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Abstract: Currently, Pakistan is facing severe energy crises and global warming effects. Hence, there
is an urgent need to utilize renewable energy generation. In this context, Pakistan possesses massive
wind energy potential across the coastal areas. This paper investigates and numerically analyzes
coastal areas’ wind power density potential. Eight different state-of-the-art numerical methods,
namely an (a) empirical method, (b) graphical method, (c) wasp algorithm, (d) energy pattern
method, (e) moment method, (f) maximum likelihood method, (g) energy trend method, and (h) least-
squares regression method, were analyzed to calculate Weibull parameters. We computed Weibull
shape parameters (WSP) and Weibull scale parameters (WCP) for four regions: Jiwani, Gwadar,
Pasni, and Ormara in Pakistan. These Weibull parameters from the above-mentioned numerical
methods were analyzed and compared to find an optimal numerical method for the coastal areas of
Pakistan. Further, the following statistical indicators were used to compare the efficiency of the above
numerical methods: (i) analysis of variance (R2), (ii) chi-square (X2), and (iii) root mean square error
(RMSE). The performance validation showed that the energy trend and graphical method provided
weak performance for the observed period for four coastal regions of Pakistan. Further, we observed
that Ormara is the best and Jiwani is the worst area for wind power generation using comparative
analyses for actual and estimated data of wind power density from four regions of Pakistan.

Keywords: Weibull distribution; wind power density; renewable energy resources; wind energy;
wind speed; Pakistan coastal areas

1. Introduction

Energy is essential for every system in the world to maintain its existence. In this
context, the requirement for energy is increasing over time with technological developments
and population growth [1–3]. Accordingly, searching for available renewable energy
resources (RERs) has become a significant problem because RERs are a considerable factor
affecting any country’s economic shape. RERs are not only considered internal dynamics of
nations but also a critical factor that influences countries that are experiencing political and
military clashes. As is known, RERs are also a fundamental part of social and economic
developments in every society [4,5]. Wind energy (WE) is an environmentally friendly
energy resource used for irrigation, vessels, wheat grinding, and several other fields. Wind
energy seems to be a good substitute for fossil fuels that could contribute to the development
of the economy in the upcoming time. Nations will use RERs rather than fossil fuels to
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meet energy requirements using efficient integration and demand-side management [6–8].
In [9], the authors presented a brief overview of recent developments in wind energy
potentials, wind energy curtailments, mismatches between the installed energy capacities
and generated energy, policies, investments, and the prospects and impacts of wind energy
developments in China. From 1969 to 2016, the involvement of Mexican institutes in the
literature specialized on wind energy was analyzed in [10].

The year-wise growth and capacity of wind power in Pakistan are presented in Table 1.
When wind energy plants were connected to the central grid for the first time in Pakistan,
8 megawatts (MW) of wind power was supplied and zero growth followed for the next
three years. After 2011, a dramatic increase happened until 2019 due to rising interest
in renewable energies worldwide. The highest growth was observed in 2012, 2014, and
2016 [11]. Moreover, the Ministry of Energy (Pakistan) expects that annual installation of
wind energy plants will increase year by year. In [12], the authors discussed the future
success and current scenario of RERs for under-construction and operational RER projects
such as wind energy, solar energy, biogas, biomass, and hydropower, along with the role of
institutions and organizations in the RER field. The proposed wind energy sites in Pakistan
are shown in Figure 1. In [13], the authors explored sites for wind farm installations in
a coastal area of Pakistan. The total area of Pakistan is 796, 095 Km2 including 77, 085 Km2

area with water regions. Pakistan’s total coastal line length is 1100 km, while the wind zone
area is 250 km. In this paper, the authors considered four coastal areas of Baluchistan to
estimate wind power density (WPD) in these regions, as shown in Figure 1.

Table 1. Annual production capacities and growth of wind power in Pakistan.

Year Capacity (MW) Growth (MW) Growth (%)

2007 0 0 -
2008 6 6 -
2009 6 0 -
2010 6 0 -
2011 6 0 -
2012 56 50 +833.4
2013 106 50 +89.3
2014 256 150 +141.6
2015 256 0 -
2016 591 335 +130.9
2017 789 198 +33.6
2018 1186 397 +50.4
2019 1236 50 +4.3
2020 1236 0 -
2021 1335 99 +8.1

Evaluating the economic feasibility of wind projects is particularly challenging due to
the wind’s intermittent nature and the high sensitivity of project profitability to various
parameters. This highlights the importance of uncertainty analysis in the wind power
industry. A combination of sensitivity analysis and the Monte Carlo method for a technical
and economic model of a wind farm assisted in better understanding the impact of uncer-
tainties on the financial risks of wind projects [14]. Wind farms can be fully exploited based
on a detailed representation of statistical characteristics to find the exact wind turbine type
and configuration. This resulted in a clear relation between the error of a Weibull distri-
bution and an estimation error of wind energy generation. Therefore, selecting a suitable
distribution function is pivotal in choosing the correct wind turbines and maximizing wind
energy production [15]. Therefore, carefully selecting estimation functions is critical in
accurately calculating cost analysis and determining optimal wind turbines. In this regard,
we examined eight numerical methods for four sites possessing enormous wind energy po-
tential. This work will provide guidance to future project designers to accurately determine
the cost analysis and extract the maximum wind energy using an appropriate method.
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Widely adopted PDFs are unimodal types, including Weibull, Rayleigh, exponential,
Gauss, gamma, and lognormal functions [16]. The two-parameter Weibull distribution
(WD) function is commonly used to calculate WE characteristics and represent wind speed.
As it is more general than the Rayleigh, the Gauss, and exponential functions, it typically
performs better than the lognormal function [17]. Overall, the gamma function performs
similarly to the Weibull function. Still, it presents the disadvantage that the analytical
expression of the mean, variance, skewness, and kurtosis of the wind power PDF cannot
be determined [18]. Recent literature also proposes a mixture of functions of unimodal
distributions, such as the two-component mixture. In [19], it is described that when there
are two peaks in the wind regime, using a mixture of functions or a maximum entropy
function provides a better characterization of wind than using the conventional Weibull
function alone. However, this is not the case in the current study.

Different numerical methods have been proposed in the literature to estimate WD
parameters. The authors in [20] used the wind speed data of different time spans (daily,
monthly, and annually) during a period of five and a half years (5.5 years) to estimate
the Weibull s parameter (WSP), Weibull scale parameter (WCP), and wind probability
density distribution at 30, 50, and 70 m height in Alacati, Turkey. In [21], the authors
reviewed and analyzed different methods, such as the empirical, graphical, momentary,
and maximum likelihood. A comparative assessment of offshore wind energy potential
was provided using six different numerical methods for calculating WPD [22]. The au-
thors of [23] estimated Weibull distribution parameters at low wind speeds considering
six numerical methods for a selected region. In [24], the authors provided a comparative
analysis of six numerical methods to calculate the coefficient of the Weibull distribution
function at two different heights. The standard deviation method was applied to determine
Weibull parameters considering various potential sites for performance analysis [25]. The
authors of [26] used a technique called four moments mixture for WPD estimation in wind
estimation applications. In [27], the authors utilized various numerical methods to esti-
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mate the potential of the sites Mersing and Port Dickson in Malaysia. The authors of [28]
compared the performance of numerical methods used to calculate Weibull parameters
for Cameroon. Different numerical methods were analyzed and compared concerning
their performance to determine WCP and WSP for Weibull distributions from 2011 to 2015
for six coastal regions in Morocco [29]. The authors of [30] measured wind speed (WS) at
three different heights and calculated the WD parameters (shape and scale) to evaluate
the wind speed characteristics and wind energy potential at seven locations in Cameroon.
In [31], five different numerical methods were analyzed: the maximum likelihood method,
EM, EPM, GM, and modified MLM, and their performance was compared to determine the
effectiveness of WD parameters. The authors of [32,33] provided a comparative analysis
of various methods to determine Weibull PDFs. Moreover, the performance of multiple
methods was analyzed for specific locations to determine the best possible method to
determine the Weibull parameters accurately [34,35].

Our literature review provided various estimation methods applied to different
datasets but showed no superior method compared to other methods considering the
available datasets and probabilistic representation. Therefore, an estimation method must
adhere to the available dataset and estimation functions to extract the maximum wind
power generation. To this end, we attempted to analyze the various potential sites us-
ing multiple methods and provide the best possible outcome regarding maximized wind
generation and reduced associated costs.

The works mentioned above successfully estimated Weibull parameters using six nu-
merical methods and considered various potential sites. However, our work provides
a comparative analysis of eight numerical methods to estimate the WPD of coastal areas
of Pakistan. In this paper eight different numerical methods, an (a) empirical method,
(b) graphical method, (c) wind atlas analysis and application program algorithm, (d) energy
pattern method, (I) moment method, (f) least squares regression method, (g) maximum like-
lihood method, and (h) energy trend method, were analyzed to find the Weibull parameters,
namely WSP and WCP, for the four regions Jiwani, Gwadar, Pasni, and Ormara. Further,
we estimated the WE potential using WS, wind direction, and other data from coastal areas
of Pakistan during a six-year period (2011–2016) which were obtained from the meteorolog-
ical office in Karachi. Moreover, the best numerical method was determined by using the
statistical indicators (i) analysis of variance (R2), (ii) root mean square error (RMSE), and
(iii) chi-square (X2). The authors of the present study also estimated annual mean wind
speed (MWS), standard deviation (SD), and mean WPD densities for the respective areas of
Pakistan. Lastly, we determined the best WE site in the analyzed regions.

Considering the above discussion, our work’s pertinent contributions are as follows:

• Various methods are comparatively analyzed considering the specific dataset of Pak-
istan’s mentioned potential wind energy sites.

• Our comparative analysis provides insight into the best method concerning the avail-
able dataset, i.e., the method that results in maximum wind energy extraction from
the mentioned sites.

• The proposed methods are explained in detail for available datasets and sites to
provide the best possible results regarding maximized energy production.

• Finally, the best possible method is determined for each potential site, the one that
achieved the maximum energy production, which is discussed in detail in the results
section. This provides evidence for the best possible method for each location.

The remainder of our paper is organized as follows: Details of the Weibull distribution
function, probability distribution function, cumulative distribution function, and wind
power density calculation are discussed in Section 2. In Section 3, eight different numerical
methods are analyzed. The critical discussion of results is listed in Section 4. A summary
and a proposal for future work are discussed in Section 5.
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2. Weibull Distribution Function (WDF)

Wind energy is more diffuse and has a more variable flux than other renewable
resources, such as solar or tidal energy. To maximize wind energy benefits, the description
of variation in wind velocity at a specific site is essential; it plays a significant role in
developing wind energy conversion technology [30]. The WDF gives us an accurate
approximation of natural phenomena to apply the laws of probability. It helps find the
speed distribution of wind for studying the load analysis of wind. Recently this method has
received great attention and focus from the application perspective of wind energy; not only
because of its greater flexibility and simplicity but also due to its best fit to experimental
data. WDF is classified into two main types, the cumulative distribution function and the
probability distribution function [36].

2.1. Probability Distribution Function (PDF)

The WD function is a two-parameter function characterized by a WCP and WSP.
These two parameters help find the WS, which gives us the optimum level of performance
for a wind conversion system It also provides the range of speed over which the device
operates and can be represented as

f (v) =
k
v

(v
c

)k−1
e(−(

v
k )

k) (1)

where c, k, and v represent WCP, WSP, and WS, respectively.

2.2. Cumulative Distribution Function (CDF)

Integration of the WD function is called CDF, which shows the integration and cu-
mulation of relative frequency for each velocity interval. The equation of the CDF can be
presented as follows:

F(v) = 1− e−(
v
c )

k . (2)

2.3. Wind Power Density (WPD)

To benefit from WE, it is necessary to determine the WPD. The mathematical expression
for WPD is as follows [30]:

Pw =
1
2

(
ρAv3

)
, (3)

where Pw is the WPD potential, A is the swept area of a wind turbine, ρ is the air density, and
v is the WS. The WPD is highly dependent on the WS (3). While WS is vital in calculating
the WPD, wind direction also plays a significant role in installing wind farms. Moreover,
specific time intervals of wind velocity are also crucial for a region to detect WPD potential.
Several functions are used for calculating the dispersion of WS, whereby the two-parameter
WD function is the most used [30].

3. Evaluation of Weibull Parameters

The shape parameter of a Weibull distribution is crucial for investigating and find-
ing the characteristics of wind waves at a site. The Weibull scale factor shows the WPD
potential of that spot. The larger the value of the WCP, the higher the wind potential.
These two parameters of the WD function affect the distribution curve; therefore, these
parameters should be considered collectively for determining the characteristics of a re-
gion’s wind. Different methods are used to determine the parameters of the WD function,
as justified by various studies [25]. Here we will discuss eight numerical methods, i.e.,
an (a) empirical method, (b) graphical method, (c) wind atlas analysis and application pro-
gram algorithm, (d) energy pattern method, (e) moment method, (f) least squares regression
method, (g) maximum likelihood method, and (h) energy trend method.
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3.1. Graphical Method (GM)

One of the main advantages of using a graphical method is that it can provide a clear
and intuitive way to understand the characteristics of wind speed data. Using the Weibull
distribution in combination with graphical methods, such as probability plots, can provide
a more comprehensive understanding of the data and how well it fits the Weibull model,
which can be very useful in understanding the reliability of a system or product and making
predictions about future failures. Therefore, a GM is used with the Weibull distribution
function [36]. In this method, a graph is constructed so that a straight line is drawn and
built for a cumulative WD, where the shape factor shows its slope. Taking the logarithm of
(2), we get the following expression [28]:

− ln{1− F(v)} = klnv− klnc. (4)

The relation between lnv and −ln{1− F(v)} is shown in (4). We plot so the hori-
zontal axis of this graph from a Weibull paper is v while on the vertical axis, we have
ln(1− F(v))−1. We get a straight line as a result, with a slope “k”. While plotting the
Weibull distribution, v is along the vertical axis and ln(1− F(v))−1 is along the horizon-
tal axis.

3.2. Empirical Method (EM)

The main advantage of using an empirical method in research is that it relies on
observation and experimentation to gather data and test hypotheses, which can provide
strong evidence for or against a theory or claim. An empirical method’s main benefit
is collecting reliable and valid data, which can be used to test hypotheses and establish
causal relationships. EM provide a comprehensive understanding of the data and the
underlying processes that generated them, which can be valuable in making predictions,
design decisions, and improving the performance of a system or product. In this regard,
use of EM is considered to evaluate the Weibull distribution function [5,36]. In EM, data
distribution permits the resolution of the relation between the mean WS value and SD
values between the WSP numerical methods used to compute the WSP and the WCP. WCP
and WSP can be presented as follows [5,36]:

k =

(
v
σ

)1.086
(5)

c =
v

Γ
(

1 + 1
k

) (6)

v =
1
n

n

∑
i=1

vi (7)

σ =

√
1
n

n

∑
i=1

(vi − vm) (8)

where “σ” represents the variance, “v” represent the mean WS, and “Γ” shows the gam-
ma function.

3.3. Energy Pattern Method (EPM)

The energy pattern method’s primary purpose is to identify areas of high and low
wind speeds within a specific region, which can help identify the most promising locations
for wind energy development. The method can also be used to analyze the effect of
topographical features such as mountains, lakes, and coastlines on wind patterns. This
information can be used to optimize wind turbine placement and improve the efficiency
of wind energy projects. The main advantage of the EPM is to identify patterns and
relationships in the dataset, which can be used to make predictions and forecasts about
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future usage. By analyzing patterns in historical data, the EPM can help to identify
trends and forecast the future. Additionally, it could also be used for simulation and
energy optimization by including probability distributions so that the EPM can provide
a comprehensive way of dealing with the randomness and uncertainty of the datasets. The
EPM calculates the mean wind speed [36]. The mean of the WS cubes and the cube of
the MWS are used in this method to calculate the WSP, WCP, and energy pattern factor
”EPF” in [36].

EPF =

(
1
n

)
∑n

1 v3
i

(
(

1
n

)
∑n

1 vi)
3 (9)

k = 1 +
369
E2

PF
(10)

c =
vm

Γ
(

1 + 1
k

) (11)

3.4. Moment Method (MM)

One of the main advantages of using the moment method for wind speed data is that
it can provide a simple and efficient way to describe the wind speed variability at a specific
location. The method can estimate the mean, standard deviation, skewness, and kurtosis
of the wind speed distribution, providing valuable information about the wind speed
characteristics at a particular site. The moment method is a statistical technique used to
estimate the parameters of a Weibull distribution, a common probability distribution used
to model wind speeds. The Weibull distribution is often used because it can model both
the mean and the variability of wind speeds and account for the skewness and kurtosis of
the data. The moment method uses the sample mean, sample standard deviation, sample
skewness, and kurtosis to estimate the parameters of the WD of wind speeds [28]. Further,
the MM is the classical method to find out WDF parameters. The WSP and WCP are
computed from the first two moments of the WDF. These calculations are based on the
average velocity of wind, WCP, and gamma function [36]

k =

(
0.9874
σ/vm

)1.0983
(12)

c =
vm

Γ
(

1 + 1
k

) (13)

where “σ” shows the WCP.

3.5. Energy Trend Method (ETM)

In the context of wind energy systems, using the ETM to analyze wind speed data
can provide insights into the temporal behavior of the wind. This can be useful in under-
standing the expected wind speeds at different times of the year, which can be valuable
information for wind turbine design and operation [5]. Moreover, in the ETM, the WCP
is calculated in the same way as in the maximum likelihood method MLM. The below
mathematical equation can obtain the WSP after finding the energy pattern factor (EPF) [5]:

EPF =

(
1
n

)
∑n

1 v3
i

(
(

1
n

)
∑n

1 vi)
3 (14)

k =
1

3.9557Eo.898
PF

(15)
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c =

(
1
n

n

∑
i=1

vk
i

) 1
k

(16)

3.6. Least Squares Regression Method (LSRM)

The goal of the LSRM is to find the line (or hyperplane) that minimizes the sum of
the squared distances between the predicted values and the actual values in the data set.
The LSRM can be used to model the relationship between wind speed and other variables,
such as wind direction, temperature, and air pressure. Fitting a line to the data using the
LSRM can help to predict wind speeds at a particular location or time based on the values
of these other variables. Some benefits of the LSRM include its relative simplicity and ease
of interpretability and its robustness to outliers in the data. The LSRM also can handle
multiple independent variables and model non-linear relationships.

Taking a double log of (1), we can obtain the following:

ln[−ln(1− f (v))] = kln(c) (17)

The above linear equation can be fitted using the LSRM [31,37]. The CDF F(v) can be
calculated easily using an estimator, the median rank. The WCP and WSP of WD can be
estimated as follows:

k =
n ∑n

i=1 lnv xln[−ln{1− F(v)}]−∑n
i=1 lnv x ∑n

i=1 ln[= ln{1− F(v)}]
n ∑n

i=1 lnv2 − {∑n
i=1 lnv}2 (18)

c =
[

1
n ∑n

i=1 vk
i

] 1
k

(19)

3.7. WAsP Algorithm (WAsPA)

The WAsP (Wind Atlas Analysis and Application Program) algorithm is a tool used to
model the wind resources at a specific location and predict the energy production of a wind
farm. The WAsPA uses atmospheric boundary layer (ABL) and wind flow modeling to
predict the long-term wind speed and direction at a specific site. One of the main benefits of
the WAsP algorithm is its ability to consider the complex topographical and meteorological
conditions that can affect wind patterns at a specific location. The WAsPA uses detailed
terrain data and statistical models of wind flow to provide highly accurate predictions of
wind resources and energy production [37]. The primary two requirements for the WAsPA
are (a) the WPD of the fitted WD is the same as of the observed WPD and (b) the average
values are the same for both the observed WD as well as fitted WD. The relation between
observed and average proportional values is as follows:

X = 1− F(v) (20)

where “X” shows the proportional values for the observed WS greater than the average WS.
The CDF F(v) estimates the proportional values that are smaller than v, whereas 1 − F(v)
calculates the proportional values that are greater than v, while the MWS is represented in
Equation (21).

v = cΓ
(

1
k
+ 1
)

(21)

For fulfilling the second requirement of the WAsPA we substitute (21) in (2) to obtain
the following equation

X = exp

[
−Γ
(

1
k
+ 1
)k
]

(22)
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which can be expressed as

− lnX = Γ

(
1
k
+ 1
)k

(23)

In performing the WAsPA to fit, the WD, windo-grapher 5 software determined X and
solved Equation (23) iteratively, using Brent’s method to calculate the WSP [37].

3.8. Maximum Likelihood Method (MLM)

The MLM is a statistical technique used to estimate the parameters of a probability
distribution that best fit a set of observed data. In wind speed, the MLM can estimate
the parameters of a probability distribution that describe the wind speeds at a particular
location. For example, a commonly used probability distribution for wind speeds is the
Weibull distribution, often used to model wind speeds in the wind energy industry. By
using the MLM to estimate the parameters of the Weibull distribution, it is possible to
make accurate predictions of future wind speeds at a given location [27]. The maximum
likelihood estimation approach is a mathematical statement recognized as the WD of
a period of WS data [27]. In the MLM, numerical iterations are required to calculate the
WCP and WSP of the WD. The parameters WCP and WSP of the WD are computed through
the following equations:

k =

(
∑n

1 vk
i ln(vi)

∑n
1 vk

i
− ∑n

1 ln(vi)

n

)−1

(24)

c =
(

1
n ∑n

1 vk
i

)1/k
(25)

4. Critical Analysis of Results
4.1. Wind Speed (WS) Statistics from All Regions

In this paper, coefficients of the WD function and WE characteristics were determined
for the coastal areas of Pakistan (Gwadar, Jiwani, Ormara, and Pasni). Wind data from 2011
to 2016, measured at a 50 m height, were obtained from Karachi’s meteorological office.
WE potentials were statistically evaluated for all regions based on hourly WS data. The
actual WS data and different numerical methods were used to calculate WD parameters.
Furthermore, the wind rose chart was used to visualize the WS patterns in all regions, as
represented in Figure 2, which shows the wind density direction concerning all areas’ wind
frequencies. The wind rose chart helps with the decision for wind design machines at any
site. The dominant WS direction is south to the west for Gwadar, southeast to the west for
the Jiwani region, southwest to the west for the Ormara region, and south to the southwest
for Pasni, as depicted in Figure 2.

Hourly average WS data over six years for all four regions at 50 m height are shown
in Table 2. The maximum annual MWS of 5.25 m/s was detected at Ormara with an SD
of 1.914 m/s, and the minimum MWS of 4.423 m/s was observed at Jiwani with an SD
of 1.990 m/s. The data are arranged by monthly maximum and minimum, and daily low
and high (in these months). The MWS, used to measure the seasonal variation in WS for
all regions, is shown in Figure 3. According to Figure 3, the maximum monthly MWS was
detected in May/Dec. Almost a minimum MWS was noticed in October in all regions.
Moreover, years of representation of WS data are also shown in Figure 4 to visualize the
WS statistic. It can be observed that the Ormara region is the windiest area compare to the
others, while Jiwani is the least windy area.
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Table 2. WS (m/s) statistics of all regions.

Regions MWS Minimum Maximum SD

Gwadar 4.579 0.299 10.642 2.088
Jiwani 4.423 0.263 10.212 1.990

Ormara 5.250 0.590 10.148 1.914
Pasni 4.652 0.244 11.241 2.199

4.2. Statistical Error Analysis (SEA)

The SEA is used to find the efficiency and best numerical method for each particular
site. In this context, three statistical methods, such as RMSE, R2, and X2 are used to
calculate the efficiency and best method among eight numerical methods for each site. [31].

RMSE =

(
1
N

N

∑
i=1

(yi − xi)
2

) 1
2

(26)

X2 =
∑N

i=1(yi − xi)
2

N − n
(27)
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R2 =
∑N

i=1(yi − z)2 −∑N
i=1(yi − xi)

2

∑N
i=1(yi − z)2 (28)

where N, xi, z, n, and yi represent the number of observations, predicted data of WD, mean
WS, number of constants used, and actual data, respectively. The aforementioned statistical
error analysis is derived for eight numerical methods and gives rank to each numerical
method to detect the best approach for each dataset. A detailed discussion follows in the
coming section.
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4.3. Analysis of the WD Function

The WD function is defined by the probability function f(v) corresponding with MWS.
The WD functions for the six years 2011–2016 for the regions Gwadar, Jiwani, Ormara, and
Pasni for eight numerical methods based on WSP and WCP are presented in Figure 5. The
MWS and SD data for all regions are listed in Table 3. Figure 5 verifies how the curves
representing the WD function for each of the eight numerical methods included in this
paper fit the histograms, giving an idea of which method offers the best fit to the data of
collected WS. Furthermore, the statistical analysis results are listed in Tables 4–7. Finally,
Table 8 shows the ranking of all numerical methods for all regions.
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Table 3. Monthly WS and SD for all regions.

Months

Regions

Gwadar Jiwani Ormara Pasni

WS SD WS SD WS SD WS SD
(m/s) (m/s) (m/s) (m/s) (m/s) (m/s) (m/s) (m/s)

Jan 3.98 2.27 3.95 2.24 3.81 1.96 4.56 2.50
Feb 4.76 2.44 4.88 2.48 4.40 2.05 5.08 2.72
Mar 4.83 2.28 4.56 2.16 5.24 2.08 4.97 2.34
Apr 5.27 2.26 4.81 2.10 5.92 2.01 5.06 2.17
May 5.84 2.21 5.49 2.25 7.39 2.19 5.50 2.19
Jun 5.04 2.17 4.91 2.18 6.86 2.30 4.62 2.09
Jul 4.85 1.81 4.81 1.71 6.74 2.18 4.19 1.80

Aug 4.49 1.77 4.31 1.51 5.96 1.89 3.96 1.73
Sep 4.05 1.72 3.90 1.55 5.39 1.91 4.16 1.85
Oct 3.60 1.68 3.39 1.56 4.07 1.73 4.05 2.02
Nov 3.74 2.10 3.55 1.97 3.74 1.70 4.44 2.44
Dec 4.71 2.86 4.52 2.64 3.62 1.89 5.52 3.23
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Table 4. Weibull parameters and statistical analysis for Gwadar.

Numerical Methods
Weibull Parameters Statistical Tests

WSP WCP R2 RMSE X2

Maximum likelihood 2.1350 5.1700 0.9620 0.0140 0.0213
Least squares 2.1440 5.1720 0.9577 0.0138 0.0229

WAsP 2.1070 5.1550 0.9501 0.0149 0.0258
Empirical method of Justus 2.1478 5.1426 0.9548 0.0143 0.0248

Energy pattern method 2.1300 5.1425 0.9522 0.0147 0.0255
Energy trend method 2.1710 5.0438 0.9454 0.0161 0.0261

Moment method 2.1365 5.1425 0.9532 0.0146 0.0255
Graphical method 2.0970 5.1510 0.9480 0.0151 0.0260

Table 5. Weibull parameters and statistical analysis for Jiwani.

Numerical Methods
Weibull Parameters Statistical Tests

WSP WCP R2 RMSE X2

Maximum likelihood 2.174 4.993 0.9465 0.0161 0.0325
Least squares 2.160 5.003 0.9457 0.0162 0.0322

WAsP 2.156 4.983 0.9424 0.0167 0.0341
Empirical method of Justus 2.199 4.994 0.9502 0.0157 0.0317

Energy pattern method 2.182 4.994 0.9478 0.0160 0.0320
Energy trend method 2.072 4.844 0.9063 0.0213 0.0549

Moment method 2.188 4.994 0.9487 0.0159 0.0318
Graphical method 2.107 4.979 0.9336 0.0177 0.0357

Table 6. Weibull parameters and statistical analysis for Ormara.

Numerical Methods
Weibull Parameters Statistical Tests

WSP WCP R2 RMSE X2

Maximum likelihood 2.354 5.915 0.9226 0.0177 0.0354
Least squares 2.178 5.973 0.9041 0.0182 0.0367

WAsP 2.496 5.978 0.9461 0.0153 0.0270
Empirical method of Justus 2.375 5.924 0.9266 0.0173 0.0350

Energy pattern method 2.392 5.923 0.9283 0.0172 0.0343
Energy trend method 2.188 4.726 0.8082 0.0284 0.0935

Moment method 2.366 5.924 0.9256 0.0174 0.0352
Graphical method 2.167 5.719 0.8506 0.0239 0.0675

Table 7. Weibull parameters and statistical analysis for Pasni.

Numerical Methods
Weibull Parameters Statistical Tests

WSP WCP R2 RMSE X2

Maximum likelihood 2.053 5.255 0.9294 0.0173 0.0220
Least squares 2.163 5.236 0.9505 0.0151 0.0111

WAsP 1.918 5.166 0.8799 0.0220 0.0339
Empirical method of Justus 2.069 5.251 0.9328 0.0170 0.0216

Energy pattern method 2.016 5.250 0.9193 0.0183 0.0233
Energy trend method 1.863 4.822 0.8037 0.0297 0.0815

Moment method 2.057 5.251 0.9300 0.0173 0.0218
Graphical method 2.064 5.407 0.9446 0.0150 0.0202
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Table 8. Ranking by statistical test results for eight numerical methods.

Numerical Methods
Regions

Discussion
Gwadar Jiwani Ormara Pasni

Maximum likelihood 1st 5th 5th 5th -
Least squares 2nd 4th 6th 1st -

WAsP 6th 6th 1st 7th -
Empirical method of Justus 3rd 1st 3rd 3rd 1st choice

Energy pattern method 5th 3rd 2nd 6th 3rd choice
Energy trend method 8th 8th 8th 8th -

Moment method 4th 2nd 4th 4th 2nd choice
Graphical method 7th 7th 7th 2nd -

4.4. Statistical Analysis of WSP and WCP

Statistical analyses are used to further explore the performance of these various
procedures and their ability to match the measured results precisely. In this context, the
statistical analysis results for a height of 50 m are listed in Tables 4–7. According to the
WSP, the observed value range for Gwadar was from 2.0970 to 2.1710, the WSP value range
for Jiwani was 2.072 to 2.182, the WSP value range was from 2.188 to 2.496 for Ormara, and
the WSP value varied from 1.863 to 2.069 for Pasni, all listed in Tables 4–7. According to the
above analysis, the Ormara region has greater constancy of WS than the other three regions,
while the least constant region is Pasni compared to the other three regions. The value
range of the WCP for all regions varied almost from 4 to 6, but the range for the Ormara
region was 4.726 to 5.978, which means Ormara is windier than the other regions. Moreover,
the theoretical results’ accuracies are listed in Tables 4–7 for each site.

Furthermore, the ranking of eight numerical methods was calculated using statistical
analysis results (RMSE, X2, and R2). The numerical method is a good fit when the R2

value is closer to unity while the X2 value is closer to zero. According to these rules, eight
numerical methods were ranked, as shown in Table 8. From Table 8, as we expected, it is
impossible to say that one method is the best solution for all sites. From this analysis, for
each dataset there is one preferred method, but this can be the worst for another dataset.
The methodology used in this paper is necessary. For example, depicted in column 2,
Table 8, the ML gave good results for the Gwadar region, while it did not give satisfactory
results for the rest of the areas. Similarly, the EMJ gave the best outcome for the Jiwani
region, but not the best for the other regions. Furthermore, the cumulative performance of
each method for all regions is mentioned in the discussion column in Table 8. The EMJ and
GM methods are the best and worst compromise, respectively, for all regions.

4.5. Evaluation of Power Density

The MWS and WPD were calculated for all coastal regions of Pakistan by using eight
numerical methods to obtain WD parameters. The calculated results were compared with
actual MWS and WPD values collected from measurements. We know that the difference
between estimated WE and actual WE and the WD function data can be used to evaluate
the accuracy of all eight numerical methods. The MWS “Vm” and WPD “Pm” for real-time
data can be obtained using (29) and (30).

vm =
1
n

n

∑
i=1

vi (29)

Pm =
1
2

ρV2 (30)

The average of measured WS was 4.58 m/s, 4.42 m/s, 5.27 m/s, and 4.67 m/s and the
calculated power densities were 106 w/m2, 93.7 w/m2, 145.7 w/m2, and 116.3 w/m2, in
Gwadar, Jiwani, Ormara, and Pasni, respectively. The results above were computed using
real-time hourly WS from 2011 to 2016. According to this six-year period (2011–2016) of
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WS data, we analyzed that Ormara has a higher WE potential than the other three regions
regarding the average WS and WPD. Furthermore, monthly and annual average WS and
WPD for all regions are listed in Table 9 to visualize the complete scenario, such as minimum
and maximum WS and WPD in the six years. The maximum WS and WPD are observed in
the summer session, while the minimum WS and WPD are observed in the winter session.

Table 9. Monthly and annual average WS and WPD for all regions.

Months

Regions

Gwadar Jiwani Ormara Pasni

WS WPD WS WPD WS WPD WS WPD
m/s w/m2 m/s w/m2 m/s w/m2 m/s w/m2

Jan 3.98 82.50 3.95 79.20 3.81 63.00 4.56 118.40
Feb 4.76 123.90 4.88 131.20 4.40 87.40 5.08 160.90
Mar 4.83 119.70 4.56 101.40 5.24 130.10 4.97 133.40
Apr 5.27 140.00 4.81 108.10 5.92 170.10 5.06 124.30
May 5.84 173.80 5.49 152.10 7.39 310.70 5.50 151.30
Jun 5.04 124.70 4.91 118.20 6.86 263.70 4.62 99.40
Jul 4.85 100.10 4.81 95.10 6.74 246.60 4.19 71.50

Aug 4.49 83.30 4.31 67.40 5.96 169.50 3.96 61.20
Sep 4.05 63.30 3.90 54.00 5.39 131.60 4.16 72.00
Oct 3.60 48.40 3.39 40.20 4.07 64.20 4.05 74.00
Nov 3.74 67.70 3.55 40.20 3.74 52.90 4.44 109.30
Dec 4.71 145.00 4.52 122.10 3.62 52.90 5.52 222.00

Annual 4.68 106.00 4.42 93.70 5.27 145.70 4.67 116.30

The help of WSP and WCP also obtained the average WS and WPD. The estimated
average WS, Vm, and WPD, Pw, of the WD function can be calculated by using
Equations (31) and (32) [27]:

Vw = cΓ
(

1 +
1
k

)
(31)

Pw =
1
2

ρc3Γ

(
1 +

1
k

)
(32)

Furthermore, the actual values were compared with estimated values to check for
conformity. The WPD and MWS of eight numerical methods are listed in Table 10. In
terms of calculated WPD based on the six-year data period examined, the EM, MLM, EPM,
MM, LSRM, and WasPA algorithms showed optimum performance. At the same time, the
ETM and GM provided weak performance for the whole period in four coastal regions
of Pakistan.

Table 10. Average WS and WPD for eight numerical methods.

Numerical Methods

Regions

Gwadar Jiwani Ormara Pasni

WS WPD WS WPD WS WPD WS WPD
m/s w/m2 m/s w/m2 m/s w/m2 m/s w/m2

Maximum likelihood 4.58 105.26 4.42 93.28 5.24 145.34 4.66 114.77
Least squares 4.50 104.98 4.43 94.38 5.29 159.43 4.64 108.06

WAsP 4.57 105.64 4.41 93.41 5.30 144.00 4.58 117.29
Empirical method of Justus 4.55 103.03 4.42 92.40 5.25 145.05 4.65 113.63

Energy pattern method 4.55 103.81 4.42 93.03 5.25 144.23 4.65 116.58
Energy trend method 4.47 96.27 4.29 89.08 4.19 78.65 4.28 98.72

Moment method 4.55 103.52 4.42 92.81 5.25 145.46 4.65 114.29
Graphical method 4.56 105.87 4.42 93.28 5.06 140.57 4.79 124.36
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5. Conclusions

This research presents the best numerical approach for determining the coefficients of
the Weibull distribution function in four different coastal regions of Pakistan. All methods
presented in this article were applied to monthly and yearly WS data for a period ranging
between 2011 and 2016. The numerical results were analyzed by using three different
types of statistical error tests, i.e., analysis of variance (R2), chi-square (X2) and RMSE. The
suggested simulation model was proven appropriate for analyzing wind power generation
capacity. It has been reported that it is critical to account for the monthly variations in wind
speed using the Weibull approximation since wind energy potential varies greatly. Ac-
cording to the simulation findings, Ormara has the largest wind energy potential, whereas
Jiwani is the area least possible for renewable energy. Statistical tests revealed that es-
timated values from all techniques, except for the ETM and GM, were close to actual
data from all four sites. Future studies will consider more potential sites using the eight
numerical methods.
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