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Abstract: The electrification of the transport sector together with large renewable energy deployment
requires powerful tools to efficiently use energy assets and infrastructure. In this framework, the
forecast of electric vehicle demand and solar photovoltaic (PV) generation plays a fundamental role.
This paper studies the impact of forecast accuracy on total electric cost of a simulated electric vehicles
(EVs) charging station coupled with true solar PV and stationary battery energy storage. The optimal
energy management system is based on the rolling horizon approach implemented in with a mixed
integer linear program which takes as input the EV load forecast using long short-term memory
(LSTM) neural network and persistence approaches and PV production forecast using a physical
hybrid artificial neural network. The energy management system is firstly deployed and validated
on an existing multi-good microgrid by achieving a discrepancy of state variables below 10% with
respect to offline simulations. Then, eight weeks of simulations from each of the four seasons show
that the accuracy of the forecast can increase operational costs by 10% equally distributed between
the PV and EV forecasts. Finally, the accuracy of the combined PV and EV forecast matters more than
single accuracies: LSTM outperforms persistence to predict the EV load (−30% root mean squared
error), though when combined with PV forecast it has higher error (+15%) with corresponding higher
operational costs (up to 5%).

Keywords: optimal energy management system; LSTM; EV forecast; microgrid operation; PV
forecast; MILP

1. Introduction

The transportation sector is a major polluter, as it accounted for 28.51% of the total
greenhouse gas emissions in 2021 in Europe [1]. The evolution of current transportation
fleets to electric vehicles (EVs) (10% of the road vehicle fleet is expected by 2030 [2])
will accelerate the green transition and decarbonization of Europe. This rapid increase
in EV adoption will considerably affect electric grids since a large charging network is
required, with a special focus on optimal planning and operation of public charging stations
(CSs). Therefore, it is essential to monitor and regulate the charging process, to exploit
renewable energy sources (RESs) locally, and, where needed, to include stationary storage.
Implementing novel emerging technologies for the optimization of the charging process is
crucial for exploiting RESs, especially solar photovoltaic (PV) production [3], and stabilizing
the grid [4]. EVs charging stations powered by the grid, PV, and a battery energy storage
system (BESS) are analyzed by the scientific community from the placement [5], sizing [6],
implementation [7], and energy scheduling [8] points of view, among others. From this
perspective, CS integration is being investigated under the lens of microgrids (MGs) [9].
In the scientific literature on MGs, several works stressed the importance of optimizing
MG operation [10], as well as the relevance of using accurate forecasting methods in the
optimization of MG energy management [11,12]. Forecasting and optimization techniques
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are also being developed considering the achievements in managing uncertainties in
MGs [13].

Load forecasting plays a significant role in demand-side management (DSM) [14–16],
where it serves as a crucial element in balancing load demand and power production.

EV load forecasting methods are categorized into traditional statistical models and
artificial intelligence models [17]. Traditional models include time series analysis, au-
toregressive integrated moving average (ARIMA), regression analysis, Kalman filtering,
and statistical methods, while artificial intelligence methods encompass artificial neural
network (ANN), support vector machine, and deep learning (DL) models. Initially, sta-
tistical models were preferred due to limited EV charging data, necessitating the creation
of realistic scenarios through computational algorithms [18]. However, with the greater
availability of electric vehicle supply equipment (EVSE) load data, the focus has shifted to
data-driven approaches, particularly ANNs, in EV power load forecasting research [19,20].
In [21], a review of EV scheduling, clustering, and forecasting, the authors report that
artificial intelligence models have been the preferred approach for many researchers, as
they perform better than other probabilistic models.

Long short-term memory (LSTM) recurrent neural networks (RNNs) appear to be
exceptionally proficient in predicting load across diverse time series problems [22]. In [23],
an LSTM model combined with feature engineering empirical mode decomposition (EMD)
is benchmarked against seasonal autoregressive integrated moving average (SARIMA)
obtaining a skill score up to 73% relative to 7-day persistence. The literature consistently
demonstrates the superior performance of LSTM networks in the field of EVs charging
forecasts. Hence, based on these findings, we have selected the LSTM model as the
cornerstone of our work due to its demonstrated effectiveness and suitability for the task at
hand.

Moving to the EVs charging optimization, the operation of CSs relying on PV and BESS
was performed with several different methods and goals. Selected approaches generally
aim to achieve cost minimization [24] or profit maximization [25] according to the use case,
but also enhanced grid support through self-consumption [26] and charging scheduling [27]
the effectiveness of pre-calculated schedules can be compromised by uncertainties in the
arrival and departure times of EVs and fluctuations in energy demand. Therefore, real-
time operation algorithms must have robustness with respect to load as well as forecast
uncertainties, as described in the previous subsection.

Regarding optimization methods, probabilistic approaches are robust and reliable in
uncertain environments but suffer from heavy computational time [28]. This drawback
is partially solved by robust optimization (RO) [29]. Model predictive control (MPC) is
extensively used for robustness and reliability obtained through the receding horizon
approach but also suffers from high computational time. Therefore, MPC is often used
as the later stage in a multi-stage formulation to amend the decision made by an earlier
algorithm in real time. Other relevant methods are metaheuristics algorithms and fuzzy
logic optimization [30,31].

Deterministic models, and mixed-integer linear programming (MILP) in particular, are
still the most widely adopted because they can identify the global optimal solution given
convexity and a continuously differentiable cost function, with computational time com-
patible with industrial applications. MILP models are used both in real-time operation [32]
or in day-ahead scheduling as a first stage that can then be adapted in real time through an
operation layer [33]. Indeed, a multiple-stage optimization considers the uncertain behavior
of the PV production and EV demand providing an improved solution for real-time energy
management.

While stochastic and robust optimization approaches offer a more accurate and mod-
elically correct way to handle uncertainties, their computational complexity often makes
them impractical for real-time optimization. These approaches require solving extensive
scenario-based models or worst-case formulations, leading to significantly longer solution
times. Therefore, despite their robustness, they are not feasible for applications needing
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immediate decision-making. MILP, on the other hand, strikes a balance between accuracy
and computational efficiency, making it suitable for real-time applications where timely
decisions are crucial.

In this context, the predict-then-optimize (PTO) framework is still the most widely
adopted to optimize this kind of systems. The PTO integrates prediction and optimization
processes to enhance decision-making under uncertainty. In this framework, the prediction
phase involves using statistical or machine learning models to forecast future uncertain
parameters, such as demand, prices, or weather conditions. These forecasts are then input
into an optimization model, which aims to find the best decision that minimizes cost
or maximizes profit, given the predicted values. The key interaction between these two
processes lies in how the predictions inform the optimization model. Accurate predictions
lead to more effective optimization, as the optimization process relies on these forecasts
to construct a solution that is robust against the predicted uncertainties. This interplay
ensures that the optimization model is adaptive and responsive to future scenarios, thus
enhancing the overall performance of the decision-making process.

Despite works on energy management system (EMS) validation and testing conducted
in several universities and research centers (Public University of Navarre [34], Aalborg
University [35], Center for Renewable Energy Sources and Saving (Athens) [36,37], and
in Catalonia Institute for Energy Research [38]), there is still a lack of literature on the
impact of prediction errors on microgrid operations, both in simulations and experimental
facilities.

The scope of this work is to evaluate the impact of EV forecasting in the optimization
framework, meaning that in addition to forecast skill these methods affect the operation
of the microgrid from a technical and economic point of view. This paper evaluates how
different EV forecast methods affect a sequential decision-making process, which is the
outcome of a two-stage optimization tool. This study is performed on a physical MG
located in Politecnico di Milano, Department of Energy [39], in addition to offline computer
simulations.

This work is a novel contribution because the literature has yet to adequately cover
how forecasting errors affect operational costs in a true functioning microgrid. While the
predict-then-optimize approach is widely recognized, only a few studies have thoroughly
examined its practical limitations. Notably, it is not well understood how the accuracy of
load and solar forecasts influences the operational costs for a dynamic pricing electric tariff
downstream of the optimizer and control equipment. Only a few papers have explored the
error impact of different electric vehicle (EV) forecasting techniques within a hierarchical
predictive control strategy aimed at optimizing microgrid operations. Finally, a significant
distinction of this study compared to others is its real-time experimental validation and
long-term simulation using highly accurate data from MG2Lab. For instance, a significant
gap in the literature is the use of true building-scale microgrids in testing. In [40], a
microgrid EMS is designed and implemented in a small bench-top testbed and further
implanted at a commercial building with a maximum 300 kW load; however, all of the
DERs are hardware-in-the-loop simulated by power converters rather than by true batteries
and solar PV modules. The results are therefore much more credible than just a software
simulation but lack some of the characteristics and uncertainty when controlling true
Li-ion electrochemical cells and true silicon PV cells. Attempting to cover these gaps, the
paper presents a comprehensive analysis of EV forecasting techniques error impacts, a
comparative analysis and experimental validation between two methodologies (LSTM and
persistence), and a long numerical analysis based on historical data.

The remainder of the article is structured as follows. Section 2 presents the optimiza-
tion and forecasting methodologies employed in the energy management system of the
proposed case study, described in Section 3. In Section 4, the model implementation is
explained, as well as how the experimental testing facility is used. Section 5 includes the
relevant results of this work, which is summarized and concluded in Section 6.
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2. Methodology
2.1. Optimal Dispatch

The microgrid employs a two-layer EMS, previously described in [41], based on a
rolling horizon (RH) approach where the first layer of the EMS is run every 15 min. The
first layer determines the optimal dispatch of the BESS over the next 24 h, taking as input
the forecast of both the EV load and PV generation, to minimize the operational cost of the
system. The optimizer always takes into account technical constraints. However, as power
unbalances inevitably arise due to forecast errors it is necessary to adopt a second layer to
correct these unbalances in real time.

The first layer adopts an MILP formulation where variables model different power flows
within the system (e.g., PV production, import/export from/to the grid, charge/discharge
of the BESS). The optimal operation of the microgrid over the optimization horizon is
evaluated by minimizing the total operational costs:

OF = min

(
∑

t ∈ T1

ΦOpex
t

)
(1)

where:
ΦOpex

t = cpurch
t ·Pgrid,purch

t ·dt1 − rsell
t ·Pgrid,sell

t ·dt1

+ ∑
es∈ES

[
cTP

es ·Pdisch
es, t ·dt1 + ρdev·SOEdev

t

]
+ccurt·NDcurt

nd,t ·dt1 + cUD·UDt·dt1

(2)

The main components of the aforementioned and following equations are explicitly
stated in the Appendix A.

Meanwhile, the total operational cost ΦOpex
t associated to each timestep t is given by

the sum of four main components:

• cpurch
t ·Pgrid,purch

t ·dt1 − rsell
t ·Pgrid,sell

t ·dt1 represents the cost and revenue (negative cost)
coming from the withdrawal and injection of power from/into the grid;

• ∑es∈ES
[
cTP

es ·Pdisch
es, t ·dt1 + ρdev·SOEdev

t

]
is the sum of the BESSs’ throughput-based O&M

cost, and penalty cost associated with their state of energy (SOE) deviations;

ccurt·NDcurt
nd,t ·dt1 + cUD·UDt·dt1 are penalty costs for curtailment of RES generation

and unmet demand.
Forecasted PV production is an input to the EMS and can be curtailed if necessary.

The BESSs are modeled on an energy basis with self-discharge efficiency, and separate
charge/discharge efficiencies which are a function of battery power, that are evaluated
through piecewise linear interpolation. To avoid damage, constraints are imposed to limit
the state of charge (SOC) between lower and upper bounds and the maximum power
that can be charged/discharged by the BESS. In addition, there is a constraint to ensure a
balanced SOC between the two BESSs. Interaction with the electrical grid is constrained by
setting a maximum value on the power that can be imported/exported by the microgrid.
Details about the mathematical formulation of the constraints and detailed nomenclature
can be found in Appendix A: Energy Management System.

The second layer is a heuristic approach taking as input BESS and grid setpoints
determined by the first layer as well as discrepancies between the PV and EV load forecasts
and the actual values. Depending on the signs and magnitude of these errors, the microgrid
can be either in “power excess”, where the inbound power flows are higher than the
outbound ones, or in “power deficit”. The logic adopted is to keep the first layer setpoint of
power exchanged with the electrical grid. First, either the unmet demand or PV curtailment
is reduced in the case of “power excess” and “power deficit”, respectively. If that this is
not enough, or if unmet demand and PV curtailment set by the first layer are equal to
zero, the BESSs intervene to reduce the power balance. When the BESSs cannot correct the
unbalances then the setpoint of the power exchanged with the grid is modified. Lastly, in
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the extreme case of unbalance even after all the previous points, either PV curtailment or
unmet demand is increased in the case of “power excess” and “power deficit”, respectively.

2.2. EV Forecasting
2.2.1. LSTM with Attention

The EV charging power forecast is performed by an LSTM encoder–decoder with
attention, inspired by Bahdanau [42]. The mathematical formulation of the LSTM and
attention mechanism is described in Appendix B: EV Charging Forecaster. Each encoder
and decoder is a single-layer LSTM of 24 hidden units, a value chosen by hyperparameter
optimization. Training is performed with the Adam optimizer and early stopping to limit
overfitting. The input vector is the most recent 3 days of EV charging power measurements
and time-keeping variables such as day of week and time of day. The output vector is
the next three days of charging power values. Power is always a 15 min interval average
power time series. The training data subset is the EV charging load data in Section 4.2, less
than 8 weeks—from each winter, spring, summer, and autumn—which are used for the
test data subset. The model is trained using an early stopping criterion which monitors the
validation loss, calculated on the final 20% of the training subset.

2.2.2. Persistence

The benchmark forecast model is naive persistence, which estimates any timestep t
as equal to the past timestep t − l, where l is the lag value or the number of timesteps in
the past. In a modified version sometimes called seasonal persistence, the lag value l is
chosen to match an appropriate seasonality in the data, often daily or weekly for electric
consumption. In the present case study, the EV charging data present a strong weekly
seasonality; therefore, the value of lag is chosen equal to 672 steps (7 days). The timestep
t is forecasted with the measurement from t − 7d or t − 168 if the time series interval is
1 h. This is described in Equation (3), where y f orecast is the forecasted value and ytrue the
measured one.

y f orecast(t) = ytrue(t − l) (3)

While it is possible to use persistence for a day-ahead solar PV forecast, the benchmark
would not be very useful. Weather conditions in many climates, including the humid
subtropical designation of the solar plant in this study, can change dramatically between
consecutive days, so even very poorly trained solar PV forecast models could outperform
1-day persistence. Persistence is more common for solar nowcasting where the time horizon
is 1 to 60 min.

2.3. PV Forecasting

The solar PV forecast is a hybrid physical–regression method developed and validated
on the Multi-Good MicroGrid Laboratory (MG2Lab) microgrid in [43]. The model outputs
a day-ahead solar production time series at 15 min intervals. The model inputs are a
numerical weather forecast for the location, physical plant specifications from the PV
modules, and the most recent day of solar production time series. The model provides the
solar production forecast based on numerical weather prediction for the week ahead at the
considered locations and clear-sky radiation (CSR) of the plane of arrival to the array. The
numerical weather forecast is from the European Center for Medium-Range Forecasts [44]
and it is provided by a private company. The PV forecasting tool uses the global horizontal
irradiance (GHI), air temperature, wind direction and speed, precipitation, humidity, and
pressure. The list of the employed data is added in the following Table 1. A share of 80% of
the whole dataset is used for the training and the remaining 20% for the validation.
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Table 1. List of employed data.

Input Parameters Units of
Measure

Deterministic Global horizontal irradiance
Clear-sky solar radiation W/m2

Weather
forecasts

Relative humidity %

Wind direction degree

Pressure Pa

Rain mm

Wind speed m/s

Ambient temperature Celsius

Global horizontal irradiance
Solar radiation W/m2

The CSR model is based on reference evaluation of solar transmittance, 2 bands
(REST2) that considers more variables than similar atmospheric models and is validated
by the literature as one of the best-performing CSR models [45]. Finally, the GHI must be
tilted to the plant-of-arrival of the solar plant, given its azimuth and tilt angles.

The ANN is trained daily on the previous day’s measured values in a supervised
learning fashion, such that the weights and biases are optimized to produce a series of past
outputs given past inputs. The ANN is retrained once per day to learn short-term patterns,
such as a weather forecast which is consistently under estimating temperature.

2.4. Predict-Then-Optimize Approach

In this work, the predict-then-optimize framework, which integrates forecasting mod-
els and optimization techniques, has been adopted to enhance decision-making under
uncertainty while maintaining computational tractability for implementation in an exper-
imental facility. In this context, forecasts of EV load and PV generation, as described in
Sections 2.2 and 2.3, are used as inputs for the optimization process.

In particular, the EMS employs a rolling horizon (RH) approach where the first layer
(where the optimization phase is performed) utilizes these forecasts within an MILP formu-
lation to evaluate the optimal operation of the microgrid, including PV production, grid
interactions, and BESS operations. The MILP model ensures that the first layer of the EMS
can find a globally optimal solution under the given forecasted conditions, balancing the
operational costs defined in Section 2.1. The real-time adjustments are then handled by
the second layer, which corrects any discrepancies arising from forecast errors, thereby
maintaining system balance and operational efficiency.

3. Error Metrics

Statistical error metrics are necessary for training forecasting models and provide
a summary of forecast performance to compare to other works in the literature. In the
equations below, y is always a time series of true measurements or forecasted values and n
is the length of the series.

• Root mean squared error (RMSE) is the square root of the mean squared error (MSE),
making the units of RMSE the same as the data for a helpful comparison. Since it is
closely related to the MSE which is used to train the LSTM, RMSE will also closely
reflect how well a model was trained;

RMSE =

√
1
n∑(ytrue− y f orecast

)2
(4)
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• Mean absolute error (MAE) is also reported here because it is common in the literature
and very intuitive, giving equal weight to large and small errors;

MAE =
1
n ∑|ytrue−y f orecast

∣∣∣ (5)

• Symmetric mean absolute percentage error (SMAPE) is somewhat contested in the
literature and there is no one single definition. However, the following definition is
adequate because in this application there is no practical or theoretical problem with
negative SMAPE values. Since all SMAPE definitions have terms in the denominator
it is necessary to omit from the metric timesteps when the sum of ytrue and yestimated is
zero.

SMAPE =
100
n ∑

|y true − y f orecast

∣∣∣
0.5
(

ytrue + y f orecast

) (6)

4. Experimental Setup and Case Study

This section presents the case study investigated in this work as well as the testing
facility, located at Politecnico di Milano (Milan, Italy), where the experimental activities
have been carried out. The MG2Lab setup available in the Department of Energy of Politec-
nico di Milano integrates different distributed energy resources like solar PV, combined
heat and power, BESS, and hydrogen storage. Details about the microgrid, which can be
operated both grid-connected or grid-islanded, can be found in [43].

4.1. Experimental Facility and Model Implementation

The selected MG2Lab’s components, as well as the structure of the EMS used for
managing operation of the components, are presented in Figure 1.

Specifically, the setup comprises the following units:

• Grid connection: limited to 100 kW, used for withdrawing or injecting power from/to
the distribution grid;

• Non-dispatchable RES: two PV arrays, both installed on the building roofs of 23 and
25 kWp;

• Storage: two lithium-ion BESSs (BESS1 and BESS2) of 70 and 67.5 kWh, with a C-rate
(C-rate is the rate of time in which the BESS takes to charge or discharge) equal to one
and a minimum and maximum SOC equal to 35% and 85%, respectively. This results
in an overall storage capacity of 68.75 kWh;

• Load: simulated using a back-to-back (B2B) converter, which is a programmable load
following the setpoints of an EV load dataset, scaled to a 25 kW maximum power.

The EMS consists of three different modules, namely the load forecaster, PV forecaster,
and optimizer. These are implemented in Python and deployed on the microgrid PC,
which communicate with each other through a MySQL database used for storing/handling
data. The load forecaster module contains two different forecasting models, LSTM and
persistence. The LSTM is implemented in TensorFlow, which is an open-source library by
Google used to build and deploy machine learning models [46]. The LSTM and persistence
models run every hour providing a load forecast for the following 1.5 days. The solar
forecasting module utilizes the physical hybrid artificial neural network (PHANN) model
described in [47] and implemented using TensorFlow. It runs twice a day following weather
forecast updates and provides the PV forecast for the following seven days. The optimizer
module is divided into the first and second layers, where the first layer is implemented
in the Python-based open-source optimization library Pyomo [48]. It runs every 15 min
considering an optimization horizon of 24 h. On the other hand, the second layer is used
for real-time power balancing and therefore it is implemented using a programmable logic
controller (PLC) with a frequency of 100 milliseconds. It communicates with the MySQL
database to obtain the setpoints provided by the first layer and both the forecasted and
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measured values of the load and PV to perform the power balancing function. Additionally,
a human–machine interface (HMI) is used to monitor the status of the microgrid and
provide real-time measurements for the preliminary analysis of the results.
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Figure 1. Experimental setup and control architecture considered in this case.

4.2. Case Study Description

The case study represents an EV charging station powered by the grid, PV, and BESS.
The EV load is based on the records from the JPL (Jet Propulsion Laboratory) database from
the adaptive charging network (ACN) [49]. This site has 52 EVSEs and is only accessible by
employees, making it a good representation of a typical workplace schedule. The power
curve of all 52 EVSEs is aggregated to reconstruct the whole charging station demand.
However, only a subset of all the available data is considered suitable for the case study
due to the anomalies associated with the COVID-19 pandemic. The considered set includes
the sessions from 3 December 2018 to 4 January 2020. To accommodate the charging
station demand within the MG2Lab capabilities, the aggregated load power is scaled to a
maximum of 25 kW.

The cost of purchasing the electricity from the grid is assumed to be twice the Italian
national unified price (Prezzo Unico Nazionale, PUN) to account for transmission and
other costs, while the revenue from selling electricity to the national grid is set equal to the
zonal price (Prezzo Zonale, PZ) of the North region. These costs are taken from the Italian
electricity market [50] for the year 2023.

In Table 2, values and profiles of the typical weekly EV load and prices are provided.



Forecasting 2024, 6 599

Table 2. Main features of the EV load and electricity prices of the considered cases in the study.

EV load
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Validate the method and demonstrate the ap-
plication of the EMS with PV and EV fore-

casting 

Weeks Winter Spring Summer Autumn 
24 February 2024–1 

March 2024 
5 March 2024–11 

March 2024 
PV data Two-week MG2Lab historical data for each season MG2Lab PV plant 

EV data Two-week data for each season from the JPL dataset JPL dataset: 
10 December 2018–16 December 2018 

Typical week trends from the JPL dataset (scaled to 25 kW according to MG2Lab size). Energy consumption for
week 1 amounts to 842.5 kWh, while for week 2 it amounts to 823 kWh.

Given EV charging at a workplace, there is a substantial difference between workdays (Monday–Friday) and
weekend days (Saturday and Sunday). Weekend days are also very unpredictable. Fridays are also unpredictable

in terms of magnitude, while the shape remains similar.

Prices
Buy Maximum: 0.666 €/kWh, minimum: 0.005 €/kWh, average: 0.255 €/kWh

Sell Maximum: 0.333 €/kWh, minimum: 0.003 €/kWh, average: 0.128 €/kWh

Both online and offline simulations are carried out to support the methods developed
in this work. Online simulations means that the EMS and forecasting are implemented
in the MG2Lab experimental facility under real conditions, while offline simulations are
computer-based using real data as input.

Online simulations aim to demonstrate that the developed models, including the
different PV and EV forecasting methods, can be deployed in real system operation. The
online simulations were run for two weeks on the MG2Lab microgrid with either the
persistence or LSTM models to predict the EV load. In both weeks, the same EV load was
programmed for consistency. On the contrary, the PV production and forecast were from
the true irradiance at the MG2Lab. Measurements from the online experiment are then
used for running offline simulations with both forecasters for comparison and validation of
the approach. A summary of the considered weeks is reported in Table 3.

Table 3. Characteristics of the simulations performed in this work.

Simulation Offline Online (MG2Lab)

Goal Assess the impact of each forecast method in the overall optimization
Impact of combining PV and EV forecasting

Validate the method and demonstrate
the application of the EMS with PV and

EV forecasting

Weeks Winter Spring Summer Autumn 24 February 2024–
1 March 2024

5 March 2024–
11 March 2024

PV data Two-week MG2Lab historical data for each season MG2Lab PV plant

EV data Two-week data for each season from the JPL dataset JPL dataset:
10 December 2018–16 December 2018

PV forecaster PHANN day-ahead (MG2Lab) and HML PHANN Day-Ahead

EV forecaster Persistence and LSTM and HML Persistence LSTM
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Offline simulations indicate the influence of EV load forecasts in different conditions
by comparing the different forecasters over eight weeks, two from each season of the year.
Simulations are carried out integrating the PV and EV load forecasts resulting from the JPL
EV dataset and the measurements at MG2Lab’s PV field consistent with the season (i.e.,
for winter, two weeks of actual PV production in winter 2023 from the MG2Lab’s PV field
and two winter weeks from the JPL database for EV load simulation are taken). The offline
simulator, for each season, also considers different EV forecasting methods (see Table 2):
persistence and LSTM forecast methods are considered. In addition, to have a benchmark
case, a perfect forecast for both PV and EV is introduced, referred to as hourly mean
lookahead (HML), where the perfect forecast predicts the exact average of PV and load
measurements over 15 min. As the error metrics are based on forecasted data (averaged
over 15 min) and measured data (discretized in 1 min intervals), statistical error metrics can
never be zero even for the HML forecast, unless all measurements within the same 15 min
interval are exactly equal to their average value. The case with the HML forecast for both
PV and EV represents a lower bound for the simulations.

In this way, the offline simulations, besides showing the accuracy of each separate
forecaster, show the combined statistical accuracy of PV and EV forecasting methods, the
EV station operational costs, and quantify the impact of the forecast accuracy with respect
to the ideal case.

Since the EMS adopts a rolling horizon approach, the residual SOC of the BESSs at the
end of the simulation could not be imposed a priori; therefore, as different combinations of
PV and load forecasts can lead to different final storage SOC, the difference between initial
and final storage content is then accounted as an equivalent energy import from the grid,
and it is valued at the minimum value of the import price over the entire simulation period.

For each case study, the following results have been reported:

• Statistical performances of PV;
• Load;
• Total net electrical forecast defined as

εtot =
(

P̂V f or − PVmeas

)
−
(

ˆLoad f or − Loadmeas

)
• Total operating costs;
• Operational schedule of the system.

5. Results

In this section, the numerical and experimental results of the comparison of the
different EV load forecasts implemented in the deterministic EMS approaches are presented.

5.1. Online Simulations

Measurements of the experimental campaign with the LSTM forecast are reported in
Figure 2 (the case with persistence is not reported for brevity). The results are shown to
demonstrate that results between the EMS operating in the microgrid with all the physical
components and the simulations are consistent. Therefore, simulation results performed
offline can be considered representative of the real operation of a microgrid.

Some general considerations can be noted while comparing the experimental results
with the corresponding offline simulations:

• On weekdays, when the electrical load is high, the microgrid imports electric energy
at night when the electricity price is lower to charge the batteries, which are then
discharged during the day in the absence of photovoltaic production;

• Minor differences between the two figures occur and are related to the parasitic losses
of the battery power supply systems and other equipment in the laboratory where
the microgrid operates (mainly during night-time). The battery charging process
measured in the experimental campaign is spread over more hours compared to the
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results of the simulation. Nevertheless, the quantities of electrical energy are nearly
identical and the effect on the simulation results is negligible.

The overall energy and economic results for the different approaches tested in the
microgrid are summarized in Table 4. Despite the identical load data used for each online
week, there are small differences between simulations and experiments as the B2B converter
requires a small amount of Gaussian noise added to the programmed load profile.
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Figure 2. Operational scheduling for a considered week using LSTM forecast: experimental results
(left) and offline results with the simulator (right).

Table 4. Overall results of the experiments and the corresponding simulations. Note that the
persistence EV forecast is not identical among the two weeks because of small variations in the B2B
converter output power.

Week 1: 24/02/2024–01/03/2024 Week 2: 05/03/2024–11/03/2024

Persistence
Experimental

Persistence
Simulated

LSTM
Experimental

LSTM
Simulated

EV load [kWh] 709.04 709.03 709.34 709.33

PV production [kWh] 330.28 326.68 700.63 697.04

EV forecast SMAPE [%] 39.76 41.69 54.94 52.37

PV production SMAPE [%] 111.44 111.44 195.46 195.46

Electricity purchased [kWh] 900.78 818.07 561.41 505.33

Electricity sold [kWh] 106.74 65.77 142.02 83.01

Initial SOC [kWh/%] 18.0/51.3 18.0/51.3 23.4/66.9 23.4/66.95

Final SOC [kWh/%] 22.3/63.7 13.4/38.2 24.2/69.1 21.81/62.3

Unmet demand [kWh] 0.00 0.00 0.00 0.00

Curtailment [kWh] 0.01 0.00 0.01 0.00

Purchased electricity [€] 240.24 213.35 127.44 112.92

Sold electricity [€] 18.66 10.74 19.01 12.19

Unmet demand [€] 0.00 0.00 0.00 0.00

Curtailment [€] 0.06 0.00 0.05 0.00

BESS residual [€] −2.17 2.28 −0.46 1.13

Total [€] 219.47 204.88 108.02 96.24

Finally, the operational costs of the offline simulations are in agreement with the
experimental facility (i.e., Experimental), with differences below 10%. Considering that
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several systems and controllers present in the microgrid cannot be reasonably simulated
offline, these results validate the proposed approach which can then be extended to the
yearly simulations.

5.2. Offline Simulations

Once the MG2Lab approach was validated, offline simulations were conducted to
assess the impact of the considered PV and EV forecasting methodologies by extending the
analysis over a wider period. Results for two weeks in spring are presented, followed by
the overall performance of the other three weeks.

Spring Case

For the spring season, the statistical performance indexes of the PV, load, and net load
(combination of load and PV) forecasts are reported in Table 5.

Table 5. Statistical performance of PV and EV forecasters (single and combined). The PV and EV
forecasts are evaluated independently in the first five rows. The remaining rows are the sum of the
PV and EV forecasts, which is commonly referred to as the net load. Note that the HML forecast
error is nonzero because of the discrepancy between the forecast time discretization (15 min) and the
experimental data sampling (1 min).

Forecast MAE SMAPE RMSE

PV
PHANN 4.10 71.91 7.49

HML 0.72 6.85 2.13

EV

Persistence 1.58 44.89 3.23

LSTM 1.06 44.66 1.87

HML 0.16 7.33 0.35

PV+EV

PV HML
+ EV persistence 1.94 −69.67 3.87

PV HML
+ EV LSTM 1.44 −30.41 2.82

PV HML
+ EV HML 0.76 0.29 2.15

PV PHANN
+ EV persistence 2.88 −7.73 5.27

PV PHANN
+ EV LSTM 4.30 −388.93 7.63

PV PHANN
+ EV HML 2.37 35.51 4.60

As it is possible to notice, LSTM outperforms persistence in all the statistical perfor-
mance parameters. However, when coupled with the PHANN day-ahead PV forecast, it
results in a higher net electrical load forecast error among all the predictors. This first result
suggests the importance of considering accuracy indexes accounting for the overall forecast
and not focusing on each forecaster separately. Similarly, the calibration and development
of the forecast tools shall account for the whole system and not only the specific good
predicted.

Results of the offline simulations for a spring week (out of the two considered) are
reported in Figure 3. The operational scheduling for both methods is quite similar across
the different days of the week, except for some minor quantitative differences in the net
electricity imported from the grid, which appears to be slightly lower in the persistence case.

However, the major difference can be seen on 7 April: in the operational scheduling
with persistence, the EMS imports electricity from the grid only in the first hours of the day
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to meet the load, then the BESSs are discharged in the following hours. The operational
scheduling of the LSTM (right) is different, as the EMS imports electricity from the grid
throughout the day without discharging the BESSs, resulting in higher operational costs, as
summarized in Table 6.
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Table 6. Overall results of the experiments and the corresponding simulations.

PV Forecast HML PHANN

Load Forecast Persistence LSTM HML Persistence LSTM HML

EV load [kWh] 1665.24 1665.24 1665.24 1665.24 1665.24 1665.24

PV production [kWh] 3328.39 3328.39 3328.39 3328.39 3327.34 3328.39

Electricity purchased [kWh] 214.59 214.88 144.99 184.22 176.48 150.00

Electricity sold [kWh] 1830.40 1833.37 1771.80 1774.63 1740.01 1757.46

Total BESSs losses [kWh] 57.22 53.86 46.44 75.56 86.79 65.65

Initial SOC [kWh/%] 17.5/50.0 17.5/50.0 17.5/50.0 17.5/50.0 17.5/50.0 17.5/50.0

Final SOC [kWh/%] 12.56/35.9 12.90/36.9 12.45/35.6 16.09/46.0 23.39/66.8 12.52/35.8

Unmet demand [kWh] 0.00 0.00 0.00 0.00 0.00 0.00

Curtailment [kWh] 0.00 1.05 0.00 0.00 1.05 0.00

Purchased electricity [€] 50.61 48.34 29.14 47.42 51.47 35.07

Sold electricity [€] 278.30 279.24 267.79 265.40 253.35 261.38

Unmet demand [€] 0.00 0.00 0.00 0.00 0.00 0.00

Curtailment [€] 0.00 0.00 0.00 0.00 0.00 0.00

BESS residual [€] 0.40 0.37 0.40 0.11 -0.47 0.40

Total [€] −227.29 −230.54 −238.35 −217.87 −202.35 −225.91

As the PV forecasts used to perform these simulations were the same for both case
studies, the higher import from the grid during the EMS–LSTM operations was only related
to the accuracy of the net electrical load forecasts. This difference, which results in higher
operational costs, can be attributed to two main factors:

1. Purchase and sale prices fluctuate throughout the 24 h cycle, with this dynamic being
particularly pronounced during the spring season. In fact, as it is possible to see
from the table above, the EMS with persistence imports electricity at an average price
of 0.257 €/kWh and exports to the grid at 0.15 €/kWh, while the average price for
the EMS with LSTM is 0.292 €/kWh with a similar value when exporting. This is
because the overall LSTM errors may be lower in absolute value compared to those
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of persistence, but they are more pronounced during the hours of the day when
electricity prices are significantly higher (for purchases), therefore resulting in a more
relevant impact;

2. The accuracy of the net load forecasts is not the algebraic result of PV and EV forecasts:
errors can amplify or reduce depending on the particular case. For instance, in
the persistence case, errors in PV and load forecasts may exhibit opposite signs,
potentially mitigating the overall inaccuracies of the individual forecasters. In fact,
when considering a perfect HML PV forecast, the EMS with LSTM demonstrates
slightly lower operational costs.

Overall, the optimal case for the considered two spring weeks occurs for LSTM when
coupled with the HML PV forecast, while persistence performs better when coupled with
the PHANN PV forecast. This is another indication of the necessity to incorporate system
management costs into the error function of forecasting algorithms, to reduce the errors
associated with expensive balancing costs.

6. Overall Results

Below are the overall forecast accuracy and the economic operation results, respec-
tively, for all the seasons, as summarized in Table 7.

Table 7. Accuracy of the adopted forecast tools for the combined net load of different seasons (top)
and corresponding economic results (bottom). Note that the combined HML PV and HML EV forecast
error is nonzero because of small differences between the input and output of the back-to-back converter.

Net Load Forecast Error (RMSE in [kW])

PV forecast HML PHANN

EV forecast Persistence LSTM HML Persistence LSTM HML

Spring 3.87 2.82 2.15 5.27 7.63 4.60

Summer 3.39 2.22 1.38 4.89 5.05 3.78

Autumn 3.64 2.25 1.25 5.16 5.71 3.80

Winter 2.87 4.40 0.93 4.68 4.48 4.23

Economic result (€)

PV forecast HML PHANN

EV forecast Persistence LSTM HML Persistence LSTM HML

Spring −227.29 −230.54 −238.35 −217.87 −202.35 −225.91

Summer −197.85 −199.21 −201.44 −187.02 −181.94 −191.97

Autumn 46.5 44.86 38.92 48.49 49.68 43.90

Winter 218.31 216.65 205.86 218.19 218.15 215.59

Looking at the tables, the following conclusions can be drawn:

• There is a good correspondence between the overall net electric errors and the eco-
nomic results. The higher the accuracy of the combined forecast error the worse the
operational cost; LSTM performs better when the HML PV forecast is assumed, while
it is worse than persistent when the PHANN PV forecast is adopted;

• The impact of EV and PV forecasts is pretty similar on the economic results when
compared to the ideal case: in both cases, the difference in operating costs between
using perfect and actual forecasts is around 5%;

• The combination of PV and EV forecasts might lead to discrepancies up to 10% with
respect to the ideal case.

Overall, these results suggest that the accuracy of a stand-alone forecast model is not
relevant when it works in combination with other forecasters. Moreover, forecasters which
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have higher accuracy are outperformed by others when the accuracy of the prediction is
time-relevant as this is for energy systems with varying electricity prices. Therefore, it is
important to correctly predict the load or PV production when electricity prices are high
and this aspect should be accounted for when training the forecast methods.

7. Conclusions

Currently, the predict-then-optimize approach remains one of the most widely adopted
techniques for operational optimization in multi-energy systems. Although some concep-
tual limitations of this approach have been noted in the literature, few papers have at-
tempted to investigate the impact of both load and solar forecast accuracy on the operational
cost of an existing microgrid.

In this study, a detailed analysis has been conducted of the error impact of various
EV forecasting techniques within a hierarchical predictive control strategy to optimize
an EVs charging station microgrid operation. The analysis presented herein comprised
an experimental part, during which two methodologies under investigation (LSTM and
persistence) were tested within the experimental facility of the MG2Lab. Additionally, a
simulation study was conducted extending the numerical analysis over a longer period,
considering historical data collected in the laboratory in 2023.

The first relevant result of the study was the validated operation of a multi-good
microgrid using both PHANN PV and LSTM EV load prediction combined with an EMS
operated to minimize the operational costs. This confirmed that the methods developed
are of interest for the quantitative results but can also be deployed in real systems.

Quantitative results showed that the accuracy of the combined forecast models mat-
ters: higher combined accuracy resulted in higher performance of the EMS with better
operational results.

In addition, the accuracies of the different forecasters do not individually correlate
with final performance. It was shown that LSTM has the highest accuracy in predicting
the EV load; however, the EMS operating with the LSTM EV forecast can have the poor-
est performance when coupled with the PHANN PV forecast. Besides the interactions,
LSTM is less accurate than persistence when electricity prices are high, resulting in higher
operational costs.

Future works will focus on the development of new customized loss functions to train
and evaluate forecasting models. These will depart from generic statistical performance
metrics, aiming instead to capture downstream decision-maker dynamics, thereby provid-
ing forecasts that are optimized for the selected application. Initial investigations suggest
this will result in a more integrated and cost-effective synergy between forecasting and
optimization procedures.
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Nomenclature

Symbols
ccurt Curtailment cost [€/kWh]
cpurch

t Electricity purchase price at timestep t [€/kWh]
cTP

es Throughput O&M cost of the energy storage technology
cUD Unmet demand cost [€/kWh]
dt1 Timestep duration of the EMS I layer [hours]
l Lag

ˆLoad f or Load forecast
Loadmeas Load measurements
NDcurt

nd,t Average timestep curtailed power [kW] of non-dispatchable generator nd at t
OF Objective function

Pdisch
es, t

Average timestep discharge power exchange [kW] of the energy storage technology
es at t

Pgrid,purch
t Average timestep power [kW] purchased from the grid at t

Pgrid,sell
t Average timestep power [kW] injected to the grid at t

P̂V f or PV forecast
PVmeas PV measurements
rsell

t Electricity selling price at timestep t [€/kWh]
SOEdev

t SOE deviation [kWh] among energy storage technologies at the end timestep t
t Timestep
UDt Average timestep unmet demand [kW] at t
ytrue Vector of true values
y f orecast Vector of forecasted values
Greek symbols
εtot Total net electrical forecast
ρdev Penalty factor for the SOE deviation between energy storage technologies
ΦOpex

t Total operational cost at timestep t
Acronyms
ACN Adaptive charging network
ANN Artificial neural network
ARIMA Autoregressive integrated moving average
B2B Back-to-back
BESS Battery energy storage system
CS Charging station
CSR Clear-sky radiation
DL Deep learning
DSM Demand-side management
ED Encoder–decoder
EMD Empirical mode decomposition
EMS Energy management system
EV Electric vehicle
EVSE Electric vehicle supply equipment
GHI Global horizontal irradiance
HMI Human–machine interface
HML Hourly mean lookahead
JPL Jet Propulsion Laboratory
LSTM Long short-term memory
MAE Mean absolute error
MG Microgrid
MILP Mixed-integer linear programming
MPC Model predictive control
PUN Prezzo Unico Nazionale
PHANN Physical hybrid artificial neural network
PLC Programmable logic controller
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PV Photovoltaic
PZ Prezzo Zonale
RES Renewable energy sources
REST2 Reference evaluation of solar transmittance, 2 bands
RH Rolling horizon
RMSE Root mean squared error
RNN Recurrent neural network
RO Robust optimization
SARIMA Seasonal autoregressive integrated moving average
SMAPE Symmetric mean absolute percentage error
SOC State of charge
SOE State of energy

Appendix A. Energy Management System

Sets

ES Set of energy storage units

ND Set of non-dispatchable generators

T1 Set of 1st layer timesteps

T2 Set of 2nd layer timesteps

Continuous variables

Pch
es, t Average timestep charge power exchange [kW] of the energy storage technology es ∈ ES at time t ∈ T , ∈ R+

Pdisch
es, t Average timestep discharge power exchange [kW] of the energy storage technology es ∈ ES at time t ∈ T , ∈ R+

Pnet
es, t Average timestep net power exchange [kW] of the energy storage technology es ∈ ES at time t ∈ T , ∈ R+

Pgrid,net
t Average timestep net grid exchange power [kW] at time t ∈ T , ∈ R+

Pgrid,purch
t Average timestep power [kW] purchased from the grid at time t ∈ T , ∈ R+

Pgrid,sell
t Average timestep power [kW] injected to the grid at time t ∈ T , ∈ R+

NDcurt
nd,t Average timestep curtailed power [kW] of non − dispatchable generator nd ∈ ND, at time t ∈ T , ∈ R+

NDout
nd,t Average timestep produced power [kW] of non − dispatchable generator nd ∈ ND, at time t ∈ T , ∈ R+

SOEes, t State of energy [kWh] of the energy storage technology es ∈ ES at the end timestep t ∈ T , ∈ R+

SOEdev
t SOE deviation [kWh] among energy storage technologies at the end timestep t ∈ T , ∈ R+

UDt Average timestep unmet demand [kW] at time t ∈ T , ∈ R+

Parameters

ccurt Curtailment cost [€/kWh]

cTP
es Throughput O&M cos t of the energy storage technology es ∈ ES [€/kWh]

cpurch
t Electricity purchase price at timestep t [€/kWh]

cUD Unmet demand cost [€/kWh]

dt1 Timestep duration of the EMS I layer [hours]

dt2 Timestep duration of the EMS II layer [hours]

Load f ore
t 24 h-profile of the average timestep residential consumption forecast [kW]

Pmax, ch
es Maximum average timestep charge power exchange [kW] of the energy storage technology es ∈ ES

Pmax, disch
es Maximum average timestep discharge power exchange [kW] of the energy storage technology es ∈ ES

Ppurch, max Maximum average timestep purchase power [kW] from the grid

Psell, max Maximum average timestep selling power [kW] from the grid
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PV f ore
t 24 h-profile of the average timestep PV generation forecast [kW]

rsell
t Electricity selling price at timestep t [€/kWh]

sizees Size [kWh] of the energy storage technology es ∈ ES
SOEmax

es Operational maximum limit for SOE [kWh] of the energy storage technology es ∈ ES

SOEmin
es Operational minimum limit for SOE [kWh] of the energy storage technology es ∈ ES

ηch
es Charging efficiency of the energy storage technology es ∈ ES

ηdisch
es Discharging efficiency of the energy storage technology es ∈ ES

ρdev Penalty factor for the SOE deviation between energy storage technologies

Appendix A.1. First Layer

The first layer of the home EMS is formulated using a deterministic MILP, where all
the operational variables and constraints are indexed for every timestep.

The decision variables of the problem are the following:

- Battery average charge Pch
es, t, discharge Pdisch

es, t , net power exchange Pnet
es, t, and state of

energy SOEes, t of storage unit es for each timestep t;
- Average power purchased Pgrid,purch

t and sold Pgrid,sell
t into the grid for each timestep t.

Please note that given the discrete nature of the time horizon, the values of those
operational variables measured as power (e.g., Pdisch

es, t as kW) are considered as timestep
average. Therefore, the energy quantities related to the average power at each time interval
are obtained by multiplying the variable by the timestep duration dt1. In the case of hourly
timestep duration, then the numerical values related to the average power and energy are
exactly the same.

The operational problem aims at defining the strategic planning and economic dispatch
of the household by minimizing the total operational costs:

OF = min

(
∑

t ∈ T1

ΦOpex
t

)
(A1)

where:

ΦOpex
t = cpurch

t ·Pgrid,purch
t ·dt1 − rsell

t ·Pgrid,sell
t ·dt1

+ ∑
es∈ES

[
cTP

es ·Pdisch
es, t ·dt1 + ρdev·SOEdev

t

]
+ ccurt·NDcurt

nd,t

·dt1 + cUD·UDt·dt1

(A2)

The total operational costs ΦOpex
t associated to each timestep t are given by the sum of

four main components:

• cpurch
t ·Pgrid,purch

t ·dt1 − rsell
t ·Pgrid,sell

t ·dt1 represents the cost and revenue (negative cost)
coming from the withdrawal and injection of power from/into the grid;

• ∑es∈ES
[
cTP

es ·Pdisch
es, t ·dt1 + ρdev·SOEdev

t

]
is the sum of the batteries’ throughput-based

storage O&M cost, and penalty cost associated with their SOE deviations;
• ccurt·NDcurt

nd,t ·dt1 + cUD·UDt·dt1 are penalty costs for curtailment of RES generation
and unmet demands.

The main constraints to which the model is subjected can be summarized as follows:

- Storage dynamic constraints: for each storage unit, the operational behavior describing
the charge and discharge power, as well as the evolution in time of the state of charge;

- Grid constraints: the purchase and sold electricity must respect the contract limit of
the user;
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- Power balance constraints: the overall electricity generated by non-dispatchable units,
the energy discharged by the storage, and the energy purchased from the grid must
always be equal to the energy charging the storage and the quantity exported to the
grid.

Appendix A.2. BESS Operational Constraints

From a modeling point of view, batteries and electric vehicles are approached adopting
the same strategy.

Upper bounds on the maximum charge and discharge power, as well as the maximum
storage capacity, are defined:

Pdisch
es, t ≤ Pmax, disch

es ∀es ∈ ES , ∀t ∈ T1 (A3)

Pch
es, t ≤ Pmax, ch

es ∀es ∈ ES , ∀t ∈ T1 (A4)

Storage systems must respect their maximum and the minimum state of energy:

SOEes, t ≤ SOEmax
es ∀es ∈ ES , ∀t ∈ T1 (A5)

SOEes, t ≥ SOEmin
es ∀es ∈ ES , ∀t ∈ T1 (A6)

Then, the net power flow from/to the storage is described by the real variable Pnet
es, t,

which considers the charge and discharge efficiencies:

Pnet
es, t = Pdisch

es, t − Pch
es, t ∀es ∈ ES , ∀t ∈ T1 (A7)

The SOE evolution in time is then defined by the following constraint, which describes
the SOE of the storage at the end of t by taking into account the self-discharge of the unit
by means of ηSD

es and considers the charge and discharge efficiencies:

SOEes, t = SOEes, t−1·ηSD
es +

(
Pch

es, t·ηch
es − Pdisch

es, t /ηdisch
es

)
·dt1 ∀es ∈ ES , ∀t ∈ T1 (A8)

A correct management of storage systems requires different storage units to follow
the same trajectory. This is possible introducing the penalty variable SOEdev

es,t and linking it
with the absolute value of the difference between the batteries’ SOE. The absolute value
can be easily linearized:

SOEdev
t ≥ SOEBESS 1, t − SOEBESS 2, t ∀t ∈ T1 (A9)

SOEdev
t ≥ SOEBESS 2, t − SOEBESS 1, t ∀t ∈ T1 (A10)

Appendix A.3. Grid Operational Constraints

The power exchanged with the grid is set by the user contract, which introduces a
limitation in both the maximum purchase power and the maximum selling power. A binary
variable is needed to avoid the withdrawal and injection of power at the same time. In
principle, it may be avoided considering a purchase price higher enough than the selling
price, but since the price structures may be different, it is conservative to introduce the
binary variable to guarantee a feasible decision.

Pgrid,purch
t ≤ Ppurch, max·zgrid

t ∀t ∈ T1 (A11)

Pgrid,sell
t ≤ Psell, max·

(
1 − zgrid

t

)
∀t ∈ T1 (A12)

Finally, the net power exchange with the grid is the difference between purchase and
sold power:

Pgrid,net
t = Pgrid,purch

t − Pgrid,sell
t ∀t ∈ T1 (A13)
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Appendix A.4. PV Production

The possibility of curtailing part of the non-dispatchable generation has been modeled
by the curtailment variable, which is strongly discouraged through a high associated
curtailment cost.

NDout
t + NDcurt

t = ND f ore
t ∀t ∈ T1 (A14)

Appendix A.5. Electricity Balance

The electricity balance must be guaranteed at each timestep. In particular, the unmet
demand term is needed to always assure the constraint feasibility and to understand when
the system is not able to cover the house consumption. In fact, the associated unmet
demand cost is 100 times the cost of purchasing electricity.

NDout
t + Pnet

es, t + Pgrid,net
t + UDt = Load f ore

t ∀t ∈ T1 (A15)

Appendix A.6. Second Layer

The second-layer model is a rule-based algorithm that, given the optimal setpoints
provided by the first-layer model, decides how to share the net demand forecast error
(given by the forecasting error of PV and house consumption) among the components of
the system, considering the technical limitations of each unit. The control strategy consists
in updating the power setpoints according to the system measurements and so properly
interacting with the BESS to balance the microgrid.

The net demand forecast error can be computed as follows:

errt = Loadreal
t − Load f ore

t −
(

NDreal
t − ND f ore

t

)
∀t ∈ T2 (A16)

Moreover, at each timestep the EV and BESS setpoints’ cut reallocation must be
addressed. It may be caused by the impossibility of meeting their technical limits:

SOEplan
es,t = SOEes, t−1·ηSD

es +
(

Pch,setpoint
es, t ·ηch

es − Pdisch,setpoint
es, t /ηdisch

es

)
·dt2 ∀t ∈ T2 (A17)

Pdisch,cut
es, t = min

Pdisch, setpoint
es, t , max

ηdisch
es ·

SOEmin
es − SOEplan

es,t

dt2
, 0


 ∀t ∈ T2 (A18)

Pch,cut
es, t = min

Pch, setpoint
es, t , max

SOEplan
es,t − SOEmin

es

ηch
es ·dt2

, 0


 ∀t ∈ T2 (A19)

SOEplan
es,t , shown in Equation (A17), is computed at the beginning of the second layer.

It reflects the state of energy level that BESS would attain by the end of the timestep if
adhering to the power setpoints determined by the strategic decisions made in the first
layer. The power setpoint adjustments, Equations (A18) and (A19), are then evaluated
by comparing SOEplan

es,t with the operational limits of the components and the strategic
decisions from the first layer. These power setpoints, combined with the net demand
forecast error, collectively define the entire power imbalance that needs to be addressed by
the second layer:

∆Pt = errt + Pdisch,cut
es, t − Pch,cut

es, t ∀t ∈ T2 (A20)

It is possible to distinguish between power deficit and power excess, respectively
associated with positive and negative power imbalance. In Figure A1, the second layer
block flow scheme shows how the different situations are handled with different priorities.
In particular, the rationale behind the selected priorities aims mainly at maintaining the
optimal grid setpoint coming from the first layer, and it can be summarized as follows:
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1. BESS charge or discharge;
2. Grid withdrawal or injection;
3. Unmet demand or curtailment.
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Appendix B. EV Charging Forecaster

Appendix B.1. Long Short-Term Memory

LSTM is an RNN specifically designed to help the network learn long-term depen-
dencies; it was originally proposed by Hochreiter and Schmidhuber in 1997 [51] and is
nowadays widely used in several fields of application, such as natural language and trans-
lations [52]. LSTM introduces a new processing unit, the memory cell commonly referred to
as ‘cell’. To control the memory cell, some gates are needed with internal mechanisms that
can regulate the flow of information coming in and out of the cell. The common architecture
of the LSTM cell can be observed in Figure A2.

The core concept of the model is the cell state ct, represented by the horizontal line
running through the top of the diagram. It acts as a conveying belt that stores and transfers
condensed information all the way down the sequence chain. The content of the cell state
changes through time thanks to the interaction of the previously computed output ht−1 and
the current external input xt. The circles in Figure A1 are either sigmoid (σ) or tansigmoid
(tanh) layers. The operations represented in the squares are the point-wise multiplications
(X) and point-wise addition (+). In Equation (A20), the governing principles are given.
The loss function for training is MSE, which is derived directly from the negative log
likelihood of a gaussian probability density function. Two desirable trains are that it is
fast to calculation during backpropagation of errors through time and that MSE tends
to penalize large errors more than small ones. For training the time series, values are
normalized such that the minimum value is zero and maximum is one.

MSE = 1
n ∑(ytrue− yestimated)

2

MAE = 1
n ∑(ytrue− yestimated)

2 (A21)
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Appendix B.2. Encoder–Decoder/Sequence to Sequence

The load forecast required for a day-ahead unit commitment problem is in the category
of many-to-many prediction, since it usually takes as input the time series of power sampled
at a certain timestep length and tries to predict another sequence of values; it could require
the two sequences to have different lengths. A proper way to handle many-to-many
prediction is an encoder–decoder (ED) architecture that consists of three components: an
encoder, a context vector, and a decoder. Both the encoder and the decoder are constructed
as layers of RNN units. The encoder takes a sequence as the input and transforms it into a
context vector, an element with a fixed shape that acts as a condensed representation of
the input time series, often called dimensionality reduction. The output of the encoder,
the hidden state, is usually the state of the last RNN timestep hi. The length of the vector
is equal to the number of RNN cells in the encoder. The context vector acts as the initial
hidden state of the decoder taking the encoder output and feeding it repeatedly to the
decoder as input. The decoder is a dimensionality-increasing step that interprets the context
vector to make predictions for each timestep required in the output.

Appendix B.3. Attention Mechanism

Attention mechanisms were introduced for the first time in 1997 by Bahdanau in [42];
a similar, modified version was later presented by Luong [53]. They were developed to
solve the incapability of ED networks to remember long sequences given as input due to
the limited length of the context vector. Important elements for the forecast of the current
output could come from any point in the input sequence, but the context vector is not
always capable of encapsulating the information “seen” at the beginning of the input
sequence. Attention mechanisms try to replicate the human brain’s capability of focusing
on small portions of the entire information provided at a time, paying attention only to the
ones that are relevant to the answer that is required.

In the presence of an attention layer, the encoder functions exactly as in the case of a
simple encoder–decoder model producing a hidden state h for each timestep. The context
vector is not constant but changes at each timestep; it is calculated as a weighted mean
among all the hidden states of the encoder, as shown in Equation (A22).

ct = αt,1h1 + αt,2ht + αt,mhm (A22)

where ct is the context vector at the current timestep t and hm is the hidden state of the
last timestep in the input with m being the length of the input sequence. The weight αt,i is
the alignment weight computed at the i-th timestep. Each α is the result of the application
of a softmax function to the attention scores et,i to normalize them. The attention scores
are computed through a proper alignment model a(.), an operation that scores how well
the current hidden state of the encoder hi is matching with the hidden state of the decoder
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state st−1 at the previous timestep. Equations (A23) and (A24) illustrate how alignment
scores and alignment weights are calculated. The weights favor the hidden states that are
matching with the previous output; in this way, the context vector is paying attention only
to the parts of the input that are considered relevant by the alignment function solving the
problem of the limited length.

et,i = a(hi, st−1) (A23)

α,it = so f tamx(et,i) (A24)

The decoder takes in as input the context vector, the previous hidden decoder state,
and the current output, to compute the final prediction. The attention model described is
the one proposed by Bahdanau [42]; in this case, the alignment function is a single-layer
perceptron, as shown in Equation (A25):

a(st−1, hi) = vT
a tanh(Wasi−1 + Uahi) (A25)

where Wa ∈ Rnxn and va ∈ Rn are weight matrices that are being optimized during the
training process to minimize MSE.

Appendix B.4. Persistence

Naive persistence is a benchmark forecast model based on the most trivial assumption
that can be made when making predictions. It forecasts the current timestep t using the
measurement from the last timestep t − 1. In this case, the lag value L is 1. In a modified
version sometimes called seasonal persistence, the lag value is chosen to match a seasonality
in the data, such as daily or weekly in the case of electric load forecasting. As an example,
for a time series with strong weekly seasonality, the timestep t is forecasted with the
measurement from t − 7d or t − 168 if the time series interval is 1 h. This is described in
Equation (A26), where y f is the forecasted value and y the measured one.

y f (t + 1) = y(t − L) (A26)
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