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Abstract— This article addresses the data-based modeling and
optimal control of district heating systems (DHSs). Physical
models of such large-scale networked systems are governed by
complex nonlinear equations that require a large amount of
parameters, leading to potential computational issues in opti-
mizing their operation. A novel methodology is hence proposed,
exploiting operational data and available physical knowledge
to attain accurate and computationally efficient DHSs dynamic
models. The proposed idea consists in leveraging multiple recur-
rent neural networks (RNNs) and in embedding the physical
topology of the DHS network in their interconnections. With
respect to standard RNN approaches, the resulting model-
ing methodology, denoted as physics-informed RNN (PI-RNN),
enables to achieve faster training procedures and higher modeling
accuracy, even when reduced-dimension models are exploited.
The developed PI-RNN modeling technique paves the way for
the design of a nonlinear model predictive control (NMPC)
regulation strategy, enabling, with limited computational time,
to minimize production costs, to increase system efficiency and to
respect operational constraints over the whole DHS network. The
proposed methods are tested in simulation on a DHS benchmark
referenced in the literature, showing promising results from the
modeling and control perspective.

Index Terms— District heating systems (DHSs), nonlinear
model predictive control (NMPC), physics-informed recurrent
neural networks (PI-RNNs).

I. INTRODUCTION

THE growing issue of climate change calls for cutting-edge
solutions to substantially reduce carbon emissions. In this

context, district heating systems (DHSs), given their high
efficiency, are recognized as crucial to reach the energy tran-
sition objectives. In fact, the European Commission considers
this technology necessary to meet the 2050 decarbonization
targets [1], with the aim of covering at least 50% of the heating
demand in most European countries [2]. A DHS is generally
composed of a heating station, comprising different thermal
generators, and of an insulated water pipeline network, trans-
ferring the generated heat to thermal loads (e.g., residential and
commercial users), which, exploiting local heat exchangers,
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absorb the delivered heat and use it for indoor heating and
domestic hot water. DHSs are typically operated by heuristic
rule-based control strategies, which, however, do not exploit
their full efficiency potential, implying the necessity to design
advanced optimization-based control strategies [3]. This is not
a trivial task though, as DHSs are large-scale systems governed
by complex nonlinear dynamical equations (e.g., describing
transport phenomena in thermo-hydraulic networks), entailing
a significant effort to compute their optimal operation and to
develop accurate physical models, also due to the considerable
number of necessary parameters (e.g., pipes lengths, diameters,
friction coefficients, etc.) [4], [5].

To overcome these issues, it is here proposed to rely on
identification methods with the purpose of obtaining com-
putationally efficient and accurate models from operational
data, which are typically widely available in DHSs. More
specifically, recurrent neural networks (RNNs) are employed,
being particularly suited to model nonlinear dynamical sys-
tems [6], [7]. It is worth remarking that RNNs generally
do not exploit any physical insight on the identified system:
this may lead to the need of large datasets, time-consuming
training procedures, or even unreliable data-based models.
On the other hand, besides operational data, in engineering
systems, there is usually the availability of some physical
knowledge, which is worth being used to develop physically
consistent data-based models. This has motivated the design of
a novel physics-informed RNN (PI-RNN) modeling method-
ology for DHSs, enabling to achieve enhanced identification
performances and efficient training procedures. In particular,
the commonly known information about the physical topology
of the DHS network (i.e., how thermal loads and generators
are interconnected) is exploited to develop a PI-RNN model
with an analogous topological structure. It is also shown that
the developed PI-RNN model can be effectively employed to
design a nonlinear model predictive control (NMPC) regulator,
enabling to minimize production costs and to increase the
system efficiency while respecting the desired operational
constraints (e.g., temperature limits over the network).

A. Related Work

The detailed modeling of DHSs is addressed in [8], focusing
on the stability of their nonlinear dynamics. The physical
modeling and optimal operation of DHSs are discussed in [4],
yet leading to the formulation of a large-scale problem solved
using a one-step prediction horizon. In fact, DHS physical
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models typically include many state variables governed by
nonlinear thermo-hydraulic equations, e.g., describing fluid
and heat transport in water pipelines, resulting in a modeling
complexity hardly tractable by standard optimization-based
controllers. To overcome this issue, predictive controllers
exploiting simplified models have been proposed in the litera-
ture, such as [9], [10], and [11], where the thermal dynamics of
the DHS network are not modeled. Nevertheless, the accurate
modeling of the network thermal dynamics is crucial for
the optimal operation of DHS plants for several reasons: 1)
network temperatures must respect operational constraints due
to technical limits of thermal generators and to the proper heat
supply to thermal loads (e.g., the water temperature supplied to
each load must exceed a minimum lower bound [4], [12]) and
2) network thermal dynamics, if modeled, can be optimized
to minimize heat losses and to increase the overall DHS effi-
ciency. Other optimization-based control approaches include
a dynamical modeling of DHS networks using simplifying
assumptions, such as [13], where constant transport delays are
considered, or [14], where all thermal loads are assumed to
be supplied with the same water temperature (i.e., neglecting
heat losses over the DHS network). Given the significant
complexity of detailed physical models for DHS networks
and the poor accuracy of simplified ones, data-based methods
have been proposed to identify control-oriented and accurate
DHS models directly from operational data [15], [16]. In this
context, neural networks (NNs) have been exploited for mod-
eling and optimally controlling heating and cooling networks,
thanks to their enhanced capability of representing nonlinear
dynamical systems [17], [18]. Nevertheless, the mentioned
data-based models disregard any available physical insight
on the system to be identified, possibly leading to poorly
physically consistent and unreliable models.

Currently, in the scientific community, a growing interest is
arising to embed available physical knowledge in NN models,
enhancing their physical consistency, accuracy, and training
procedure [19]. To do that, different approaches have been
presented in the literature. For instance, in [20], [21], [22],
and [23], the loss function used for the NNs training is
modified such that, besides minimizing the prediction error,
known physical equations or relationships among variables are
induced to be respected. Other methods suggest to incorporate
the available physical knowledge directly in the NN archi-
tecture [24], [25]. In this context, in [26], a physics-guided
layer, embedding known system dynamics, is placed in parallel
to NN hidden layers, improving the modeling performances.
Considering the problem of deriving data-based models of
interconnected systems, a further method consists in exploiting
their physical topology, which is generally known, and inter-
connecting different NN models accordingly. This idea has
been applied to chemical processes in [7] and [27], leveraging
the known sequence of operations, and to thermal buildings
in [28], exploiting the known connections among different
thermal zones. This approach is conceptually similar to graph
NNs (GNNs), where different neurons are interconnected by
resembling graph-structure data dependencies [29]. Neverthe-
less, none of the mentioned physics-informed identification
approaches is applied to energy networks and in particular to

DHSs, which are commonly characterized by a well-defined
topology, and none of them exploits the developed models
for the design of computationally efficient and cost-effective
NMPC regulators.

B. Main Contribution

In view of the above discussion, a novel PI-RNN modeling
methodology for DHSs is proposed, particularly suited for the
design of NMPC regulators. The main contributions of the
work are hereafter synthesized.

1) Physics-Informed Neural Network Modeling of DHSs:
Given that the DHS network topology is commonly
known, this information is leveraged to develop a novel
PI-RNN architecture, capable of accurately modeling the
main thermal dynamics. More specifically, a different
RNN is first paired with each section of the DHS
network (e.g., with a thermal load and the corresponding
supplying pipes), and, subsequently, all RNNs are inter-
connected resembling the network physical topology.
Then, the overall PI-RNN, comprising all the intercon-
nected RNNs, is trained as a unique data-based model,
embedding in its architecture the physical dependence
among the different DHS network sections. This enables
to achieve a faster training procedure and higher mod-
eling accuracy with respect to standard RNN models,
even when employing reduced-order PI-RNN models,
as witnessed by the numerical results.

2) NMPC Design for Optimal Operation of DHSs: The
developed PI-RNN model is exploited for the design
of an NMPC regulator, which optimizes the DHS with
a prediction horizon of several hours, enabling to mini-
mize production costs, increase system efficiency, and
comply with operational constraints over the whole
DHS, e.g., by providing proper heat delivery to all
thermal loads. Moreover, as witnessed by the numerical
results, the employed PI-RNN model enables to reduce
the NMPC computational complexity not only with
respect to physical models but also with respect to
standard RNN-based ones.

The proposed approach is tested in simulation on a DHS
benchmark, i.e., the AROMA DHS [4], showing promising
results from the modeling and control perspective.

C. Article Outline

This article is organized as follows. A general overview on
the DHS physical modeling is presented in Section II, together
with the description of the benchmark case study analyzed in
this work. Two data-based modeling approaches, i.e., standard
RNN and PI-RNN methods, are presented in Section III,
with a special focus on the proposed physics-informed data-
based methodology and its application to the considered DHS
benchmark. The formulation of the NMPC regulator exploiting
the developed data-based models is described in Section IV.
The numerical results regarding the proposed modeling and
control methods are reported in Section V. Final conclusions
are given in Section VI.
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D. Notation

Let R denote the set of real numbers and N the one of
natural numbers. Given two vectors of variables x, y ∈ Rn ,
the inequalities between the two, e.g., x > y, are intended
elementwise, whereas their Kronecker product is indicated
with x ⊗ y. For a vector x ∈ Rn , its two-norm is indicated as
∥x∥2, whereas the vectors of corresponding upper and lower
bounds are x ∈ Rn and x ∈ Rn , respectively, with x > x .
Considering a real variable a ∈ R, with a > 0, b = ⌊a⌋ is the
largest integer less than or equal to a, i.e., b ∈ N ∪ {0}. Given
a sequence of variables a1, . . . , an , and the set of their indices
N = {1, . . . , n}, the vector a = [a1, . . . , an]

′ is compactly
written as a = {ai }∀i∈N . Given a set N , its cardinality is
denoted as n = |N |.

II. PROBLEM STATEMENT

A. System and Main Modeling Assumptions

The main physical variables and parameters used in the
following are reported in Table I. A DHS typically consists
of four main elements, as depicted in Fig. 1: 1) the supply
network, where water at high temperature flows from the
heating station to thermal loads; 2) the return network, where
water at cold temperature flows from thermal loads to the
heating station; 3) the heating station, which absorbs water
from the return network and injects it at higher temperature
into the supply network; and 4) the thermal loads (e.g.,
households or buildings), which absorb water from the supply
network, exploiting the delivered heat for internal heating, and
inject it into the return network.

For the sake of clarity, two standard assumptions for DHSs
are considered in the following.

Assumption 1: The heat generation is centralized, i.e., a sin-
gle heating station is considered, possibly comprising different
thermal generators [4], [11], [30].

Assumption 2: The supply and return networks have the
same physical topology [8], [31].

Note that the introduced assumptions could be removed in
the following at the price of reduced clarity of presentation.

Given Assumption 2, the DHS can be represented by a
structured graph G = (N , E), where N identifies the set
of nodes, whereas E ⊆ N × N is the set of edges. Each
node, denoted as αi , with i ∈ N , represents an element of the
DHS, e.g., a thermal load, the heating station, or a junction
among multiple pipes, and it includes a connection both with
the supply and return network, as depicted in Fig. 1. Given
Assumption 1, without any loss of generality, the node where
the heating station is connected is denoted as α0. Moreover,
for the sake of clarity, two specific subsets of nodes are
introduced. The first one, defined as Nnet = N \{0}, contains
all the nodes of the DHS network excluding the heating
station, whereas the second one, denoted as Nc ⊆ Nnet, with
nc = |Nc|, includes all the nodes containing thermal loads.

Each edge directed from αi to α j is denoted as ei j =

(αi , α j ), with (i, j) ∈ E . As a convention, each edge is
oriented according to the water flow direction in the supply
network, assumed to be known, e.g., from available operational
data or preprocessing techniques [4]. Nevertheless, in case

TABLE I
MAIN SYSTEM VARIABLES AND PARAMETERS

Fig. 1. Schematic representation of a DHS, interconnecting the heating
station and the thermal load at node αi (encircled with a dotted line).

the flow direction in the supply network between αi and α j
is not fixed, two opposite edges ei j and e j i are defined to
interconnect the corresponding nodes.

Since the development of a DHS mathematical model based
on physical laws is well known and out of the scope of this
article (the interested reader is referred to [4]), the fundamental
relations among the main system variables are here briefly
presented, as these will be necessary to better describe the
proposed identification method.

First of all, as evident from Fig. 1, each load absorbs a
water flow qc

i from the supply network at temperature T s
i . This

water flow goes through an internal heat exchanger absorbing
a thermal power Pc

i , then it is injected into the return network
at temperature T c

i , which can be modeled as

T c
i (t) = T s

i (t)−
Pc

i (t)
qc

i (t) · cw
∀i ∈ Nc (1)

where cw is the water specific heat. Note that the thermal load
model is static as its dynamical transients are negligible with
respect to the DHS network ones.

As discussed in [12], the load water flow qc
i is supposed to

be regulated by a local controller, tracking a constant reference
for the load output temperature, indicated as T c⋆

i . This implies
that the load water flow can be generally modeled as a function
of the load supply and output temperature, the thermal power
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and the output temperature reference, i.e.,

qc
i (t) = ζ c

i
(
T s

i (t) , T c
i (t) , Pc

i (t) , T c⋆
i
)

∀i ∈ Nc (2)

where ζ c
i denotes a generic nonlinear function, whereas Pc

i
and T c⋆

i act as external disturbances.
Before modeling the supply and return network dynamics,

the sets of inlet nodes of αi are defined with respect to the
supply and return networks. These are denoted as Is

i and Ir
i ,

respectively. More specifically, given that E is oriented accord-
ing to the water flow direction of the supply network, it follows
that Is

i = { j ∈ N |∃( j, i) ∈ E}. On the other hand, in case the
water flow directions of the return network are opposite with
respect to the supply one, as typical in DHSs [32], it follows
that Ir

i = { j ∈ N |∃(i, j) ∈ E}. If this does not hold, Ir
i can

be defined according to the actual water flow directions of the
return network.

As shown in Fig. 1, each node of the DHS network is
characterized by a net water flow at the supply network, i.e.,
qs

i , and by one at the return network, i.e., qr
i . These depend

on the water flows at the corresponding inlet network nodes
and on the one absorbed, or injected, by the thermal load,
if present. Thus, ∀i ∈ Nnet, it holds that

qs
i (t) =


∑

∀ j∈I s
i (t)

qs
j (t)− qc

i (t), if i ∈ Nc∑
∀ j∈I s

i (t)

qs
j (t), otherwise

(3)

qr
i (t) =


∑

∀ j∈I r
i (t)

qr
j (t)+ qc

i (t), if i ∈ Nc∑
∀ j∈I r

i (t)

qr
j (t), otherwise.

(4)

Thermo-hydraulic pipes introduce transport delay effects on
temperature profiles over the DHS network. It is possible to
describe the physics of water flow in pipelines through 1-D
Euler equations: in order to write the system in a state-space
(SS) form, however, the model of each pipe must be discretized
in space (finite volume method), as discussed in detail in [4].
Hence, each node of the DHS network is characterized by the
following temperature dynamics at the supply network, which,
∀i ∈ Nnet, can be compacted as

żs
i (t) = f s

i

(
zs

i (t) ,
{

T s
j (t) , qs

j (t)
}

∀ j∈I s
i

, T ext
)

(5a)

T s
i (t) = gs

i

(
zs

i (t) ,
{

qs
j (t)

}
∀ j∈I s

i

)
(5b)

where f s
i and gs

i are nonlinear functions and zs
i is a generic

vector employed to represent the internal states of the supply
temperature dynamic model. Specifically, the finite volume
method models each pipeline as a sequence of adjacent
subsections, each one characterized by a lumped temperature
dynamics [4]. Hence, the state variable zs

i in (5a) compactly
comprises the temperatures of all subsections, considering the
supply network pipes interconnecting node αi , with i ∈ Nnet,
and its inlet nodes α j , with j ∈ I s

i . Moreover, as evident
from (5a), the supply temperature dynamics at each node αi
is influenced by the supply temperatures and water flows of
all αi ’s inlet nodes, i.e., α j , with j ∈ I s

i . Additionally, T ext

is the external temperature, which corresponds to the ground
temperature being DHS pipes typically buried. Finally, the
supply temperature T s

i can be expressed as a function of
the subsection temperatures and of the incoming water flows,
as evident from (5b).

Similar to (5), each node is characterized by a temperature
dynamics at the return network as well, which, ∀i ∈ Nnet,
is expressed as

żr
i (t) = f r

i

(
zr

i (t) ,
{

T r
j (t) , qr

j (t)
}

∀ j∈I r
i

, T ext
)

(6a)

T r
i (t) =


g̃r

i

(
zr

i (t) ,
{

qr
j (t)

}
∀ j∈I r

i

, T c
i (t) , qc

i (t)
)
,

if i ∈ Nc

gr
i

(
zr

i (t) ,
{

qr
j (t)

}
∀ j∈I r

i

)
, otherwise

(6b)

where f r
i , g̃r

i , and gr
i are generic nonlinear functions, whereas

the vector zr
i comprises the internal states of the return

temperature dynamic model. In particular, similar to (5a), the
internal states of (6a) correspond to the lumped subsection
temperatures of the pipes interconnecting node αi , with i ∈

Nnet, and its inlet nodes α j , with j ∈ I r
i , according to the finite

volume modeling method [4]. Considering the modeling of the
return temperature T r

i in (6b), note that, differently from (5b),
if node αi is connected to a thermal load, the corresponding
dynamics is influenced also by the load output temperature,
i.e., T c

i , and by the load water flow, i.e., qc
i (see Fig. 1).

Finally, regarding the heating station, even though it is
typically composed of different thermal generators (boilers,
heat pumps, cogenerators, etc.) and storages, here, similar
to [4], its internal configuration is neglected, whereas just
its overall power consumption, water flow, return and supply
temperatures are taken into account. The latter, denoted as T s

0 ,
does not depend on the DHS network supply nodes, but it is a
control variable imposed by the heating station itself [4], [16].
Moreover, T s

0 is not here described by a dynamical equation,
as in (5), given that thermal generation is usually characterized
by negligible dynamical transients with respect to the DHS
network ones [30]. On the other hand, the return temperature
at the heating station, i.e., T r

0 , is characterized by a dynamical
behavior, which can be compacted as

żr
0 (t) = f r

0

(
zr

0 (t) ,
{

T r
j (t) , qr

j (t)
}

∀ j∈I r
0

, T ext
)

(7a)

T r
0 (t) = gr

0

(
zr

0 (t) ,
{

qr
j (t)

}
∀ j∈I r

0

)
(7b)

where f r
0 and gr

0 are nonlinear functions and zr
0 is the vector

that represents the internal states of the dynamic model of
the return temperature at the heating station. Furthermore,
given Assumption 1, and since additional bypasses between
the supply and the return network are not considered, the
heating station water flow, indicated as q0, is equal to the
sum of all load flows, i.e.,

q0(t) =

∑
∀i∈Nc

qc
i (t). (8)
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The heating station power is denoted as P0 and it depends
on the overall water flow and on the difference between the
supply and return temperature, i.e.,

P0(t) = cwq0(t)
(
T s

0 (t)− T r
0 (t)

)
. (9)

To sum up, it is possible to collect the above-described input
and output variables into vectors so as to get an overall SS
model of the DHS network. Thus, (1)–(8) are compacted as{

ż(t) = f (z(t), v(t), d(t))
y(t) = g(z(t), v(t), d(t))

(10)

where f and g are nonlinear functions resulting from (1)–(2)
and (5)–(7), z is the overall state vector, v = T s

0 is the
controllable input, whereas d = {Pc

i }∀i∈Nc , i.e., the ther-
mal load demands, are the disturbances. Note that, being
T ext and T c⋆

i constant over time, they are not included as
disturbances in the system model. Concerning the outputs,
the following ones, being typically measurable, are selected:
y = [T r

0 , q0, {T s
i , T c

i , qc
i }

′

∀i∈Nc
]
′. In detail, T r

0 and q0 are
needed to compute the heating station thermal power, as evi-
dent from (9), whereas the loads supply temperatures, i.e.,
T s

i , must be monitored to ensure that they respect prescribed
operational limits. Finally, as it will be later clarified, the
output temperature and water flow of each thermal load, i.e.,
T c

i and qc
i , are also convenient to be measured.

At the end, considering an appropriate sampling time τs , the
DHS model (10) can be discretized using a suitable integration
method. Hence, the discretized system model reads as{

z(k + 1) = f̃ (z(k), v(k), d(k))
y(k) = g̃(z(k), v(k), d(k))

(11)

where k = ⌊t/τs⌋ is the adopted discrete-time index, and
for simplicity the same notation as continuous time-dependent
variables is maintained.

B. Case Study

To better comprehend the proposed modeling method,
the considered system benchmark, i.e., the AROMA DHS
described in [4], is here briefly introduced. A schematic
representation of the AROMA DHS is reported in Fig. 2(a).
As visible from this scheme, the system is composed of a
heating station and a DHS network of nine nodes, including
five thermal loads. In particular, the total pipeline length at the
supply and return networks is 7262.4 m, whereas other details
are available in [4].

As previously discussed, it is possible to define a graph
describing the considered DHS, as shown in Fig. 2(b). Note
that the water flow direction between nodes α7 and α8 may
be not determined a priori. Consequently, the corresponding
edge is doubled (e78 and e87), as evident from Fig. 2(b). For
the sake of clarity, as a convention, loads are numbered in
increasing order according to their distance along pipelines
with respect to the heating station (node α0). Moreover, the
nodes which do not represent thermal loads but pure junctions
are numbered with indices greater than the loads ones, again
according to their distance from the heating station.

Fig. 2. (a) Schematic representation of the AROMA DHS [4]. (b) Graph
representation of the AROMA DHS, with load nodes highlighted in yellow.

Finally, the AROMA DHS physical model, described in [4],
has been leveraged to develop a dynamic simulator in the
Modelica environment [33], exploiting the library [34]. The
developed AROMA DHS simulator will be used in the fol-
lowing both for data collection and for control testing.

III. DATA-BASED MODELING

As anticipated, for complex large-scale systems such as
DHS networks, developing physical models as (10) may
demand a lot of modeling effort due to the required knowledge
of a huge amount of parameters (e.g., pipe lengths, diameters,
thickness, heat transfer coefficients, etc.). Therefore, the first
objective of the work is to identify a computationally efficient
DHS network model through data-based approaches. The latter
deal with the problem of building mathematical models of
dynamical systems based on observed data from the plant
itself. The procedure to follow is straightforward: input and
output signals from the system are collected and processed by
a data analysis technique so as to infer a dynamic model [35].

A. Recurrent Neural Networks

Various identification techniques can be exploited. Since the
system under control is characterized by a nonlinear behavior,
linear models such as autoregressive with exogenous input
(ARX) or output-error (OE) are not appropriate, as discussed
in Section V. By contrast, NNs [36], thanks to their enhanced
ability to learn nonlinear relationships, are suited to iden-
tify complex systems like DHSs. In particular, each NN is
characterized by the so-called hyperparameters, which include
hidden layers and neurons. A hidden layer is an intermediate
layer between the NN input and output layers, and it is the
collection of neurons which transfer data to layers [37], [38].
Within the NNs framework, RNNs are particularly suited to
represent nonlinear dynamical systems and to process time
series data [39], being inherently characterized by the presence
of state variables [7]. Therefore, RNNs will be exploited in
the remaining of the work to identify the DHS network model
under investigation.
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In general, RNNs can be described as a dynamical SS
model, i.e., {

x(k + 1) = φ(x(k), u(k);8)
y(k) = ψ(x(k), u(k);8)

(12)

where x ∈ Rnx , u ∈ Rnu , y ∈ Rny are the state, input, and
output vectors, respectively. Besides, 8 is the set of parameters
(weights and biases) of the RNN, which must be tuned during
the training procedure [7]. Specifically, an RNN is constituted
by nl hidden layers, each one comprising n[i]

x state variables,
with i = 1, . . . , nl , thus implying that the total number of
states in (12) is nx =

∑nl
i=1 n[i]

x . Note that the number of
states of each RNN layer is defined by the selected number
of neurons [40]. For the purpose of identifying the DHS
network modeled in (11), the inputs of the RNN model (12)
are u(k) = [v(k)′, d(k)′]′.

Despite their potential, RNNs, in general, do not embed
any physical knowledge but they just rely on the available
input–output data. Nevertheless, available physical informa-
tion, such as the network topology in DHSs, is worth to be
exploited to enhance their modeling performances.

B. Physics-Informed Recurrent Neural Networks
The proposed PI-RNNs modeling methodology involves the

interconnection of different RNNs according to the physical
system structure, so that the so-obtained overall PI-RNN
architecture resembles the DHS network topology.

First of all, as later clarified, just a subset of the DHS
nodes are of interest from the control perspective, i.e., the
one comprising the heating station (α0) and the thermal loads
(αi , ∀i ∈ Nc). Thus, a reduced graph G̃ = (Ñ , Ẽ) is
introduced, where Ñ denotes the set of these significant nodes,
i.e., Ñ = {0} ∪Nc. Then, the nodes in Ñ are interconnected
according to their physical dependence with respect to the
supply network. In fact, the supply temperature at each load
node is influenced by the ones at the inlet load nodes, defined
according to the water flow direction. Hence, the set of the
edges of this reduced graph, i.e., Ẽ ⊆ Ñ × Ñ , is defined as

Ẽ
=
{
(i, j)|∃ a path {(β1, β2), (β2, β3), . . . , (βn−1, βn)},with
β1 = i, βn = j, (βk, βk+1) ∈ E ∀k = {1, . . . , n − 1},

and βk /∈ Ñ ∀k = {2, . . . , n − 1}
}
. (13)

The definition of Ẽ in (13) expresses the fact that two nodes
in Ñ are connected by an edge if there exists a path in the
original DHS graph G = (N , E) which interconnects them
and does not contain any other node in Ñ .

The definition of the reduced graph G̃ = (Ñ , Ẽ) derives
from the fact that, as visible from Fig. 3(a), each load supply
temperature is influenced by the ones at the inlet load nodes,
defined according to the water flow direction. In particular,
let us consider a section of the DHS network comprising the
i th thermal load node and the supply pipes connecting it with
each j th inlet node, ∀ j : ( j, i) ∈ Ẽ [dotted shadow area in
Fig. 3(a)]. It is evident that the supply temperatures of the inlet
load nodes, i.e., {T s

j }∀ j :( j,i)∈Ẽ , have a direct impact on the
considered i th DHS section, and thus they can be modeled as

Fig. 3. (a) Schematic representation of the i th DHS section comprising the
i th thermal load and the supply pipe(s) entering node αi (dotted shadow area).
(b) i th load-associated RNN having inputs and outputs paired with the ones
of the corresponding i th DHS section.

Fig. 4. (a) Schematic representation of the return network section (dotted
shadow area). (b) Return-associated RNN having inputs and outputs paired
with the ones of the corresponding DHS section.

local inputs of this subsystem. The same holds for the thermal
demand Pc

i , which acts as an external disturbance significantly
influencing the local load water flow and output temperature.
On the other hand, the resulting supply temperature T s

i can be
modeled as an output for the considered i th DHS section. This
must comply with the load operational limits and it constitutes
an input for the subsequent DHS section models, defined based
on Ẽ . Additionally, the load water flow qc

i and the output
temperature T c

i are modeled as outputs for the i th DHS section
model as well, since these will be needed to identify the return
network dynamics, as explained below.

Consequently, the approach proposed in this work consists
in defining a load-associated RNN for each i th DHS section,
with i ∈ Nc, comprising the i th load and the corresponding
supply pipe(s) entering the node, as depicted in Fig. 3(b).
Then, each RNN is interconnected to the others according to
the topology of the reduced graph, expressing the dependence
among inputs and outputs of the different DHS sections.

On the other hand, a different approach applies for the return
network dynamics. Indeed, a single return-associated RNN is
employed, since nodal variables at the return network (T r

i ,
qr

i , ∀i ∈ Nc) are not of interest from the control perspective,
as will be evident in Section IV, but only the return tempera-
ture T r

0 and water flow q0 are necessary to compute the heating
station produced power P0 in (9). The return-associated RNN
receives as inputs the output temperature and water flow of
each i th load, which are outputs of the i th load-associated
RNN, ∀i ∈ Nc, and it outputs the return temperature and the
water flow at the heating station, i.e., T r

0 and q0, as evident
from Fig. 4.

Thus, the total number of employed RNNs in the proposed
PI-RNN approach is equal to the number of loads plus one,
i.e., nRNN = nc + 1, and each i th RNN is modeled as{

x [i](k + 1) = φ[i](x [i](k), u[i](k);8[i])

y[i](k) = ψ [i](x [i](k), u[i](k);8[i])
(14)

with i ∈ {1, . . . , nRNN}.
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The number of states of each i th RNN is indicated with
n[i]

x , i.e., x [i]
∈ Rn[i]

x , implying that the total number of states
of the whole PI-RNN is nx =

∑nRNN
i=1 n[i]

x . In particular, the
inputs and outputs of each i th RNN are defined as follows.

1) For each i th load-associated RNN, with i ∈ {1, . . . , nc}

v[i] (k) =

{
T s

j (k)
}

∀ j :( j,i)∈Ẽ
(15a)

d[i] (k) = Pc
i (k) (15b)

u[i] (k) =

[
v[i] (k)′ , d[i] (k)′

]′
(15c)

y[i]
s (k) = T s

i (k) (15d)

y[i]
r (k) =

[
T c

i (k) , qc
i (k)

]′ (15e)

y[i] (k) =

[
y[i]

s (k)′ , y[i]
r (k)′

]′
. (15f)

2) For the return-associated RNN, with i = nRNN = nc +1

u[i] (k) =
{
T c

l (k) , qc
l (k)

}
∀l∈Nc

(16a)

y[i] (k) =
[
T r

0 (k) , q0 (k)
]′
. (16b)

In other words, each i th load-associated RNN, i.e., paired
with a DHS section comprising the i th load and the supply
pipe(s) entering node αi , identifies the corresponding supply
temperature among its outputs, see (15d), which consequently
constitutes an input for the load-associated RNNs influenced
by the i th one, as evident from (15a), according to the
reduced graph interconnections described by Ẽ . As shown
in Fig. 3(b), each i th load-associated RNN returns also as
outputs the corresponding load output temperature and water
flow, see (15e), which represent an input for the return-
associated RNN (16a), as shown in Fig. 4(b). Moreover, being
the local thermal demand a disturbance, each load-associated
RNN is also fed with it, as evident from (15b). Finally, the
return-associated RNN identifies as outputs the overall water
flow and return temperature (16b), being the latter necessary
to compute P0 in (9). Ultimately, by collecting the variables
of all RNNs into vectors, the overall PI-RNN model can be
written as in (12) by setting x = [x [1]

′

, . . . , x [nRNN]
′

]
′, v =

{v[i]
}
∀i :(0,i)∈Ẽ , as the supply temperature at the heating station

node α0 is the effective external input of the system, d =

[d[1]
′

, . . . , d[nc]
′

]
′, u = [v′, d ′

]
′, and y = [y[1]

′

, . . . , y[nRNN]
′

]
′.

PI-RNN Modeling Applied to the AROMA DHS: As dis-
cussed, starting from the physical topology of the AROMA
DHS, reported in Fig. 2(a), one can extract the structured
graph depicted in Fig. 2(b). Therefore, following the pro-
cedure described in Section III-B, the reduced graph shown
in Fig. 5(a) can be defined, which represents how load
supply temperatures influence each other. Finally, the pro-
posed PI-RNN architecture, which reflects the physical system
topology, is encoded according to the information contained
in the reduced graph, as shown in Fig. 5(b). Please note that
v = v[1]

= v[2]
= T s

0 , being the supply temperatures at
nodes α1 and α2 directly affected by the one at the heating
station node α0, which is the overall system input. Moreover,
v[3]

= y[1]
s , being α1 the only preceding significant node

for α3, v[4]
= v[5]

= [y[2]
′

s , y[3]
′

s ]
′, being α2 and α3 the

Fig. 5. (a) AROMA DHS reduced graph: nodes containing loads are
highlighted in yellow. (b) AROMA DHS PI-RNN architecture: inputs are
depicted in purple, disturbances in green, and outputs in orange.

preceding significant nodes for α4 and α5, whereas u[6]
=

[y[1]
′

r , y[2]
′

r , y[3]
′

r , y[4]
′

r , y[5]
′

r ]
′, since the return-associated RNN

is fed with the load output temperatures and water flows which
are outputs for the five load-associated RNNs.

Remark 1: Considering the AROMA DHS case study, a dif-
ferent RNN is paired with each load. However, in case DHSs
are characterized by numerous thermal loads, these can be
grouped as shown in [41]. In this way, a single RNN can be
used to model each loads cluster, thus limiting the size of the
overall PI-RNN model.

Remark 2: The topological correspondence between the
proposed PI-RNN architecture and the physical system enables
to properly tune the number of neurons of each RNN. In par-
ticular, if certain sections of the physical system require a
higher modeling capability, given an inherent higher dynamical
complexity, the number of neurons of the associated RNNs can
be suitably increased. Considering the AROMA DHS case
study, the farther a thermal load from the heating station,
the more complex its thermal dynamics, being influenced
by longer pipelines (and consequently by higher head and
thermal losses), as well as by the operations of all preceding
thermal loads. As a consequence, a higher identification error
may occur for the output variables related to farther thermal
loads. This issue can be effectively solved by the proposed
approach increasing the modeling complexity (e.g., the number
of neurons) of each load-associated RNN with the distance of
the corresponding thermal load from the heating station, so as
to maintain a small identification error for the output variables
of interest.

Remark 3: In the PI-RNN approach, each RNN can be
fed with some additional physical knowledge to improve its
modeling performance. For instance, in order to give the infor-
mation regarding the total DHS thermal demand to each i th
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load-associated RNN, the sum of the other thermal demands
can be also provided, i.e., d[i](k) = [Pc

i (k), Pc
tot,i (k)]

′, with
Pc

tot,i (k) =
∑

∀l∈Nc,l ̸=i Pc
l (k).

IV. NONLINEAR MODEL PREDICTIVE CONTROL

Before showing the performances achieved by the proposed
PI-RNN modeling approach, an NMPC regulation strategy is
formulated, which periodically optimizes the DHS operation
exploiting the derived RNN-based dynamical models.

Let us consider a sampling period τs and a prediction
horizon of N steps. Thus, leveraging the receding horizon
strategy [42], the following NMPC problem is solved at each
time instant t = ksτs , with ks ∈ N:

min
T s

0 (·)

ks+N−1∑
k=ks

(cel (k) P0 (k)/η)+ ct

nc∑
i=1

(
T s

i (N )− T ⋆
)2 (17a)

s.t. ∀ k ∈ {ks, . . . , ks + N − 1}

x(k + 1) = φ(x(k), u(k);8) (17b)
y(k) = ψ(x(k), u(k);8) (17c)

x(ks) = x̂0 (17d)

T s
0 ≤ T s

0 (k) ≤ T
s
0 (17e)

T r
0 ≤ T r

0 (k) ≤ T
r
0 (17f)

P0(k) = cwq0(k)(T s
0 (k)− T r

0 (k)) (17g)

P0 ≤ P0(k) ≤ P0 (17h)

T s
i (k) ≤ T s

i (k) ≤ T
s
i (k) ∀i ∈ Nc (17i)

−1T
s
0 ≤ T s

0 (k + 1)− T s
0 (k) ≤ 1T

s
0 (17j)

T s
0 (k) = T s

0

(⌊
k − ks

Nb

⌋
· Nb + ks

)
(17k)

where the cost function, the constraints, and the adopted
symbols are described in the following. In detail, the cost
function (17a) minimizes the production cost of the heating
station: the power P0 is multiplied by the time-varying price
cel and divided by the heating station thermal efficiency η.
Moreover, a terminal cost is added in the cost function,
weighted via ct , to discourage significant variations of the load
supply temperatures from a nominal reference value T ⋆.

The dynamical model of the DHS network is embedded in
the NMPC formulation in (17b) and (17c), reported in the
generic form of (12), so as to include either the standard
RNN or the proposed PI-RNN model. It is worth noting that,
in principle, (17b) and (17c) could be replaced by the DHS
network physical model, i.e., (11), which, as discussed, leads
to a large-scale optimization problem hard to be solved [4].
Independent of the selected model, as evident from (17d), the
system state x must be initialized at each NMPC iteration
with x̂0, supposed to be measured or estimated. In fact,
being the state typically not accessible in RNN models, state
observers could be necessary, e.g., the ones proposed in [7]
and [43]. Constraints (17e) and (17f) are included to comply
with temperature limits at the heating station, whose produced
thermal power is modeled in (17g) and bounded in (17h).

Moreover, constraint (17i) is imposed to guarantee that the
supply temperature at each thermal load respects prescribed
limits, enabling the proper heat delivery and functioning of
local load exchangers. In particular, note that these temperature
limits may change over time, e.g., being higher by day and
lower by night, consistently with the thermal demand daily
trend [30]. Moreover, being (17f), (17h), and (17i) imposed on
output variables, in order to ensure problem feasibility [42],
these should be stated as soft constraints by means of slack
variables, which, for the sake of clarity, are not here explicitly
reported.

Finally, to reduce the computational complexity induced
by the nonlinear model (17b) and (17c), constraints (17j)
and (17k) are added. The former implies that the variation of
the heating station supply temperature between two consecu-
tive time instants is limited by 1T

s
0 > 0. Constraint (17k) is

commonly referred to as input blocking strategy [44], since
it limits control variables to vary every Nb steps over the
prediction horizon, where Nb is a positive integer with Nb ≪

N , reducing the problem degrees of freedom. This strategy
enables to lighten the optimization problem, but in practice,
being the NMPC regulator executed with a period τs , the actual
manipulated input T s

0 will still vary at each t = ksτs . Please
note that constraints (17j) and (17k) are not necessary from
a conceptual point of view, but they enable to adopt larger
prediction horizons, which can be necessary to effectively
optimize DHSs, given their slow dynamical transients.

Overall, the just described optimization problem constitutes
a basic example, since more advanced NMPC strategies for
DHSs are out of the scope of this article. For instance,
a thermal energy storage (TES) could be considered in the
heating station modeling as a further degree of freedom.

V. NUMERICAL RESULTS

In this section, the performances of the proposed modeling
and control approaches applied to the AROMA DHS bench-
mark are presented.

A. Identification Results

First, to properly identify the system dynamics, a signifi-
cant dataset of input–output samples is collected. Therefore,
the system inputs, i.e., the supply temperature T s

0 and the
thermal demands Pc

i , ∀i ∈ Nc, are varied using multilevel
pseudorandom binary sequences (MPRBS), composed of steps
of random amplitudes and interval time sizes. Specifically,
the amplitude of T s

0 is varied between 62 ◦C and 96 ◦C,
whereas the one of Pc

i , ∀i ∈ Nc, between 30 kW and 420 kW.
Considering the system transients, which are typically slow in
DHSs, it is reasonable to collect data with a sampling time
τs = 5 min. The system is thus simulated to gather a dataset
Dtot of 15 690 samples (properly split in training, validation,
and testing sets, denoted as Dtrain, Dval, Dtest, respectively).
Let us recall that the outputs of interest of the AROMA
DHS are the five loads supply and output temperatures, their
absorbed water flows (respectively, T s

i , T c
i and qc

i , ∀i ∈ Nc),
as well as the overall return temperature T r

0 and water flow q0.
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Second, in order to quantitatively evaluate the identifica-
tion performances, specific performance indices are defined.
In particular, the fitting (FIT) index and the coefficient of
determination R2 are employed, reported in (18) and (19),
respectively. The FIT index assesses the model overall accu-
racy on the test set, and it is defined as

FIT =

(
1 −

∥y⃗test − ⃗̂ytest∥2

∥y⃗test − 1′ ⊗ yavg
test ∥2

)
· 100 (18)

where ⃗̂ytest = [{ŷ′(i)}∀i∈Dtest ]
′ is the sequence of identi-

fied outputs, y⃗test = [{y′(i)}∀i∈Dtest ]
′ is the sequence of

measured ones and yavg
test is its average, i.e., defined as

yavg
test = (1/|Dtest|)

∑
∀i∈Dtest

y⃗test(i), as discussed in [43].
The R2 index is leveraged to assess the modeling accuracy

of each identified output with respect to the test set [45]. The
R2

j related to the j th output is defined as

R2
j =

(
1 −

∑
∀i∈Dtest

(y j (i)− ŷ j (i))2∑
∀i∈Dtest

(y j (i)− yavg
j )2

)
· 100 (19)

where yavg
j = (1/|Dtest|)

∑
∀i∈Dtest

y j (i) for each j th out-
put. In particular, the minimum coefficient of determination,
i.e., R2

= min j=1,...,ny R2
j , related to the output identi-

fied with the worst accuracy and the maximum one, i.e.,
R

2
= max j=1,...,ny R2

j , related to the output identified with
the best accuracy are evaluated to assess the modeling per-
formances of the developed data-based models.

As anticipated, linear models such as SS, ARX, and OE
are not able to properly model the system dynamics, yielding
very low FIT values, as shown in [46], and thus they are not
considered further. Consequently, standard RNNs are tested
in the first place, and then PI-RNNs are developed and
compared to the former. The implementation of both types
of NNs is performed with the Python programming language
(version 3.10), using the library developed in [47] for standard
RNNs and customizing it to build up PI-RNNs. The train-
ing procedure employed for the different RNNs exploits the
so-called truncated backpropagation through time (TBPTT)
method, thoroughly described in [40], where the employed loss
function is the mean-square error (MSE), measuring the FIT
quality of predicted output with respect to the measured one,
whereas the RNN states are randomly initialized. Ultimately,
all computations are carried out on a laptop with an Intel Core
i7-11850H processor.

In detail, two families of RNN architectures are first tested,
i.e., long short-term memory (LSTM) [48] and gated recur-
rent unit (GRU) [43], as well as different combinations of
hyperparameters, i.e., amount of hidden layers, of neurons and
optimizers, e.g., adaptive moment estimation (ADAM) and
root mean squared propagation (RMSProp) [49]). By com-
paring the performance indices of the different combinations
of NNs and hyperparameters (FIT, R2, R

2
, best epoch and

training time to reach the best epoch), GRU NNs are chosen
to identify the AROMA DHS model [46], also thanks to
their simpler structure [40]. Therefore, only GRU NNs will
be considered in the following, even though the proposed
identification method applies to any type of RNN.

Fig. 6. Comparison between the FIT trend of a standard GRU (orange)
and of a PI-GRU (yellow) over the training procedure, both having 54 states
and trained with a 15 690-sample dataset. The 80% FIT is depicted in dotted
black.

Thus, the performances of a standard GRU and of a
physics-informed GRU (PI-GRU) model are now compared.
These are trained with the 15 690-sample dataset over
1500 epochs, with the ADAM optimizer and a learning rate
of 0.003, so as to get a good trade-off between convergence
speed and excessive oscillations avoidance [6].

Since the AROMA DHS is composed of five loads, the
PI-GRU model is composed of six GRUs [nRNN = nc +1, see
Fig. 5(b)], each one implemented with a single hidden layer.
To make a fair comparison, the standard GRU is composed of
six hidden layers accordingly (nl = nRNN).

Moreover, as highlighted in Remark 2, the number of
neurons of the load-associated GRUs in the PI-GRU model
increases with the distance of the corresponding thermal load
from the heating station. On the other hand, the return-
associated GRU, being paired with a DHS section comprising
the overall return network, is assigned a large number of
neurons as well. Therefore, given that in GRU networks
the state dimension matches the number of neurons of each
layer [40], n[i]

x increases with i , as load nodes are numbered
according to their distance from the heating station, as previ-
ously discussed. By contrast, since hidden layers do not have
a physical matching in the standard GRU model, the same
amount of neurons is set for each hidden layer, so that its
total number of states coincides with the PI-GRU one.

Then, as highlighted in Remark 3, each load-associated PI-
GRU is fed, among other inputs described in Section III-B,
with the cumulative power consumption.

Fig. 6 reports the comparison between the FIT trend of a
54-state standard GRU and of a PI-GRU one, for the AROMA
DHS benchmark. Specifically, nx = 54 is chosen as it is the
minimum amount of states that enables the standard GRU
to reach approximately an FIT of 50%. The PI-GRU takes
557 epochs and a training time of 91 min to reach its best FIT
value of 83.6%, whereas the standard GRU takes 1479 epochs
and a training time of 145 min to reach its best FIT value of
54.5%, as evident from Fig. 6. For the sake of completeness,
the identification procedure is repeated multiple times due to
the random initialization of RNNs weights and biases and
the random subsequences extraction of the TBPTT method.
The obtained results are reported in Table II, where the
average FIT, R2 and R

2
values are shown, together with their

standard deviation, in case the RNN models are trained three
times. These results show how the PI-GRU outperforms the
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TABLE II
COMPARISON BETWEEN THE PERFORMANCE OF A STANDARD GRU AND

A PI-GRU, BOTH HAVING 54 STATES AND TRAINED WITH 15 690
SAMPLES

Fig. 7. GRU and PI-GRU identification results. The identified variable is
depicted in orange, the measured one in blue. (a) T s

5 identified by the standard
GRU. (b) T s

5 identified by the PI-GRU. (c) qc
5 identified by the standard GRU.

(d) qc
5 identified by the PI-GRU.

standard GRU, even though the two networks are characterized
by the same hyperparameters. In particular, the enhancement
in the FIT and in R2 reported in Table II is promising.
Moreover, the PI-GRU takes less than 100 epochs to exceed
a FIT of 80%, which is a value that the standard GRU does
not even reach within 1500 epochs (see Table II).

Moreover, in Fig. 7, the measured supply temperature and
water flow trend of the load placed in node α5 are compared
with the predictions both of the 54-state standard GRU and of
the PI-GRU one. Being α5 the farthest node from the heating
station, only the PI-GRU is able to properly identify both T s

5
and qc

5 , whereas the standard GRU commits a considerable
modeling error (see Table II). In fact, the variables paired
with the farthest loads are the most challenging to be iden-
tified, achieving low R2 values. This identification local issue,
however, can be tackled by PI-GRUs through a suitable choice
of the number of neurons, as discussed in Remark 2, but it
cannot be tackled by standard GRUs, and RNNs in general,
as their architecture does not have a physical interpretation.

Sensitivity Analysis: A short sensitivity analysis is here
reported to assess the robustness of the proposed PI-RNN
method.

First, the performances of the standard GRU and PI-GRU
networks are evaluated using different amount of states, i.e.,
nx = 30 and nx = 90. As visible from Fig. 8(a) and (b),
the PI-GRU still achieves superior performances, yielding
always a FIT above 80%, which slightly decreases as the state
dimension drops. In fact, the PI-GRU states dimension has an
impact solely on the number of epochs required to exceed
the 80% FIT. After several tests, the average FIT, R2 and
R

2
values, together with their standard deviation, are computed

and reported in Table III. Ultimately, PI-GRUs, unlike standard

Fig. 8. Sensitivity analysis. The 80% FIT is represented in dotted black.
(a) FIT trend of a 90-state (orange), 54-state (yellow), and 30-state (purple)
standard GRU, trained with a 15 690-sample dataset. (b) FIT trend of a
90-state (orange), 54-state (yellow), and 30-state (purple) PI-GRU, trained
with a 15 690-sample dataset. (c) FIT trend of a standard GRU (orange) and
of a PI-GRU (yellow), both having 54 states and trained with a 7845-sample
dataset. In (b) and (c) only the first 300 and 800 epochs, respectively, are
displayed as overfitting occurs thereafter.

TABLE III
COMPARISON BETWEEN THE PERFORMANCE OF A STANDARD GRU AND

A PI-GRU, HAVING 90 AND 30 STATES, TRAINED WITH 15 690 SAM-
PLES

TABLE IV
COMPARISON BETWEEN THE PERFORMANCE OF A STANDARD GRU

AND A PI-GRU, BOTH HAVING 54 STATES AND TRAINED WITH
7845 SAMPLES

GRUs, are shown in practice to be robust with respect to the
number of neurons.

In a second test, a dataset of 7845 samples (i.e., half
of the original dataset) is used to train both the 54-state
standard GRU and the PI-GRU one. Once again, the latter
outperforms the standard GRU, as evident from Fig. 8(c).
Multiple tests are carried out and the obtained average FIT,
R2 and R

2
values, together with their standard deviation, are

reported in Table IV. To conclude, another advantage of such
physics-informed method lies in the fact that, when only a
limited amount of data is available, the PI-GRU, contrarily
to the standard GRU, is still capable of modeling the system
dynamics. Additionally, the 54-state PI-GRU trained with a
reduced dataset (see Table IV) performs better even than the
90-state standard GRU trained with the complete dataset (see
Table III).

Remark 4: For a complete analysis, the comparison of
a standard GRU and another one characterized by a
physics-informed loss function [50] is carried out. In DHSs,
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for instance, thermal loads are fed with water at high tem-
perature from the supply network and they deliver it at cold
temperature to the return network. Therefore, it is reasonable
to enforce in the GRU loss function the physical constraint
according to which each load supply temperature is greater
than the output one, using techniques similar to [20], [21],
[22], and [23]. In the AROMA DHS case, when the GRU
is trained by minimizing this physics-informed loss function,
a performance improvement is not evident with respect to the
standard loss function case, as shown in [46]. Ultimately, the
physics-informed loss function approach has been discarded.

B. Control Results

The formulated NMPC regulator is implemented in MAT-
LAB R2023a using the CasADi environment and the Ipopt
solver. Moreover, the control tests are carried out on the devel-
oped AROMA DHS simulator, implemented in the Modelica
environment using [34].

The NMPC regulator is executed with a sampling
time τs = 5 min and it considers a prediction horizon
N = 6 h/τs = 72 steps. The main control design parameters
are reported in Table V. The heating station is assumed to
be modeled as an equivalent heat pump, normally character-
ized by an electrical-to-thermal efficiency η larger than one
(i.e., the coefficient of performance [51]). The lower bound
of the thermal load supply temperatures is time varying,
as previously discussed and reported in Table V. For the
sake of simplicity, an open-loop observer consisting of the
equations of the employed RNN-based model is implemented
to provide the state estimate to the NMPC regulator. Actually,
the design of closed-loop RNN-based observers is outside the
scope of this work, but the interested reader is referred to [7]
and [43] for details about their design. Moreover, considering
a typical DHSs operation, the daily trend of the considered
thermal demands Pc

i is reported in Fig. 9(a), whereas the
electrical price profile cel is depicted in Fig. 9(b). It is worth
noting that the thermal demand profiles are assumed to be
known to the NMPC regulator, given that the development of
suitable forecasting algorithms is beyond the scope of this
work and different related techniques are available in the
literature (see [30], [52]).

Regarding the model choice, the NMPC performances are
tested considering the 54-state standard GRU and the 30-
state PI-GRU model. On the one hand, the 54-state standard
GRU is selected in order to have at least an average FIT of
50% (see Table II) and a computationally tractable optimiza-
tion problem. Indeed, the 90-state standard GRU yields slightly
higher FIT values (see Table III) but yet computationally heavy
optimization problems in case of multistep-ahead prediction
horizons, because of the model large dimension: the solver
takes almost 3 min per iteration, which would introduce
unacceptable delays considering τs = 5 min. By contrast, the
30-state standard GRU is computationally lighter but it leads to
very poor identification accuracy (see Table III) and therefore
to unreliable models. On the other hand, the 30-state PI-GRU
is the physics-informed model characterized by the minimum
amount of states that reaches a FIT of 80% (see Table III),
thus producing accurate predictions and also computationally

TABLE V
NMPC CONTROL PARAMETERS

Fig. 9. NMPC inputs. (a) Thermal demands: the first load’s thermal demand
is depicted in blue, in purple the second’s, in orange the third’s, in green the
fourth’s, and in yellow the fifth’s. (b) Daily electrical price cel profile.

tractable problems. In fact, note that the 30-state PI-GRU
model is characterized, by considering input, output and state
variables, by nv = 53 variables, whereas the 54-state standard
GRU is characterized by nv = 77 variables. By contrast,
the AROMA DHS physical model is characterized, overall,
by nv = 882 variables.1 Therefore, the amount of optimization
variables that an NMPC regulator has to manage is nv · N ,
where, in case of data-based models is a tractable number,
whereas in case of physical models is clearly intractable.

The NMPC exploiting the standard GRU model and the
one exploiting the PI-GRU one are also compared with a rule-
based strategy, where the heating station is operated at constant
supply temperature, as typical in DHSs [30], [53], by setting
T s

0 = 75 ◦C.
The control strategies are tested over a daily simulation

and evaluated based on the following performance indices: the
daily production cost C p =

∑T
t=1 cel(t)P∗

0 (t)/η, where P∗

0 (t)
is the effective power produced by the heating station and
T = 24 h/τs = 288, the average computational time tavg, and
the total thermal losses Ploss =

∑T
t=1(P

∗

0 (t) −
∑nc

i=1 Pc
i (t)).

The computed indices are reported in Table VI for the three
analyzed control strategies. In particular, when the NMPC
regulator exploits the PI-GRU model, the computational time
is significantly reduced, given that the 54-state standard GRU
is characterized by a larger dimension. Moreover, thanks to the
greater reliability of PI-GRU predictions, the production cost
is lowered as well. By contrast, when the rule-based strategy
is adopted, the production cost clearly grows with respect
to NMPC strategies. These economic savings are particularly
encouraging in terms of efficiency improvement, as thermal
losses are significantly reduced when using NMPC strategies,
and in particular when exploiting the PI-GRU-based NMPC,
as evident from Table VI. It is worth noting that the economic

1The number of variables of the physical model is returned by the DHS
simulator implemented in Modelica.
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TABLE VI
COMPARISON AMONG ADOPTED CONTROL METHODS

Fig. 10. NMPC results over a daily optimization, for the AROMA DHS.
Constraints are depicted in black solid lines. (a) Optimized supply temperature
at the heating station. (b) Loads supply temperatures: the first load’s supply
temperature is represented in blue, in purple the second’s, in orange the third’s,
in green the fourth’s, and in yellow the fifth’s.

savings achieved by the NMPC regulator with respect to the
rule-based strategy are related to thermal losses reduction and
to a better exploitation of the network pipelines storage capa-
bility, since the only control variable is the supply temperature
at the heating station. If additional degrees of flexibility were
present, such as cogeneration units or thermal storage tanks,
higher savings could be achieved by an NMPC regulator,
see [16] and [30] for further details. Ultimately, by using
computationally efficient data-based models, the optimization
problem is tractable even with multistep-ahead prediction
horizons: the computational complexity issues related to the
physical model are overcome.

The trends of the control variable T s
0 and of the five load

supply temperatures obtained by executing the PI-GRU-based
NMPC for a whole day are reported in Fig. 10. As visible
from Fig. 10(a), the heating station supply temperature never
exceeds its bounds. Note that when the electrical price reaches
its peak, as shown in Fig. 9(b), the NMPC decreases the
heating station supply temperature. On the other hand, T s

0
is raised when the electrical price reaches its minimum. This
predictive ability enables to reduce the production costs, as the
DHS network is charged by raising the supply temperature
when convenient. Moreover, given that the PI-GRU embeds
the network thermal dynamics, the NMPC is able to optimize
the DHS operations while also ensuring that thermal loads are
always supplied with water at temperature within prescribed
limits, despite their distance from the heating station, as evi-
dent from Fig. 10(b).

VI. CONCLUSION

A novel data-based modeling methodology and optimal
control strategy are proposed for DHSs. In fact, they typically
involve large-scale nonlinear dynamical models, which are
not suited for online optimization-based strategies. On the
other hand, DHSs are characterized by significant amounts
of historical data, which can be leveraged to identify com-
putationally efficient data-based models, e.g., through the
use of RNNs. This work first proposes a novel modeling
approach where the potential of RNNs is combined with

a commonly known physical information in DHSs, i.e., the
DHS network topology, leading to the design of PI-RNN
models. It is shown that interconnecting multiple RNNs by
resembling the DHS network topology leads to significant
improvements in terms of faster training procedures, higher
identification accuracy, and reduced modeling complexity,
with respect to pure black-box RNN methods. The developed
PI-RNN model is leveraged for the design of an NMPC
regulator, able to minimize production costs, increase system
efficiency, and respect operational constraints over the whole
DHS network. The proposed PI-RNN-based NMPC strategy
enables to optimize the DHS with a prediction horizon of few
hours and reduced computational times, obtaining enhanced
performances with respect to the standard RNN-based NMPC
and a rule-based control strategy. The proposed methods are
tested on a DHS benchmark referenced in the literature,
i.e., the AROMA DHS, implemented in simulation using the
Modelica environment, achieving promising results both from
the modeling and control perspective.

The proposed PI-RNNs approach can be actually applied
to other types of networked systems where the topology
of physical interactions among subsystems is known, such
as industrial plants, electrical and gas grids, or biological
systems. Thus, future-related works regard the development of
a methodological approach to design physics-informed data-
based models of networked systems, which can be easily
extended to other applications. Additionally, the development
of a physics-informed closed-loop observer could be car-
ried out, given its key role when dealing with RNN-based
regulators. Moreover, it is worth investigating lifelong learn-
ing algorithms for physics-informed models, able to adapt,
through a continuous information acquisition, existing models
to exogenous changes, e.g., given by a variation in the system
interconnections topology.
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