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Sub-Saharan emerging countries experience electrical shortages resulting in power rationing, which ends up hampering economic
activities. (is paper proposes an approach for very short-term blackout forecast in grid-tied PV systems operating in low
reliability weak electric grids of emerging countries. A pilot project was implemented in Arusha-Tanzania; it mainly comprised of
a PV-inverter and a lead-acid battery bank connected to the local electricity utility company, Tanzania Electric Supply Company
Limited (TANESCO). A very short-term power outage prediction model framework based on a hybrid random forest (RF)
algorithm was developed using open-source Python machine learning libraries and using a dataset generated from the pilot
project’s experimental microgrid. Input data sampled at a 15-minute interval included day of the month, weekday, hour, supply
voltage, utility line frequency, and previous days’ blackout profiles. (e model was composed of an adaptive similar day (ASD)
module that predicts 15 minutes ahead from a sliding window lookup table spanning 2 weeks prior to the prediction target day,
after which ASD prediction was fused with RF prediction, giving a final optimised RF-ASD blackout prediction model. Fur-
thermore, the efficacy analysis of the short-term blackout prediction of the formulated RF, ASD, and RF-ASD regression and
classification algorithms was compared. Considering the stochastic nature of blackouts, their performance was found to be fair in
short-term blackout predictions of the test site’s weak grid using limited input data from the point of coupling of the user. (e
models developed were only able to predict blackouts if they occurred frequently and contiguously, but they performed poorly if
they were sparse or dispersed.

1. Introduction

Access to electricity remains an issue yet to be resolved in
sub-Saharan Africa (SSA), where 600 million people do not
have access to electricity, this being nearly half of the
population [1]. Reliable and quality access to electricity
boosts livelihood and drives forward the economy [2].
According to a 2019 survey conducted by the Tanzanian
Rural Energy Agency (REA), it revealed that only 37.7% of
people on the mainland had connections to electricity [3].
(is is in part due to expensive connection costs along with

low use of electricity and poverty among countryside
communities [4]. Taking Tanzania as an example, even areas
with access to electricity at times experience power outages,
brownouts, and voltage surges. Many times, electricity de-
mand exceeds supply in the SSA region; Load shedding or
rolling blackouts (power rationing) becomes essential to
prevent the electric grid from failing. However, end users
prefer power cut notifications in advance so that they can
plan ahead to mitigate power outage effects [5]. (ese no-
tifications usually reach a very small percentage of users,
especially if the outage will cover a relatively small area.
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Rolling blackouts hit the most, residential sector, or poorer
neighborhoods than the industrial sector due to both eco-
nomic and political factors [6, 7].

Studies investigating blackouts are not new. Blackouts
are caused bymultifaceted interactions of many factors, such
as serious line component failure; negligence in handling
vegetation along transmission and distribution lines; wild-
life; extreme weather; man-made error; and other natural
calamities [8]. (e problem of blackout prediction can be
attempted either by short-term (real-time) prediction or
long-term prediction. Nateghi et al. [9, 10] developed a
hurricane-induced blackout prediction algorithm based on a
random forest algorithm. Hurricane-induced power outage
prediction models are complex and involve large expensive
datasets. (e dataset may comprise the following input
variables: electric grid data, data on pre-storm situation of
soil moisture, drought, land use data, geographical mea-
sures, wind data, and so forth. Gou and Wu [8] classified
blackout causes as either deterministic or probabilistic. (e
study also investigated control strategies with an emphasis
on islanding control strategies. In the study by Alkar et al.
[11], frequent power outages were found to be due to the
inefficiency of the power plant to match loads, malfunction
of protection equipment in the transmission lines, poor
ability of Supervisory Control and Data Acquisition
(SCADA), division of the main power grid to microgrids,
which are more prone to oscillations, delayed equipment
maintenance, and population increase. (e study by Rah-
man et al. [12] used data from large-scale power outages
globally to explore blackout causes, perform a risk analysis,
and fault analysis. In Bo et al. [13], worldwide blackout
incidents were analyzed, and their causes, mitigation, and
restoration measures were investigated. Some blackout
causes, protection issues, blackout prevention, and blackout
restoration have been investigated by some studies [14, 15].
In the work of Mei et al. [16], two indices for quantitative
blackout risk evaluation were developed.

Cheng et al. [17], combined other outage factors such as
real-time electric grid system operational data, weather
forecast, and geographical data to predict blackout com-
ponents in the current electric grid system operation con-
dition. (ey also developed a load behavior forecast model
under power outage circumstances using an expert fuzzy
system. Kogo et al. [18] proposed 3 heuristics to forecast the
start time of the next 24 hrs irregular scheduled power cut,
namely, start time of power cut based prediction (SBP),
frequency-based prediction (FBP), and a hybrid of SBP and
FBP. In Papic and Ciniglio [19], a framework for supporting
planners and operators in evaluating multiple outages that
lead to cascading outages was developed. Papic et al. [20]
identified two indices for power outage reliability, namely,
average frequency and average duration of sustained au-
tomatic outages. (e indices could be employed in forecast
based planning, maintenance, and operation activities.
According to the study, the foremost causes of outages were
found to be weather (rain, snow, ice storms, wind, dust, and
so on), equipment failure, and wildfires.(e 26th UN climate
change conference of the parties (COP26) attests to the fact
that climate change is a burning issue globally. Extreme

weather events are on the rise. Unfortunately, they also affect
electricity generation and supply infrastructure reliability,
sometimes resulting in curtailments and in some cases
rolling blackouts [21–23]. (us, blackouts should continue
to be studied.

(e main contribution of this work is the study of
blackout forecasts from the customer’s perspective—at the
end user’s side (premise) of a weak grid. (is may be useful
in regions where the utility operates in a black box manner,
with limited or no grid information available to the end user.
Although not addressed in this study, the outcome of the
blackout forecast could be used in the implementation of a
battery management system strategy that ensures adequate
state of charge (SoC) when a blackout is imminent and
allows the battery to fully discharge when an occurrence of a
blackout is unlikely. Consequently, money could be saved if
batteries are not oversized, and the SoC is optimised with
respect to blackout forecast output. Blackout forecasts in this
study could also be useful to the utility for load shedding and
demand-side management applications. In the literature,
studies on blackouts have not been fully exhausted. (ere
have been few or no works on blackout forecast studies for
emerging countries’ scenarios. Emerging countries power
grids give an interesting research study focus because they
are weak, still evolving, and typically characterised by fre-
quent disturbances as opposed to the mature grids of de-
veloped countries. Moreover, due to scattered settlements in
emerging countries like Tanzania, it is not yet feasible for the
national main power grid to reach all communities; there-
fore, most emerging countries embark on rural electrifica-
tion programs that employ hybrid microgrids that in time
get connected to the main power grid. Consequently,
microgrids that connect to the main grid have to contend
with disturbances in the main grid. (is work attempts to
address and bridge this gap with a blackout forecast model
using a case study from Arusha, Tanzania.

2. Blackout Pilot System Overview

(e pilot test site for this work was an office building
located in the Levolosi ward of the Arusha municipality in
Tanzania. (e energy management system at the site is as
shown in Figure 1, comprising 200W PV, 100Ah lead-acid
battery, and a 2.5 kW inverter. Such pico-size systems are
typical in SSA, where PV systems are undersized due to
financial constraints [24, 25]. (e experimental test site
already had the PV-battery-inverter system in place before
this study was conducted.(erefore, the PV-battery-inverter
sizing and setup was not part of our study, rather the
goal was to investigate blackout forecast from the customer’s
vantage point. (e PV-inverter and battery bank at the
site are essentially used as backup power for merely small
loads and application such as lighting, laptop, phone
charging, and a surveillance camera; the backup system
additionally was used to power the data logger used in
this study during blackouts. Other relatively bigger loads at
the site, like photocopy machines, electric fans, microwaves,
and electric kettles, are only used when utility power is
available.
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(e battery bank at the site can be charged either by PV
or by utility power through an inverter charger. (e main
electricity supply to the pilot site comes from the national
electricity supply company, TANESCO. Power from both
the utility and the inverter is managed by the local smart
controller (smart meter). (e low-cost smart meter is
comprised of a PZEM-004T module used to measure AC
voltage, current, and frequency. PV voltage and battery
voltage were measured with a voltage divider circuit
interfaced to the Arduino mega microcontroller ADC
(Analog-to-digital converter) pins whereas PV current was
measured by the ACS712 hall effect current sensor module,
also interfaced to the ADC port of the Arduino mega board.
PV-battery DC voltage and current sensor measurements
facilitated PWM charging of the battery using P-channel
MOSFET high-side switching controlled by the Arduino
mega board. All the measured sensor data were uploaded to
the cloud via the WiFi module ESP8266 (NodeMCU). Re-
ceived data from the pilot test site was stored in a MySQL
database on a Linux-based server and also used to perform
blackout forecasts. A web page on the server was used as an
energy dashboard for monitoring and remote-control
operations.

3. Methodology

An outline of the proposed power outage prediction ap-
proach is provided, followed by the main individual com-
ponents that comprise the blackout forecast algorithm,
namely, input data preprocessing, forecast models, and

evaluation indexes. (is work proposes a procedure for very
short-term blackout prediction in emerging country sce-
narios. Moreover, blackout prediction is realized by a fusion
of random forest (RF) and adaptive similar day (ASD)
models.

3.1. Proposed Blackout Forecasting Model Approach.
Figure 2 shows the power outage prediction approach
adopted in this paper.(e algorithmwas implemented using
scikit-learn and other Python libraries. (e framework starts
at the data preprocessing stage, followed by a moving sliding
window that traverses forward through the data during
predict and update operations; then, the RF and ASD sec-
tions carry out the actual blackout prediction operation; the
final stage is performance evaluation and corrective feed-
back. (e cycle then repeats with error performance
knowledge at hand to be used to adjust the weights in the
subsequent iteration of the short-term blackout prediction.
(ese stages mentioned here briefly are expounded in the
preceding sections.

3.2. Input Data Description. (e dataset used in this paper
covers the period from January 2021 to December 2021,
amounting to a total of 8,016 hourly aggregated samples or
30, 144 15-minute interval samples. (e subset of the dataset
used comprised of 10 relevant input variables from the
previous 14 days as predictors. (ese 10 predictors were
selected after performing a correlation test with the blackout
indicator variable. (e 10 input features used in this work

PV panels

Charge controller

Battery

Inverter / Charger

AC changeover
switch

Utility grid

Voltage &
Current sensor

(ACS712)

AC power
sensor

(PZEM-004T)

WiFi module
(NodeMCU)

Microcontroller
(Arduino Mega)

internet

Remote monitoring &
control

• Forecaster
• Datalogger
• User interface

Relay modules

Electrical appliances

Figure 1: Test site energy management system architecture.
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are shown in Table 1.�ese parameters used in the weak grid
include time variables such as day of the month, day of the
week, and hour of the day; they were signi�cant because
blackouts were observed to be cyclical in nature with respect
to time. �e AC line voltage and frequency parameters were
also used to determine the presence or absence of power
(blackout). Weather data for the area could not be obtained;
thus, it was not used. Figure 3 shows the correlation of the
input variables to the blackout variable. �e “ac_voltage”
and “frequency” variables exhibited negative correlation
values because they were inversely related to blackout, in
which the presence of blackout (electric power� 0) implies
zero AC line volts and zero frequency on the test site power
line.

�ree di�erent strategies were performed for short-term
blackout pro�le prediction targets or responses, namely, (1)
blackout prediction for the next 15 minutes, which is a single
scalar value; (2) blackout prediction for the next hour, which
is also a single scalar value; and (3) lastly, blackout prediction
for the entire next day (24 hours), which is a vector of 24
blackout index values corresponding to the hours of the
following day. �e blackout prediction of the next 15
minutes is performed 15 minutes prior, whereas prediction
of the next hour is performed an hour in advance. Blackout
prediction of the entire next day is performed at midnight
(00 hrs), which is the start of the next day. For example, for
each hour h of the next day, the forecast is based on the
values of the 10 predictors at the hour h of the previous day.

RF-ASD hybrid model

Data
preprocessing

Move prediction
sliding window

ASD model

Random Forest
model

Performance
evaluation

Weight correction

Figure 2: Proposed power outage prediction approach.

Table 1: Input features details.

# Input variable Input variable detail Evaluation time
1 Day Day of the month Day D-1
2 WeekDay Day of the week Day D-1
3 Hour Hour of the day Day D-1
4 AC_voltage Average AC supply line voltage from electric supply company Day D-1
5 Frequency Average AC supply line frequency Day D-1
6 B14 Average blackout pro�le 14 days before Day D-14
7 B7 Average blackout pro�le 7 days before Day D-7
8 B3 Average blackout pro�le 3 days before Day D-3
9 B2 Average blackout pro�le 2 days before Day D-2
10 B1 Average previous day blackout pro�le Day D-1
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Figure 3: Input variables’ correlation to blackout variables. A value close to “1” signi�es high correlation, whereas a value close to zero shows
low correlation to the blackout variable. Negative values show a negative correlation.
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Similarly, 15 minutes ahead prediction and 1 hour ahead
prediction are performed in the same manner based on the
corresponding time step in the past records. During the
calibration phase, measurements for important parameters
such as voltage, current, and frequency were taken at in-
tervals with a commercial multimeter and corroborated with
measurements of the test site smart meter datalogger.

3.3. Input Processing. Initial steps in this work involved
outlier removal and checking the correlation of variables
related to blackout prediction. To ensure the model’s input
data and output quality, dataset preprocessing is indis-
pensable. �e dataset was transformed from minute res-
olution observation entries into 15 minute average
observations as well as mean hourly observations. A dataset
retimed to 15 minute resolution was used for a 15 minute
very short-term prediction, whereas dataset retimed to
hourly resolution was used for an hour ahead and day-
ahead blackout short-term prediction. Evidently, there
could be a risk of misrepresenting the duration of a
blackout say if it occurred at the 55th minute of the hour in
question. In order to overcome this challenge, the blackout
variable represents normalized blackout in an hour using
values ranging from “0” to “1” (60 minutes of blackout). For
example, in the case of the blackout that occurred in the
55th minute of the hour and lasted for 5 minutes, this is
represented by the blackout variable as “0.08” whereas
blackout that occurred at the 45th minute of the hour and
lasted for 15 minutes would be represented by the blackout
variable as “0.25,” and so on. �is logic was used to solve
blackout prediction as a regression machine learning
problem. On the other hand, the short-term blackout
prediction was also formulated as a classi�cation machine
learning problem. Obviously the shorter the data sampling
period the more meaningful and truthful it captures oc-
curred blackout events. In this regard, 15 minutes interval
data are better than hourly and so forth. Furthermore, input
data were smoothed to remove outliers and noise to op-
timize the prediction skill of the model.

Power supplied at the pilot test site by the local utility
company has been observed to be at times unstable, and
su�ering from irregular power outages may be experienced
at the client-side. In the period between January and De-
cember 2021, aggregated blackouts measured at the pilot site
amounted to an equivalent of about 16 days. As shown in
Figure 4, the months of March, April, November, and
December were the worst hit by power outages. Power
outages are irregular, and the pattern di�ers from month to
month; for instance, from Figure 5, the month of May
su�ered fewer power interruptions than April. From the heat
map, “1” indicates a complete blackout for an entire hour,
whereas “0.5” signi�es a blackout for 30 minutes during the
respective hour being considered. In some extreme cases,
blackout may last more than 24 hours, as was the case on
April 18th and 19th.

Power outage noti�cations are typically sent out in
advance through the media if the scheduled power inter-
ruption a�ects or covers a large area, such as an entire city or
district. However, few or no power interruption noti�cations
were received in advance at the pilot’s site o¡ce buildings
because only a small neighborhood was a�ected.�ese kinds
of localized blackouts are usually due to distribution line
faults or maintenance work. �erefore, this work endeavors
to predict power outages merely by using less information
regarding electric power parameters as observed from the
point of coupling at the customer side and without having
prior information about scheduled power outages. �e
energy management system installed at the test site is tasked
with predicting blackouts, without access to information
about the grid status from TANESCO’s substation control
center, or without knowledge of any fault or protection relay
that may have tripped upstream.

3.4. Blackout Forecasting Model. �is section explains the 3
blackout models investigated in this work, namely, the
Random Forest (RF) algorithm, the Adaptive Similar Days
(ASD) model, and a hybrid RF-ASD model. �eir perfor-
mance and e¡cacy are given later in the result section. In
this work, blackout forecasting is tackled as both a regression
problem as well as a classi�cation problem. �e objective of
blackout regression is to predict continuous value output
that indicates the blackout event and duration. On the other
hand, the objective of the blackout classi�er is to predict a
binary output, which indicates the occurrence of a blackout
event.

Adaptive Similar Days (ASD) Blackout Prediction Ap-
proach: it has long been established that the past day’s data in
a time series can be used to make short-term forecasts. As
already observed in Figures 4 and 5, some months su�er
from more power outage episodes than others, and the
outage trendmay evolve dramatically from onemonth to the
next. Due to the stochastic nature of blackouts, a longer
moving window could corrupt the training algorithm and
yield lower accuracy. �erefore, it was deemed necessary to
develop a model that uses fewer training data points for
prediction rather than a model that requires a large dataset
to gain prediction competency. It is on this premise that past
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historical blackout data going 2 weeks back were used in our
method for short-term (15 minute-ahead, hour-ahead, and
day-ahead horizon) power outage prediction. Given below is
the adaptive similar days (ASD) algorithm equation for
short-term blackout prediction.

Bft �
et
N
+
1
n
∑
n

t�1
b1t + b2t + b3t + b7t + b14t( ). (1)

From equation (1), assume short-term (either 15 min-
utes-ahead, hour-ahead, or 24 hrs ahead) blackout forecast
to be represented by Bft. n is the number of blackout data
points. b1t is the blackout index value at time t one day
before, b2t is blackout index at time t two days before, b3t is a
blackout index at time t three days before, b7t is a blackout
index at time t seven day before, and b14t is blackout index at
time t fourteen days earlier. et is the forecast error, which is
obtained as a di�erence between the prediction value and the
observed value. N is a positive number, forming the fraction
error term et/N. �e vectors b1 to b14 form 2 weeks sliding
window. �ey are chosen because they are closer to the
short-term forecast target, and it is assumed that they will
capture any blackout pattern nuances that may exist in the
time series data, if any cyclical trends exist. For example, in
predicting blackout events of the current week’s Monday,
the previous week Monday’s blackout data (b7t) as well as
the Monday 2 weeks ago (b14t) are assumed to have some
in¦uence in the blackout prediction dynamics.

�e short-term blackout forecast Bft in this work is
computed according to equation (1), using the following
algorithm steps:

(i) Step 1: then will be determined by the mean of the
past blackout vectors for , , , , and . For example, if
we wish to predict the second hour of the day,
t� 01hrs, then will be the blackout index value in the
previous 1 day at the corresponding second hour of
the day (01hrs), whereas is the blackout index value
2 days before at the corresponding second hour of
the day (01hrs), and so on.

(ii) Step 2: the resulting short-term power outage
prediction is compared to the actual observed
blackout data for that respective day (prediction
target day), and the di�erence (error), et/N, is saved
in a lookup table.

(iii) Step 3: the resulting short-term blackout prediction
vector is summed with the fraction of the previous
prediction error vector, et/N, from the lookup table
(memory). After performing sensitivity analysis,
N� 2 was found to increase prediction accuracy.
�e term et/N is used to correct the weights of the
day-ahead predicted power outage pro�le,Bft.

(iv) Step 4: the 2-week sliding window is moved one
interval step forward, to make the next short-term
power outage prediction.
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(v) Step 5: repeat steps 1 to 4.

Additionally, some general assumptions that govern the
mechanism of the ASD and RF algorithms used in this work
are as follows:

(i) Assumption 1: recent records or observations closer
to the short-term prediction target have a stronger
influence on the intended target period being
forecasted. In other words, they have a higher
probability of being similar to the forecast target
period.(erefore, in the vein of the Pareto principle,
past records used in the 2 week sliding window of
the ASD algorithm have more importance in pre-
dicting the short-term target than past records
beyond or before the sliding window. In case there
were no blackouts in the 2 weeks’ window, the
probability of an imminent blackout is assumed to
be very low.

(ii) Assumption 2: the power outage duration for the
short-term target period does not exceed the
maximum outage event duration of the preceding
outages within the sliding window.

(iii) Assumption 3: by extension to assumption 1, power
interruptions and disturbances are cyclical in na-
ture; thus, the interval of the third outage event is
assumed to be the same as the interval between the
previous two blackout events. For example, if the
first blackout event of a day is observed at time t and
the second blackout occurs at time 3 t; then, the
algorithm will expect the third blackout event to
occur at time 5 t. Granted, this may not hold true in
all cases due to the stochastic behavior of blackouts.
For this reason, assumption 4 is used in effect to
reset the learnt interval pattern if an incorrect
prediction is made.

(iv) Assumption 4: under normal conditions, it is as-
sumed that the power line has electricity by default,
while power interruption is considered an abnormal
condition. At the start of the prediction day, the
ASD algorithm is given a temporary prediction
token or permit, after which it can make a pre-
diction. (is involves asserting a flag variable.
However, it incorrectly predicts the occurrence of
blackout in the short-term target period contrary to
the observed data showing no outage or being under
normal powered conditions. In this case, the token
is temporarily revoked or withheld by clearing the
flag variable, and the power line is now considered
to be back to normal operating conditions. Yet
again, when a new power outage is detected, a

prediction token is granted back to the ASD algo-
rithm by re-asserting the flag variable, and it con-
tinues to participate in subsequent outage
predictions.

Random Forest (RF) algorithm is a nonparametric ma-
chine learning method that can handle nonlinear regression
as well as classification challenges. It is based on decision
trees, which individually act as weak learners but overall
become strong learners. (e RF algorithm is robust and has
been found to work well with small datasets, as well as
datasets with some missing values. A random forest of 10
bagged ensemble regression trees and 100 classifier trees
were grown and used to forecast short-term power outages.
For this kind of problem, short-term forecasts depend on
past recorded data; therefore, the walk-forward validation
method was used instead of cross-validation. After training
and fitting the RF model, a single-step forecast is made,
followed by error measurements, and then the RF model is
updated with observed data for the predicted time (target
day) by appending it to the input data ready for the next one-
step forecast loop. (e model steps through the entire test
data in this manner of predicting and updating, until the last
test data are reached by the walk-forward validation.

Random Forest Adaptive Similar Days (RF-ASD) Hybrid
Model. Output from the ASD module that predicts future
short-term time step from a sliding window lookup table
spanning 14 days prior to the target day is fused with RF
prediction, giving a final optimized RF-ASD blackout pre-
diction via element-wise vector mean of both models. In
other words, the output of the ASD model is combined with
that of the RF model to obtain the mean of the two models.
(us, the RF-ASD hybrid model is an average of both the RF
and ASD models. Figure 6 also describes the RF-ASD
blackout prediction algorithm flowchart.

Model Evaluation Indices. To asses blackout classifier
model performance, a confusion matrix was used along with
classification accuracy score, precision, recall, and F1 score.
(e classification accuracy score gives the ratio of correct
forecasts to the remaining forecasts; it denotes how accurate
the prediction model is. (e accuracy score is represented in
equation (2). True positive values are those whose observed
value and forecasted value are true. A False negative is
anerror classification where the observed value is correct but
the predicted value is false. A false positive is also a mis-
classification where the forecast value is true, whereas the
observed value is false. True negative is the case where the
observed value is false and the forecast value is also false:

accuracy score �
true positive + true negative

true positive + true negative + false positive + false negative
. (2)

Complexity 7



(e recall metric may be defined as the ratio of correctly
classified data divided by the total actual samples of the target
class.(e Blackout recall used in this work is represented below
by equation (3). On the other hand, the precision metric is the
ratio of correct positive predictions relative to total positive
predictions. It is represented in equation (4). A classifier with
good precision will not label as positive a data sample that is
negative. Another classification metric, especially useful in this
work due to the imbalanced dataset employed, is the F1 score.
F1 score is the harmonic mean of precision and recall. (e best
F1 score is 1, while the worst is 0:

blackout sensitivity(recall)

�
correctly predicted blackouts

total actual blackout
,

(3)

precision �
correctly predicted blackouts

total predicted blackout
, (4)

F1 score � 2 ×
(precision × recall)
(precision + recall)

. (5)

Input data features

• Day
• Week day
• Hour
• Line voltage
• Frequency
• Past blackout

Data pre-processing

Move sliding window to cover
next time step and past 2 weeks

Fused (mean) forecasting result of
ASD model &Random Forest model

Compute prediction error

Random Forest model training

Random Forest Short-term
blackout prediction

Any blackouts in the
past 2 weeks sliding

window?

Assume future to be
normal (no blackout)

Assume next short-term to have
blackout 

Configure Random Forest
hyperparameters 

ASD model RF model

RF-ASD hybrid model

YesNo

Figure 6: RF-ASD hybrid model algorithm flow chart.
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To evaluate the blackout regression algorithm’s pre-
diction skill, the mean absolute error (MAE) and root mean
square error (RMSE) were employed. Since grid power is ON
most of the time, MAE and RMSE of predicted values were
measured only against instances when blackout events were
actually observed in order to focus and gauge the efficacy of
the models in blackout prediction. (e MAE metric is more
resilient to outliers in the results, whereas RMSE penalizes
outliers in the results. (ey are given by

MAE �
1
n

􏽘

n

j�1
yj − 􏽢yj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,

RMSE �

�������������

1
n

􏽘

n

j�1
yj − 􏽢yj􏼐 􏼑

2

􏽶
􏽴

,

(6)

whereby n is the number of blackout data points, yj is the
observed blackout value, and 􏽢yj is the forecasted short-term
blackout value.

4. Results and Discussion

(is part discusses the results obtained from investigating the
efficacy of RF, ASD, and RF-ASD models in blackout pre-
diction. Figure 7 shows the blackout classification accuracy
score for RF, ASD, and RF-ASD models. (e results are for a
15-mintute-ahead power outage forecast. (e three models
showed an overall accuracy score of about 90%. However,
because most of the time power is available, observed actual
blackout events were fewer in the test dataset, inevitably
resulting in an imbalanced dataset. (erefore, the machine
learningmodels inadvertently also get a few effective observed
blackout samples to train on. It is ideally desired for any
classifier model to classify all samples appropriately as True
Negatives (TN) and True Positives (TP)—the two diagonal
parts of the 2× 2 confusion matrix below.

(e stand-alone RF model correctly classified 89.4% of
the test data samples as the power available (TN), while 1.5%
were misclassified as power outages (FP), instead of being
predicted as instances where the supply line had power ON
(available). (e RF model misclassified about 6.2% of the
blackout events and mistook them for power- on instances
instead of blackouts. (e RF model only correctly predicted
672 power outages out of a total of 2085 blackout events.
(ese 2085 blackouts formed only 9.1% of the total samples,
whereas actual power was available for only 90.9% of the
recorded data. (e RF model did relatively better at pre-
dicting the presence of power and fared badly in predicting
blackout events as compared to the ASDmodel and RF-ASD
hybrid model. (e ASD model did better than the RF model
in predicting blackouts; it accurately predicted 971 counts of
blackout events. (e RF-ASD hybrid model predicted ac-
curately almost half of the blackouts (1025 counts), thereby
performing slightly better the RF and ASD models.

Typically, in the emerging countries scenario, the user
may want to know in advance if there is going to be any
power outage the following day in order to take appropriate
actions to alleviate the effects of a lack of electricity supply.

For this, the 24 hrs ahead blackout predictions may be useful.
(e hour-ahead and 15 minutes ahead blackout predictions
may be advantageous to a grid operator. Table 2 summarizes
the overall blackout forecast classification of the 3 models
RF, ASD, and RF-ASD along 3 forecast horizons, namely, 15
minutes ahead, hour-ahead, and 24 hrs ahead forecast ho-
rizon. Considering the first accuracy score metric, it was
found to be 92.4%, 90.6%, and 90.2% for RF, ASD, and RF-
ASD models, respectively, for the 15 minutes ahead forecast
horizon. (ese are high accuracy scores for a classification
model; however, they have been driven up by the majority
class (power ON class data) instead of the blackout minority
class. (e accuracy score is also high for the hour-ahead
forecast horizon. (e accuracy score was found to be low for
the 24-hours ahead forecasts due to the stochastic nature of
blackouts. ASD model fared better with an accuracy score of
85%. Attempting to predict blackout many time steps in
advance is more prone to forecast errors as was found to be
the case in the 24 hours ahead blackout prediction. All in all,
an accuracy score in this case does not correctly reflect the
performance of the model in predicting blackouts, which is
our target.

Looking at the 15 minutes ahead forecast horizon, the
recall metric was found to be 32.2%, 46.6%, and 49.2% for
RF, ASD, and RF-ASD models, respectively. In our case, the
higher the recall value, the better, as it implies that the model
was able to predict more blackout events accurately.
Combining the RF and ASD models to form RF-ASD had a
good effect of increasing blackout recall up to 49.2%. (e
same effect was observed in the case of hour-ahead and 24
hours ahead forecasts. Just like recall, it is desirable to have a
model with a higher precision value. (e RF model had
higher precision values than the ASD and RF-ASDmodels in
both 15 minutes ahead and hour-ahead forecast horizons.
However, the ASD had higher precision in the 24 hours
ahead horizon. (e F1 score is a suitable metric for iden-
tifying an overall best performing classifier model for an
imbalanced dataset, such as is the case in this work. (e RF-
ASDmodel scored slightly higher, with an F1 score of 47.7%,
with the other models lagging behind. (erefore, the RF-
ASD model is made a better candidate for 15 minutes ahead
blackout forecasting. In hour-ahead forecasts, the RF model
lagged behind in performance compared to ASD and RF-
ASD, which both scored 45.7%. (e ASD model out-
performed RFand RF-ASD models in 24-hours ahead
blackout forecasts.

Figure 8 gives insight into the performance of the
blackout classifier across different months. (e chart below
considers the RF-ASD classifier model for 15 minutes ahead
predictions. (e overall accuracy score is observed to be
relatively high from March to October, where it then drops
to 64% in November and 57% in December.

(e F1 score is derived from both recall and precision
metrics and is a better indicator of the performance of a
classifier.(e F1 score for March, April, and May performed
fairly well above 50%. However, it drops to 18%, 13%, and
34% in June, July, and August. In contrast, the accuracy
score remains high, above 90%. With respect to Figure 5 of
Section 3, June, July, and August had less consistent
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blackouts, which occurred sparsely, thus a�ecting negatively
the performance of the model in predicting blackouts. For
this reason, the classi�er model performed poorly in recall,
precision, and F1 score metrics. November and December
had many random blackouts, thus causing the classi�er
model to perform poorly in accuracy, recall, precision, and
F1 scores. Although March and April had about the same
level of blackouts as November and December, blackouts in
March and April were contiguous and more converged,
unlike those of November and December which were

dispersed. �erefore, the classi�er had better prediction
skills in those earlier months than in November and
December.

Table 3 summarizes the performance of the RF, ASD,
and RF-ASD regression models. �e three models were
formulated as regression models in order to tackle the
challenge of quantifying the duration of the short-term
blackout prediction.�e overall prediction skill for the three
models had small di�erences from each other in all the three
forecast horizons considered. In the case of 15 minute ahead
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Figure 7: Power outage classi�cation accuracy scores for 15 minutes ahead predictions.

Table 2: Overall blackout forecast classi�cation performance.

Forecast horizon Classi�er model Accuracy score (%) Blackout sensitivity (recall) Blackout precision (%) F1 score (%)

15 minutes ahead
RF 92.4 32.2 66.4 43.4
ASD 90.6 46.6 48.6 47.6

RF-ASD 90.2 49.2 46.3 47.7

Hour-ahead
RF 88.4 17.0 52.1 25.6
ASD 87.3 45.7 45.8 45.7

RF-ASD 86.8 47.2 44.3 45.7

24 hrs ahead
RF 62.0 67.8 19.4 30.2
ASD 85.0 38.0 36.6 37.3

RF-ASD 60.9 73.4 19.4 30.7
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Figure 8: Monthly blackout forecast performance for 15-minutes ahead RF-ASD classi�er model.
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forecasts, the ASD model slightly improved with respect to
both MAE and RMSE. Although the RF model had a similar
MAE score as the RF-ASD model, its RMSE was slightly
worse than that of RF-ASD. �is implies that the output of
the RF model su�ered more from outliers. In the case of
hour-ahead forecasts, the RF model had a lower MAE value,
but the RF-ASDmodel had the lowest RMSE value, meaning
that the RF model su�ered from slightly more outlier results
than the RF-ASD model. �e ASD model had slightly better
MAE and RMSE values than the RF and RF-ASDmodels for
the case of 24 hr ahead forecasts. In the case of 15 minute
ahead forecasts, 96 (24× 4) predictions had to be made per
day, while the hour-ahead approach requires only 24 pre-
dictions per day. Statistically the 15 minutes ahead approach
ends up being more prone to forecast errors than the hour-
ahead forecast approach. �is is visible in Table 3 results.

Figure 9 gives further insight into the average perfor-
mance of the RF-ASD regression model comparable across
di�erent months of the test data. All the models performed
relatively poorly in March, April, November, and December
whereas the grid was under severe blackout disturbances and

also due to the haphazard nature of the outages. It is worth
noting that, in the preceding namedmonths where blackouts
were prevalent, 15 minutes ahead forecasts outperformed
their counterparts, namely, 24 hour ahead forecasts and
hour-ahead forecasts. �e RF-ASD 24 hrs ahead prediction
produces a blackout prediction for the entire 24 hours of the
next day, whereas the RF-ASD hour-ahead blackout pre-
diction algorithm onlymakes prediction one hour-ahead at a
time, and is, therefore, able to update and notice the de-
veloping blackout trend of the grid. �us, the RF-ASD hour-
ahead blackout prediction algorithm gains prediction skills
and self-learns any prior inaccurate predictions.

�e models developed in this work were fairly able to
predict power outages using only few information regarding
electric power parameters as observed from the point of
coupling at the customer side and whilst having neither prior
information of scheduled power outages nor weather
forecasts regarding any looming extreme weather events that
might cause blackout. It is more di¡cult to predict the
duration of a blackout event than the mere occurrence of a
blackout. Generally, the shorter the forecast horizon, the

Table 3: Overall performance for blackout forecast regression models.

Forecast horizon Regression model MAE RMSE

15 minutes ahead
RF 0.253 0.333
ASD 0.251 0.325

RF-ASD 0.253 0.329

Hour-ahead
RF 0.169 0.298
ASD 0.203 0.323

RF-ASD 0.185 0.296

24 hrs ahead
RF 0.268 0.431
ASD 0.254 0.409

RF-ASD 0.258 0.418
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Figure 9: Performance of the RF-ASD blackout forecast model on di�erent months’ data, considering the hour-ahead and 15-minutes
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blackout regression models.
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more realistic and practical the prediction result than when a
long forecast horizon is used for grid dynamics, which may
quickly change between one forecast and the next.

5. Conclusions and Future Work

In this paper, a short-term blackout forecasting model
framework has been proposed. Generally, the regression and
classification algorithms considered in this work, namely,
RF, ASD, and RF-ASD, had about the same performance in
blackout prediction.(emodels developed were only able to
predict blackouts if they occurred frequently and contigu-
ously, but they performed poorly if they were sparse or
dispersed. (e developed models merely make an educated
guess on the possible occurrence of a blackout but not the
precise time of the outage incidence. Overall, the blackout
regression and classification models investigated in this
work had fair performance in the power outage prediction
challenge along the test data considered months.

(e advantage of the prediction models on the PV
system and load side reliability is that the blackout forecast
models developed have the potential to improve battery
management on the consumer side. It is true that the PV-
battery and inverter system are meant to supply loads during
blackouts, thereby mitigating the effects of blackouts. Since
PV systems in developing countries are sometimes pico-
sized, they do not offer many hours of autonomy, hence,
having blackout prediction in advance may help consumers
perform load-shifting by moving energy-intensive tasks (tier
1 big load tasks) outside power outage times and utilizing the
mains grid, which can support big loads, unlike pico-sized
PV systems typically in place. (e output of a blackout
forecast could be valuable to the battery management system
(BMS) in ensuring that battery charge levels are enough to
sustain an imminent blackout episode, especially since the
PV systems in this study were very small; blackout forecasts
remain indispensable and ensure battery charge levels go a
long way in meeting load demand during a blackout. For
example, if the output of the blackout prediction model
shows an imminent blackout, this can help BMS decide to go
into conservation mode, whereby the smart BMS operates
the battery storage near full charge. (us, ensuring the
battery is fully charged and ready to withstand the predicted
impending blackout thereby increasing load-side reliability.
(is prepares the PV system to cope with any sudden power
outage; however, if the probability of blackout is very low, as
predicted by the model, then the system can go into a relaxed
mode where the battery SoC level is allowed to discharge to
low levels.

Future works could study implementation of BMS
strategies using blackout forecast output. (is work has
endeavored to predict blackouts only from the customer’s
point of connection to the grid without having other in-
formation about the grid as a whole, which could be ex-
periencing disturbances that may result in a blackout. Future
work could supply the blackout prediction model with more
data about the status of the local electric grid at large; this
would give the model a better vantage point in predicting
imminent blackouts and increase performance. In contrast

to this work, future works could also study blackout pre-
diction from the utility distributor point of view. Blackout
prediction is a challenging task because it is caused by many
factors such as weather, various faults in the grid, and their
complex interactions. It would also be interesting to in-
vestigate blackout prediction models with inputs from
weather forecasts, sensor data from grid protection devices,
relays, and so forth. Furthermore, an extension to this work
could be investigating a blackout prediction model that takes
into account not only presence or absence of electric power
but rather considers also power quality issues such as mains
frequency stability, overvoltage, and undervoltage and more
or large PV systems.
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