

)
= abs

(
�i ⋅ (ri × Fi)

Ni

)
,

(8)Mlim
i,�

= −
Ni li,�

2

(
1 −

Ni

li,� li,��c

)
.

(9)
Ni

�c
(
li,� − 2ei,�

)(
li,� − 2ei,�

) = 1,

2.3  Optimization problem

In [14], the funicular analysis of networks with a fixed 
plan projection was addressed, encompassing general 
topology and loading. This was achieved by formulat-
ing a minimization problem in terms of the independ-
ent set of force densities and the vertical coordinates 
of the restrained nodes. The thrust was used as objec-
tive function, whereas constraints on the elevation of 
the unrestrained nodes were formulated. An analyti-
cal investigation into the equilibrium of an arch under 
vertical loads was preliminary performed using the 
proposed approach. It was observed that the equations 
have the same form as those found when optimizing 
elastic structures. Notably, the coordinates of the unre-
strained nodes were found to depend linearly on zf  or 
the inverse of � . There exist methods of sequential con-
vex programming whose approximations were espe-
cially conceived for such kind of problems [18]. This is 
the case of the Method of Moving Asymptotes (MMA) 
[55], which will be used for the numerical simulations 
in Sect. 4, see also [16]. The proposed minimum thrust 
problem was endowed with constraints addressing limit 
conditions at the joints in [14].

Within the framework of the lower bound theorem 
of limit analysis, a multi-constrained optimization prob-
lem is formulated in this contribution to maximize the 
load multiplier � that scales the vector of the nodal live 
loads pzl , see Eq. (3), as follows:

In the above statement, the unknowns include: (i) the 
load multiplier � ; (ii) any reduced set of independent 
force densities � ; (iii) the vertical coordinates of the 
restrained nodes zf  . The arrays zmin

f
 and zmax

f
 store the 

lower and upper bounds for the vertical coordinates 
of the nf  restrained nodes, respectively. Equa-
tion  (10b) facilitates the computation of the set of 

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

max
𝜆 > 0

� ≤ 0

zmin
f

≤ zf ≤ zmax
f

𝜆 (10a)

s.t.

�� = B� + d, (10b)

CTQCz + CTQCf zf = pz(𝜆), (10c)

�qk ≤ 0, for k = 1… r, (10d)
Ni

𝜎c(li,𝜉−2ei,𝜂)(li,𝜂−2ei,𝜉)
≤ 1, (10e)

for i = 1…m.
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dependent force densities �̃ from the independent 
ones. Equation  (10c) ensures the equilibrium of the 
unrestrained nodes in the vertical direction. The 
occurrence of any positive independent force density 
is prevented by the side enforcements on �̃ , combined 
with the local constraints in Eq. (10d). Additionally, 
Eq. (10e) ensures that crushing is prevented at the i-th 
no-tension joint, as detailed in Sect. 2.2.

By setting �c → −∞ in Eq. (10e), the optimiza-
tion problem in Eq. (10) yields funicular networks 
adhering to Heyman’s assumptions. Choosing finite 
values for �c relaxes these assumptions, recognizing 
that strength is not infinite at all joints. It is worth not-
ing that Eq. (10e) implicitly incorporates the hypoth-
esis of zero tensile strength at the joints. It is finally 
remarked that Eq. (10) can be applied to general types 
of networks and loading, including horizontal loads, 
provided that a solution for Eq.  (1) exists, see [14]. 
However, the application is rigorously valid only for 
vertical loads, as equilibrium in this case remains 
unaffected by changes in the elevation of the nodes. 
The simulations presented next pertain to the case 
where px = py = 0.

3  Limit analysis using the Durand‑Claye’s method

Durand-Claye’s method [21, 22] is employed here to 
validate the funicular numerical algorithm.

In this paper, the modern version of the stability 
area method presented in [4, 7] is adopted, which 
explores the stability of masonry arches and domes 
under the influence of their self-weight. Reference is 
also made to the further analysis carried out by [8], 
where the collapse of domes with oculus and lan-
tern is dealt with. Compared to the contributions just 
mentioned, the current focus is on determining the 
collapse value of the load multiplier, � , through an 
iterative procedure. This is done by considering more 
complex stereotomies of the voussoirs and assum-
ing that the inclination of the joints is analytically 
defined.

In the following sections, symmetric masonry 
arches and domes of revolution subjected to both 
their self-weight and the weight of a vertical point 
load acting downward at the crown are considered. 
This point load represents a simple case of live load 
and corresponds to �pzl in Eq.  (3). For the purposes 

of the Durand-Claye method applications, this point 
load is denoted as simply �pzl (see Fig. 2).

As for the analysis of masonry domes, the ‘slic-
ing technique’ is employed. This procedure is theo-
retically based on historical contributions to the struc-
tural assessment of masonry domes, aiming to find 
statically admissible solutions through membrane 
theory. Some of these contributions are mentioned in 
Sect. 1.4, such as [23, 39, 57]. Due to the low tensile 
strength, the dome cracks along its meridians, causing 
the hooping action along its parallels to vanish. The 
most significant consequence of meridional cracking 
is the occurrence of a horizontal thrust at the base of 
the dome. This thrust results in dividing the cracked 
dome into a series of ‘slices’ delimited by vertical 
planes of symmetry, hereinafter referred to as ‘lunes,’ 
each with an amplitude of Δ� (as shown in Fig. 3). 
Each ‘lune’ behaves as an independent half-arch 
with a variable width, as described in [34] and [19]. 
For the applications to domes, an absolute Cartesian 
coordinate system Oxyz is introduced, with O located 
on the axis of revolution of the dome. The (x, z) plane 
corresponds to the vertical plane of symmetry of the 
‘lune’ (as illustrated in Fig.  3). Any cross-section 
(joint i in Fig. 3) is represented as a rectangle with an 
area of li,� × xCi

Δ� , where Ci is the midpoint of seg-
ment DiEi.

For a masonry arch (or a dome’s ‘lune’), equilib-
rium conditions are imposed on the portion of the 
structure between the ideal vertical cross-section and 
any joint i (as seen in Figs. 2 and 4, right). Symmetry 
conditions ensure that an eccentric horizontal thrust, 
denoted as f, acts in correspondence with this ver-
tical section. If the center of pressure is at point P0 

Fig. 2  Scheme of a masonry arch (or dome) subjected to a 
vertical point load �pzl at the crown
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(as illustrated in Fig.  4, right), the eccentricity of f, 
referred to as e0 , is measured with respect to the cen-
troid of this vertical section, C0.

The graphical procedure initially introduced by 
Durand-Claye enables the identification of the com-
plete set of statically admissible solutions for the 
entire arch (or dome’s ‘lune’) by visualizing the so-
called ‘stability area’ (Fig.  4, left). This area repre-
sents the locus of points in the plane (f , e0) that cor-
respond to statically admissible solutions. These 
solutions are determined by considering both equilib-
rium and strength capacity of any cross-section.

In the equilibrium equations related to the portion 
of the structure under consideration, a vertical point 
load acting at the crown is included, correspond-
ing to �pzl∕n , where n = 2 for the (half) arch and 
n = 2�∕Δ� for the dome’s ‘lune’.

Reinterpreting the graphical constructions origi-
nally introduced by Durand-Claye in terms of stress 
resultants (Fig.  4, right) allows us to firmly place 
this approach within the theoretical framework of 
limit analysis. The stability area can be determined 
by considering the formal expressions of the bend-
ing moment, Mi,� , and normal force, Ni , expressed as 
functions of f , e0 , and �i , while fixing a value for the 
load multiplier � , as shown in Eq. (11):

Then, in order to consider the mechanical properties 
of masonry, the limit bending moment, Mlim

i,�
 , at each 

joint i, according to Eq. (8) is imposed as a bound for 
Mi,� (Fig.  4, right). Focusing on the arbitrary i-th 
joint, the inequalities

implicitly define the region Ai of the plane (f , e0) (see 
the light yellow region in Fig.  4, left), which repre-
sents the statically admissible solutions for the por-
tion of arch (or dome’s ‘lune’) comprised between 
the vertical crown section and joint i. The procedure 
must be repeated for all the joints i; the intersection 
between all the areas Ai defines the area of stability A 
for the entire arch (or dome’s ‘lune’) (see the yellow 
solid region in Fig. 4, left).

(11)Mi,� = Mi,�(f , e0, �i, �) and Ni = Ni(f , �i, �).

(12)−Mlim
i,�

≤ Mi,� ≤ +Mlim
i,�
,

Fig. 3  Dome of revolution: geometry of one of the ‘lunes’ of 
amplitude Δ� according to the ‘slicing technique’; simplified 
geometry of the cross section

Fig. 4  Durand-Claye’s 
method: stability area of an 
arch (see Example 1) with 
�c = − 10MPa and � = 400 : 
identification of the min/
max values of the crown 
thrust (left); equilibrium 
of the portion of structure 
comprised between the 
vertical cross section and 
any joint i (right)
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For a masonry arch, static admissibility is ensured 
if the stability area forms a non-vanishing region, 
such as the yellow solid area in Fig.  4, left. This 
occurs when the corresponding load multiplier is 
lower than the maximum of the statically admissible 
load multipliers. In this case, the values of the mini-
mum and maximum thrusts, denoted as fmin and fmax , 
along with their eccentricity at the crown, e0 , can be 
determined by the coordinates (f , e0) of the two black 
points in Fig. 4, left [3].

By progressively increasing the value of � , the sta-
bility area diminishes until it disappears. Under the 
assumptions made for describing masonry behavior, 
this condition is met when the stability area reduces 
to a single point, resulting in only one statically 
admissible solution (f , e0) . From a kinematical per-
spective, this limit solution corresponds to a collapse 
mechanism characterized by mutual rotation between 
the voussoirs or crushing at the critical joints.

Regarding masonry domes, modifications are nec-
essary for Durand-Claye’s method. Initially, the sta-
bility area is constructed for a single ‘lune’ treated as 
an arch of variable width, and the load multiplier is 
incrementally increased until the stability area van-
ishes. To determine if this condition signifies the col-
lapse of the dome, the associated mechanism must be 
analyzed. If a kinematically admissible mechanism is 
identified not only for the single ‘lune’ but also for 
the entire dome, the collapse load multiplier, �m,DC , 
is determined. Otherwise, � must be further increased 
until a kinematically admissible mechanism emerges, 
as discussed in [7]. In Sect. 4 situations where crush-
ing is present will be shown and discussed, providing 
additional details on these issues.

4  Numerical examples

Symmetric masonry arches and domes subjected 
to their self-weight (dead load) and a vertical point 
load at the crown (live load) are considered. A mate-
rial with a unit weight of �m = 15 kN/m3 is assumed 
throughout this section. The point load is specified as 
� × 1 kN, acting in a downward direction.

The optimization approach will be validated using 
the stability area method, involving an arch (see 
Sect.  4.1), and two domes (see Sects.  4.2 and 4.3), 
initially neglecting the contribution of hoop forces. 

Further investigations will be conducted using net-
works composed of both meridians and parallels.

Collapse load multipliers will be provided along 
with the computed funicular polygons/networks. 
In the relevant representations associated with the 
numerical funicular method, the symbols ◦ and + 
indicate joint sections where crossing branches acti-
vate a strength constraint. The former symbol is 
used when the branch intersects the cross-section of 
the joint below the centroid, while the latter symbol 
is used otherwise. Additionally, the joint numbering 
( i = 1, 2, 3,… ) will commence from the joint nearest 
to the vertical crown section ( i = 1).

It should be noted that, while the funicular method 
is based on the resolution of an optimization prob-
lem aimed at maximizing the statically admissible 
load multiplier, � , to directly obtain the collapse load 
multiplier, an iterative application of Durand-Claye’s 
method is needed to find the collapse load multiplier: 
� is progressively increased in order to identify the 
collapse condition, corresponding to the reduction of 
the stability area to a single point. As regards Durand-
Claye’s method, it is emphasized that the collapse 
load can be obtained with the desired precision, since 
the stability area is delimited by analytical curves in 
the (f , e0) plane, by resulting in an effective tool for 
the validation of the numerical approach.

The numerical analyses have been performed by 
means of appositely developed algorithms imple-
mented in MATLAB [56] (funicular method) and in 
Mathematica [59] (Durand-Claye’s method).

4.1  Example 1

The segmental arch with non-conventional ste-
reotomy represented in Fig.  5a is considered. 
The intrados lies along a circle centered at 
Cin = (0, 0, 0.50) m, of radius rin = 3.50 m. The extra-
dos lies along a circle centered at Cex = (0, 0, 0) m, 
with radius rex = 4.50 m. Half the angle of embrace-
ment, � , is 30◦ . The out–of–plane thickness of the 
arch is th = 0.50 m. The arch is made of thirteen 
voussoirs of amplitude 4.62◦ , whose stereotomy 
is defined by radial lines originating from point 
Cst = (0, 0,−1) m. The polygons used for the funic-
ular analysis consist of fourteen branches and fif-
teen nodes, as depicted in Fig. 5b. According to the 
Gauss-Jordan elimination performed on the system 
of equations that govern the horizontal equilibrium, 
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only one independent force density exists. Any 
of the members of the polygon can be selected in 
this regard. The numerical simulations use the one 
depicted in red, i.e. the branch selected by the rel-
evant function providing the reduced row-echelon 
form of Eq. (1). It is remarked that the optimization 
problem is formulated in four unknowns: the load 
multiplier, the independent force density, and the 
vertical coordinates of the two outer nodes.

The analyses are conducted by searching for the 
collapse load multiplier while assuming various 
hypotheses regarding compressive strength. This is 
done to gain a better understanding of the influence of 
this mechanical parameter on collapse behavior. The 
values of �c considered here range from �c = − 1000

MPa, representing a virtually unlimited compressive 
strength, to �c = − 0.5MPa, corresponding to a neg-
ligible strength. Within this range, values compatible 

with the actual compressive strength of the masonry 
material are considered.

Table  1 presents the collapse load multipliers 
( �m,DC computed using the stability area method; �m 
obtained through the funicular analysis approach) for 
different values of �c . The graph in Fig. 6 illustrates 
the relationship between the collapse load multiplier 
and compressive strength. The results obtained using 
both methods are in excellent agreement and dem-
onstrate a linear relationship between compressive 
strength and the collapse load multiplier.

In Fig.  7, two different funicular polygons at 
incipient collapse are shown, corresponding to 
�c = − 1000MPa (Fig.  7a) and �c = − 10MPa 
(Fig. 7b). The values of the collapse load multiplier 
are �m = 120217.56 and �m = 1196.93 , respectively. 
These results highlight the significant influence of 
compressive strength on the bearing capacity of the 

Fig. 5  Example 1. Reference section of an arch (a), with 
nodes and branches of the polygon used for the funicular anal-
ysis (b). The independent branch is marked in red. (Color fig-
ure online)

Table 1  Example 1

Collapse load multipliers for different assumptions on the 
strength in compression: �m,DC is computed using the stability 
area method; �m refers to the funicular analysis approach

�c(MPa) �m,DC �m

− 1000 120409.70 120217.56
− 20 2403.02 2399.17
− 15 1800.94 1798.05
− 10 1198.86 1196.93
− 5 596.75 595.79
− 0.5 54.50 54.40

Fig. 6  Example 1. Collapse load multiplier versus compres-
sive strength (MPa): funicular analysis and stability area 
method
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arch. Conversely, the shape of the funicular poly-
gons remains unchanged as �c varies and identifies 
three critical joints within half of the arch: i = 1 and 
7 (symbol + ), and i = 4 (symbol ◦ ). The forces in the 
branches, however, are scaled based on the collapse 

multiplier. These observations apply to all the results 
reported in Table 1 and in Fig. 6.

To validate the funicular approach, the stability 
area corresponding to the collapse condition for the 
arch in Example 1 is determined. For instance, when 
setting �c = − 10MPa, the stability area reduces 
to a single point with a collapse load multiplier of 
�m,DC = 1198.86 (as shown in the left part of Fig. 8). 
The right part of Fig. 8 displays the thrust line at the 
collapse condition.

A strong agreement is observed between the results 
obtained using the funicular method and the numeri-
cal value of the collapse load multiplier, as well as 
the positions of critical joints. Critical joints are loca-
tions where the bending moment reaches its limit, 
with joints i = 1 and i = 7 exhibiting a limit positive 
bending moment, and joint i = 4 exhibiting a negative 
value. The centers of pressure at these critical joints 
are marked with + for positive limit bending moments 
and ◦ for negative limit bending moments. Notably, 
the influence of compressive strength affects the posi-
tions of the centers of pressure at the critical joints, 
placing them inside the joint instead of precisely at 
the extrados/intrados boundary (as shown in the right 
part of Fig. 8).

Practically, the critical joints are identified by ana-
lyzing the stability area and the intersections between 
curves in the (f , e0) plane corresponding to +Mlim

i,�
 (red 

curves) or −Mlim
i,�

 (blue curves).

4.2  Example 2

The second benchmark study involves the dome of 
revolution shown in Fig. 9a. The dome is character-
ized by a thin depth. The intrados follows a circular 
path with its center at Cin = (0, 0, 0) and a radius of 

Fig. 7  Example 1. Funicular polygons at incipient col-
lapse for an arch (Example 1) with: a �c = − 1000MPa 
( �m = 120217.56 ); b �c = − 10MPa ( �m = 1196.93 ). Colors 
refer to the magnitude of the branch forces, in kN. (Color fig-
ure online)

Fig. 8  Example 1: vanish-
ing stability area at the col-
lapse condition ( �c = − 10

MPa and �m,DC = 1198.86 ): 
identification of the unique 
value of the crown thrust 
(left) and the corresponding 
thrust line, with the location 
of the critical joints (right)
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rin = 2.35 m. The extrados also follows a circular 
path with its center at Cex = (0, 0, 0) and a radius of 
rex = 2.51 m. The angle of embrace for one half of the 
dome is � = 80◦.

Each of the thirty-two ‘lunes’ (with Δ� = 11.25◦ ) 
consists of eight voussoirs with an amplitude of 9.41◦ 
(excluding the keystone). The arrangement of these 

voussoirs is defined by radial lines originating from 
the point Cst = (0, 0, 0).

Meridian-only networks for the funicular analysis 
are represented in Fig.  9b, while general networks 
comprising both meridians and parallels are illus-
trated in Fig. 9c. According to the Gauss-Jordan elim-
ination performed on the equations that govern the 
horizontal equilibrium of the network, the number of 
independent branches equals the number of meridians 
minus two, with one additional independent member 
per parallel. In the above figures, the independent set 
of branches used in the simulations—retrieved by the 
function processing Eq. (1)—is marked in red.

Table  2 displays the collapse load multipliers 
obtained using both Durand-Claye’s method ( �m,DC ) 
and the funicular method employing meridian-only 
networks ( �m ). Similar to Example 1, various values 
of compressive strength are considered. The results 
from both methods show a strong agreement, with 
only marginal discrepancies. These discrepancies are 
due to different simplifications of the geometry of 
blocks and joints, as well as variations in the software 
used for implementing the methods. The collapse 
load multiplier values are very close, with a percent-
age error ranging from 1.4% to 1.5%.

It is worth noting that in applications involving 
Durand-Claye’s method, the cross-section is simpli-
fied as described in Sect. 3. This involved assuming 
O ≡ Cst as the origin of the absolute Cartesian system 
(Oxyz), as illustrated in Fig. 3.

Funicular networks corresponding to an incipient 
collapse condition are obtained for all the compres-
sive strength values listed in Table 2. For instance, we 
plot the meridian-only funicular networks at incipient 

Fig. 9  Example 2. Reference profile of a dome of revolution 
with angle of embrace � = 80◦ (a), with nodes and branches 
of the networks used for the funicular analysis with meridians 
only (b) either with meridians and parallels (c). The independ-
ent branches are marked in red. (Color figure online)

Table 2  Example 2

Collapse load multipliers for different assumptions on the com-
pressive strength: �m,DC is computed using the stability area 
method, �m refers to the funicular analysis approach

�c(MPa) �m,DC �m

− 1000 14.11 13.90
− 20 14.05 13.85
− 15 14.03 13.84
− 10 13.99 13.80
− 5 13.87 13.70
− 2.5 13.63 13.50
− 1 12.95 12.81
− 0.5 11.91 11.75
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collapse in Fig. 10 for �c = − 1000MPa (Fig. 10a) and 
�c = − 2.5MPa (Fig.  10b). The corresponding col-
lapse load multipliers are �m = 13.90 and �m = 13.50, 
respectively.

Unlike the previous case, the influence of com-
pressive strength is less pronounced due to the dis-
tinctive geometry of the dome, characterized by a 
rather thin profile. For values of �c = − 5 , − 10 , − 15 , 
− 20 , − 1000MPa, the shape of the funicular networks 
remains consistent and identifies two critical joints 
where strength constraints are fully activated at con-
vergence: i = 1 (indicated with the symbol + ) and 
i = 5 (indicated with the symbol ◦ ; as shown in the 
example in Fig. 10a). From a kinematic perspective, 
for these compressive strength values, the collapse 
load multipliers do not identify a collapse mechanism 
for the dome. However, the constraints in Equation 
(10e) are nearly fully active for the branches at the 
base of the dome, as evidenced by the location of the 
meridians at joint i = 9.

For �c = − 0.5,− 1,− 2.5MPa the funicular net-
works are, again, identical. The activation of a 
strength constraint occurs at three joints, i = 1 , i = 9 
(symbol + ), and i = 5 (symbol ◦ ), which corresponds, 
from a kinematical perspective, to a three-hinge col-
lapse mechanism for the dome (see the example of 
Fig. 10b).

Once again, the forces in the branches for both 
types of funicular networks described earlier (as 

seen in Fig.  10a, b) are scaled in accordance with 
the collapse multiplier.

The positions of the three critical joints identified 
by the funicular method for �c = − 0.5,− 1,− 2.5

MPa coincide with those identified by Durand-
Claye’s method for all the values of �c listed in 
Table  2. Specifically, at joints i = 1 and i = 9 , the 
positive bending moment reaches its limit value, 
+Mlim

i,�
 , while at joint i = 5 , the limit negative bend-

ing moment −Mlim
i,�

 is attained. As an example, in 
Fig. 11, the thrust line obtained by setting �c = − 10

MPa, corresponding to �m,DC = 13.99 , is displayed.
In Fig.  12, the collapse load multipliers, �m,DC 

and �m , obtained using Durand-Claye’s method 
and the funicular method, respectively, are plot-
ted against the compressive strength. In this case, 
the relationship between compressive strength and 
the collapse load multiplier is nonlinear: the slope 
of the graphs approaches zero as the compressive 
strength value increases. This trend in Fig.  12 is 
notably different from what was observed in Exam-
ple 1, as shown in Fig. 6. For the dome in Example 
2, the collapse load multiplier values are very close 
to each other for �c ≥ −10MPa, which corresponds 
to values compatible with the actual strength of 
masonry. For this type of dome, Heyman’s approach 
may be considered suitable.

Fig. 10  Example 2. Meridian-only funicular networks at incipient collapse for a dome with: a �c = − 1000 MPa ( �m = 13.90 ); b 
�c = − 2.5 MPa ( �m = 13.50 ). Colors refer to the magnitude of the branch forces, in kN
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Further confirmation of this observation comes 
from the results obtained when considering both 
meridians and parallels: the collapse load multiplier 
values remain unchanged compared to those associ-
ated with the meridian-only funicular networks, as 
presented in Table 2. At incipient collapse, the paral-
lels are not active. These results validate the ‘slicing 
technique’ for analyzing the collapse behavior of this 

dome type. The vanishing of the stability area identi-
fies a three-hinge collapse mechanism, which is kine-
matically admissible not only for the single ‘lune’ but 
also for the entire dome.

4.3  Example 3

A dome of revolution is addressed, characterized by 
a flattened profile and a non-conventional stereotomy, 
as shown in Fig. 13. The intrados follows the curva-
ture of a circle centered at Cin = (0, 0, 0.50) m and a 
radius of rin = 3.50 m. The extrados conforms to a cir-
cle with its center at Cex = (0, 0, 0) m and a radius of 
rex = 4.25 m. The angle of embracement is � = 30◦ , 
which encompasses half of the dome. Excluding the 
keystone, each of the twenty-four ‘lunes’ ( Δ� = 15◦ ) 
consists of six voussoirs, each with an amplitude of 
4.62◦ , and their stereotomy is defined by radial lines 
originating from the point Cst = (0, 0,−1)m.

Funicular networks employed in this study have 
the same features of those already introduced when 
commenting on Fig. 9b, c. The search for the collapse 
load multiplier initially focuses on networks with 
branches exclusively along the meridians. Table  3 
presents the results for �m,DC and �m under varying 
assumptions regarding compressive strength. The 
results obtained through the funicular method, based 
on meridian-only networks, consistently align well 
with those provided by the stability area method. As 

Fig. 11  Example 2. Thrust line and critical joints obtained via 
Durand-Claye’s method ( �c = − 10MPa, �m,DC = 13.99)

Fig. 12  Example 2. Collapse load multiplier versus strength 
in compression (MPa): funicular analysis and stability area 
method

Fig. 13  Example 3. Reference profile of a dome of revolution
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observed in Example 2, minor discrepancies can be 
attributed to slightly different geometric assumptions 
for the dome’s layout, resulting in a percentage error 
ranging from 1.5% to 2 % . Figure 14 illustrates the lin-
ear relationship between the collapse load multipliers, 
�m,DC and �m , and compressive strength.

It is interesting to note that the shape of the net-
works remains consistent across different values of 
compressive strength, specifically, for 
�c = − 15,− 20,− 1000MPa. The forces in the 
branches scale proportionally to the collapse load 
multiplier. Figure 15a displays one of these networks 
with �c = − 1000MPa ( �m = 91848.22 ). In this case, 
three critical joints are identified: i = 1 and i = 7 
(indicated by + for strength constraint activation), and 

i = 3 (indicated by ◦ ). These findings are highly con-
sistent with the results obtained using Durand-Claye’s 
method. Not only do they match in terms of the 
numerical value of the collapse load multiplier, but 
also in the positioning of the critical joints. At joints 
i = 1 and i = 7 , the positive bending moment reaches 
its limit value, +Mlim

i,�
 , while joint i = 3 corresponds to 

the limit negative bending moment, −Mlim
i,�

 (refer to 
Fig.  16, where the thrust line is depicted with 
�c = − 1000MPa and �m,DC = 93723.88).

A similar situation arises with �c = − 10MPa 
( �m = 937.31 ), as shown in Fig.  15b. In this case, 
the shape of the funicular network remains the same 
as before, and three critical joints are identified. 
The strength constraint at the joint near the crown, 
i = 1 , is now denoted by the symbol ◦ : as will be 
explained below, this corresponds to a condition that 
is very close to pure crushing at joint i = 1 , where 
ei,� = ei,� = 0.

In Fig.  15c, the meridian-only funicular network 
at the limit condition is presented for �c = − 5MPa. 
Although the shape of the network is the same as that 
shown in Fig. 15a, b, only two critical joints are pre-
sent, i = 1 (symbol ◦ ) and i = 3 (symbol ◦).

With further decreases in the compressive strength, 
the shape of the meridian-only funicular network at 
incipient collapse also changes. For example, Fig. 15d 
displays the network obtained with �c = − 0.5MPa, 
which appears much more arcuated compared to the 
networks in Fig. 15a–c. A strength constraint is acti-
vated at convergence at two joints: i = 1 (symbol ◦ ) 
and i = 4 (symbol ◦).

To validate the above results, Durand-Claye’s 
method confirms the identification of two critical 
joints, both for �c = − 5 and �c = − 0.5MPa. Moreo-
ver, at these low values of compressive strength, 
crushing is observed at the first joint, i = 1 , where 
the center of pressure is found to be centroidal. As 
an example, the thrust line at the limit condition cor-
responding to �c = − 0.5MPa is illustrated in Fig. 17 
( �m,DC = 43.01 ). As observed with the funicular net-
work, the shape is more arcuated than that obtained 
with larger compressive strength values. Pure crush-
ing is indicated with the symbol ◦ with a + inside.

In order to better understand the collapse behav-
ior of the dome and the influence of the compres-
sive strength, a second set of analyses is performed, 
by considering networks with both meridians and 

Table 3  Example 3

Collapse load multipliers for different assumptions on the com-
pressive strength: �m,DC is computed using the stability area 
method, �m and �mp refer to the funicular analysis approach, 
considering meridian-only and meridian-and-parallel net-
works, respectively; Δp = �mp∕�m − 1

�c(MPa) �m,DC �m �mp Δp(%)

− 1000 93723.88 91848.22 95164.30 3.61
− 20 1895.72 1857.49 1940.37 4.46
− 15 1426.54 1397.70 1464.16 4.75
− 10 956.76 937.31 985.99 5.19
− 5 477.33 466.62 504.70 8.16
− 0.5 43.01 41.93 50.90 21.38

Fig. 14  Example 3. Collapse load multiplier versus com-
pressive strength (MPa): funicular analysis and stability area 
method
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parallels. Differently from Example 2, the arising 
of branches along the parallels affects the value of 
the collapse load multiplier. These results are sum-
marized in Tab. 3: by calculating Δp , defined as 
�mp∕�m − 1 , the influence of the parallels on the col-
lapse load multiplier increases considerably as the 
compressive strength of the material decreases. One 
has Δp = 3.61% for a large value of the compressive 
strength, �c = − 1000MPa, whereas Δp = 21.38% for 
a very low compressive strength, �c = − 0.5MPa.

The shape of the funicular networks with merid-
ians and parallels remains consistent for various 
values of �c , including −5 , −10 , −15 , −20 , and 
−1000MPa, with the forces in the branches being 
scaled accordingly. As an illustration, in Fig.  18a, 

one of these networks is presented (specifically, for 
�c = − 10MPa and �mp = 985.99 ). At the onset of 
collapse, the first parallel, located near the crown 
section, becomes activated. A different behavior 
is observed when dealing with a very low value of 
the compressive strength, such as �c = − 0.5MPa 
(resulting in �mp = 50.90 ). In this scenario, all par-
allels are activated, causing the dome to undergo 
compression in both the meridional and hoop direc-
tions. This behavior is notably distinct from that 
exhibited by the meridian-only network.

A summary of the investigations for which funic-
ular polygons and networks have been discussed in 
Sects. 4.1, 4.2, and 4.3 is given in Table 4.

Fig. 15  Example 3. Meridian-only funicular networks 
at incipient collapse for a dome with: a �c = − 1000MPa 
( �m = 91848.22 ); b �c = − 10MPa ( �m = 937.31 ); c �c = − 5

MPa ( �m = 466.62 ); d �c = − 0.5MPa ( �m = 41.93 ). Colors 
refer to the magnitude of the branch forces, in kN. (Color fig-
ure online)
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5  Conclusions

The numerical method proposed in this study, based 
on the lower bound theorem of limit analysis, seeks to 
maximize the statically admissible collapse load mul-
tiplier by solving a multi-constrained optimization 
problem. This problem accounts for the finite com-
pressive strength of the material and the stereotomy 
of the voussoirs by interpreting them as constraints 
applied at the joints, each inclined according to a geo-
metric criterion.

This study examines an arch and two domes with 
different geometries under the influence of gravity 
loads and a vertical point load applied at the crown. 
When dealing with masonry domes, a first set of 
analyses focus on meridian-only funicular networks. 
These structures are modeled as assemblies of ‘lunes’ 
using the ‘slicing technique’. For this set of analyses, 
as well as for those related to the arch, the method is 
validated using the modern version of Durand-Claye’s 
approach, i.e., a semi-analytical graphical technique 
that visualizes the set of all statically admissible solu-
tions by drawing the stability area. Unlike the funic-
ular method, this approach cannot directly find the 
collapse load multiplier through maximization, but 
involves progressively increasing the load multiplier 
value until the stability area vanishes. The results 
obtained using these two different methods show 
strong agreement, not only in terms of the numerical 
value of the collapse load multiplier but also in iden-
tifying the locations of critical joints.

A second set of analyses focuses on modeling 
domes with networks composed of both meridians 
and parallels. The results demonstrate the suitability 
of the ‘slicing technique’ for the first dome, charac-
terized by a thin profile, and the advantageous impact 
of hoop forces for the second dome, which features 
a lowered profile with a non-conventional stereotomy.

The effect of limited compressive strength on the 
collapse load multiplier and the configuration of the 
funicular network is examined for each of the struc-
tures under investigation. The presence of either a 
linear or non-linear relationship between the collapse 
load multiplier and compressive stress is discussed in 
the context of arch/dome typology and the applicabil-
ity of Heyman’s hypotheses. Of particular interest are 
the conditions that lead to pure crushing at specific 
joints.

To better understand the application scope of the 
two methods in this study—the constrained force den-
sity method and the Durand-Claye method—a com-
parison is insightful, focusing on aspects like model 
setup time, calculation speed in different scenarios, 
and the type and quality of results.

The Durand-Claye method, a semi-analytical 
approach, offers solutions for symmetric masonry 
arches and domes with symmetrical loads, allowing 
for analytical shape determination. The model setup 
requires updates for each case study, typically quick 
for two-dimensional geometries. In contrast, the 

Fig. 16  Example 3. Thrust line and critical joints obtained via 
Durand-Claye’s method ( �c = − 1000MPa, �m,DC = 93723.88)

Fig. 17  Example 2. Thrust line and critical joints obtained via 
Durand-Claye’s method ( �c = − 0.5MPa, �m,DC = 43.01)
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optimization-coupled force density method allows 
the study of various masonry structures, including 
unsymmetrical vaults, with generic shapes and load 
conditions. Capturing three-dimensional behavior 
increases model setup time, yet parametric geometry 
can alleviate this. The Durand-Claye method assesses 
equilibrium through stability area analysis, while 
the force density method is a numerical approach. 
Depending on the required output, one method may 
be more convenient than the other. The Durand-
Claye algorithm is efficient for stability assessment, 
while the force density method, using maximiza-
tion for collapse load determination, provides a one-
shot solution. The fixed plan projection assumption 
in funicular networks ensures a numerically effi-
cient optimization problem. Computational costs for 

problems herein are minimal, solved in minutes on 
a standard desktop. Despite the dependence on net-
work size, the computational burden is expected to 
be lower than similar structural optimization applica-
tions. Notably, sequential convex programming may 
not guarantee global optimum convergence; how-
ever, it yields a safe solution, with optimality checked 
by the stability area provided by the Durand-Claye 
method.

Future developments of this research aim to incor-
porate a limited friction coefficient into the limit anal-
ysis of masonry arches and domes, and to consider 
more complex geometries and load conditions. In regard 
to the latter point, peculiar attention will be paid to hori-
zontal loads, with the aim of investigating the capacity of 
arches and domes in earthquake-prone areas. This will be 

Fig. 18  Example 3. Funicular networks at incipient collapse for a dome with: a �c = − 10MPa ( �mp = 985.99 ); b �c = − 0.5MPa 
( �mp = 50.90 ). Colors refer to the magnitude of the branch forces, in kN. (Color figure online)

Table 4  Summary of the analyses presented in Sect. 4 for funicular polygons and networks

Ex. �c(MPa) Funicular analysis Stability area method

1 (arch) − 1000 Figure 7a, �m = 120217.56 �m,DC = 120409.70

1 (arch) − 10 Figure 7b, �m = 1196.93 Figure 8, �m,DC = 1198.86

2 (thin dome) − 1000 Figure 10a, �m = �mp = 13.90 �m,DC = 14.11

2 (thin dome) − 2.5 Figure 10b, �m = �mp = 13.50 �m,DC = 13.63

2 (thin dome) − 10 �m = �mp = 13.80 Figure 11, �m,DC = 13.99

3 (thick dome, only meridians) − 1000 Figure 15a, �m = 91848.22 Figure 16, �m,DC = 93723.88

3 (thick dome, only meridians) − 10 Figure 15b, �m = 937.31 �m,DC = 956.76

3 (thick dome, only meridians) − 5 Figure 15c, �m = 466.62 �m,DC = 477.33

3 (thick dome, only meridians) − 0.5 Figure 15d, �m = 41.93 Figure 17, �m,DC = 43.01

3 (thick dome, with parallels) − 10 Figure 18a, �mp = 985.99

3 (thick dome, with parallels) − 0.5 Figure 18b, �mp = 50.90
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implemented by considering suitable static loads that are 
equivalent to the seismic action.
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