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Abstract. Forward uncertainty quantification (UQ) for partial differential

equations is a many-query task that requires a significant number of model
evaluations. The objective of this work is to mitigate the computational cost

of UQ for a 3D-1D multiscale computational model of microcirculation. To

this purpose, we present a deep learning enhanced multi-fidelity Monte Carlo
(DL-MFMC) method that integrates the information of a multiscale full-order

model (FOM) with that coming from a deep learning enhanced non-intrusive

projection-based reduced order model (ROM). The latter is constructed by
leveraging on proper orthogonal decomposition (POD) and mesh-informed neu-

ral networks (previously developed by the authors and co-workers), integrat-

ing diverse architectures that approximate POD coefficients while introducing
fine-scale corrections for the microstructures. The DL-MFMC approach pro-

vides a robust estimator of specific quantities of interest and their associated

uncertainties, with optimal management of computational resources. In par-
ticular, the computational budget is efficiently divided between training and

sampling, ensuring a reliable estimation process suitably exploiting the ROM
speed-up. Here, we apply the DL-MFMC technique to accelerate the estimation

of biophysical quantities regarding oxygen transfer and radiotherapy outcomes.

Compared to classical Monte Carlo methods, the proposed approach shows re-
markable speed-ups and a substantial reduction of the overall computational

cost.

1. Introduction. Uncertainty quantification (UQ) is a key aspect of computa-
tional modeling [46]. The challenge of UQ becomes even more pronounced in the
context of life sciences, where the complexity of physical models is combined with
the high uncertainties of the data [11]. A particular case of this broad scenario,
and the focus of this work, is the problem of microcirculation and oxygen transfer
in biological tissues, here addressed using the multiscale model proposed in [38].
Quantifying how uncertainties propagate through these models, which are governed
by complex partial differential equations (PDEs), requires extensive computational
resources. In fact, to obtain robust and reliable estimates, numerous simulations
are required, which means that the numerical solver has to be queried multiple
times (a so-called many-query scenario). For this reason, traditional UQ methods
that rely solely on high-fidelity simulations are often impractical, especially when
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it comes to multiscale models, where different scales need to be resolved accurately,
and parametric data are high-dimensional [30].

To address these issues, the state-of-the-art in UQ has been evolving rapidly, with
multi-fidelity methods emerging as a promising approach to mitigate the computa-
tional burden [36]. Simply put, multi-fidelity methods are based on the concept of
combining high-fidelity models with one or more lower-fidelity models. The idea is
that, being computationally cheaper but less accurate, lower-fidelity models can be
used to inform and accelerate the computation performed by the high-fidelity model
[36, 29, 19, 10]. Furthermore, the applicability of multi-fidelity techniques has been
further enhanced by recent advances in the reduced-order modeling literature, a re-
search field devoted to the development of suitable surrogate models encompassing
accuracy and efficiency [5, 20, 43]. In particular, a major contribution along this di-
rection has been provided by nonintrusive techniques based upon interpolation and
regression algorithms [1, 2, 3, 4, 6, 8, 21, 18, 15, 52]. In general, these approaches
have gained traction in UQ due to its ability to significantly reduce computational
time while maintaining acceptable levels of accuracy and robustness [7, 9].

Over the years, multi-fidelity methods have evolved from simple model hierarchies
to more sophisticated techniques that intelligently balance the trade-off between
computational cost and accuracy. One such technique is the multi-fidelity Monte
Carlo (MFMC), which, complemented by a suitable strategy for optimal manage-
ment of computational resources, has shown great promise in efficiently estimating
the statistics of model outputs under uncertainty [35]. This methodology, provides
a comprehensive framework for combining an arbitrary number of surrogate models
while also balancing offline and online costs. Scientifically speaking, its derivation is
particularly innovative, as it moves away from the traditional reliance on error decay
rates. Instead, it introduces an optimization problem that accounts for both errors
and costs, acknowledging the fact that ROMs require a training phase in order to
be operational. The paper demonstrates that, under certain mild conditions, the
optimization problem admits a unique analytic solution, thus providing a practical
way to manage the computational budget.

In this work, we contribute to the evolving landscape of MFMC methods by
extending the ideas in [35] to the case of deep learning-based ROMs, with a strong
emphasis on our motivating application in relation to a multiscale computational
model for microcirculation. More precisely, referring to the comprehensive model
presented in [40, 38], we address oxygen transfer from microvessels to interstitial
tissue. This model provides a description of the oxygen field in the microvascular
environment, which directly affects the performance of radiotherapy: see, e.g., [41]
and references therein.

Our approach integrates a full-order model (FOM) with a non-intrusive projection-
based reduced order model (ROM) enhanced by deep learning, previously developed
by the authors in [51]. Simply put, the latter integrates proper orthogonal decom-
position (POD) with mesh-informed neural networks [16], effectively relying on a
closure modeling technique that resembles a separation of scales approach. This
combination not only reduces the computational cost, but also retains the essential
features captured by the FOM, spanning both local and global scales. We term our
deep learning-enhanced MFMC approach as DL-MFMC.

Building upon [35], we construct the DL-MFMC approach in order to account
for two additional sources of computational cost: on the one hand, the training
of the neural network architectures; on the other hand, the computational effort
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required to generate the input data, which, in microcirculation studies can be non-
negligible. By applying our method to the estimation of statistics related to oxygen
transfer and radiotherapy in microcirculation, we demonstrate its effectiveness in
performing robust and reliable UQ analysis in a computationally efficient manner.
In this sense, our work not only contributes to the development of UQ multi-fidelity
methods, but it also addresses a specific challenge in the context of microcirculation
and radiation therapy.

The paper is organized as follows. First, in Section 2 we set the notation and
present the DL-MFMC approach in full generality, discussing the construction of
our multi-fidelity estimator and the corresponding optimal management of compu-
tational resources. Then, in Section 3 we dive into the details of our motivating
application, presenting the FOM, the ROM, and the quantities of interest that we
wish to estimate. Finally, we devote Section 4 to the numerical experiments and
draw the corresponding conclusions in Section 5.

2. A deep learning enhanced multi-fidelity Monte Carlo estimator. In
this section, we briefly review two different approaches to estimate the statistics of
specific quantities of interest and provide suitable confidence intervals.

2.1. Problem setup. We are given a parametrized partial differential equation
(PDE) of the form {

Lµuµ = fµ in Ω,

Bµuµ = gµ on ∂Ω,
(1)

where Lµ denotes a (semilinear, second order) elliptic operator, whereas Bµ is a
boundary operator exemplifying Dirichlet, Neumann or Robin conditions applied
to uµ on ∂Ω, including problems with mixed-type conditions. Clearly, the solution
u = uµ to (1) depends on the parameter vector µ. Here, we assume µ to be
taking values in some parameter space P ⊂ Rd, endowed with suitable probability
distribution P modeling uncertainties.

At the continuous level, we assume that the solution to (1) can be sought within a
given Hilbert space V . Our main goal is to quantify how uncertainties in the model
parameters can propagate through the PDE, ultimately affecting certain outputs of
interest. To this end, let us fix the notation and formally introduce a (nonlinear)
functional

Q : V → R,
representing the quantity of interest (QoI). Then, our objective is to come up with
an efficient strategy for computing the average response, that is, Eµ∼P [Q(uµ)].

As a first step, we assume that a suitable high-fidelity discretization of (1) is avail-
able (the so-called FOM). For simplicity, we shall assume that the latter consists of
a Galerkin projection of (1) onto a Finite Element (FE) space Vh ⊂ V of dimension
Nh = dim(Vh). As in the continuous case, the FOM defines a map P 7→ Vh map-
ping parameters onto FOM solutions µ 7→ uFOM

µ . From the discrete standpoint, the
FOM is equivalent to a (large) system of algebraic equations of the form

Aµu
FOM
µ = fµ (2)

where uFOM
µ ∈ RNh is the vector of degrees of freedom in the FE approximation.

With little abuse of notation, we shall write Q(uFOM
µ ) to intend Q(uFOM

µ ), that is:
we identify Q with its discrete counterpart, so as to directly operate with vectors
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rather than functions.

From a theoretical point of view, the output of interest, namely Eµ∼P
[
Q(uFOM

µ )
]
,

can be estimated by classical Monte Carlo sampling. However, this approach would
require solving (2) multiple times, resulting in a massive consumption of computa-
tional resources. For this reason, we resort to multi-fidelity strategies relying upon
ROMs. Mathematically speaking, the ROM is a computational unit that acts as a
suitable surrogate of the FOM, that is

ROM : µ 7→ uROM
µ with uROM

µ ≈ uFOM
µ .

Notice that, since the ROM approximates FOM solutions as a whole, it is not bound
to any specific QoI, resulting in a highly flexibile and potentially very useful surro-
gate. Of note, this approach is further motivated by some recent advancements in
the ROM literature, which suggest that approximating the parameter-to-solution
map can be more effective compared to directly addressing the parameter-to-QoI
map: we refer the interested reader to [22]. Here, we assume that the ROM consists
of several neural network architectures, all trained within a supervised learning
framework. In other words, to be operational, the ROM requires a preliminary
training phase, which is conducted on a selected collection of labeled FOM simula-
tions, {(µi,u

FOM
i )}ni=1, where uFOM

i := uFOM
µi

.
In general, the idea is to train a ROM and construct a multi-fidelity estimator

of the QoI, named ÊMFMC
m0,m1

and defined later on, by combining m0 high-fidelity
simulations, which are accurate but expensive, with m1 low-fidelity simulations,
computed via the ROM, which are cheaper to evaluate but less accurate. Clearly,
the whole procedure must be carried out in a suitable way that ensures an actual
reduction in the overall computational cost. To better appreciate this, let w0 and
w1 be the computational times associated with the FOM and ROM simulations,
respectively. Assume that the ROM is trained on n high-fidelity samples, whereas
the multi-fidelity estimator is constructed using m0 evaluations of the FOM and m1

evaluations of the ROM. Then, the overall computational cost is

nw0 + t(n) +m0w0 +m1w1,

where t = t(n) is the training time associated with the ROM. In contrast, a classical

Monte Carlo estimator ÊFOM
N , constructed using N FOM simulations, entails a com-

putational cost of Nw0. Assuming the case of unbiased estimators, the uncertainties
in the two estimates can be computed as

Var(ÊMFMC
m0,m1

) and Var(ÊFOM
N ).

It is then clear that, given a computational budget p, a multi-fidelity approach
would only advantageous if for p = nw0 + t(n) + m0w0 + m1w1 = Nw0, one has

Var(ÊMFMC
m0,m1

) < Var(ÊFOM
N ). We note that the computational cost (generally mea-

sured in terms of floating-point operations) and the CPU time (measured in clock
ticks or in seconds and highly dependent on the machine architecture) are considered
here to be mutually proportional and used interchangeably.

Our purpose is to obtain a reduction of computational cost by proposing a suit-
able strategy for optimal management of the computational resources, together with
an explicit multi-fidelity estimator that leverages on the deep learning nature of the
ROM. Before doing so, however, it is worth recalling some of the basic ideas un-
derlying Monte Carlo and multi-fidelity Monte Carlo methods, such as confidence
intervals and mean-square-error metrics.
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2.2. Monte Carlo uncertainty quantification. We start by recalling the stan-
dard Monte Carlo estimator for the mean of a QoI. Given a computational budget
p, the latter is computed using FOM simulations as

ÊFOM
N =

1

N

N∑
i=1

Q(uFOM
µi

), (3)

where N is the number of high-fidelity evaluations, N = ⌊p/w0⌋, with w0 being the
cost of a single FOM evaluation. Here, we assume that the realizations of the input
parameters µ1, . . .µN are drawn independently and according to P.

By definition, the FOM estimator is unbiased, in the sense that

E
[
ÊFOM

N

]
= E

[
Q
(
uFOM
µ

)]
. (4)

Note that here the expected value on the right-hand-side is taken with respect to
µ ∼ P. Conversely, the one on the left is taken with respect to all possible outcomes
of the sampling procedure, that is, µ1, . . . ,µN ∼ P⊗ · · · ⊗ P.

As a direct consequence of (4), the mean-squared-error (MSE) of the estimator

MSE(ÊFOM
N ) := E

∣∣∣ÊFOM
N − E

[
Q(uFOM

µ )
]∣∣∣2 , (5)

is equal to the variance of the estimator. Due to independence, the latter is

Var(ÊFOM
N ) = Var

(
1

N

N∑
i=1

Q(uFOM
µi

)

)
=

1

N2

N∑
i=1

σ2
0 =

σ2
0

N
, (6)

where σ2
0 := Var Q(uFOM

µ ) is the variance of the QoI, taken with respect to µ ∼ P.
In practice, σ2

0 is usually estimated as

σ̂2
0 :=

1

N − 1

N∑
i=1

(
ÊFOM

N −Q(uFOM
µi

)
)2

. (7)

Using classical results from the theory of statistical estimators, these considerations
can be exploited to construct confidence intervals, which are naturally ways to
quantify uncertainties of pointwise estimates, such as (3). We report a precise
definition below.

Definition 2.1 (MC-FOM confidence interval). Let µ1, . . . ,µN be N random
independent realizations of µ ∼ P. Let Q be a given quantity of interest. Fix a
confidence level γ ∈ (0, 1). The MC-FOM confidence interval of level γ, IγFOM ⊂ R,
is

IγFOM := ÊFOM
N ± t 1−γ

2 ,N−1

√
σ̂2
0

N
, (8)

where ÊFOM
N and σ̂2

0 are as in Eq. (3) and (7), respectively. Here, tα,q denotes the
quantile of the level 1− α of a t-student distribution with q degrees of freedom.

The MC-FOM confidence interval provides a better estimate of the QoI, as it
enriches the estimate in (3) with a quantification of uncertainties. The confidence
level, γ, is related to how conservative we want our estimate to be: the higher γ,
the larger the interval (since we want to be more confident about the fact that the
interval captures the actual ground truth E[Q(uFOM

µ )]). More precisely, the formula
in (8) is constructed in such a way that

Prob
(
E[Q(uFOM

µ )] ∈ IγFOM

)
≈ γ,
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where Prob = P⊗· · ·⊗P is the joint probability distribution of the random sample,
encoding the stochasticity of the confidence interval.

For a fixed confidence level, (8) clearly shows that the uncertainty in the estimate
decreases as a function of the FOM samples N . However, the decay is fairly slow,
∼ N−1/2. Consequently, a robust estimate may require a large number of FOM
simulations. If the computational budget p is limited and the cost of a single
simulation w0 is high, this approach may not be feasible.

2.3. Multi-fidelity Monte Carlo estimator. The driving idea behind multi-
fidelity Monte Carlo (MFMC) is reduce the uncertainties in the final estimate by
integrating Eq. (3) with some additional information, correlated with the QoI, but
cheaper to compute. Here, this is achieved by relying on the ROM. For now, let
us assume that the ROM is already available and fully operational (no training
required). Following our notation in Section 2.1, let w0 be the computational time
of a FOM simulation, and let w1 be that of a ROM simulation. Let

µ1, . . . ,µm0
, µm0+1, . . . ,µm1

,

be m1 independent realization of the input parameter µ ∼ P, where m0 < m1. The
MFMC approach is based on the following (unbiased) estimator,

ÊMFMC
m0,m1

:= ÊFOM
m0

+ λ
(
ÊROM

m1
− ÊROM

m0

)
, (9)

where ÊFOM
m0

is as in Equation (3), whereas ÊROM
mk

:= m−1
k

∑mk

i=1 Q(uROM
µi

) is the
ROM counterpart of the FOM estimator. Here, λ > 0 is a suitable coupling param-
eter that regulates the impact of the ROM correction over the FOM estimate.

Note that, while we sampled a total of m1 inputs, only m0 of those were elab-
orated by the FOM (and the ROM). Instead, the remaining m1 − m0 were only
processed by the ROM. Thus, the overall computational cost of this procedure is
m0w0 +m1w1. From a UQ perspective, we also note that

MSE
(
ÊMFMC

m0,m1

)
=

σ2
0

m0
+

(
1

m0
− 1

m1

)
(λ2σ2

1 − 2λρσ1σ0) (10)

where

σ1 := Var
(
Q(uROM

µ )
)

and ρ =
Cov

(
Q(uFOM), Q(uROM

µ )
)

σ0σ1
.

In other words, the uncertainty associated to (9) depends on m0,m1, λ, σ0, σ1 and
ρ. In general, given a computational budget p, the idea of the MFMC approach
is to choose m0,m1 and λ by minimizing the uncertainty in (10), subject to the
constraints 0 ≤ m0 ≤ m1 and m0w0 +m1w1 = p.

In practice, this results in an optimization problem, whose optimal solution,
m∗

0,m
∗
1, λ

∗, is known in closed form (at least under suitable mild assumptions:
cf. [35]). Notably, the optimal coupling parameter turns out to be λ∗ = ρσ0/σ1,
meaning that λ∗ ̸= 0 whenever ρ ̸= 0. Since the FOM and the ROM are typically
correlated, this suggests favoring MFMC over MC-FOM. Indeed, if the ROM is
sufficiently cheap to evaluate, it can be shown that, compared to a naive MC-
FOM estimator using all computational resources for FOM simulations, i.e. with
N = ⌊p/w0⌋, the optimal MFMC estimator entails a lower MSE (and thus, a lower
uncertainty). For the interested reader, we refer to [35, Corollary 3.5]. Here, it is
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only worth mentioning that the MSE of the optimal MFMC estimator reads

MSE(ÊMFMC
m∗

0 ,m
∗
1
) =

σ2
0

p

(√
w0(1− ρ2) +

√
w1ρ2

)2
(11)

This property will come in handy for our construction in Section 2.
While fascinating, this analysis has a major limitation. In fact, by taking the

ROM for granted, it completely ignores the offline cost regarding the construction
and the training of the ROM. In fact, in order to be operational, ROMs typically
necessitate of a preliminary training phase, in which they learn to approximate
FOM simulations. Thus, part of the computational budget must be devoted to the
generation of a suitable training set.

In the literature, this fact was first acknowledged by Farcas, et al. in [14]. There,
the authors noted that, if the ROM is trained on n FOM simulations:

i) the remaining budget for a MFMC routine is p− nw0;
ii) the quality of the ROM, especially in terms of QoI correlations, may depend

on n.

Consequently, an optimal management of the computational resources requires a
careful understanding of how n enters into the equations. In [14], by leveraging on
correlation bounds, the authors characterize the optimal training size n = n∗ as
the solution to a suitable optimization problem involving the MSE of the MFMC
estimator.

Here, instead of diving into details of the approach proposed by Farcas, et al., we
directly present our adaptation to Deep Learning based ROMs. Compared to [14],
our analysis exhibits two major differences. First of all, aside from the generation of
the training data, we also include the training time t = t(n) within the offline costs,
acknowledging the fact that some of the computational resources must be devoted
to the actual training of the neural network architectures. Secondly, we account for
the fact that, in complex applications, even the sampling of the input parameters
may be computationally demanding. Finally, since Deep Learning based ROMs are
extremely efficient, we set w1 ≡ 0: that is, we assume ROM evaluations to have a
negligible computational cost.

2.4. A deep learning enhanced multi-fidelity estimator. We are now ready
to present our deep multi-fidelity estimator (DL-MFMC), specifically tailored for
non-intrusive Deep Learning based ROMs. Similarly to the MFMC approach, our
objective is to obtain a reduction of the uncertainties while also providing an op-
timal management of the computational resources. We articulate our presentation
into three steps: i) definition of the DL-MFMC estimator, ii) formulation of the op-
timization problem, and iii) implementation of the optimal policy and construction
of confidence intervals.

2.4.1. Notation. As for the previous Sections, we assume to have access to a FOM,
capable of producing high-quality simulations. In the case of complex multiscale
systems, such as the microcirculation, oxygen transfer and radiotherapy model, a
FOM simulation consists of two steps: the sampling of the parametric scenario and
the consequent evaluation of the FOM solver. In general, the first step may entail
a nonnegligible computational cost. For example, in the case of oxygen transfer
models, the sampling step may be concerned with the computational synthesis of
anatomically realistic vascular networks, encoded as a metric graph. For this reason,
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we model the cost of a single FOM simulation as

g + w0,

where g and w0 are the generation and the evaluation costs, respectively. The first
term, g, is intrinsic to the complexity of the problem, while the second one, w0, is
specific of the FOM.

Similarly to Section 2.3, we also assume that a suitable ROM technique has
been chosen. For example, it may consist of a collection of multiple neural network
architectures interacting in a suitable way, such as in the POD-NN [21], DL-ROM
[16] and POD-MINN approaches [51]. As we already mentioned, to be operational,
the ROM must be trained on a collection of FOM samples (the so-called offline
phase). We model the corresponding offline cost as

n(g + w0) + t(n),

where n is the number of FOM simulations in the training set. The first term,
n(g+w0), is the sampling time, which corresponds to the generation of the training
data. The second term, instead, corresponds to the actual training of the neural
network architectures, here modeled through some non-decreasing monotone map
t : N0 → R+. Instead, after training, the computational cost of a ROM simulation
is g+w1 (input generation plus ROM evaluation). Here, we set w1 ≡ 0 to emphasize
the fact that online evaluations of Deep Learning-based ROMs can be carried out
at negligible cost.

2.4.2. Optimal training costs management. We now reformulate the optimization
problem proposed by Farcas, et al. in [14], by adapting it to our framework. Let p ∈
R+ be a computational budget. We note that if we were to train a ROM on n FOM
simulations, we would be left with a computational budget pn = p−(g+w0)n−t(n).
At the same time, however, we would also have access to a trained ROM, available
for multi-fidelity estimation. Specifically, we could leverage the MFMC paradigm,
outlined in Section 2.3, to optimally utilize the remaining resources. In practice,
for a fixed n, this procedure would bring us to the following estimator

ÊDL-MFMC
n := ÊFOM

m∗
0(n)

+ λ∗(n)
(
ÊROM

m∗
1(n)

− ÊROM
m∗

0(n)

)
, (12)

where m∗
0(n), m

∗
1(n), and λ∗(n) are the optimal policy associated the computational

budget pn. More precisely,

λ∗(n) = ρ(n)
σ0

σ1(n)
,

where ρ = ρ(n) and σ1 = σ1(n) are the correlation between FOM and ROM QoIs,
and the variance of ROM QoIs, respectively. Here, we allow both to depend on n,
so as to account for the role played by the training procedure. Similarly,

m∗
0(n), m

∗
1(n) =

= argminm0,m1

{
σ2
0

m0
−
(

1

m0
− 1

m1

)
ρ2(n)σ2

0 s.t.
0 ≤ m0 ≤ m1,
m0w0 +m1g = pn

}
,

which is nothing but (10) up to substituting λ with λ∗(n). Note that, differently
from Section 2.3, the multi-fidelity sampling cost is now m0w0 +m1g, rather than
m0w0 +m1w1. In fact, the multi-fidelity routine entails:

i) generating m1 parameter instances 7→ cost: m1g;
ii) evaluating the FOM on m0 of such instances 7→ cost: m0w0;
iii) evaluating the ROM on all parameter instances, 7→ cost: negligible.
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By leveraging on the theory of MFMC estimators, one can then easily prove the
following.

Proposition 2.2. Let p > 0 be a given budget and let n ∈ N+ be an admissible
training size such that p−(g+w0)n−t(n) > 0. Assume that w0ρ

2(n) > g(1−ρ2(n)).
Then

MSE(ÊDL-MFMC
n ) =

σ2
0

p− (g + w0)n− t(n)

(√
w0(1− ρ(n)2) +

√
gρ(n)2

)2
. (13)

Proof. As we noted previously, for a fixed training size n, and a corresponding
trained ROM, constructing the DL-MFMC estimator is equivalent to constructing
a MFMC estimator with budget pn = p−(g+w0)n−t(n) and cost functionm0,m1 7→
m0w0 +m1g. Then, (13) can be easily derived from (11) up to substituting p with
pn and w1 with g. Here, the formula can be applied, since condition w0ρ

2(n) >
g(1−ρ2(n)) precisely translates into the efficiency condition required in the MFMC
paradigm: see, e.g., [35, Theorem 3.4].

Since Eq. (13) only depends on n, this suggests the possibility of finding an
optimal sample size, n = n∗, by minimizing (13) with respect to n. Indeed, this is
what we are going to do. To this end, we start by characterizing the dependency of
t = t(n) and ρ = ρ(n) on n. We do this by relying on the following assumptions.

Assumption 2.3. ∃ζ, c1, c2 > 0 such that 1 − ρ2(n) ≤ c1n
−ζ + c2 for all n ∈ N,

n ≥ 1.

Assumption 2.4. ∃c3, c4 > 0 such that t(n) ≤ c3n+ c4 for all n ∈ N, n ≥ 1.

Assumption 2.5. ∀n ∈ N+, one has w0ρ
2(n) > (1− ρ2(n))g.

The first assumption states that the quality of ROM QoIs increases for larger
datasets. The bounding expression is similar to the one proposed in [14], but also
comes with an additional term, namely c2 > 0, which accounts for potential limi-
tations inherent in the ROM. In fact, even if provided with an infinite amount of
data, certain ROMs might still be incapable of replicating FOM simulations in their
entirety.

The second assumption, instead, states that the training time is linear in the
sample size n. In practice, deep learning-based ROMs always satisfy this assump-
tion. In fact, the training of a neural network model ϕ : X → Y typically involves
the minimization of a loss function of the form

L (ϕ) =

n∑
i=1

ℓ(ϕ(xi), yi), (14)

where {(xi, yi)}ni=1 ⊂ X × Y denote an abstract training set, whereas ℓ : Y × Y →
[0,+∞) is a suitable discrepancy measure. Clearly, up to fixing a total number of
training epochs, minimizing (14) requires at most O(n) operations: in fact, each
term in the sum can be tackled separately, even when computing gradients. Here,
the constant c4 models a fixed cost, in relation, for example, to the initialization of
the ROM.

Finally, the third assumption states that most of the cost lies in the evaluation of
the FOM solver, rather than in the generation of the input data. In fact, whenever
w0 > g, which is the typically scenario, Assumption 2.5 reduces to ρ2(n) ≥ 1/2.

Under these assumptions, the MSE in Eq. (13) can be bounded as follows.
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Lemma 2.6. Let Assumptions 2.3 - 2.5 hold. For all n ∈ N, n ≥ 1, the MSE of
ÊDL-MFMC

n can be bounded as

MSE(ÊDL-MFMC
n ) ≤ 2σ2

0

p− (g + w0)n− c3n− c4

(
c1w0n

−ζ + c2w0 + g
)
. (15)

Proof. By Assumptions 2.3-2.5, we have

MSE(ÊDL-MFMC
n ) =

σ2
0

p− (g + w0)n− t(n)

(√
w0(1− ρ2(n)) +

√
gρ2(n)

)2
≤ σ2

0

p− (g + w0)n− c3n− c4

(√
c1w0n−ζ + c2w0 +

√
g
)2

≤ 2σ2
0

p− (g + w0)n− c3n− c4

(
c1w0n

−ζ + c2w0 + g
)
,

where we exploited the fact that ρ(n)2 ≤ 1, and (a + b)2 ≤ 2(a2 + b2) for all
a, b ∈ R.

Now, the idea is choose the training size n by minimizing the upper bound in
Lemma 2.6 rather than the MSE of the estimator itself. As we shall prove in
a moment, this results in a minimization problem admitting a unique minimizer
n∗, consistent with the budget constraint. We formalize these considerations in
Proposition 2.8, right after the auxiliary Lemma 2.7. As a side note, we point out
that such semplification, although commonly adopted within the literature [14, 35,
36], may lead to suboptimal results, especially if the bounds in Assumptions 2.3
and 2.4 are not tight enough.

Lemma 2.7. Let A > 0 and ζ > 0. The functions

φ1(x) :=
1

A− x
, φ2(x) :=

x−ζ

A− x

are convex in (0, A) ⊂ R. Specifically, φ′′
1(x) > 0 and φ′′

2(x) ≥ 0 for all x ∈ (0, A).

Proof. It is straightforward to see that

φ′′
1(x) = 2(A− x)−3

for all x ∈ (0, A). Thus, φ′′
1 > 0 in (0, A). As for φ2, a direct computation shows

that

φ′′
2(x) =

(ζ + 1)ζ(A− x)2x−ζ−2 − 2x−ζ−1ζ(A− x) + 2x−ζ

(A− x)3
.

The numerator in the above can be rewritten and bounded as

x−ζ−2
[
(ζ + 1)ζ(A− x)2 − 2xζ(A− x) + 2x2

]
≥ x−ζ−2

[
ζ2(A− x)2 − 2xζ(A− x) + 2x2

]
= x−ζ−2 [ζ(A− x)− x]

2
.

The conclusion follows.



DEEP LEARNING ENHANCED COST-AWARE MULTI-FIDELITY UQ 11

Proposition 2.8 (Existence and uniqueness of the global minimum). Let p > 0 be a
given budget. Fix any w0, g, c1, c2, c3, c4, ζ > 0 and let nmax := (p−c4)/(g+w0+c3).
Then, the following function is strictly convex in (0, nmax):

F : n 7→ 2σ2
0

p− (g + w0)n− c3n− c4

(
c1w0n

−ζ + c2w0 + g
)
,

Furthermore, it admits a unique global minimum n∗ within (0, nmax).

Proof. We note that

F (n) =
2σ2

0c1w0

g + w0 + c3
· n−ζ

nmax − n
+

2σ2
0(c2w0 + g)

g + w0 + c3
· 1

nmax − n
.

Thus, by Lemma 2.7, F is the positive sum of two convex functions, one of which
is strictly convex. Consequently, F ′′ > 0 in (0, nmax). Since F goes to infinity at
the boundaries, F (n) → +∞ for n → 0 and n → nmax, it follows that F admits a
unique global minimum within (0, nmax).

Using Proposition 2.8, we finally propose the following optimal management
policy:

1. Fix a computational budget p > 0;

2. Generate a preliminary collection of FOM samples n0, by consuming a small
portion of the budget, n0(w0 + g) ≪ p;

3. Initialize and train the ROM for different sample sizes n1 < · · · < nk ≤ n0,
as to obtain auxiliary records about training times, t(n1), . . . , t(nk), and QoI
correlations, ρ(n1), . . . , ρ(nk);

4. Estimate the coefficients c1, c2, c3, c4, ζ by leveraging on {nj , t(nj), ρ(nj)}kj=1;

5. Find the optimal sample size n∗ by solving the minimization problem in Propo-
sition 2.8. Without loss of generality, we assume n∗ > n0;

6. Augment the training set by generating ∆n = n∗ −n0 new FOM simulations.
The remaining budget is now p− (g + w0)n∗;

7. Train a final ROM surrogate by using all n∗ FOM simulations, and compute
the corresponding QoI correlation coefficient ρ = ρ(n∗). The remaining budget
is now p− (g + w0)n∗ − t(n∗);

8. Compute m∗
0 = m∗

0(n∗), m∗
1 = m∗

1(n∗) and λ∗ = λ∗(n∗) according to the
MFMC paradigm, that is,

m∗
0 =

p− (g + w0)n∗ − t(n∗)

w0 + w1r
,

m∗
1 = rm∗

0,

λ∗ =
ρ(n∗)σ0

σ1
,

(16)

where r2 := (w0ρ
2(n∗))/(g(1− ρ2(n∗));

9. Construct the DL-MFMC estimator

ÊDL-MFMC := ÊDL-MFMC
n∗

, (17)

by sampling the required FOM-ROM simulations, thus exhausting the com-
putational budget.
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Remark 2.9. We stress that, in practice, the values of m∗
0, m

∗
1 and λ∗ are ap-

proximated by leveraging on empirical estimates of ρ(n∗), σ0 and σ1(n∗): however,
in order to keep the notation lighter, we choose not to make this distinction ex-
plicit. Operationally, the idea goes as follows. First, we exploit the training data
to calculate a preliminary estimate of ρ(n∗), which we use to calculate the optimal
sample sizes m∗

0, m
∗
1. Then, following the MFMC paradigm, we compute m∗

0 new
independent FOM simulations. On these simulations we derive the final estimates
of ρ(n∗), σ0, σ1(n∗), and consequently, λ∗.

Remark 2.10. Step 3 in the optimal policy pipeline concerns estimating the corre-
lation coefficients ρ(n1), . . . , ρ(nk). One way to achieve this is to directly utilize the
training data. For any j ∈ 1, . . . , k, let ROMj denote the ROM in its jth training
iteration. Let µ1, . . . ,µnj

be the input parameters observed during training. Then

nj∑
i=1

[
Q(uFOM

µi
)Q(u

ROMj
µi

)−
(

1
nj

nj∑
b=1

Q(uFOM
µb

)

)(
1
nj

nj∑
b=1

Q(u
ROMj
µb

)

)]
√

nj∑
i=1

[
Q(uFOM

µi
)−

(
1
nj

nj∑
b=1

Q(u
ROMj
µb

)

)]2 nj∑
i=1

[
Q(u

ROMj
µi

)−
(

1
nj

nj∑
b=1

Q(u
ROMj
µb

)

)]2
(18)

can be a crude approximation of ρ(nj). However, (18) would likely result in biased

estimate: indeed, Q(u
ROMj
µ1

), . . . , Q(u
ROMj
µnj

) are, in general, statistically correlated

(notice, in fact, that ROMj itself depends on the whole training set). To account
for this, a better approach is to rely on a different set of data, independent of the
training set. Operationally, this can be achieved by picking nk such that nk < n0.
In this way, the remaining n0−nk observations can be used as a common “test set”,
shared within the j trainings. In other words, in iteration j, the ROM is trained
on µ1, . . . ,µnj

, but formula (18) is evaluated on µn0−nk
, . . . ,µn0

.
Concerning these preliminary training stages, we also mention that all trainings

should be carried out independently by optimizing the ROM from scratch, as to
favor unbiased estimates of the regression coefficients. Furthermore, the compu-
tational cost δ > 0 of this procedure should be nearly negligible compared to the
overall computational budget p (for instance, for our application in Section 4 we
had δ ≈ 10 minutes and p ≥ 9 hours). If that is not the case, then the budget p
should be replaced with p̃ = p− δ in all the formulas from Step 4 on.

2.4.3. DL-MFMC estimator and uncertainty quantification. Given a computational
budget p > 0, the DL-MFMC estimator ÊDL-MFMC can be constructed following
the optimal management policy in Section 2.4.2. By combining FOM and ROM
simulations, the latter provides an efficient and robust estimate of Eµ∼P[Q(uFOM

µ )],
characterized by a significant reduction of the uncertainties. In practice, this fact
becomes apparent when considering confidence intervals, rather than crude point-
wise estimates.

Definition 2.11 (DL-MFMC confidence interval). Let Q be a given quantity

of interest. For a given computational budget p > 0, let ÊDL-MFMC be the DL-
MFMC estimator, computed as in Section 2. Fix a confidence level γ ∈ (0, 1). The
DL-MFMC confidence interval of level γ is

IγDL-MFMC := ÊDL-MFMC ± z 1−γ
2

√
σ̂2
0

m∗
0(n∗)

−
(

1

m∗
0(n∗)

− 1

m∗
1(n∗)

)
ρ̂2(n∗)σ̂2

0 , (19)
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where zγ denotes the quantile of level 1 − γ of the standard Gaussian distribution
N (0, 1).

Similarly to the MC-FOM case, the DL-MFMC confidence interval is constructed
such that

Prob
(
E[Q(uFOM

µ )] ∈ IγDL-MFMC

)
≈ γ.

Notice, however, that Definition 2.11 uses normal quantiles rather than t-student
ones. In fact, while the latter appear naturally when considering uncorrelated Monte
Carlo samples, they do not extend to multi-fidelity estimators (which, in contrast,
leverage on correlated observations). For this reason, we rely on more general quan-
tiles, derived from the Gaussian distribution. The heuristics behind this choice lies
in the Central Limit Theorem, according to which the independent sum of identi-
cally distributed random variables is asymptotically normally distributed. Since

ÊDL-MFMC = ÊFOM
m∗

0(n∗)
+ λ∗(n∗)Ê

ROM
m∗

1(n∗)
− λ∗(n∗)Ê

ROM
m∗

0(n∗)
,

the DL-MFMC estimator can be seen as the sum of three random variables,

X = ÊFOM
m∗

0(n∗)
, Y = λ∗(n∗)Ê

ROM
m∗

1(n∗)
, Z = −λ∗(n∗)Ê

ROM
m∗

0(n∗)
,

each of which is asymptotically normal. Then, since the sum of normal random
variables is also normal, we can approximate the distribution of ÊDL-MFMC as

N
(
E[X + Y + Z], Var(X + Y + Z)

)
= N

(
E[Q(uFOM

µ )], MSE(ÊDL-MFMC)
)
,

thus motivating the formula in Definition 2.11.

3. A model for oxygen transport in microcirculation and radiotherapy.
In this Section and in the following, we present an application of our approach to a
comprehensive mathematical model of microcirculation, with a specific focus on the
intricate interplay between oxygen transport and its implications for radiotherapy.
Initially, we introduce the biophysical model of reference along with its associated
quantities of interest; then, we provide a succinct overview of the FOM and its
corresponding surrogate model. We point out that these three stages modeling of
the physical phenomenon, high-fidelity discretization, and model order reduction
were previously undertaken by the authors and their collaborators in earlier works:
the interested reader can refer to [40], [38], and [51], respectively.

Having established the groundwork, we then move to the actual application of
the DL-MFMC approach, offering a comprehensive discussion in Section 4.

3.1. Oxygen transport in microcirculation: Mechanistic model and quan-
tities of interest. To model oxygen transport, we rely on the model presented by
Possenti et al. in [40, 38], which encompasses blood flow, hematocrit transport cou-
pled with interstitial flow, and oxygen transport in both blood and tissue through
vascular-tissue exchange.

The general model describes flow in two distinct domains: the tissue domain
(Ω ⊂ R3 with dim(Ω) = 3), where the unknowns encompass fluid pressure pt, fluid
velocity ut and oxygen concentration Ct; and the vascular domain (Λ ⊂ R3 with
dim(Λ) = 1), representing a metric graph that describes a network of connected one-
dimensional channels. In this domain, unknowns involve blood pressure pv, blood
velocity uv, and vascular oxygen concentration Cv. The model for oxygen transport
uses velocity fields uv and ut to describe blood flow in the vascular network and
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plasma flow in tissue. The governing equations for the oxygen transfer model are
as follows:

∇ · (−Dt∇Ct + ut Ct) + Vmax
Ct

Ct + αt pm50

= ϕO2 δΛ on Ω

πR2 ∂

∂s

(
−Dv

∂Cv

∂s
+ vv Cv + vv k1 H

Cγ
v

Cγ
v + k2

)
= −ϕO2

on Λ

ϕO2
= 2πR PO2

(Cv − Ct) + (1− σO2
)

(
Cv + Ct

2

)
ϕv on Λ

ϕv = 2πRLp

(
(pv − pt)− σ(πv − πt)

)
Cv = Cin on ∂Λin

−Dv
∂Cv

∂s
= 0 on ∂Λout

−Dt∇Ct · n = τO2
(Ct − C0,t) on ∂Ω.

(20)

Specifically, the first equation governs the oxygen distribution within the tissue,
the second outlines how oxygen is transported through the bloodstream, and the
third defines the transfer of oxygen between the two domains, Ω and Λ. In par-
ticular, the flux ϕO2 is derived under the assumption that the vascular wall acts
as a semi-permeable membrane. Complementing this model is a set of boundary
conditions detailed in the final three equations: at the vascular inlets ∂Λin, we pre-
scribe the oxygen concentration; at the vascular endpoints ∂Λout, null diffusive flux
is enforced; and for the boundary of the tissue domain ∂Ω, we simulate the presence
of an adjacent tissue domain with boundary conductivity τO2

and a concentration
in the far field C0,t.

The symbols Dt, Dv, Vmax, αt, pm50 , k1, k2, C
γ
v , PO2 , σO2 , Lp, σ, πv, πt represent

constants independent of the model solution. For a complete explanation of the
physical significance of these variables, refer, for example, to [38].

Our main interest is to perform a reliable analysis of certain quantities of interest,
relevant for radiotherapy applications, when the topology of the vascular network
Λ, and the values of the physical parameters Vmax, Cin, PO2 are uncertain. The
choice of these parameters is motivated by the sensitivity analysis study recently
performed in [50]. As we shall see in a moment, these quantities of interest can be
expressed as certain functionals of the tissue oxygenation map Ct, herein measured
in mLO2

/mLB . We refer to Figure 1 for a visual example. In this sense,

uµ = Ct and µ = [Λ, Vmax, Cin, PO2 ],

according to our notation in Section 2. Here, we shall focus on three quantities
of interest: average partial pressure, partial pressure variability, and tumor control
probability. We detail them below.

Average oxygen partial pressure pO2. To start, we consider the spatial average of
the oxygen partial pressure, pO2, computed as

pO2 =
1

∥Ω∥

∫
Ω

Ct(x)

αt
, (21)

where αt is the oxygen solubility in the tissue. We note that pO2 = Q(Ct), where
Q : L2(Ω) → R is linear and continuous with respect to the L2-norm.
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Figure 1. The tissue oxygenation map, measured inmLO2/mLB ,
is visually depicted on the left panel through the FOM solution
(light blue corresponds to low oxygen). On the right panel, we
showc the 1D embedded vascular microstructure, which visibly im-
pacts the oxygen map. Furthermore, oxygen concentration in the
blood, indicated as Cv, is also reported.

Oxygen partial pressure range ∆pO2. Since the average partial pressure provides a
global perspective on tissue perfusion, it is also interesting to consider different QoIs
which are more sensitive to local fluctuations. To this end, we introduce a further
QoI, ∆pO2, measuring the difference between the maximum and the minimum
partial pressure. We call the latter oxygen partial pressure range. Operationally,
this is computed as

∆pO2 =
maxx∈Ω Ct(x)−minx∈Ω Ct(x)

αt
. (22)

From a clinical point of view, ∆pO2 quantifies the abundance of local hypoxic effects
in the tissue. We note that, unlike the average partial pressure, this QoI is non-
smooth and not even defined on L2(Ω) as a whole. However, it can be regarded as
continuous functional with respect to the L∞-norm, that is: ∆pO2 = Q(Ct) with
Q : L∞(Ω) ⊂ L2(Ω) → R.

Tumor Control Probability (TCP). As a final example, we consider a radiotherapy-
related QoI regarding the probability of tumor eradication (Tumor Control Prob-
ability, TCP for short). To this end, we model radiotherapy treatment using the
linear-quadratic (LQ) model, which is the most widely used radiological model.
The latter is based on two different parameters that describe the radiosensitivity
of cells or tissue. The first parameter α describes the lethal damage resulting from
a single hit, while β is related to multiple hits, namely the interaction of multiple
radiation tracks [27]. Combining these two parameters and the dose administered
(D), we model the surviving fraction Sf as a spatially dependent map, adopting the
model proposed by Tinganelli et al. in [49] that accounts for the effect of oxygen
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on radiotherapy:

Sf (D, pO2,x) = exp

(
−α

D

OER(x, pO2, LET )
− β

(
D

OER(x, pO2, LET )

)2
)
,

(23)
where pO2 = Ct/αt is the oxygen partial pressure, whereas the Oxygen Enhance-
ment Ratio (OER) is a suitable transformation operating a change of scale:

OER(0, LET ) =
LET δ +M a

a+ LET δ
,

OER(x, pO2, LET ) =
b OER(0, LET ) + pO2(x)

b+ pO2(x)
,

DOER(x, pO2, LET ) =
D

OER(x, pO2, LET )
.

Here, M , a, δ, b > 0 are the model parameters fitted to the experimental data,
LET is the linear energy transfer of ionizing radiation, and DOER(x, pO2, LET )
is the dose corrected for the oxygen effect, to be included in the LQ model. The
admissible values of Sf range from 0 to 1, representing the fraction of cells that
survived treatment with the specified dose D, assumed as a constant.

Based on that, we define the Tumor Control Probability (TCP), which describes
the probability of successful treatment. It is based on the number of cells that
survive treatment Sf and the distribution of the initial number of clonogenic cells
N = N(x). For a fixed radiation dose D, and under the assumption of unicellular
independence, following the approach proposed by Strigari et al. [47], the TCP can
be expressed as

TCP = exp

(
−
∫
Ω

N(x)Sf (D,Ct/αt,x)dx

)
. (24)

Although the definition of the TCP is far more involved compared to the one of
the average partial pressure, the TCP can be realized as a Lipschitz continuous
nonlinear functional of the oxygen concentration Ct with respect to the L2-norm.
More precisely, TCP = Q(Ct) for some smooth operator

Q : L2
+(Ω) → R,

where L2
+(Ω) := {u ∈ L2(Ω) s.t. u ≥ 0}. The interested reader can find a formal

derivation of this fact in Remark 3.1.

Remark 3.1. We first notice that, for every L-Lipschitz continuous real-valued
map f : [0,+∞) → [0,+∞), the composition operator Tf : g 7→ f ◦ g is L-Lipschitz
from L2

+(Ω) onto itself. In fact,

∥f ◦ g1 − f ◦ g2∥L2(Ω)

=

√∫
Ω

|f(g1(x))− f(g2(x))|2dx ≤

≤

√∫
Ω

L2|g1(x)− g2(x)|2dx = L∥g1 − g2∥L2(Ω),



DEEP LEARNING ENHANCED COST-AWARE MULTI-FIDELITY UQ 17

for all g1, g2 ∈ L2
+(Ω). From here, up to fixing M,a, δ, b,D > 0 and N = N(x) ∈

L∞(Ω), the Lipschitz continuity of the TCP is easily proven, as it can be derived
by composition. In fact, we notice that the TCP is computed as

Q(Ct) = f3 ◦ N ◦ Tf2 ◦ Tf1(Ct/αt), (25)

where

f1 : z 7→ D(b+ z)/(bOER(0, LET ) + z), f2 : z 7→ exp
(
−αz − βz2

)
,

N : g 7→
∫
Ω

Ng, f3 : z 7→ exp(−z).

Due boundness of their derivatives over [0,+∞), the maps f1, f2, f3 are clearly
Lipschitz continuous: in turn, this implies the smoothness of Tf1 and Tf2 , as argued
previously. Finally, since the operators N and Ct 7→ Ct/αt are both linear and
continuous, Eq. (25) immediately implies the Lipschitz continuity of Q.

3.2. Description of the FOM: A high-fidelity model leveraging on the
finite element method. As a high-fidelity model, we consider a FOM based off
a Finite Element discretization of problem (20). Following the approach outlined
in [40], we achieve this by discretizing both the interstitial domain Ω, representing
a 3D slab with dimensions of 1,mm in edge length and 0.15,mm in thickness, and
the embedded 1D vascular network Λ.

For the interstitial domain, we utilize a structured mesh composed of tetrahedral
elements arranged in a 20 × 20 × 3 grid, resulting in Nh = 1764 degrees of free-
dom. Over this mesh, we define a corresponding space of piecewise linear continuous
Lagrangian finite elements, denoted as Vt,h = X1

h(Ω). To discretize the vascular net-
work, instead, we subdivide each vascular branch Λi into multiple linear segments.
Subsequently, we associate each branch with a corresponding finite element space
V i
v,h = X1

h(Λi), comprising piecewise linear continuous Lagrangian elements. With

this setup, we instruct the FOM solver to produce a numerical solution to (20) as

(Ct, Cv) ∈ Vt,h × Vv,h,

where Vv,h =
(⋃Nb

i=1 V
i
v,h

)⋂
C0(Λ).

Notice, however, that in order to assemble (and solve) the oxygen transfer model,
one first needs to solve the underlying fluid flow problem, which takes place in the
vascular microenvironment [40, 38]. Figure 2 illustrates the sequential calculation
of velocity, pressure, and discharge hematocrit in both tissue and vascular networks
using the finite element method. We refer to [38] for more details on the derivation
and validation of the model.

As we already mentioned, our main interest is to characterize the behavior of cer-
tain quantities of interest, related to Ct, under suitable uncertainties in the model
parameters. In particular, following an earlier sensitivity analysis performed by Vi-
tullo et al. [50], we focus our attention on the role played by Vmax, Cv,in, PO2 and
Λ.

In order to explore different scenarios, we sample the model parameters as follows.
For the physical parameters —specifically Vmax, Cv,in, and PO2

— we randomly se-
lect values within the physiological range of variation in a uniform manner (see
Table 1). For the vascular network, instead, we utilize a random generator imple-
menting a biomimetic algorithm that emulates the natural process of new blood
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Figure 2. General layout of the full order model for the whole
vascular microenvironment.

vessel formation. The output of this algorithm is driven by the value of two geo-
metrical parameters: the vascular surface area per unit volume of tissue, denoted
as S/V , and the percentage of seeds for angiogenesis. Essentially, the former repre-
sents the overall density of the vascular network, affecting the number and spacing
of blood vessels within the tissue, while the latter governs the distribution of initial
point seeds, serving as starting points for the algorithm to initiate new blood vessel
growth. Together, these two parameters allow the generation of complex vascu-
lar networks, with different configurations of the blood vessels and extravascular
regions of varying dimensions: see, e.g., Figure 3. Similarly to the physical param-
eters, the values of the geometrical parameters are sampled randomly within the
corresponding range of variation.

Symbol Parameter Unit Range of variation

PO2 O2 wall permeability m/s 0.35 · 10−4 − 3.00 · 10−4

Vmax O2 consumption rate
mLO2

cm3·s 0.40 · 10−4 − 2.40 · 10−4

Cv,in O2 concentration at the inlets
mLO2

mLB
2.25 · 10−3 − 3.75 · 10−3

%
SEEDS(−)

SEEDS(+)
Seeds for angiogenesis % 0− 75

S/V Vascular surface per unit volume m−1 5 · 103 − 7 · 103

Table 1. In the first three rows, the biophysical parameters of the
ROM are presented along with their respective ranges of variation.
The last two rows outline the hyper-parameters utilized to initialize
the algorithm responsible for generating the vascular network.

3.3. Description of the ROM: A nonintrusive surrogate model based on
the POD-MINN+ approach. To construct the ROM, we exploit the POD-
MINN+ approach, a nonintrusive model order reduction technique recently pre-
sented in [51], which the authors specifically designed to address for parametrized
problems with embedded microstructure. The goal of this strategy is to derive
a parameter-to-solution map using physical and geometric inputs and to generate
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(a) Low vascularization, homogeneous dis-
tribution

(b) Low vascularization, high extravascular
distance

(c) High vascularization, homogeneous dis-
tribution

(d) High vascularization, high extravascu-
lar distance

Figure 3. Examples of architectures with maximum extravascular
distance increasing from left to right and higher vascular density
from top to bottom.

a reconstruction of the high-fidelity oxygen concentration map in the tissue from
which we calcuate the QoIs.

Simply put, the POD-MINN+ technique consists of a projection-based regres-
sion model, incorporating neural networks and Proper Orthogonal Decomposition
(POD), as in [21], combined with a closure model that captures high frequency
components by introducing suitable local corrections. For this purpose, the POD-
MINN+ approach leverages on a specific class of neural network architectures,
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termed Mesh-Informed Neural Networks (MINNs) [16]. A sketch of the methodol-
ogy is shown in Figure 4. In formulas, the whole idea can be synthesized as

uROM
µ := VMrb(µ) +Mc(Λ), (26)

where V ∈ RNh×k is the POD basis, while Mrb and Mc are suitable neural network
architectures. The first one maps the model parameters, µ, onto the correspond-
ing POD coefficients, while the second one introduces a local correction that only
depends on the vascular network Λ.

In general, both Mrb and Mc need to process information about the vascular
graph. To this end, we parametrize Λ in terms of the extravascular distance d ∈ RNh

and the inlet characteristic function η ∈ RNh : the former maps each point in the
tissue domain to its distance from the nearest point in the vascular network; the
latter, instead, assigns a unit value to the nodes located near the inlets within the
computational mesh of the tissue domain.

We avoid considering a large number of POD modes for the low-fidelity approxi-
mation of the solution manifold in the framework of complex microstructures, where
the Kolmogorov n-width can be slow decaying. In this case, we exploit the informa-
tion contained in the degrees of freedom corresponding to the extravascular distance
d and the inlet characteristic function η.

Coherently with our presentation in Section 2, the POD-MINN+ approach is a
model order reduction technique that leverages on a supervised learning strategy.
In particular, it necessitates of some training data. The idea goes as follows. First,
we exploit the FOM solver to construct a suitable training set {(µi,u

FOM
i )}ni=1.

As a second step, we collect all high-fidelity simulations in a matrix of snapshots
and perform a Singular Value Decomposition in order to capture the most relevant
modes: this results in the construction of the POD basis V ∈ RNh×k, with k ≪ Nh.
In general, although problems featuring complex microstructures have a slow-decay
in the Kolmogorov n-width [51], we avoid considering a large number of POD modes,
as the higher frequencies will be incorporated in the closure term.

Once the POD matrix has been constructed, we use it to project the solution
manifold onto a linear trial subspace of dimension k ≪ Nh: thanks to this maneu-
ver, we can move our attention from FOM solutions to POD coefficients. At this
point, we assemble a neural network unit responsible for the approximation of the
parameter-to-POD-coefficients map. Following [51], we construct the latter using
two MINNs, Mrb,η and Mrb,d, and a deep feed forward neural network, Nrb,ph. The
first two account account for embedded 1D structure, while the last one models the
effects of the physical parameters µph = [Vmax, Cv,in, PO2

]. The three components
act as

Mrb(µ) =
(
Mrb,η(η)⊙Mrb,d(d)

)
Nrb,ph(µph), (27)

where we recall that µ = [Λ, Vmax, Cv,in, PO2
] = [d,η,µph]. Here⊙ is the Hadamard

product, modeling a suitable interaction between the inlets function η and the ex-
travascular distance d. Operationally, we design the three neural network architec-
tures, in terms of width, depth, and nonlinearities, following [51]. In particular, we
rely on mesh-informed layers and hyperbolic tangent activations: for further details,
we refer to [51].
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Figure 4. A sketch of the POD-MINN+ method. The macroscale
parameters and the microscale ones are fed to two separate architec-
tures, whose outputs are later combined to approximate the POD
coefficients. The coefficients are then expanded over the POD ba-
sis, V, and the ROM solution is further corrected with a closure
term computed by a third network that accounts for the local fea-
tures related to the high frequencies.

We train the parameter-to-POD-coefficient network, Mrb, by minimizing the loss
function

E(Mrb) =
1

Ntrain

Ntrain∑
i=1

∥VTuFOM
i −Mrb(µi)∥.

To this end, we rely on the L-BFGS optimizer (default learning rate, no batching),
combined with an ensamble learning strategy, i.e. by initializing and optimizing the
network multiple times.

The final step of the POD-MINN+ technique concerns the training of the closure
model. Similarly to the case of POD coefficients, we process the information con-
cerning the vascular graph using two distinct MINNs, Mc,d and Mc,η, so that we
can effectively isolate the individual impact of d and η. Mathematically speaking,
we let

Mc(d,η) = Mc,η(η)⊙Mc,d(d). (28)

Both architectures consist of a suitable combination of mesh-informed and dense
layers: we refer to [51] for further details about the design of Mc,d and Mc,η.

In order to train the closure model, the following loss function is minimized:

E(Mc) =
1

Ntrain

Ntrain∑
i=1

[
ξ∥uFOM

i − VMrb(µi)−Mc(d,η)∥2,Nh

+ (1− ξ)∥uFOM
i − VMrb(µi)−Mc(d,η)∥∞,Nh

]
Here, only the weights and biases associated with Mc undergo the optimization

process, while those of Mrb are frozen. Notice also the hyperparameter ξ, which
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controls the trade-off between 2-norm and ∞-norm regularization. As before, we
rely on the L-BFGS optimizer, combined with an ensamble learning strategy, for
the minimization of the loss function.

4. Application of the DL-MFMC method to oxygen transport and radio-
therapy.

4.1. Computational setup for numerical simulations. We implemented the
FOM solver using a C++ based in-house code [40], developed using the GetFem++
library [44]. On our workstation, consisting of an AMD EPYC 7301 16-Core Pro-
cessor with 2 sockets and 16 cores, each FOM simulation required roughly w0 = 25
minutes, while the generation of a single vascular network took approximately g = 1
second. For the implementation of the ROM, instead, we rely on a custom Python
library combining Pytorch and FEniCS. In this case, we conducted all trainings
and evaluations on a Tesla V100-PCIE-32GB GPU accelerator. Each online eval-
uation of the Deep Learning-based ROM requires approximately w1 = 0.01s with
the available computational resources. This shows consistency with respect to the
assumption to set w1 ≡ 0 in the optimal policy presented in the previous section.

Table 2. Prescribed values of input parameters in the compre-
hensive computational model for the high-fidelity approximation
of the solution through the finite element method.

Symbol Parameter Unit Value Ref. #

L characteristic length m 1 · 10−3 –

R average radius m 4 · 10−6 [40]

K tissue hydraulic conductivity m2 1 · 10−18 [24, 40]

µt interstitial fluid viscosity cP 1.2 [48]

µv blood viscosity cP 3.0 [42]

Lp wall hydraulic conductivity m2 s kg−1 1 · 10−12 [40]

δπ oncotic pressure gradient mmHg 25 [40]

σ reflection coefficient − 0.95 [25]

Dv vascular diffusion coefficient m2/s 2.18 · 10−9 [26]

N ·MCHC max. hemoglobin-bound O2
mLO2

mLRBC
0.46 [45]

γ Hill constant – 2.64 [53, 26]

ps50 O2 at half-saturation mmHg 27 [53, 28]

αt O2 solubility coefficient
mLO2

/mL

mmHg 3.89 · 10−5 [45]

Dt tissue diffusion coefficient m2/s 2.41 · 10−9 [26]

C Characteristic O2 concentration
mLO2

mLB
1.50 · 10−3 –

The POD-MINN+ approach has been implemented projecting the discrete solu-
tion manifold over a trial linear subspace consisting of k = 10 POD basis functions,
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as, given the diffusive nature of the problem, those were sufficient to capture the
main global features of the PDE solutions. As discussed in Section 3.3, the training
phase consisted of two distinct steps: (i) the approximation of the POD reduced
coefficients, and (ii) the correction with the closure model. During first phase, the
neural networks were trained for at most 50 epochs, before undergoing a lifting with
respect to the original finite element space of dimension Nh = 1764. Then, in the
second and final step, we trained the closure model for a total of 10 epochs. The ra-
tionale behind this decision revolves around balancing the computational resources
needed to construct the estimator with the intricate complexity of the neural net-
work architecture defining the closure model. In fact, the considerable number of
degrees of freedom in the closure map Mc, stemming from the high-dimensionality
of the input and output data, can pose significant challenges. Hence, it becomes
essential to impose appropriate constraints on the training time to prevent over-
fitting phenomena, and, consequently, a substantial degradation of the ROM as a
whole. For what concerns the loss function, we set the regularization parameter to
ξ = 0.75, as that provides an acceptable fit. Refer to [51] for more details on the
empirical tests supporting this choice.

We conclude with a final remark on the definition of the radiotherapy-related QoI
that we considered for this study, that is, the Tumor Control Probability (TPC). As
discussed in Section 3.1, we computed the TCP by leveraging on the tissue oxygen
concentration map Ct and the linear-quadratic model. Here, we initialized the latter
using the values in Table 3, where the ratio α/β has been prescribed for a tumor
tissue scenario. Finally, we set the radiation dose to D = 20Gy.

Symbol Parameter Unit Value Ref. #

D radiation dose Gy 20 –

α radiosensitivity parameter for ‘single’ hit Gy−1 0.178 [23]

β radiosensitivity parameter for ‘multiple’ hits Gy−2 0.0455 [23]

δ TIN parameter - 1.38 [41]

M TIN parameter - 2.81 [41]

a TIN parameter keV/µm 522.45 [41]

b TIN parameter mmHg 1.24 [41]

Nc Clonogenic cells in the interstitial volume - 108 [12]

LET Linear Energy Transfer in photons keV/µm 2 [13]

Table 3. Input parameters values assigned in the linear-quadratic
model to compute the TCP QoI.

4.2. Optimal management of the computational budget. As we detailed in
Section 2.4.2, the implementation of the DL-MFMC estimator entails a preliminary
analysis (steps 2 - 5), necessary for the estimation of the optimal sample size n∗, and
the optimal sampling policy m∗

0,m
∗
1, λ∗. In particular, one of the first steps concerns

the estimation of the trend coefficients ζ, c1, c2, c3, c4, modeling the behavior of
training times t = t(n) and QoI correlations for varying sample size ρ = ρ(n), cf.
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Assumptions 2.4-2.3. Of note, this analysis can be conducted on a small pool of
FOM simulations, regardless of the computational budget p.

Here, we performed this preliminary analysis on a restricted pool of n0 = 300
FOM simulations, recording the behavior of t and ρ for varying sample sizes, 40 ≤
n1 < . . . n6 ≤ 200 < n0, with the nj ’s forming a uniform partition of [40, 200]. For
each nj we trained the ROM multiple times as to obtain additional records for t(nj)
and ρ(nj), with correlations being estimated over a test set of size n0 − nj ; then,
we estimated the trend coefficients by fitting a suitable regression model. Results
are in Figure 5 and 6. Note that, although the regression curves do not bound all
the data points in a strict sense, they do bound nearly all the observations referring
to successful trainings (i.e., for each nk, those reporting the lowest 1− ρ2(nk)). In
this sense, we consider our estimates to be satisfactory.

Figure 5. Regression models for the law 1− ρ2(nj) ≤ c1n
−ζ
j + c2

for each QoI, pO2, ∆pO2, TCP , varying the sample sizes as j =
1, ..., k.

Among the three QoIs, the strongest correlation between FOM and ROM is ob-
served for the average oxygen partial pressure, pO2. In general, this is not very
surprising, in fact, deep learning-based ROMs are known to yield better approxi-
mations when it comes to smooth operators, see, e.g., [15, 17].

On the other hand, the performances of the ROM are considerably more limited
when considering less smooth operators, such as ∆pO2, or operators that result in
nearly unimodal distributions, as the TCP. Further evidence of this claim lies in the
estimates obtained for c2, i.e., in the coefficient modeling the intrinsic correlation
gap. In fact, we obtained higher values for ∆pO2 and TCP, respectively 0.126 and
0.151, as opposed to the smaller estimate associated with pO2, where c2 = 0.003.
In particular, this goes to show that the ROM would perform better on smoother
operators even when provided with an infinite amount of data. Another interesting
aspect concerns the estimated decay rate of 1−ρ(n)2, namely ζ. In fact, although the
functions settle to a higher limit value, the correlation between ROM and FOM for
the variability of the partial pressure spatial and the TCP increases faster (ζ ∼ −2)
than the corresponding map related to the spatial average (ζ ∼ −1/2).

Let us now discuss the results for the linear upper bound concerning the train-
ing time. As shown in in Figure 6, the initialization of the ROM constitutes the
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most relevant source of computational cost. In fact, the actual computational time
required for the optimization of the loss function is barely affected by the number
of training samples n. The main reason for this lies in our design choice of limiting
the number of training epochs below 50. Running the optimization process for a
larger number of iterations would make the curve in Figure 6 become steeper, with
c3 gaining dominance over c4.

Figure 6. Regression model for the law describing the ROM train-
ing time t(nj) ≤ c3nj + c4, varying the sample sizes as j = 1, ..., k.

After estimating the regression coefficients ζ, c1, c2, c3, c4, we focused on the re-
trieval of the optimal sample size n∗, obtained by minimizing the upper bound in
Lemma 2.6. The results of this step, however, depend on the overall computational
budget p > 0, as that appears explicitly in the objective function to be minimized.
For this reason, we postpone the discussion right below, together with the UQ
analysis.

4.3. Results of the uncertainty quantification analysis. For the actual UQ
analysis, we consider a variable computational budget of p ∈ {9, 12, 15, 18, 21,24}
hours. As a first step, we leverage on the previous results to estimate the opti-
mal sample size n∗, which we use to train the final ROM surrogate through the
aforementioned POD-MINN+ approach. Subsequently, following steps 7-8 in the
optimal policy pipeline, we estimate the number of new high-fidelity and low-fidelity
evaluations, m∗

0 and m∗
1, required for acceleration of QoI statistics and their vari-

ance reduction. Table 4 shows a synthetic overview of such analysis, reporting the
results for three budgets of reference, namely 12, 18 and 24 hours.

First of all, we note that the computational speed-up achieved through model
order reduction and the short training time are effectively utilized: in fact, there
is a difference of 1 − 2 orders of magnitude between the number of reduced order
model (ROM) and full order model (FOM) simulations. Additionally, we observe
a significant distinction in the outcomes when comparing the three QoIs. Once
again, the greater smoothness of the spatial-average operator, pO2, results in a
increased reliance on the high-fidelity solver. The described trend is observed also
when comparing the different allocation of FOM simulations between the training
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QoI Budget p n∗ m∗
0 m∗

1 % n∗

n∗+m∗
0

12h 136 232 8311 36.96%

pO2 18h 199 342 13522 36.78%

24h 259 451 19082 36.48%

12h 126 266 6037 32.14%

∆pO2 18h 151 426 10053 26.17%

24h 171 590 14202 22.47%

12h 98 292 6168 25.13 %

TCP 18h 116 462 9996 20.07%

24h 130 635 13914 16.99%

Table 4. Number of FOM and ROM simulations employed for a
UQ analysis of the oxygen transfer processes with the DL-MFMC
estimator for three fixed reference computational budgets. In par-
ticular in the last column we report the percentage of FOM simu-
lations required in the training phase.

and the sampling phase, since we obtain higher percentages for pO2. As we shall see
in a moment, these considerations will also be repeated in the analyses that follow.

Given m∗
0 and m∗

1, we finally moved to the sampling phase, which allowed us
to estimate the coupling coefficient λ∗ and eventually construct the DL-MFMC
estimator. As we discussed in Section 2, our main interest is to provide a quantifi-
cation of the uncertainties, and thus construct suitable confidence intervals based
on our estimator. To appreciate the reduction in the uncertainties, we report the
confidence intervals obtained by the DL-MFMC approach in comparison with those
obtained via standard Monte Carlo (MC-FOM): we refer to Definition 2.11 and 2.1,
respectively. Hereon, the confidence level has ben set to γ = 99%.

To start, we report below the results obtained for p = 24h, where the robustness
of the DL-MFMC estimator is particularly evident.

pO2 :

{
IγDL-MFMC = 29.99mmHg ± 0.33mmHg ,

IγFOM = 30.09mmHg ± 0.58mmHg .

∆pO2 :

{
IγDL-MFMC = 16.92mmHg ± 0.48mmHg ,

IγFOM = 17.55mmHg ± 0.75mmHg .

TCP :

{
IγDL-MFMC = 50.06%± 1.35%,

IγFOM = 49.75%± 2.20%.

In general, both approaches report consistent pointwise estimates. However, the
DL-MFMC estimator entails a much smaller uncertainty when compared to the
classical one based on standard Monte Carlo.
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Figure 7. Confidence intervals estimates for all the QoIs, com-
paring the DL-MFMC estimator with the standard Monte-Carlo
FOM-based, fixed γ = 99%.

Notably, the same behavior was also reported for the other computational bud-
gets, as depicted in Figure 7 and Table 5. In Figure 7 we highlight for each QoI
the trend of the point estimates ÊDL-MFMC and ÊFOM with respect to the available
computational budget p and the contours of the uncertainties of the associated 99%
confidence intervals. The plots reveal various noteworthy aspects:

i) the confidence intervals associated with the DL-MFMC estimator are consis-
tently smaller than the ones obtained via standard Monte Carlo;

ii) in the DL-MFMC approach, the point estimate of E[Q(uFOM)] is more stable
for pO2 than for ∆pO2 and TCP ;

iii) the stability of the point estimate of pO2 is reached with a smaller budget p.

As before, (ii) and (iii) are easily motivated by the additional regularity of the spa-
tial average operator pO2, which a linear and continuous functional of Ct, as stated
in Section 3.2.

These qualitative considerations are further confirmed by the quantitative analysis
in Table 5. There, we focused on three reference budgets, p = 12, 18, 24 hours, and
we reported the uncertainties attained by the DL-MFMC approach (computed as
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QoI Budget p FOM simulations Uncertainty

12h 368 (-19.12%) 0.54 mmHg (-36.24%)

pO2 18h 541 (-20.79%) 0.42 mmHg (-38.68%)

24h 710 (-22.06%) 0.33 mmHg (-43.41%)

12h 392 (-13.85%) 1.03 mmHg (-6.50%)

∆pO2 18h 577 (-15.52%) 0.58 mmHg (-34.98%)

24h 761 (-16.47%) 0.48 mmHg (-36.33%)

12h 390 (-14.29%) 2.75% (-12.33%)

TCP 18h 578 (-15.37%) 1.84% (-28.30%)

24h 765 (-16.03%) 1.35% (-38.44%)

Table 5. Computational cost and UQ for the DL-MFMC esti-
mator. FOM simulations = total number of high-fidelity simu-
lations required by the computational pipeline, namely n∗ + m∗

0.
Uncertainty = amplitude of the DL-MFMC confidence interval, Eq.
(2.11). In parentheses, the comparison with the standard Monte
Carlo estimator. E.g.: in the first row, we see that, compared
to standard Monte Carlo, the DL-MFMC estimator reduced the
uncertainty by 36.26% while simultaneously requiring 19.12% less
FOM simulations.

the amplitude of the associated confidence interval), together with the total number
of FOM simulations required by the computational pipeline (i.e., encompassing both
the training and sampling phases). The results are reported in comparison with the
MC-FOM approach, emphasizing the reduction in uncertainties and number of FOM
evaluations.

In general, the advantage of the DL-MFMC approach becomes more and more
pronounced for higher budgets. This is not particularly surprising if we consider
that the ROM becomes more reliable when provided with a larger amount of data.
In particular, as the correlation between FOM and ROM increases, the multi-fidelity
approach starts to rely more and more on the surrogate model, ultimately reduc-
ing the number of FOM evaluations. Once again, this phenomenon is particularly
evident for the average partial pressure, the QoI associated with the smoothest oper-
ator. However, it is interesting to note that, while the computational gain is nearly
constant for pO2, the trend is much steeper for ∆pO2 and TCP . For instance, when
increasing the computational budget, the reduction in the uncertainties for ∆pO2

goes from −6.5% to −36.33%, highlight a substantial boost in the performances.
Further confirmation of this fact is provided in Figure 8, where we compared

computational resources with model uncertainties. Coherently with our previous
observation, we note that for pO2 there is a constant computational gap between
the Monte Carlo and the DL-MFMC estimators. Instead, for QoIs associated to
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(a) pO2 (b) ∆pO2 (c) TCP

Figure 8. Computational budget spent to achieve a fixed level of
uncertainty for both the considered estimators, considering three
different QoIs.

either less regular or strongly nonlinear operators, such as ∆pO2 and TCP , the DL-
MFMC estimator becomes more advantageous when increasingly accurate estimates
are required. Still, the improvement compared to a standard MC estimator remains
consistent across a wide range of uncertainties.

5. Conclusion. This work addresses the significant computational demands asso-
ciated with forward UQ for partial differential equations in multi-physics models.
In particular, we propose an improvement of multi-fidelity methods [35, 36, 29], in-
tegrating state-of-the-art deep learning techniques [15, 16] to increase the efficiency
and robustness of predictions.

The primary contribution of our research lies in the development of the Deep
Learning-Enhanced Multi-Fidelity Monte Carlo (DL-MFMC) method. This ap-
proach, building upon several foundational works in multi-fidelity methods and
deep learning, introduces a novel synergy between full-order models (FOM) and
reduced-order models (ROM), based on a supervised learning approach enhanced
by deep neural networks. The result is a significant reduction in computational
costs while retaining the critical features necessary for accurate modeling. By ap-
plying our DL-MFMC method to oxygen transfer in the microcirculation, using
quantities of interest related to radiotherapy, we have demonstrated its ability to
perform robust and reliable UQ analysis in complex, real-world scenarios. We have
compared our method against traditional Monte Carlo approaches, demonstrating
substantial speed-ups and increased robustness.

Looking ahead, further research should focus on refining the integration of deep
learning with multi-fidelity methods, as well as improving the interpretability and
scalability of these models remains a crucial area for continued development. In
conclusion, our research contributes to the rapidly evolving field of computational
modeling and uncertainty quantification in life sciences. The DL-MFMC approach
offers a promising path forward in tackling the inherent challenges of computational
expense and model accuracy in multi-scale, multi-fidelity scenarios.
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[14] I.-G. Farcaş, B. Peherstorfer, T. Neckel, F. Jenko and H.-J. Bungartz, Context-aware learning

of hierarchies of low-fidelity models for multi-fidelity uncertainty quantification, Computer
Methods in Applied Mechanics and Engineering, 406 (2023), 115908.

[15] N. Franco, A. Manzoni and P. Zunino, A deep learning approach to reduced order modelling of
parameter dependent partial differential equations, Mathematics of Computation, 92 (2023),
483-524.

[16] N. R. Franco, A. Manzoni and P. Zunino, Mesh-Informed Neural Networks for Operator

Learning in Finite Element spaces, Journal of Scientific Computing, 97 (2023), 41 pp.
[17] N. R. Franco, S. Fresca, A. Manzoni and P. Zunino, Approximation bounds for convolutional

neural networks in operator learning, Neural Networks, 161 (2023), 129-141.

http://mathscinet.ams.org/mathscinet-getitem?mr=MR4002626&return=pdf
http://dx.doi.org/10.1016/j.jcp.2019.108912
http://dx.doi.org/10.1016/j.jcp.2019.108912
http://mathscinet.ams.org/mathscinet-getitem?mr=MR2998478&return=pdf
http://dx.doi.org/10.1002/nme.4371
http://dx.doi.org/10.1002/nme.4371
http://mathscinet.ams.org/mathscinet-getitem?mr=MR3092322&return=pdf
http://dx.doi.org/10.1002/num.21768
http://dx.doi.org/10.1002/num.21768
http://mathscinet.ams.org/mathscinet-getitem?mr=MR2103208&return=pdf
http://dx.doi.org/10.1016/j.crma.2004.08.006
http://dx.doi.org/10.1016/j.crma.2004.08.006
http://mathscinet.ams.org/mathscinet-getitem?mr=MR3419868&return=pdf
http://dx.doi.org/10.1137/130932715
http://dx.doi.org/10.1137/130932715
http://mathscinet.ams.org/mathscinet-getitem?mr=MR2619358&return=pdf
http://mathscinet.ams.org/mathscinet-getitem?mr=MR3687858&return=pdf
http://dx.doi.org/10.1137/151004550
http://mathscinet.ams.org/mathscinet-getitem?mr=MR4637238&return=pdf
http://dx.doi.org/10.1016/j.camwa.2023.08.016
http://dx.doi.org/10.1016/j.camwa.2023.08.016
http://mathscinet.ams.org/mathscinet-getitem?mr=MR4520468&return=pdf
http://dx.doi.org/10.1016/j.cma.2022.115811
http://dx.doi.org/10.1016/j.cma.2022.115811
http://mathscinet.ams.org/mathscinet-getitem?mr=MR4202414&return=pdf
http://dx.doi.org/10.1002/cnm.3412
http://dx.doi.org/10.1002/cnm.3412
http://dx.doi.org/10.4161/cc.8.3.7608
http://mathscinet.ams.org/mathscinet-getitem?mr=MR4543092&return=pdf
http://dx.doi.org/10.1016/j.cma.2023.115908
http://dx.doi.org/10.1016/j.cma.2023.115908
http://mathscinet.ams.org/mathscinet-getitem?mr=MR4524100&return=pdf
http://dx.doi.org/10.1090/mcom/3781
http://dx.doi.org/10.1090/mcom/3781
http://mathscinet.ams.org/mathscinet-getitem?mr=MR4645137&return=pdf
http://dx.doi.org/10.1007/s10915-023-02331-1
http://dx.doi.org/10.1007/s10915-023-02331-1
http://dx.doi.org/10.1016/j.neunet.2023.01.029
http://dx.doi.org/10.1016/j.neunet.2023.01.029


DEEP LEARNING ENHANCED COST-AWARE MULTI-FIDELITY UQ 31

[18] Z. Gao, Q. Liu, J. S. Hesthaven, B. S. Wang, W. S. Don and X. Wen, Non-intrusive reduced
order modeling of convection dominated flows using artificial neural networks with application

to Rayleigh-Taylor instability, Commun. Comput. Phys., 30 (2021), 97-123.

[19] M. Guo, A. Manzoni, M. Amendt, P. Conti and J. S. Hesthaven, Multi-fidelity regression using
artificial neural networks: Efficient approximation of parameter-dependent output quantities,

Comput. Methods Appl. Mech. Engrg., 389 (2022), 114378.
[20] J. S. Hesthaven, G. Rozza and B. Stamm,, Certified Reduced Basis Methods for Parametrized

Partial Differential Equations, SpringerBriefs Math. BCAM SpringerBriefs Springer, Cham;

BCAM Basque Center for Applied Mathematics, Bilbao, 2016.
[21] J. S. Hesthaven and S. Ubbiali, Non-intrusive reduced order modeling of nonlinear problems

using neural networks, Journal of Computational Physics, 363 (2018), 55-78.

[22] D. Z. Huang, N. H. Nelsen and M. Trautner, An operator learning perspective on parameter-
to-observable maps, preprint, arXiv:2402.06031, 2024.

[23] A. M. Kellerer and H. H. Rossi, RBE and the primary mechanism of radiation action, Radi-

ation Research, 47 (1971), 15-34, http://www.ncbi.nlm.nih.gov/pubmed/5559377.
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