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A B S T R A C T   

High grade serous ovarian carcinoma (HGSOC) is a systemic malignancy characterized by metastatic lesions that 
spread within the peritoneal cavity. Despite initial sensibility to platinum-based chemotherapy, more than 80% 
of patients experience a relapse and acquire chemoresistance. From a genomic point of view, HGSOC shows a 
high level of inter- and intra-tumor heterogeneity. A better understanding of molecular mechanisms of this 
disease and the identification of driving genetic alterations could provide relevant indications for diagnostic and 
prognostic evaluation. Here, we accomplished a double-tier omic-analysis by integrating copy number variation 
data with matched gene expression profiling of multiple lesions in a cohort of 7 patients. We identified potential 
driver genes contained in amplified regions whose behavior seem to impact on gene expression program. They 
represent a distinctive signature that can segregate biopsies of different patients. Moreover, a further analysis 
highlighted ZNF696, ASPSCR1 and RHPN1 as key drivers, whose regulatory program is confirmed in TCGA 
cohort. In conclusion, exploration of gene expression program in HSGOC by integrating copy number and 
transcriptomic data from spatially separated samples obtained from seven patients led to the identification of 
genes whose amplification is significantly correlated to specific gene expression modules and are related to 
survival.   

1. Introduction 

High grade serous ovarian carcinoma (HGSOC) is the most common 
type of epithelial ovarian cancer, accounting for 60–80% of all cases [1]. 
It usually manifests as an advanced stage, systemic disease, with mul-
tiple metastatic lesions diffused within the abdominal cavity. This type 
of cancer is characterized by a high degree of genomic instability [2], 
leading to a progressive accumulation of alterations and to a coexistence 
of genetically distinct subclones within the same tumor. This mechanism 
results in an extensive inter- and intra-tumor heterogeneity [3] due to 
the different evolutionary trajectory followed by metastases located in 
separated anatomical sites in the abdominal cavity (synchronous le-
sions) or arising after primary treatment (metachronous lesions). 
Intra-patient heterogeneity was explored in some recent studies 
analyzing multiple samples obtained from the same subject. These 
studies revealed a wide mutational burden with little overlap between 

biopsies obtained from the same subject and a low correlation between 
the tumor mass in the ovary and its matched metastatic lesion [4,5]. 
These results show that the identification of molecular biomarkers is a 
critical issue in this context. However, genetic lesions identified in the 
ovary are the only ones currently used for diagnostic and therapeutic 
purposes. Additionally, the presence of multiple clones makes HGSOC 
difficult to treat with conventional chemotherapy, as minor resistant 
subclones can persist in the abdominal cavity as a result of a non-optimal 
cytoreductive surgery and expand to generate a new chemoresistant 
malignancy [6–8]. Altogether, the advanced stage at the diagnosis and 
the acquired chemoresistance result in an overall 5-year survival prob-
ability of 31%, a percentage that has not significantly improved over the 
last years [9]. Therefore, it is of major importance to identify shared 
molecular features that are really representative of the entire disease to 
improve therapy and survival. In this context, in a previous study 
analyzing both synchronous and metachronous lesions, we could 
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observe that copy number amplifications in regions 8q24.3 and 3q26.2 
seem to overcome heterogeneity and to arise at an early stage of tumor 
development [10]. 

In the present study we integrated copy number variations and gene 
expression data from a total of 28 biopsies obtained from 7 patients to 
characterize amplified regions and their functional impact. Using a 
systems biology approach, we identified a selection of genes located in 
amplified regions that could act as drivers in HGSOC. 

2. Materials and methods 

2.1. Patient cohort 

2.1.1. Cohort A 
The analyses were carried out on a cohort composed of 28 biopsies 

collected at different anatomical sites during cytoreductive surgery from 
seven patients, with an average of four biopsies per patient. Biopsies 
were collected at the Division of Gynecology and Oncology Dept., 
Manzoni Hospital (Lecco, Italy) and stored in Pandora/Lecco frozen 
tissue bank collection at the Mario Negri Institute Biological Resources 
Center (BRC). 

The study was conducted following the principles of the Declaration 
of Helsinki; the scientific ethical committee “Brianza” approved the 
collection and usage of tumor, blood and plasma samples (N◦ 1065, on 
November 10th, 2015, emended on February 22nd, 2018). Written 
informed consent was obtained from all patients. 

All patients were diagnosed with HGSOC and did not receive neo-
adjuvant chemotherapy before surgery. They were staged accordingly to 
the International Federation of Gynecology and Obstetrics criteria 
(FIGO) as stage III/IV. Matched gene expression (Array Express Acces-
sion ID: pending) and copy number data (Array Express Accession ID: E- 
MTAB-6900) were available for all samples in the cohort. 

2.1.2. Cohort B 
488 additional ovarian biopsies with matched gene expression and 

copy number data were selected from TCGA to validate the results from 
cohort A. All samples were taken from stage III/IV HGSOC patients 
before the administration of chemotherapy. Normalized microarray data 
were downloaded from the Broad Institute’s Firehose (https://fireb 
rowse.org) website. Survival data were retrieved using the R package 
TCGAbiolinks [11]. Overall survival (OS) data were available for 484 
samples, while progression free survival (PFS) data were available for 
477 samples. 

2.2. RNA microarrays 

RNA was extracted using a commercial kit (miRNeasy, QIAGEN, 
Milan, Italy), according to the manufacturer’s instructions. 100 ng of 
total RNA were reverse-transcribed into Cy3-labeled cRNA using Low-
Input QuickAmp labeling kit (Agilent Technologies, Palo Alto, CA, USA), 
and hybridized onto commercially available array platforms. Acquired 
images were processed by the scanning software (Agilent Feature 
Extraction). Then, the calculated intensity ratios were log2-transformed 
to reduce the variance and further normalized using quantile normali-
zation [12]. 

2.3. Array comparative genomic hybridization (aCGH) 

aCGH data were processed as previously reported in Ref. [10]. 
Finally, Genomic Identification of Significant Targets in Cancer 

(GISTIC) algorithm was applied on normalized data to identify the most 
significant regions with aberrant copy number [13]. Significant regions 
were selected using a confidence threshold of 75% and a q-value 
threshold of 0.05. Moreover, minimum log2 values for gain and for loss 
were set to 0.5 and -0.5, respectively. 

2.4. Molecular subtype classification 

Each biopsy was assigned to one of the four molecular subtypes of 
high grade serous ovarian carcinoma identified in Ref. [14] and char-
acterized as mesenchymal, immunoreactive, differentiated, and prolif-
erative in Ref. [15]. Gene signatures distinctive of each subtype included 
372 genes for mesenchymal subtype (C1), 289 genes for immunoreac-
tive (C2), 484 genes for differentiated subtype (C4) and 955 genes for 
proliferative subtype (C5). Gene expression data from cohort A and B 
were z-transformed to allow a comparison. For each subtype, the median 
expression of genes belonging to its characteristic signature was calcu-
lated on TCGA samples belonging to the specific subtype. The obtained 
expression profile was used to represent the subtype. The correlation 
between each biopsy from cohort A and each expression profile was 
tested by calculating the Spearman’s correlation coefficient. The 
resulting p-values were adjusted for multiple testing and the effects due 
to different lengths of the gene signatures using a bootstrap procedure. 
Each test was repeated using 1000 random signatures having the same 
length of the one associated to the specific subtype obtained by random 
sampling of genes in the dataset. The bootstrapped p-value was defined 
as the proportion of signatures obtaining a higher correlation coefficient 
than the original signature. Each biopsy was then assigned to the most 
correlated molecular subtype as long as none of the following conditions 
was verified: the largest correlation coefficient was smaller than 0.1, the 
smallest bootstrapped p-value was larger than 0.05. 

Moreover, if the difference between the two largest correlation co-
efficients was smaller than 0.01, the biopsy was considered ambiguous 
and the top two classifications were assigned [16]. 

2.5. Data integration 

The integration of gene expression and copy number data was car-
ried out using the Conexic algorithm [17]. It implements a Bayesian 
scoring approach to identify driver genes located in regions with altered 
DNA copy number. It is based on module network, a Bayesian network 
representation that aims to reduce the complexity of the model space by 
partitioning the variables into groups that act as placeholders [18]. 
These groups are called “modules” and contain genes with highly similar 
expression patterns. Initially, CONEXIC forms the modules and assigns 
them a driver gene. The driver gene is selected from a list of candidate 
regulators provided as input to the algorithm. The gene that best ex-
plains the expression variation in the module is chosen as its driver gene. 
In this work, candidate modulators were selected by testing the agree-
ment between copy number and gene expression in genes located in 
amplified regions. First, samples were ranked based on mRNA levels in 
descending order. Then, the enrichment of amplified samples in the 
upper part of the list was tested using the gsea function from the R 
package phenoTest. To increase the sensitivity of the selection, both 
cohorts were considered in this analysis. Genes with FDR <0.05 and 
enrichment score (ES) > 0 in at least one of the cohorts were selected as 
candidate regulators. 

2.6. Regulators’ expression analysis 

Two-way hierarchical clustering on gene expression data of the 
complete list of regulators was performed using Python package 
fastcluster with Pearson’s correlation as distance metric. The results 
were portrayed in a heatmap using the Python package seaborn. Addi-
tionally, the first three principal components from principal component 
analysis were plotted using the Python package matplotlib. 

2.7. Target selection 

An additional selection was performed on data from cohort B in order 
to validate the relationships in a larger dataset and reduce module 
dimensionality. First, the direction of the influence of the driver on the 
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expression of each module was evaluated in cohort A. For each module, 
CONEXIC defines an optimal threshold that separates samples in a low- 
expression and a high-expression group. After the z-transformation of 
the expression values of the module, the same division was maintained 
to compare the set of values taken by target genes in low-expression 
samples to the set of values of the high-expression samples using a 
Welch t-test. The sign of the test statistic was used to determine if the 
regulator had an activating or an inhibiting effect on the genes in 
module. Modules with p-value ≥0.05 were excluded from further 
analysis. 

Then, an optimal threshold was calculated for each regulator in the 
independent dataset. This threshold was defined as the value that 
minimized the p-value of the one-tailed t-test comparing samples below 
threshold and samples above threshold. The smaller group had to 
contain at least 25 samples (>5%). The optimal partition determined by 
the threshold was maintained in each target gene and a one-tailed t-test 
was performed between the two groups of samples. The direction of the 
test was determined by the value of the test statistic computed in cohort 
A for the examined module. The resulting p-values were adjusted for 
multiple testing using Bonferroni correction. Target genes with adjusted 
p-value <0.05 were selected. 

A second step of selection was performed using iterative Bayesian 
Model Averaging (BMA) on survival data from cohort B [19]. Starting 
from a list of genes, BMA selects the set of genes with higher impact on 
survival using a multivariate approach. First, genes in the list are ranked 
in descending order of log likelihood calculated using univariate Cox 
proportional hazard model. Then, BMA iteratively tests groups of 30 
genes starting from the top of the list and removes genes having a pos-
terior probability <1%. BMA was applied to each module for both OS 
and PFS data using the R package BMA. 

2.8. Survival analysis 

To remove the influence of the clinical variables, the analysis was 
carried out separately on patients of grade 3 and stage IIIC and patients 
of grade 3 and stage IV. Only patients with these clinical characteristics 
were selected for the analysis to mirror the characteristics of cohort A. A 
total of 374 patients (313 stage IIIC, 61 stage IV) were tested for OS and 
369 patients (310 stage IIIC, 59 stage IV) were tested for PFS. The group 
including stage IIIC samples was used as the main testing group, while 
the smaller one containing stage IV patients was used to confirm the 
results. The groups of genes selected applying BMA on OS data were 
tested for OS, while genes selected using PFS data were tested for as-
sociation to PFS. For each module, Cox proportional hazard model was 
applied to data from the main testing group with the expression of genes 
in the module as covariates. P-values from the likelihood ratio test were 
extracted and corrected for multiple testing using Bonferroni correction. 
Modules with corrected p-value <0.05 in both OS and PFS were selected, 
and their significance was tested in stage IV patients. Modules obtaining 
a p-value <0.05 in both OS and PFS in the smaller group were consid-
ered significant. All the analyses were carried out using R package 
survival. 

2.9. Network construction 

To inspect the function of the modules found significant in the sur-
vival analysis, molecular interactions involving selected genes were 
retrieved using IntAct, a database collecting literature derived in-
teractions [20]. Networks including the molecular interactions were 
constructed using the software Cytoscape v3.3.0. A functional enrich-
ment analysis was performed on the genes comprised in each network 
using Gene Ontology (GO) and Reactome gene sets collections retrieved 
from the Molecular Signatures Database (MSigDB) [21]. To test the 
enrichment of a specific gene network with terms associated to an an-
notated gene set, a hypergeometric test was performed. P-values ob-
tained in each collection were corrected for multiple testing using 

Benjamini-Hochberg procedure. A term was selected as significant if 
its FDR was lower than 0.05. 

3. Results 

3.1. Cohorts description 

The cohort under study included a total of 28 biopsies obtained from 
7 patients at different anatomical sites, with an average of four biopsies 
per patient. This cohort was already described in a previous work by 
Ballabio S, Craparotta I, Paracchini L, et al. [10]. All patients enrolled in 
the study were diagnosed with high grade serous ovarian cancer 
(HGSOC). Additional clinical information are illustrated in Table 1. For 
all samples, matched gene expression and copy number variations 
(CNV) data were available. To validate the results in a larger dataset, we 
selected 488 HGSOC samples with matched gene expression and CNV 
data from The Cancer Genome Atlas (TCGA). 

3.2. Array CGH analysis 

Normalized copy number data from arrayCGH technique were 
analyzed using GISTIC algorithm [13] to identify the most significant 
aberrant regions in the cohort. The analysis selected 27 focal amplified 
regions and 24 focal deleted regions passing the given thresholds (Suppl. 
Table 1). The most frequently amplified regions were located on chro-
mosome 3 (3q29, 60.71%), chromosome 5 (5p15.33, 64.29%) and 
chromosome 8 (8q24.22, 89.29%; 8q24.3, 92.86%; 8q24.3, 96.43%). 
The three regions on chromosome 8 and the region 3q29 also reached 
the lowest q-values. As for deletions, the most frequently altered regions 
involved chromosome 16 (16q22.1, 64.29%), chromosome X (Xp11.23, 
57.14%), chromosome 5 (5q14.2, 53.57%) and chromosome 13 
(13q21.32, 53.57%; 13q21.31, 53.57%). Collectively, amplifications 
had higher frequencies and higher G-score when compared to deletions. 
Moreover, they appeared to be more homogeneous over biopsies ob-
tained from the same patient (Fig. 1 A). For these reasons, we chose to 
focus on amplified regions. 

3.3. Biopsies taken at different anatomical sites show distinct expression 
profiles from the primary tumor 

A further characterization was carried out on our cohort to test if 
biopsies taken from different anatomical sites at the time of surgery 
exhibited similar molecular characteristics to the biopsy taken at the 
ovary. To this aim, the biopsies were assigned to one of the HGSOC 
molecular subtypes defined in Refs. [14,15] according to their expres-
sion profile. These groups are called mesenchymal, immunoreactive, 
differentiated and proliferative and express different molecular signa-
tures, indicating diversified phenotypes. First, we defined a represen-
tative expression profile for each molecular subtype. Then, the similarity 
between subtypes’ profiles and biopsies was tested using Spearman’s 
correlation. Three samples did not reach a significant p-value in any 
tested subtype and were marked as unclassified. Two additional samples 
are marked as ambiguous and are reported to be associated to two 

Table 1 
Clinical characteristics of the patients enrolled in the study.  

Clinical annotations No. of patients (%) 

Histotype 
Serous 7 (100) 
Grade 
3 7 (100) 
Stage 
IIIC 4 (57.14) 
IV 3 (42.86) 
Age at diagnosis 
Mean [min-max] 61.29 [41–81]  
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different subtypes. As shown in Fig. 1B, different molecular subtypes can 
coexist within the same patient. These results further confirm the high 
intratumor heterogeneity observed in HGSOC, suggesting that lesions in 
different anatomical locations follow distinct evolutionary paths. 

3.4. Amplified driver genes are able to discriminate biopsies from the same 
patient 

Given the emergence of distinctive amplification patterns, we 
decided to investigate the impact of these genetic aberrations on tumor 
phenotype. In particular, we wanted to assess the influence of the 
expression of amplified genes on the expression levels of other genes. We 
tested the influence of the amplification state of genes found in the 
amplified regions identified by GISTIC on their own mRNA level using a 
GSEA-like approach [22]. We found 70 genes that displayed a significant 
correlation between transcription level and genetic aberration and we 
chose them as candidate modulators of gene expression. An algorithm of 
multi-omic data integration (CONEXIC, [17]) was applied on copy 
number variation and matched gene expression data to reconstruct the 
regulatory relationships between the modulators and the other genes in 
the dataset. 

The final output of the algorithm consisted in 43 groups of coex-
pressed genes, i.e. modules, each with an associated driver gene. The 
identified regulators comprised 19 genes, listed in Table 2 together with 
their corresponding cytoband. The most recurrent chromosomal regions 
in the selection are 2p13.3 and 8q24.3, both accounting for 4 regulators, 
and 8q24.22, comprising 3 modulators. Interestingly, regions 8q24.3 
and 8q24.22 were also the most frequently amplified in our cohort. As 

the same gene can be responsible for more than one module, the number 
of modules associated to each driver is also reported in Table 2. The gene 
regulating the highest number of co-expression modules is ZNF696, 
located on 8q24.3 and associated to 13 modules, followed by GMCL1, 
PCBP1-AS1 and SNRNP27, located on 2p13.3 and assigned to 4, 4 and 3 
modules, respectively. Gene expression profiles of the identified driver 

Fig. 1. A) Amplification status of significant re-
gions selected by GISTIC algorithm in each biopsy. 
Amplified samples are indicated in red, neutral 
copy number are marked in grey. B) Results of 
molecular subtype classification. Different colors 
correspond to the subtype assigned to each biopsy 
(orange: immunoreactive; magenta: proliferative; 
yellow: differentiated; blue: mesenchymal). Sam-
ples in grey were unclassified, while ambiguous 
samples are represented by both colors associated 
to the chosen subtypes. (For interpretation of the 
references to color in this figure legend, the reader 
is referred to the Web version of this article.)   

Table 2 
List of driver genes selected by CONEXIC algorithm organized by cytoband. In 
the second column, the number of modules regulated by the gene is shown.  

Symbol Modules Cytoband 

GMCL1 4 2p13.3 
PCBP1-AS1 4  
SNRNP27 3  
PCBP1 1  
BDH1 1 3q29 
FYTTD1 1  
CLPTM1L 1 5p15.33 
SLC35B3 1 6p24.3 
ENY2 1 8q23.1 
PKHD1L1 1  
EBAG9 1 8q23.2 
PHF20L1 2 8q24.22 
SLA 2  
WISP1 1  
ZNF696 13 8q24.3 
LRRC14 2  
RHPN1 2  
NAPRT 1  
ASPSCR1 1 17q25.3  
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genes were considered to test their ability to discriminate between 
different patients. The clustered heatmap and the PCA plot are reported 
in Fig. 2 and show a high concordance between biopsies from the same 
patient. Specifically, four patients out of seven had all their biopsies 
grouped together in the same cluster. Moreover, five out of six biopsies 
(83%) of an additional patient shared the same cluster. 

3.5. Selection of regulatory relationships confirmed in a larger dataset 

A two-step selection was carried out on the genes contained in each 
module by retaining genes whose association to the driver was 
confirmed in the independent cohort retrieved from TCGA and whose 
expression modulation was related to survival, subsequently refining the 
modules to only retain genes with the highest prognostic value. An 
example of a refined module is shown in Fig. 3, here the target genes 
included after selection maintain a strong association with the regulator 
in both datasets. 

3.6. Co-expression modules can be associated to prognosis 

The prognostic significance of regulatory modules was assessed by 
applying Cox proportional hazard model separately on stage IIIC and 
stage IV patients from the TCGA cohort. Three modules were found to be 
significantly related to both overall survival (OS) and progression free 
survival (PFS) in stage IIIC and stage IV patients (Table 3). Two modules 
were driven by ZNF696 and RHPN1, both located on the region 8q24.3, 
the most frequently amplified in our dataset. The third module was 
regulated by ASPSCR1, located on 17q25.3. 

3.7. Gene modules are related to important cellular functions 

To investigate the biological function of genes in modules found 
significant in survival analysis, we retrieved their protein-protein in-
teractions (PPI) from the IntAct database [20]. The interactions were 
then used to construct a network and an enrichment analysis was carried 
out on the list of network components to examine their molecular 
function. Fig. 4 shows the most significant GO terms and Reactome 

pathways resulting from enrichment analysis. 
The networks related to the potential driver ZNF696 were signifi-

cantly enriched of genes involved in microtubule organization during 
cell cycle, immune system, and activation of CREB and Ras proteins. The 
module driven by ASPSCR1 was linked to cytoskeleton organization, 
activation of the immune system and regulation of apoptosis. Finally, 
the networks regulated by RHPN1 were significantly associated to in-
termediate filaments and, more specifically, to keratin filaments. 

4. Discussion 

In this work, we integrated information from copy number variations 
and gene expression data to explore molecular heterogeneity between 
spatially distributed biopsies obtained from seven HGSOC patients and 
characterize the most significant copy number aberrations. 

First, each biopsy was assigned to one of the four molecular subtypes 
identified in Refs. [14,15] to study the variability of the molecular 
characteristics among samples from different anatomical sites. The 
coexistence of multiple subtypes in each patient further confirmed that 
the heterogeneity of HGSOC is significant not only between patients, but 
also inside the same subject due to the different evolution of distinct cell 
populations. A similar result was obtained in a previous study in which 
the authors observed that biopsies from the same patient belonged to 
clusters associated to distinct molecular subtypes [4]. 

The analysis of copy number alterations revealed that amplifications 
were more frequent and less heterogeneous over biopsies than deletions. 
This result suggests a crucial role of these aberrations in the develop-
ment of HGSOC. In particular, the analysis carried out with GISTIC 
highlighted two separated regions on cytoband 8q24.3 of 619kbp and 
75kbp, respectively, that were amplified in more than 90% of samples. A 
region on the same cytoband was already reported as one of the most 
significantly amplified in TCGA samples. This region was altered in 74% 
of samples and it included the 80% of our first region and the totality of 
our second region. Moreover, in our previous study, 8q24.3 was re-
ported as the most conserved region in both synchronous and meta-
chronous lesions from the same patient [10]. 

The regulatory relationships involving genes located in aberrant 

Fig. 2. A) Heatmap of two-way hierarchical clustering on gene expression of putative driver genes identified by CONEXIC algorithm. Colors identify biopsies taken 
from the same patient. Clustering on the set of genes can discriminate efficiently between different patients. B) Representation of the first three principal components 
of PCA on drivers’ expression. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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regions were reconstructed using a Bayesian network-based algorithm. 
This analysis identified 19 driver genes that modulate the expression of 
43 groups of co-expressed genes. Notably, 18 out of 43 modules were 
regulated by genes located on 8q24.3, further confirming the impor-
tance of this specific region in the pathology. 

Unsupervised analysis on drivers’ expression showed their potential 
in segregating biopsies according to their patient of origin. Specifically, 
four patients out of seven had all their biopsies grouped together in the 

same cluster as well as five out of six biopsies of one of the remaining 
patients. Therefore, these genes could provide information about the 
intrapatient evolution of the pathology. 

Some of the identified driver genes were already associated to 
various cancer types. For example, WISP1 (8q24.22) is primarily asso-
ciated to advanced stage prostate cancer and could have a role in 
metastasis formation [23]. In a recent study WISP1 was also found to be 
related to a worse prognosis in multiple solid cancer types, such as 

Fig. 3. Expression of a module in our data (panel A) and TCGA dataset (panel B) after target selection. For this specific case, overall survival data were used in BMA 
selection. Rows represent the genes in the module and columns represent the samples. The upper line portrays the expression of the regulator. The second line 
outlines the state of amplification of the region the regulator falls in (orange: copy number gain; light blue: copy number loss; grey: copy number neutral). Different 
colors in the third line indicate patients (panel A) and molecular subtypes (panel B). (For interpretation of the references to color in this figure legend, the reader is 
referred to the Web version of this article.) 
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low-grade glioma, kidney papillary cell carcinoma, bladder urothelial 
carcinoma, ovarian serous cystadenocarcinoma, and primary mela-
noma. Additionally, it is correlated to EMT-related genes in multiple 
cancer datasets [24]. EBAG9 is an estrogen-responsive gene located on 
region 8q23.2 that is widely expressed in breast carcinoma and may 
contribute to its development [25]. As for epithelial ovarian cancer, its 
expression was found to be significantly higher in serous histology and 
advanced disease with respect to other histologies or lower stages. 
However, EBAG9 was not correlated to overall survival [26]. ENY2, a 
gene located on region 8q23.1, is involved in mRNA export and tran-
scription activation. Experiments carried out on both breast cancer cell 
lines and in vivo have demonstrated that ENY2 expression significantly 
increases cell migration and invasion [27]. 

To focus on smaller groups of genes, we reduced the list of targets in 
each module by selecting only the genes having a robust association 

Table 3 
Significant modules for overall survival (OS) and progression free survival (PFS) 
in TCGA samples of stage IIIC and IV.  

Module Regulator Cytoband Stage IIIC Stage IV 

p-value 
(OS) 

p-value 
(PFS) 

p-value 
(OS) 

p-value 
(PFS) 

2 ZNF696 8q24.3 2.69E- 
06 

1.43E- 
04 

1.41E- 
02 

1.00E- 
03 

20 ASPSCR1 17q25.3 2.67E- 
03 

4.81E- 
03 

1.25E- 
02 

3.51E- 
03 

7 RHPN1 8q24.3 3.52E- 
02 

2.65E- 
02 

1.24E- 
05 

9.56E- 
07  

Fig. 4. Barplot illustrating ten of the most significant terms obtained in the enrichment analysis carried out on the interaction networks constructed for the three 
selected modules. 
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with the regulator that was maintained in a larger dataset. Additionally, 
we narrowed down the number of modules under investigation by 
selecting only the modules associated to both overall survival and pro-
gression free survival. This resulted in a final selection of three co- 
expression modules regulated by ASPSCR1, located on 17q25.3, 
ZNF696 and RHPN1, both located on 8q24.3. 

The molecular interactions network comprising the genes in the 
three selected modules were reconstructed to better characterize func-
tions and pathways related to each module. The protein encoded by 
ASPSCR1 is responsible for the redistribution of glucose transporter type 
4 (GLUT4) in response to insulin. Its fusion with transcription factor E3 
(TFE3) results in an oncoprotein characteristic of alveolar soft part 
sarcoma [28]. Its module was associated to regulation of apoptosis 
through the activation of BH3-only proteins and the activation of NF-kB, 
a hallmark of inflammatory response essential in the development of 
inflammation-associated cancer [29]. 

ZNF696 codes for a member of the zinc finger proteins; various 
members of this family have been associated to cancer progression and 
invasion over the last decades [30]. This gene is poorly characterized but 
it seems to be involved in transcriptional regulation. In our analyses, 
ZNF696 was linked to many modules and was encoded on the most 
frequently amplified region. These findings, together with its supposed 
function, suggest that this gene could be of major importance in HGSOC 
and it would be crucial to further investigate its role in future studies. Its 
most significant module was enriched with pathways related to micro-
tubule organization during cell cycle and immune system. Additionally, 
the results indicate that this module could contribute to enhance cell 
growth through the promotion of mitotic spindle formation and the 
activation of Ras protein. The latter is frequently observed in various 
types of cancer and it is known to favor malignant transformation [31]. 
Finally, RHPN1 codes for a Rho GTPase-interacting protein whose 
function is mostly unknown. However, it seems to interact with some 
cytoskeletal components [32], in accordance with the terms found 
enriched in its module. Specifically, its module was found to be associ-
ated to keratin filaments, a cytoskeletal molecule characteristic of 
epithelial cells, suggesting a role in the control of malignant cell level of 
differentiation. 

In summary, we accomplished a multi-omics characterization of 
HSGOC by integrating copy number and gene expression data from 
spatially separated samples obtained from seven patients. The conser-
vative approach, implying selection of signatures confirmed in an in-
dependent dataset and provided with prognostic potential, allowed the 
identification of relevant potential drivers and their co-expressed gene 
modules. These genes could be crucial to the progression of the pa-
thology and represent triggering elements upstream the development of 
heterogeneity across biopsies from distinct anatomical sites. 
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