An Educational Module
for Temporal Features in Alloy 6

Luca Padalinol0009—0009—7357—7058] ' Ey.51)cegca Pia

Panaccionel0009—0005—8007-963X] " fyapcesco
: —0001—9677—7142
Santambrogiol0009—0001—-9677—7142] (5q)
Elisabetta Di Nittol0000—0003—3422-5171] a4 Matteo Rossil0000—0002—9193—9560]

Politecnico di Milano, Milano, Italy
{luca.padalino,fracescapia.panaccione,francesco2.santambrogio}@mail.polimi.it
{elisabetta.dinitto,matteo.rossi}@polimi.it

Abstract. As software systems have become increasingly important,
teaching Software Engineering students how to develop high-quality soft-
ware is essential. In this regard, formal modeling and verification are im-
portant educational tools that help students in getting an in-depth un-
derstanding of software. Nonetheless, formal languages are not straight-
forward to teach and, therefore, carefully designed materials are needed
to convey them. In this paper we focus on Alloy, which is an easy-to-
learn formal language equipped with a usable analyser, and we present
a complete teaching module that can be used by teachers to support
students in learning the temporal constructs defined in its latest version,
Alloy 6. The module is designed exploiting active learning methods and
is supported by multimedia content. It is openly available and can be
reused and tailored to the need of specific courses.

Keywords: Alloy 6, formal methods, modeling language, active learning, teach-
ing module

1 Introduction

With the increasing importance of software systems in our daily lives, Software
Engineering students must be provided with the knowledge and skills they need
to develop high-quality software, which increasingly relies on formal methods
for verifying design, safety, and functionality. In particular, formal specification
languages are essential for accurate modeling and verification and, thus, to guide
the definition of requirements and to facilitate smooth design, implementation,
and testing processes.

Among formal specification languages, Alloy [9] stands out as having one
of the simplest syntaxes to read and write, yet with considerable expressive
power [15]. In Alloy, a system can be represented using a collection of types
defined through signatures, each having different fields, governed by rules and



2 L. Padalino, F. P. Panaccione, F. Santambrogio et al.

constraints defined as facts. Alloy has been widely applied in the literature,’
and it is supported by a mature tool, the Alloy Analyzer, which enables fully
automated system analysis and can reveal weaknesses early on and promote
incremental development. These features make Alloy an appealing language to
introduce students to the problem of formally specifying real-life systems. Alloy
has recently introduced the sixth version? where linear temporal logic constructs
have been added to the language. This has enriched Alloy’s expressive power,
but, at the same time, has introduced new teaching and learning challenges.

The contribution of this paper is the development of a teaching module de-
signed to present the temporal features of Alloy 6 to students who have been
already introduced to the basic features of Alloy. The module includes slides,
Alloy models, videos, and guidelines for instructors. The material is meant to be
used within a traditional introductory lecture, a flipped class, an exercise ses-
sion, and a challenge to encourage students to explore the practical application
of the approach. Moreover, the material is organized in several parts that can
be used and—possibly—tailored independently from the others. The material is
openly available on our Github repository.? So far, it has been used, in a short-
ened format, in the Software Engineering 2 course at Politecnico di Milano in
the Academic Year 2023-2024. As a preliminary evaluation, we report on this
experience commenting on the performance of students during the exam both
in terms of achieved score and in terms of types of errors made. This analysis
shows that the module is potentially effective.

The paper is structured as follows: Section 2 presents the state of the art
on the preparation of teaching modules and on Alloy. Section 3 presents an
overview of the temporal features of Alloy 6. Section 4 presents the proposed
teaching module and Section 5 evaluates it. Finally, Section 6 presents a critical
discussion and concludes the paper.

2 State of the art

Teaching modules A teaching module is a significant, highly homogeneous and
unified part of a planned disciplinary program. One of the main characteristics
of a teaching module is having well-defined and verifiable learning objectives
which not only enhance student engagement and motivation [18], but also assist
instructors in designing assessments and selecting the content of the lectures
effectively.* To achieve such goals, educators must consider how to help students
take advantage of the contents by identifying effective teaching materials and
strategies.

With the advent of educational technology, universities are increasingly in-
tegrating instructional multimedia into course delivery as part of the teaching
materials, such as slides, videos, or online quizzes, providing several advantages
TR
2
3

alloytools.org/applications.html
alloytools.org/alloy6.html
github.com/lucapada/ResearchProject Alloy6

4 cteresources.bc.edu/documentation /learning-objectives


https://alloytools.org/applications.html
http://alloytools.org/alloy6.html
https://github.com/lucapada/ResearchProjectAlloy6
https://cteresources.bc.edu/documentation/learning-objectives/

An Educational Module for Temporal Features in Alloy 6 3

including increased access to content, personalized learning opportunities, and
greater student engagement [19]. Multimedia-enhanced learning environments
can foster student motivation and facilitate problem-solving skills through self-
exploration and collaboration [12]. In the context of teaching modules, teaching
strategies aim to overcome the limitations of traditional classroom teaching,
where students often passively consume information, and leverage active learn-
ing instead, which fosters students’ engagement and encourages them to take
respousibility for their learning [11].

Howell [8] discussed student experiences and perceptions of an interdisci-
plinary social science course, concluding that over 90% of respondents agreed
that in-class active learning exercises made the classes more engaging and the
material more memorable than usual. Active learning includes projects, problem-
solving tasks, and team assignments; it offers numerous benefits, such as receiv-
ing immediate feedback, building confidence, and promoting cognitive develop-
ment [7]. Accordingly, it is suitable for disciplines with practical aspects like
software engineering and specification languages in particular. The rest of this
section reviews some of the most useful active learning strategies explored and
tested in the literature.

One of the most used and simplest active learning strategies is questioning,
which consists in having teachers pose proper questions to learners. They encour-
age discussion, argumentation, and the expression of opinions and alternative
views. When used effectively, questioning provides immediate feedback about
students’ understanding, supports informal assessment, and evaluates teaching
strategies’ impact [5]. Questioning can be seen as a form of feedback for the
students who can measure their knowledge against the asked questions and re-
quired answers. In general, feedback is an active learning strategy that informs a
student or a teacher about their performance and is acknowledged as an essential
element for improving the students’ learning process [6]. Feedback redirects or
refocuses students’ actions so that they can align effort and activity toward a
clear outcome |[5].

Besides teaching theoretical aspects and involving students with questioning
and feedback, examples may help them understand better the concepts of the
lectures. Worked examples, in particular, aid initial cognitive skill acquisition by
presenting formulated problems, solution steps, and final solutions [17]. Study-
ing worked examples is effective for teaching complex problem-solving skills as
it provides expert mental models to novices and reduces cognitive load, facili-
tating skill acquisition [20]. Once worked-examples are assimilated, students can
push toward more complex real-world problems. Problem-based learning is the
instructional approach where learning occurs through the process of solving such
problems [2]. Allen et al. concluded that such a method enhances the affective
domain of student learning, improves student performance on complex tasks,
and fosters better retention of knowledge [1]. This strategy exploits projects
that should be as complete as real-world instances so that students can experi-
ence the whole process that is likely to be seen in future working environments,
including cooperation with other peers.



4 L. Padalino, F. P. Panaccione, F. Santambrogio et al.

In general, as stated by Laal and Ghodsi [10], there are several benefits
brought by collaborative learning, like enhancing interactions, learner auton-
omy, teamwork, and problem-solving skills within a group, as members exchange
ideas and collectively build shared understanding. Integrating communication,
interaction, and cooperation skills among team members is crucial for success-
ful software development. This innovative approach prepares students for future
industrial settings by emphasizing the significance of social aspects in software
development.

In the development of our teaching module we have used and adapted to the
specific context of Alloy learning all the strategies presented in this section. We
discuss the implementation of these features in Section 4.

Teaching material for Alloy 6 Alloy has been extensively integrated into
undergraduate and graduate courses worldwide. Examples of courses adopting it
can be found in the Formal Methods Europe (FME) database® of formal methods
courses. From an analysis of the syllabus and, where possible, the material, it
results that most of the listed courses do not focus on the temporal features
offered by Alloy 6. Notable exceptions are the Formal Methods for Software
Engineering course,® taught at University of Minho (Portugal) by the group that
contributed to the development of Alloy 6 (and the Alloy4Fun web application
[13]), the Logic for Systems course at the Brown University,” and the University
of Iowa’s Formal Methods in Software Engineering course.®.

In all the cases we could analyse, the offered teaching material was not fully
self-contained and organized to be reused in other classes. Also, the presented
examples were limited in number and relatively simple. As such, we concluded
that a comprehensive teaching module addressing the complexities of Alloy’s
temporal features can be useful to aid Software Engineering teachers in incor-
porating such features in their courses and to help students in mastering their
application in significant cases.

3 Overview of Alloy’s temporal features

Alloy 6 introduces the concept of mutable signatures and fields, enabling users to
express their temporal evolution using operators derived from Linear Temporal
Logic (LTL, [16]). In a nutshell, a mutable signature captures a set whose mem-
bers can change over (discrete) time; similarly, if a signature (not necessarily a
mutable one) includes a mutable field, then an instance of the signature could be
such that the value of the field changes over time. Mutable signatures and fields
are identified through the var keyword. Alloy uses a discrete notion of time, so
for each time instant ¢ € N the instance of a mutable element can be different

® fme-teaching.github.io/courses

5 haslab.github.io/ MFES

" ¢scil710.github.io/2024

® homepage.cs.uiowa.edu/~tinelli/classes/181/Fall23 /index.shtml


https://fme-teaching.github.io/courses/
https://haslab.github.io/MFES/
https://csci1710.github.io/2024/
https://homepage.cs.uiowa.edu/~tinelli/classes/181/Fall23/index.shtml

An Educational Module for Temporal Features in Alloy 6 5

(signatures and fields that are not marked as var, instead, have the same value
for each time instant).

Alloy includes the classic LTL temporal operators (including their past coun-
terparts), such as always, eventually, until. The LTL “next” operator is called
after in Alloy, and before is its past counterpart. For example, the following
declarations define that signature S is mutable, initially it does not contain any
elements, but at some point it will contain 3.

var sig S{}
fact { #S = 0 and eventually #S = 3 }

Alloy 6 can perform both bounded and unbounded model checking of temporal
specifications (the latter through the nuXmv formal verification tool [4]). If a
bounded approach is used [3], the time horizon (i.e., the maximum length of the
traces to be explored in search for a loop) must be provided through the steps
keyword.

Alloy 6 also features an improved visualizer tool which displays traces in
a user-friendly way. More precisely, the visualization pane is split in two parts
showing the model instance in consecutive states. The visualizer allows users to
explore traces (move along the current trace, explore a new one, etc.) through
suitable commands.

4 Organization of an Alloy 6 Teaching Module

The developed teaching module incorporates various teaching strategies (see Sec-
tion 2) and focuses on the temporal features introduced in Alloy 6. It assumes
that students are already familiar with the core notions of the Alloy modeling
language (signatures, facts, predicates, etc.), but not with its temporal features.
It includes theoretical and exercise lectures, within which a timeline was defined
for each macro-topic to be presented. To experiment with alternatives to clas-
sic lectures, additional activities (self-assessment quizzes, a flipped classroom, a
challenge) were added, which function as tools to assess comprehension related
to learning objectives. Additionally, a comprehensive guide with an accompa-
nying video was developed to assist instructors in understanding how to use
the module effectively. The organization of the teaching module is presented in
Figure 1.

First theoretical lecture In the first theoretical lecture, the focus is on com-
paring how time-varying systems are handled in Alloy 5 vs. Alloy 6. The aim is
to demonstrate the enhanced effectiveness of Alloy 6 in this regard, thanks to
the introduction of new logic operators and keywords. By the end of this lesson,
students should grasp how Alloy 5 addresses dynamic modeling, recognize its
limitations and understand why the new features in Alloy 6 are necessary. The
lecture begins with an overview of the learning objectives, setting the stage for
what students will gain from the session. Then, the distinction between the static
and dynamic world in Alloy is explored, providing clarity on the significance of



6 L. Padalino, F. P. Panaccione, F. Santambrogio et al.

Off-line video watching .
and self-study Excercise lecture X
s) (90") é—;];
. .
. .
.
L J

.
.
®
First theoretical Second theoretical
lecture lecture anfln Ny Challenge

(45') i (45)

Fig. 1: Temporal organization of the teaching module.

these terms within the context of modeling. The bulk of the lecture focuses on
examining how dynamic models are represented in Alloy 5, which implies the
presentation of the Alloy ordering package and of the Time signature and its
limitations. Through examples and explanations, students gain insights into the
challenges faced when modeling dynamic systems using Alloy 5. Then, the focus
shifts to Alloy 6, introducing the var keyword and LTL concepts and operators.
These additions enhance Alloy’s capabilities in handling temporal aspects and
introduce mutability, addressing some of the shortcomings observed in Alloy 5.
Throughout the lecture, the emphasis is on providing clear explanations and
practical examples to aid understanding.

Video watching and self-studying Video watching and self-studying help
students learn the topics related to temporal operators introduced in Alloy 6.
Students should have attended the first lecture, which introduces the features
used in the video. The teacher, in the recorded video, unidirectionally explains
the concepts, leaving the opportunity to raise doubts and gather opinions to
the next lesson, through feedback and questioning. The recording focuses on
temporal connectives—both future and past—that a user can exploit to define
predicates, facts, and assertions. All connectives are presented in the same way,
always following the same pattern: syntactic definition, semantics, and applica-
tion example. As teaching material, the teacher provides the video and the slide
set containing the whole content of the video.

Second theoretical lecture In the second lesson, the objectives are two-fold:
firstly, through the flipped class approach, to assess students’ understanding of
the material covered in the first lesson and in the video; secondly, to continue
exploring the new temporal features introduced in Alloy. Students will have the
opportunity to evaluate their comprehension and the effectiveness of their study
methods through quizzes administered partly during class time and partly as
take-home assignments. By the end of the class, students will gain a comprehen-
sive understanding of Alloy’s temporal features and capabilities. They will be
able to use temporal connectives and address related arguments.



An Educational Module for Temporal Features in Alloy 6 7

Exercise lecture During the exercise lecture, students will engage in hands-on
activities designed to reinforce their understanding of Alloy’s temporal concepts.
Through a worked-example approach, the lecturer will lead students through
practical coding exercises aimed at tangibly applying theoretical knowledge. This
interactive session will provide a valuable opportunity for students to deepen
their comprehension and develop essential problem-solving skills. To complete
the exercises, students must have attended the lectures covering Alloy’s new fea-
tures, watched the related video on connectives, and installed the latest version
of the Alloy tool. The exercise session comprises the following three exercises.

Ezercise 1: Concurrent Communications in Distributed Systems This exer-
cise delves into the concept of parallel system operations, focusing on modeling
communication in distributed systems. Students will have to define mutable sig-
natures and establish facts defining the conditions that are perpetually true as
well as the ones that describe the way the system evolves over time. By modeling
scenarios such as message transmission and reception, students will gain insight
into handling dynamic systems within the Alloy framework.

Ezercise 2: Travel (Interrail) In this exercise, students will tackle the mod-
eling of travel scenarios using Alloy. They will define signatures representing
entities involved in travel, such as cities and travelers, and create static and
dynamic models of travel itineraries. By modeling a person’s journey between
cities and defining completion criteria, students will gain proficiency in modeling
dynamic real-world processes.

Exercise 3: Mailbox The final exercise focuses on modeling a mailbox system
with dynamic behavior. Students will define a model for messages that can be
deleted and restored from a recycle bin, with their locations changing over time.

Throughout the exercise session, students will actively engage with the ma-
terial, applying theoretical concepts to practical scenarios. By completing these
exercises, students will enhance their understanding of Alloy’s capabilities and
develop the skills necessary for effective modeling and analysis.

Challenge The extra activity offered by the module is a challenge where stu-
dents can apply what they have learned in solving a particular specification
within a two-week time frame. To tackle the challenge and solve the exercise,
students must have previously (i) attended the previous lectures, (ii) watched
the video related to connectives, which are extensively used when defining pred-
icates, facts, and assertions, (iii) attended the exercise session and (iv) installed
the latest version of the Alloy tool. The challenge presents students with a real
and current problem that may not have a single solution. Problem-solving, a skill
greatly developed by the challenge, encourages each individual to propose a per-
sonal solution based on what they have learned. In this proposed challenge, the
strategy of collaborative learning is employed, with students working together
in small groups (two or three students) to develop skills related to teamwork
and problem-solving. The proposed theme for the challenge is Software-Defined
Networks, inspired by [14], which are increasingly important in cloud computing



8 L. Padalino, F. P. Panaccione, F. Santambrogio et al.

Module’s component

Teaching strategy

First theoretical lecture
Second theoretical lecture

Feedback
Questioning
Learning goals setting

Video watching and Self-study

Multimedia teaching material usage

Exercise lecture

Questioning

Feedback

Worked example

Problem-based learning

Challenge Problem-based learning

Collaborative learning

Table 1: The various components of a teaching module and the associated teach-
ing strategies and goals within the module.

and network architectures to facilitate their administration, configuration and
monitoring, and to improve their performance.

For what concerns the teaching material, the teacher provides the slide set
containing the outline of the challenge and how to deliver it. At the end of the
challenge—thus, at the end of the proposed module—students will be able to
face situations in which they are required to model complex systems by working
in a group in a very practical and professional setting.

Each component of the teaching module was carefully selected to maximize
its effectiveness, through the active learning strategies described in Section 2.
Table 1 outlines the various components of the module, detailing the specific
teaching strategies and goals associated with each part.

5 Evaluation

In this section, we present a preliminary evaluation based on the module’s adap-
tation and usage within the Software Engineering 2 (SE2) course at Politec-
nico di Milano. The course is mandatory for students enrolled in the Master
in Computer Science and Engineering. It is offered during the Fall semester
(September-December) to more than 600 students divided in three classes. Most
of the students enrolled in the SE2 course have a background (typically a Bach-
elor’s degree) in computer science and engineering, though there are also stu-
dents of other engineering disciplines such as Telecommunications Engineering
and even Mechanical Engineering.

Alloy was presented as a specification language for model definition and ver-
ification at the requirement analysis and design levels, and its sixth version was
introduced in the course during the 2023-2024 academic year. Due to time con-
straints, the module was condensed and adapted to fit in a 1-hour lecture, plus
a half-hour exercise session. Hence, a full comparison of the differences between
the new temporal features and the approaches previously available in Alloy (see
Section 3) was not possible. The condensed lecture, instead, focused on how



An Educational Module for Temporal Features in Alloy 6 9

the new temporal features of Alloy can capture, in a natural way, the change
in the state of a system (i.e., in its mutable parts) when certain operations are
performed. In addition, it provided, through examples, an overview of the most
commonly used temporal operators (after, aways, etc.), and showed how they
can be used to describe constraints on the evolution of mutable features.

The exercise session provided further examples of definitions of temporal
properties (including assertions to be checked) through the development of a
complete, albeit small, specification of a message handling system, a variation
of the mailbox exercise of the teaching module (see Section 4). In a way, the
exercise session replaced the challenge, which was created to drive students to
solve (possibly through group work) a particularly long and complex problem.
The introduction of this new material did not result in an increase of the number
of hours dedicated to Alloy in the course. To make optimal use of the available
class time, we showed how the new temporal features in Alloy 6 allowed for a
clearer description of the relations between states before and after the execution
of operations with respect to Alloy 5 (where such relations are described through
the introduction of specific atoms capturing different instances of the state).

In the context of the SE2 course, the negative impact, teaching-wise, of drop-
ping the challenge was lessened by how assessments are carried out. A significant
portion of the students enrolled in the course elect to acquire part of the course
credits through the development of a project focusing on the requirements analy-
sis and design activities related to a given application. As part of these activities,
students are asked to create a working Alloy specification, which is another form
of challenge. Finally, the vast majority of students enrolled in the SE2 course
complete the course credits by taking a written exam, which includes an Alloy-
specific question requiring students to define a small number of signatures and
properties.

To evaluate the effectiveness of teaching the temporal aspects of Alloy using
the material derived from our module, we have analyzed only the performance of
students during the written exam. This choice was driven by the fact that written
exams are individual, thus more objective and more comparable across different
course editions. We performed two types of analyses. First, we collected the
scores achieved by students in the Alloy question and compared them with those
obtained in the previous 4 years (in which temporal features were not presented).
Then, we selected a subset of 50 exams from this year and we manually examined
them to identify the most common errors. This allowed us to highlight the aspects
where students are weaker and require more support. For each academic year,
scores were manually assigned by the same two course instructors (who each
has been teaching the SE2 course for the past 7 years). Each instructor graded
roughly half of the exams. The analysis carried out for this work does not include
feedback provided by students, which we plan to systematically collect in future
editions of the SE2 course.

Analysis of students’ scores We considered the scores of the Alloy question of
the exams taken by students in the academic years from 2019-2020 to 2022-2023.



10 L. Padalino, F. P. Panaccione, F. Santambrogio et al.

19-20 | 20-21 | 21-22 | 22-23 | 23-24 | no time op. | time op.
#stud 130 143 153 125 142 551 142
Average | 72% 60% 73% 72% 68% 69% 68%
Table 2: Number of students taking the exam (February call only) and average
score expressed in terms of percentage of correctness.

We compared them with the scores of the exams taken in the current academic
year, in which the Alloy question explicitly required to use the new temporal
features. Our hypothesis is that the grade distribution is the same across years,
even after introducing the new Alloy 6 features, thanks to the adoption and
tailoring of the teaching module.

Table 2 provides an overview of the number of students considered in the
analysis and the corresponding average scores. Notice that, at Politecnico di
Milano, for each course there are 5 exam calls spread across the academic year
(2 in January-February, 2 in June-July, and 1 in September), and students can
take the exam—possibly multiple times—in any of the 5 calls. The analysis was
carried out focusing on 2 of the 3 classes (totalling more than 400 students) in
which students are divided. For each considered academic year, only the February
call was taken into account; for the SE2 course this is typically the second-most
attended call (after the January one), since the course is taught in the Fall
semester.

The first columns of Table 2 focus on the five academic years under consid-
eration and show that the number of students taking the exam every year is
statistically relevant and relatively stable between 125 and 153 and that the av-
erage score, computed in terms of percentage of correctness, is between 60% and
73%, with the lowest score obtained in the year 2020-2021. The sixth column pro-
vides the cumulative results obtained in the first four considered academic years
and shows that the average score obtained this year (68%) is not significantly
different from that of previous years (69%). In Figure 2a scores are organized in
the six categories defined in Figure 2b. The distribution of scores in Figure 2a
highlights the bad performance obtained in the year 2020-2021, with 22% of low
scores; also, it shows that this year’s performance is in line with that of previous
years, with most scores in the “medium” category.

In conclusion, our hypothesis that this year’s grade distribution is similar to
that of previous years can be considered confirmed, even though the observation
of future academic years is needed to consolidate it.

Analysis of students’ answers We evaluated the exam held in February 2024.
The text of the question had two parts, as shown below:

Consider a system to monitor the accesses of vehicles to the center of a city
(think “Area C” in Milano). The system detects vehicles entering the City Center
Area (CCA for short) using “gates” installed on the streets through which vehicles
can access the CCA. Each time a vehicle goes through a gate, the gate reads
the license plate of the vehicle and provides the system with the corresponding



An Educational Module for Temporal Features in Alloy 6 11

0.3 ™ -

oz . zg;zgz‘: Category From To

02 20212022 Very low 0% 30%
®2022-2023

0.15 22005.200 Low 31% 59%

01 Medium 60% 75%

- F | | High 6% 90%

Medium  High  Veryhigh Very High 91% 100%

Very low Loy

(a) Scores classification. (b) Definition of categories.

Fig. 2: Scores per year, organized by categories.

+collectedLicensePlatesToday 1.* CCA

+owns A +has | LicensePlate !
1.* 0.* 0..*@ +is_active: Boolean

+has_installed

Fig. 3: UML class diagram provided in the exercise.

information (license plate number and time of passage of the vehicle). The CCA
is active only until a certain time of the day (e.g., until 7pm). You are asked to
use the features of Alloy 6 to capture some features of the system, focusing on the
handling of the accesses for a single day. In particular, consider the (simplified)
domain model for the system shown in Figure 8 and represented through a UML
Class Diagram.

(Q1): Define suitable signatures and constraints to capture the domain model shown
above. In particular, identify the elements of the model that are mutable.

(Q2): Define a fact activeCCAdef that states that the CCA is initially active, then
at some point it must become inactive; after becoming inactive, the CAA
cannot become active again.

The proposed solution to the two questions is shown in Listing 1.1. To assess
the correctness of the solutions, the following elements were considered: the
correspondence between the Alloy model and the UML class diagram, the ap-
propriate identification of mutable elements, and the correct definition of the
activeCCAdef fact.

Listing 1.1: Proposed solution to the exam questions.

sig User { owns : some Vehicle }
sig Vehicle {

has : one LicensePlate
}{ one u : User | this in u.owns }

sig LicensePlate {}{ one v : Vehicle | v.has = this }
sig Gate {

var collectedLicensePlatesDay : set LicensePlate
}{ one cca : CCA | this in cca.has_installed }



12 L. Padalino, F. P. Panaccione, F. Santambrogio et al.

sig CCA {
has_installed : some Gate
var is_active : Boolean
}
fact activeCCAdef {
all cca : CCA | cca.is_active = True
and eventually cca.is_active = False
and always (cca.is_active = False implies
always cca.is_active = False)
}

We manually analyzed the answers produced by 50 students. This sample was
selected from the batch of 142 exams graded by the course instructors, using the
following procedure: (i) the exams of those students who obtained a score lower
than or equal to 50% of the total were eliminated, as the nature of the errors in
these cases certainly went beyond simply the usage of temporal operators; (ii)
for each score between 50% (excluded) and 100% (with increments of 10%), a
roughly equal number of exams per score was randomly extracted. The answers
were finally made anonymous to allow for the sharing of the exams with people
other than the course instructors.

We analyzed the exams to identify the most common errors and the corre-
sponding topics in the teaching material, we investigated the reasons why stu-
dents could have missed those concepts, and we checked whether the proposed
teaching module offers material in that regard and could help. The analysis
evidenced the following three main categories of errors.

Mutable signature var. Fifty percent of the students (25 over 50) did not consider
that the set of license plate numbers read when passing through the gate (at-
tribute collectedLicensePlatesDay in Listingl.1) and the status of the CCA
(attribute is_active) should be defined as mutable using the keyword var. This
is an error that the majority of students made in only one of the two attributes
to be defined as mutable. Moreover, this is the only kind of error made by many
of the students who correctly defined the fact, thus suggesting that the main
cause for the error was a lack of focus. However, this also highlighted that the
teaching material should stress the importance of the var keyword, which is the
starting point from time-dependent specifications. The number of examples and
remarks made during theoretical lectures could be increased, especially when
presenting temporal connectives. In this respect, the original module is more
complete compared to the tailored one, as it presents multiple examples that
focus, as a first step, on the importance of identifying what is mutable and what
is not, and only after this define facts that use temporal connectives.

Time signature definition. Half of the students (25 over 50) created an ad-hoc
Time signature as the basis for time-dependent properties. This is similar to how
such properties are introduced in Alloy 5, a method made obsolete by the new
features of Alloy 6. The following is an example found in one exam:

sig Time {hour: one Int}{ hour > O and hour < 24 }



An Educational Module for Temporal Features in Alloy 6 13

sig Information { plate: one LicensePlate,
time: one Time }

Most likely, students who followed this approach took the course in the previous
academic year and did not take care to study the new aspects introduced this
year. Indeed, the tailored material does not include a history of the evolution
of the representation of time-dependent features from the previous versions of
Alloy (5 and before) to the latest one; this is instead available in the complete
module, which explains how defining a Time signature is no longer necessary in
Alloy 6 thanks to the introduction of mutable features.

Usage of temporal connectives and definition of the fact. Seventy-eight percent of
students (39 over 50) made conceptual, syntactical, and logical errors regarding
the definition of facts. More than half used an incorrect temporal connective.
Given the heterogeneity of errors, it was particularly complex to find a correlation
among all the errors and a single reason. Not considering syntactic errors—
which typically originate from a superficial study of the language syntax—we
separated conceptual errors concerning the usage of first-order logic constructs
from errors inherent to the usage of temporal connectives. For example, the
errors in the following definition of fact activeCCAdef are mostly first-order
logic-related and show that the student did not grasp the semantics of the all
and some quantifiers. Having misunderstood these basic aspects, the student
wrote a fact that is also incorrect from the temporal viewpoint.

fact activeCCAdef {

all c:CCA | c.is_active

some c: CCA | not c.is_active

all c:CCA, g: Gate | not c.is_active implies
c’.has_installed = g and c’.is_active }

In the following example, the student used the temporal operators in a correct
way, but missed the quantification on variable c:

fact activeCCAdef {
always(c: CCA | c.is_active in True implies
eventually(c.is_active in False))
and always (c:CCA | c.is_active in False implies
always(c.is_active in False)) 1}

Students might have misunderstood the meaning of each temporal connective
and this may have impacted on the definition of the fact. In this regard, the
module offers examples and quizzes for each temporal connective, with exercises
focusing on why a certain connective is used and others should not. The examples
presented in the theoretical lectures also help to better integrate the novelty of
the temporal connectives with the existing logical constructs.

Threats to validity The experiments and the analysis presented in this paper
are susceptible to the following threats to validity, which we plan to overcome
in the future.



14 L. Padalino, F. P. Panaccione, F. Santambrogio et al.

The evaluation of the teaching module from the instructors’ perspective has
been performed only internally, within the same group that has originated the
module. A more in-depth evaluation involving instructors from multiple different
academic institutions will be targeted for the next academic years.

The evaluation of the teaching module from the students’ perspective is in-
direct, since the class that was the object of the evaluation of Section 5 was not
directly exposed to the complete teaching module, but only to its tailoring (even
though the whole module was available to them). This threat is mitigated by the
fact that, since the complete module is more detailed (especially from the prac-
tical viewpoint) compared to the tailored one, we expect the students’ learning
experience to actually improve through exposure to the complete module.

Finally, the analysis has considered a group of students who attend the same
study course, hence have a homogeneous background. It could be beneficial to
carry out experiments with a more diverse student population, though this might
be difficult to achieve.

6 Discussion and Conclusion

For software engineering students, understanding formal specification languages
for requirements modeling is very important, though far from trivial. Alloy is
an educationally accessible modeling language that has recently introduced im-
portant new features that revolve around an integrated concept of time and do
not require the use of external modules; they include new keywords for marking
objects and their properties as mutable, new operators for expressing properties
related to past and future time instants, and a new visualizer tool.

We proposed a module to effectively teach students the new Alloy features
by combining different teaching strategies, such as frontal lectures and flipped
classrooms, to stimulate students’ interest and help them better understand the
language.

Additional research is needed to further validate the proposed approach.
Experiments could be carried out to test the effectiveness of the teaching module
objectively. In particular, we plan to compare different teaching methods by
dividing a class into two groups: one group testing the module, while the other
uses a different teaching approach.

Quizzes, exercises, and the challenge can be used to build an up-to-date
picture of the state of student learning. Thanks to them, one could observe
the improvement achieved by the class over time in terms of: (i) timeliness of
students’ responses, (ii) obtained scores, and (iii) quality of answers in relation
to the used teaching method. In particular, the first two factors can be evaluated
through quizzes and quick exercises, while the third is assessed through activities
such as drills, challenges and written exams. The quality of answers, in particular,
concerns how well students manage to tackle a complex problem from scratch,
without teacher guidance.



An Educational Module for Temporal Features in Alloy 6 15

As discussed in Section 5, to increase the objectivity of the analysis, we plan
to carry out experiments in classes taught by different teachers and taken by
students with different backgrounds.

We believe that our approach to teaching Alloy can be an important starting
point for improving the accessibility of formal specification languages in soft-
ware engineering; however, further research is needed to confirm the validity of
our solution. Depending on the results of the validation, the proposed teaching
module can be modified and fixed to be as effective as possible.

Acknowledgements We are very grateful to all students involved in the SE2
course and to Alessandra Viale, who helped us with the preparation of the exams
for the detailed analysis.

References

1. ALLEN, D. E., DoNnHAM, R. S.; AND BERNHARDT, S. A. Problem-based learning.
New directions for teaching and learning 2011, 128 (2011), 21-29.

2. BARROws, H. The essentials of problem-based learning. Journal of Dental Edu-
cation 62,9 (1998), 630-633.

3. BIERE, A., CimaTTI, A., CLARKE, E., AND ZHU, Y. Symbolic Model Checking
without BDDs. In Tools and Algorithms for the Construction and Analysis of
Systems, vol. 1579 of Lecture Notes in Computer Science. 1999, pp. 193-207.

4. Cavapa, R., CmvarTi, A., DorigarTi, M., GRIGGIO, A., MARIOTTI, A.,
MicHELI, A., MOVER, S., RoVvERI, M., AND ToNETTA, S. The nuXmv Sym-
bolic Model Checker. In Proc. of CAV (2014), vol. 8559 of LNCS, pp. 334-342.

5. DEPT. OF EDUCATION AND TRAINING, STATE OF VICTORIA. High impact teaching
strategies: excellence in teaching and learning. ISBN: 978-0-7594-0820-3, 2020.

6. FERGUSON, P. Student perceptions of quality feedback in teacher education. As-
sessment € evaluation in higher education 36, 1 (2011), 51-62.

7. GHILAY, Y., AND GHILAY, R. Tbal: Technology-based active learning in higher
education. Journal of Education and Learning 4 (9 2015).

8. HowkeLL, R. A. Engaging students in education for sustainable development: The
benefits of active learning, reflective practices and flipped classroom pedagogies.
Journal of Cleaner Production 325 (11 2021).

9. JacksoN, D. Software Abstractions: logic, language, and analysis. MIT press,
2012.

10. LaaL, M., AND GHODSsI, S. M. Benefits of collaborative learning. Procedia-social
and behavioral sciences 31 (2012), 486-490.

11. L1, Y. W. Transforming conventional teaching classroom to learner-centred teach-
ing classroom using multimedia-mediated learning module. International Journal
of Information and Education Technology 6 (2016), 105-112.

12. Liu, M., Horron, L., LEE, J., KaNG, J., RosENBLUM, J., O’HAIR, M., AND
Lu, C.-W. Creating a multimedia enhanced problem-based learning environment
for middle school science: Voices from the developers. Interdisciplinary Journal of
Problem-Based Learning 8 (3 2014).

13. Macepo, N., CunHA, A., PEREIRA, J., CARVALHO, R., Sitva, R., Patva, A. C.,
SoziNHO RamaLHO, M., AND Siva, D. Experiences on teaching alloy with an
automated assessment platform. Science of Computer Programming 211 (2021),
102690.



16

14.

15.

16.

17.

18.

19.

20.

L. Padalino, F. P. Panaccione, F. Santambrogio et al.

MARIA-DEL-MAR GALLARDO, L. P. Modelling and specifying software systems
with alloy * (tutorial).

MOoREIRA, R. M., AND Parva, A. C. A novel approach using alloy in domain-
specific language engineering. In 2015 3rd International Conference on Model-
Driven Engineering and Software Development (MODELSWARD) (2015), IEEE,
pp. 157-164.

PNuELI, A. The temporal logic of programs. In 18th Annual Symposium on
Foundations of Computer Science (sfcs 1977) (1977), IEEE, pp. 46-57.

RENKL, A. The Worked-Out Examples principle in Multimedia Learning. 01 2005,
pp. 229-245.

SEDEL, T., RIMMELE, R., AND PRENZEL, M. Clarity and coherence of lesson
goals as a scaffold for student learning. Learning and Instruction - LEARN INSTR
15 (12 2005), 539-556.

SmiTH, A. R., CavaNAUGH, C., AND MOORE, W. A. Instructional multimedia:
An investigation of student and instructor attitudes and student study behavior.
BMC Medical Education 11 (2011).

VAN MERRIENBOER, J. Training complex cognitive skills: A four-component in-
structional design model for technical training. Educational Technology Publica-
tions, 1997.



	An Educational Modulefor Temporal Features in Alloy 6

