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Abstract—Novel in-memory computing circuits, based
on arrays of emerging nonvolatile memories, such as the
phase-change memory (PCM), can boost cutting-edge per-
formances of artificial intelligent applications. However,
the spread of PCM-based circuits is currently hindered
by the lack of a design framework enabling fast, efficient,
and low-power neural networks. In this work, a novel
approach to the conceptual and technical design of inte-
grated neural networks is proposed. In particular, to relax
the power hunger and complexity of state-of-the-art solu-
tions, we propose a fully analog computing approach where
the analog-to-digital converter (ADC) is replaced by a sim-
ple comparator. The analog building blocks of the acceler-
ator are presented and validated in Cadence Virtuoso. The
major nonidealities, such as PCM conductance variability,
conductance drift, IR drop, and readout threshold, are stud-
ied by considering their impact on accuracy.

Index Terms—Artificial intelligence, hardware acceler-
ator, in-memory computing, neural network, nonvolatile
memory, phase-change memory (PCM).

I. INTRODUCTION

MACHINE learning (ML) has emerged as one of the
most disruptive sciences of the latest years demon-

strating human-like skills in tasks, such as image recognition
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Fig. 1. (a) General concept of a neural network accelerator and
(b) implementation of the synaptic weights using 1T1R PCM devices.
Note that presynaptic and postsynaptic neurons are also depicted in the
figure.

and natural language processing [1]. ML algorithms usually
rely on intensive matrix-vector multiplication (MVM), which
results in time- and energy-consuming transfer of input data
and model parameters between the dynamic random access
memories (DRAMs) and the CPUs [2], [3]. On the other hand,
in-memory computing emulates the parallel computation of
the brain [4], [5], [6], thus overcoming the main limitations of
conventional digital computing systems, also because of high-
density, back end of the line nonvolatile memories, such as
resistive random access memory (RRAM) and phase-change
memory (PCM) [5], [7], [8], [9], [10]. In particular, as shown
in Fig. 1(a), the MVM is the most intensive operation for
implementing hardware accelerators of large neural networks.
MVM can be executed efficiently by in-memory computing
hardware because of the use of memory arrays of non-
volatile memories [11], which are shown in Fig. 1(b). These
cross-point arrays inherently perform parallel multiply-and-
accumulate (MAC) operations by direct application of Ohm’s
and Kirchhoff’s laws [2], [12]. Several mixed-signal accel-
erators integrating a memory array have been proposed for
neural network inference [13], [14], [15], [16], [17], [18],
[19], [20], [21], [22]. The performance of some of these
accelerators in terms of throughput, energy efficiency, and
input, output, and weights precision is reported in Table I.
Hardware accelerators based on in-memory computing usually
rely on a mixed analog-digital approach with analog-to-digital
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TABLE I
ANALOG MIXED-SIGNAL CIRCUITS FOR NEURAL NETWORK INFERENCE BASED ON EMBEDDED NONVOLATILE MEMORIES

converter (ADC) for two main reasons: 1) achieving sufficient
signal integrity and 2) enabling digital processing of the
information, including activation functions, shift-and-add, and
normalization operations, which might not be straightforward
in the analog domain. Note that an ADC consumes more than
80% and 60% of the circuit power and area, respectively [23],
[24]. Thus, simplifying or even removing the ADC would
result in a strong improvement for the integrated design of
neural networks accelerators.

This work addresses the hardware design of a PCM-based
multilayer neural network with comparator-based nonlinear
activation functions. The circuit speeds up the workload by
avoiding the use of ADCs, and it is tested for the recognition
of Modified National Institute of Standards and Technology
(MNIST) and Fashion-MNIST datasets. An activation-slope
aware training method is used, and the accuracy loss is
minimized in the tests using step function activations and
quantized 4-bits weights. The network is implemented on a
cross-point array of real conductances leveraging a multibit
resistive weight mapping. This technique is extended from the
array of RRAM cells use case presented in [14] and [15] to our
PCM-based network. Previous works investigated the impact
of PCM variability on the classification accuracy. In [25],
the variability and drift of PCM devices were simulated by
rescaling the network weights by the maximum conductance of
an experimental distribution. Programming variation with zero
mean and variance obtained from the Gaussian fitting of the
distribution was added. In our work, we extend these results
by considering the effects of PCM variability on a quantized
network with multibit resistive weights, thus offering a com-
prehensive picture on the joint effect of weight quantization
and variability. We focus on the interaction between these
nonidealities and the Heaviside activation of our network.
We also consider the impact of IR drop on the network
accuracy. Differently from the analysis carried on in previous
works [26], we evaluate the effects of IR drop on a complete
inference task. The higher average conductance of the cells
adopted in our work also forces to address a more severe IR-
drop configuration.

Our work presents a fully analog hardware implementation
of the bit-line (BL) readout and neural activation, includ-
ing a transimpedance stage, a weighting star of resistors,
an integration stage, and a dynamic StrongARM comparator.
The joint effect of conductance variability, drift, IR drop,
and readout threshold on the network accuracy is carefully
investigated.

II. CROSS-POINT ARRAY FOR MVM

Fig. 1(b) shows the cross-point memory array based on
one-transistor/one-resistor (1T1R) PCM cells, with the top
electrodes (TEs) of the PCM devices connected to the BLs
and the bottom electrodes to the drain of MOS transistors,
which work as selectors. The gate of the transistor is increased
by applying a voltage signal at the corresponding word line
(WL), while the TE is kept at a relatively low read voltage
VREAD. The resulting BL current is proportional to the dot
product between the input vector of the gate voltages applied
to the WLs (binary on/off voltages) and the vector of analog
conductance values stored in the memory cells of the BL.

III. SLOPE-UPDATE TRAINING

The network we propose in this work has 784 binary inputs,
ten outputs, and 150 hidden neurons. An element always set to
one is also appended to the input vector of each layer, so that
the bias can be implemented [1]. After an MVM operation, the
outputs of each layer undergo a nonlinear activation. We used
the logistic function

σ(x) = A

1 + e−Bx
(1)

where A and B are free parameters, as nonlinear activation
function. Fig. 2(a) shows the logistic function for increasing
B , which describes the slope of the activation function. Dur-
ing training, the input patterns are feedforwarded across the
network. Errors can be evaluated by computing the squared
difference between the one-hot code of ten elements associated
with the input image and the actual output of the network.
The network weights are modified according to the product
between this error and a model parameter, called learning
rate. Backpropagation and gradient descent are used during
the process [27]. The hyperparameters of the model, namely,
A and B in (1), the number of epochs and the learning rate η,
were selected to obtain, at the same time, the largest accuracy
and a high slope for the activation function, thus allowing to
implement the logistic function in (1), as an analog compara-
tor. At high slope coefficients B, none of the combinations
of the other parameters gave high accuracy. The slope of
the activation function was then increased gradually during
training, as shown in Fig. 2(a). This method was called slope-
update training. Two variants of the method are considered
to optimize the training process: in the derivative function
σ �(x) = (A�B �e−B �x )/(1 + e−B �x ) used for backpropagation,
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Fig. 2. (a) Activation function of the neural network at incremental
slope. (b) Normalized derivative of the slope of the activation function.
(c) Software accuracy on MNIST and Fashion-MNIST for different train-
ing schemes.

TABLE II
TOP ACCURACIES FOR DIFFERENT TRAINING SCHEMES

parameters A� and B � are either chosen equal to A and B of
the function used in the forward propagation or selected to
obtain a larger full-width half-maximum (FWHM), as shown
in Fig. 2(b). Fig. 2(c) shows the top accuracy achieved for
the different training methods as a function of parameter B.
In these calculations, weights were assumed with floating-
point precision, and a test was performed with comparators as
activations. Various training schemes were assumed, as sum-
marized in Table II. The training using slope update minimizes
the accuracy loss when the final slope of the activation function
increases. Slope update coupled with a large FWHM σ �(x)
allows efficient backpropagation of the errors, thus ensuring
the highest accuracy.

IV. QUANTIZATION

Nonvolatile memory devices, such as PCM cells, are not
suitable to represent high-precision analog weights [28]. The
64-bits full-precision weights obtained by the supervised train-
ing algorithm must then be quantized to limited-precision
levels. Fig. 3 schematically illustrates the quantization and
mapping steps. For each network layer, the full-precision
weights generally have a zero-mean distribution as in Fig. 3(a).
Note that 4 bits are used for quantization; thus, 16 quantized
levels can be represented. The 16 equally spaced values
selected between ±(3.5 × σ) of the full-precision distribu-
tion are chosen for this purpose. In order to minimize the
accuracy loss, the incremental-quantization method proposed

in [29] has been adopted. As shown in Table II, this approach
coupled to the slope update, and the use of a large FWHM
backpropagation function ensured a small accuracy loss.

In a 1T1R memory array, single PCM cells cannot represent
positive and negative weights, because the current is sourced
in a single direction. To avoid this limitation, we rely on
the multibit resistive weight approach presented in [9], [14],
and [15]. As shown in Fig. 3(a), the quantized distribution
of weights is shifted on a positive range only. The product
between the input vector and a positive and negative matrix
is recovered by subtracting a midpoint reference, as shown
in Fig. 3(b). The positive quantized weights are mapped on
the conductance of the PCM array, programed in either a
low-resistive state (LRS) or a high-resistive state (HRS).
By combining these binary (LRS/HRS) PCM conductances,
4-bit binary codes are obtained to describe each one of the
16 quantized levels. The value of a dot-product operation is
obtained by binary weighting of the currents of four PCMs.

V. SIMULATIONS WITH PCM DISTRIBUTIONS

The effect of the variability and drift of PCM devices on
the network accuracy is simulated considering the conductance
distributions obtained from previous experimental measure-
ments [30]. The PCM devices were initialized by a forming
operation to uniformize [31] the Ge-rich composition of the
phase change material, as shown in Fig. 4(a). Higher forming
currents can be used to create a larger conductive region
in the PCM device. Fig. 4(b) shows the average value and
the variance of the LRS conductance GLRS, as a function
of the forming current [32]. Fig. 4(c) shows the computed
network accuracy versus IFORM. Higher forming currents lead
to a better accuracy, although at the expense of a higher
power consumption. In fact, by programming the cells with
IFORM = 150 μA, a BL draws at maximum 165 μA, while
the maximum current is 317 μA for IFORM = 550 μA, roughly
corresponding to a two times larger power dissipation. Since
accuracy and power dissipation are trade-offs, applications that
require a low power consumption may have accept a relatively
low classification accuracy.

The performance of the network is evaluated at increasing
time, to account for the effect of the drift. Fig. 5(a) shows the
PCM conductance as a function of time after the programming
pulse. The measured distributions of PCM devices are fit
to extract their mean value and variance. The conductances
used in network simulations are extracted by the obtained
distributions. Fig. 5(b) and (c) shows the accuracy obtained by
considering the time evolution of the PCM conductance. In the
simulations corresponding to the red plot, the mean values of
the LRS and the HRS distributions decrease over time, as well
as the dynamic range of the differential analog dot product.
The accuracy of the network is not affected; because of the
self-referential implementation of the analog circuitry, the sign
of this difference with respect to an infinite slope activation
threshold is preserved. The conductance variance increases
with time for both the HRS and the LRS. The evolution in
time of the conductance variance causes the statistical spread
of the analog dot products around the Heaviside activation
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Fig. 3. (a) Network is trained by incremental quantization with 4-bit precision: then, weights are shifted to positive and mapped in four binary PCM
cells. (b) Illustration of weight mapping with four binary PCM cells and eight reference cells, producing the average between 0000 and 1111.

Fig. 4. (a) Scheme of the forming process in a virgin PCM cell.
(b) Average LRS conductance as a function of forming current. (c)
Simulated accuracy for MNIST and Fashion-MNIST datasets.

threshold. As shown in the green plot of Fig. 5(b) and (c),
when the time evolution of the conductance variance only
is considered, a moderate accuracy drop is observed. On the
contrary, when both the mean value and the variance of the
PCM conductance distribution evolve in time, the conductance
variance has a larger impact on accuracy. In this case, as shown
in the light-blue plot of Fig. 5(b) and (c), the statistical
spread superimposed to the lower dynamic range dot-product
analog signals causes a larger accuracy drop. Nevertheless,
the simulations results demonstrate a good resilience to drift
by the network because of the self-compensation between the
weights in the array and in the reference combined by the
step-like activation function.

VI. SIMULATIONS WITH IR DROP

The current flowing in the BL causes a voltage drop across
the BL wire resistance and across the resistance of the BL
decoder, as shown in Fig. 6(a). A decoder circuit is indeed
necessary to share the readout among different BLs of the
array. This IR-drop effect superimposes an input dependent
error to the current of each cell, thus affecting the linearity of
the MVM operation [26], [33]. The network was simulated to
take into account the voltage drop across the decoder resistance

Fig. 5. (a) Distributions of conductance for HRS and LRS of PCM
cells at increasing time. (b) Simulated accuracy for MNIST. (c) Simulated
accuracy for Fashion-MNIST.

and the IR drop accumulated along the BL, assuming a
cell-to-cell wire resistance Rwire = 0.5 �. To reduce the
impact of IR drop, the readout of a BL was divided into
different steps by reading 16, 32, 64, or 128 cells. The current
obtained from different read steps was then integrated in the
analog domain, because the step function used as activation
needs to operate on the result of a full analog dot product.
Fig. 6(b) and (c) shows the simulation results of the impact
of IR drop. The results indicate that good performance can
be obtained if the voltage drop across the decoder resistance
is kept below 10% of the read voltage, with a reading of
32 out of 128 WLs for MNIST and of 16 out of 128 WLs
for Fashion-MNIST. Based on the evidence that a higher
forming current results in a higher accuracy and yet a higher
voltage drop on the BL, the compensation of the IR drop on
the network accuracy has to take into account the average
conductance of the PCM cells in the array. In the framework of
a hardware–software codesign, the PCM array and the reading
circuit could be jointly reprogrammed. When higher PCM
conductances, hence higher network accuracies, are targeted,
the number of BL cells read at a time can be reduced, without
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Fig. 6. (a) Sketch of the parasitic resistance across the wire and the
decoder. (b) Simulated accuracy as a function of the decoder resistance
for MNIST. (c) Simulated accuracy for Fashion-MNIST.

enforcing expensive retraining processes to minimize the IR
drop.

VII. READOUT CIRCUIT

Fig. 7(a) schematically shows the first layer of the network.
Input signals are applied to the WLs of the array in parallel.
The BLs share the readout circuits of each array by means of
a BL decoder, whose input dimensions depend on the number
of outputs of the network layer. A readout and weighting
circuit like the one represented in Fig. 7(b) is used to assign
a binary weight to each of the four BLs, while clamping
the BL read voltage to 0.2 V. The readout circuit includes
four transimpedance stages to convert the BL current in a
voltage. The outputs of these amplifiers are connected using
binary weighted resistors, having resistance R, 2R, 4R, and
8R. A second noninverting stage is used to amplify the signal.
The output of the second stage is, thus, given by

0.2 V

[(
1 + RB

RA

) 3∑
k=0

8

15

(
1 + RT

2k RBL,k

)
− RB

RA

]
(2)

which is equivalent to the result of a dot product between
a 16-, 32-, 64-, or 128-WL input and a four-BLs column
vector. The same readout integrates both the positive array
and the reference, thus avoiding any potential mismatch due
to process variations. Since the synaptic weights are split in
different arrays and only 32 out of 128 WLs are activated at
a time, analog integrators are used to accumulate the partial
dot products from different arrays and different read steps.
Connecting a different BL segment to the transimpedance
inverting input at each read step modifies the circuit linear
response and causes transient effects. A two-step integration
avoids the influence of these effects on the integrated charge.
Fig. 7(c) shows the integration circuit. In the first integration
step, the output of the readout reaches steady state, and in
the second, the charge stored across C1 is transferred to the
feedback capacitor C2. While one channel integrates the BL
currents, the other one integrates the two reference columns,
and the latter requiring a 1/2 gain factor in the ratio (C1/C2)
to set the reference voltage to half of the dynamic range.

Since, given an input pattern, the reference is the same for
any of the equivalent four-BLs columns, the charge integrated
on the reference side is maintained during the integration of
all the BLs in the positive array. The integrated outputs on the
array and the reference side are used as input voltages of the
dynamic StrongARM comparator, which is designed based on
a differential stage driving a latch, as shown in Fig. 7(d) [34].
The output bits of the comparison are then used as binary
inputs for the next network layer. A control block is used to
set the timing of the circuit and to manage the communication
between layers. When a layer completes the dot product
and activation operations for the following one, the inputs
are propagated forward in parallel mode. With the proposed
readout and integrator, reading a group of four BLs takes two
clock cycles. To reduce the impact of IR drop, a 128-cells
BL is divided in four sections of 32 cells. The 2 × 4 clock
cycles are then used to integrate a full BL, and two additional
clock cycles are needed to generate the comparator output
and reset the integrator. The classification of the full MNIST
dataset in a network with 150 hidden neurons requires to read
152 × 4 BLs, including the reference, for 10 000 patterns.
The circuit design assumes a clock period of 50 ns, and the
classification can, thus, be completed in less than 1 s.

VIII. NETWORK SIMULATIONS

Fig. 8 shows a summary of the simulated accuracy for
MNIST [Fig. 8(a)] and Fashion-MNIST [Fig. 8(b)], where the
various nonidealities are separately considered. The baseline
accuracy is reported for training with binary inputs, 64-bits
weights, and testing by using step functions instead of sig-
moids. The following items show the accuracy for different
nonidealities taken into account. We considered quantization,
conductance variability, drift, and IR drop as well as the non-
ideal properties of the readout, namely, the comparator offset,
and the mismatch between the integration channels. These
statistical variables are obtained from Monte Carlo circuit
simulations on Cadence Virtuoso. The statistical variations
of the PCM conductance affect the accuracy by introducing
a statistical uncertainty around the result of the analog dot
product, which is presented at the comparator input. IR drop
and drift instead lead to an overall reduction of the signal full-
scale range. The combination of these effects results in lower
accuracies.

IR drop is caused by the current flowing in a BL and
increases with the number of PCM synapses and their respec-
tive current. Fashion-MNIST is strongly affected by IR drop,
as a result of the lower sparsity of the input pattern. When
drift is included, the accuracy slightly increases with respect
to the time-zero test, as the average PCM resistance increase
causes a lower current to flow in the array, which suppresses
the IR drop. Drift and IR drop can, thus, positively affect each
other.

The strive for energy efficiency of edge devices pushes
toward the binarization of convolutional neural networks
(CNNs) [35]. Long short-term memory (LSTM) networks with
binary activations and states and binary graph neural networks
(GNNs) were proposed too [36], [37]. We, therefore, consider
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Fig. 7. (a) Illustration of the analog/digital implementation of the neural network for a single layer. (b) Readout circuit for weighted summation of the
synaptic currents in the analog domain. (c) Integrator circuit and evolution over time of the output voltage during the integration steps. (d) Dynamic
StrongARM comparator circuit.

Fig. 8. Assessment of accuracy for the hardware accelerator, includ-
ing the impact of limited precision, comparator offset, PCM variability,
IR drop, and drift for (a) MNIST and (b) Fashion-MNIST, respectively.

our approach transferrable to other network architectures and
problem sizes. The dynamic interaction of PCM variance,
PCM drift, IR drop, and their effect on the decision performed
by the binary threshold of the comparator presented in this
article can indeed serve as a reference for the hardware
implementation of any binary activated network.

To address the deployment of networks requiring higher
precision of the activation, an extension of the proposed circuit
is possible. In our work, we compared the result of a weighted
analog dot product to a midpoint reference, generating a binary
activation. In applications that require activation with higher
precision, the analog dot product could be compared with
multiple reference levels, generated from additional reference
BLs, similar to what was discussed in [38]. If each one
of the new voltage references is held by a replica of the
reference integrator, the area occupied by the readout circuit
on the in-memory computing chip increases. Using a single
reference integrator and scheduling in time the comparisons
with different references require more time to infer an input
pattern. In both cases, the power consumption of the circuit

increases. The analysis of these trade-offs is left to future
work.

The works on quantization of attention-based GNNs show
that the quantization of the attention layers is critical for
accuracy performances, requiring up to 32b in a full integer
inference [39]. Nevertheless, these network models are mainly
intended to be deployed on the cloud, whereas the in-memory
computing circuit proposed targets edge applications, where
the exploration could be restricted to lower precision ranges.

IX. CONCLUSION

This work presented the study of a multilayer hardware
neural accelerator based on PCM synapses. The communi-
cation between different layers of the network was simplified
by the use of comparators instead of ADCs. The effect of
the variability and drift of PCM binary state on accuracy
was addressed. IR drop was minimized by introducing an
integrator, to read smaller portions of a BL in different
time steps. The network was simulated on the MNIST and
Fashion-MNIST datasets showing good robustness. This work
enhances the relevance of PCM-based circuits for artificial
intelligence applications, and it paves the way for accurate
and small-area hardware neural networks.
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