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Abstract: In Italy, the availability of service areas (SAs) equipped with charging stations (CSs) for
electric vehicles (EVs) on highways is limited in comparison to the total number of service areas. The
scope of this work is to create a prototype and show a different approach to assessing the number of
inlets required on highways. The proposed method estimates the energy requirements for the future
electric fleet on highways. It is based on an energy conversion that starts with the fuel sold in the
highway network and ends with the number of charging inlets. A proposed benchmark method
estimates energy requirements for the electric fleet using consolidated values and statistics about
refueling attitudes, with factors for range correction and winter conditions. The results depend on
assumptions about future car distribution, with varying numbers of required inlets. The analysis
revealed that vehicle traffic is a critical factor in determining the number of required charging inlets,
with significant variance between different SAs. This study highlights the necessity of incorporating
factors like weather, car charging power, and the future EV range into these estimations. The findings
are useful for planning EV charging infrastructure, especially along major traffic routes and in
urban areas with high-range vehicles relying on High-Power DC (HPDC) charging. The model’s
applicability to urban scenarios can be improved by considering the proportion of energy recharged
at the destination. A key limitation is the lack of detailed origin–destination (OD) highway data,
leading to some uncertainty in the calculated range ratio coefficient and underscoring the need for
future research to refine this model.

Keywords: sustainable transport; transport management; mobility; transport decarbonization; electric
vehicles; sustainable mobility; transportation planning; charging stations; charging infrastructure;
energy policy; distribution network

1. Introduction

The effects of global warming and climate change are increasingly damaging human
activities and well-being. One of the major contributors to these issues is transportation,
particularly road transport, and cars, which are responsible for a significant portion of
greenhouse gas (GHG) emissions. Road transport is responsible for 17% of global green-
house gas emissions and is the second major contributor only after the power sector [1]. In
Europe, among all sectors, transportation is the only one where greenhouse gas emissions
have increased in the last 30 years, being responsible for about a quarter of the EU’s total
CO2 emissions in 2019: the major contribution is from road transport, responsible for 71.7%
of GHG emissions, and in particular, the greatest portion is from cars, that account for
60.6% of it [2]. Regarding Italy, the transport and building sectors are which only two with
increased emissions with respect to 1990 [3].

To reduce the road mobility impact, new, greener technologies are being introduced,
and electric vehicles are assessed as a promising solution thanks to the reduced Well-to-
Wheel (WtW) emissions.
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From a numerical point of view, electric vehicles, in all modes of transportation, have
been growing steadily over the past decade across continents, as shown in Figure 1.
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Figure 1. (a) Global electric vehicle stock by region, 2010–2020. (b) Global electric vehicle stock by
transport mode, 2010–2020. Adapted from [1].

The scope of this paper is to present a new approach aimed at sizing fast chargers
along highways to facilitate the diffusion of electric vehicles (EVs). The models determine
how many charging inlets (Ninlet) are required to satisfy the demand for charging at each
charging station (CS). In this paper, a charging inlet means a physical socket with its power
guaranteed. The sizing has been performed on the A1 highway (Figure 2b) in Italy, one of
the most crucial arterials in the country with a length of about 800 km [4]. The timeframe is
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2030, when the expected share of BEVs (battery electric vehicles) on Italian streets is about
10%. The scenario is in winter, when EVs have higher consumption, and in the peak hour
of a weekday [5].
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To better understand the problem of the service level of the charging station, we must
compare the power provided to vehicles from a petrol pump and an electric charging point.
Using the lower heating value for gasoline (Table 1) and assuming the pump flow rate of
50 L/min (liters per minute) [6] shows (Figure 2a) that 186 fast charging stations (150 W)
are needed to equal the power of a gasoline pump.

Table 1. Input parameters of the proposed model.

Variable Name Symbol Gasoline LPG Diesel Electric

Lower heating value LHVi 43.2 MJ/kg 46.0 MJ/kg 43.1 MJ/kg -
Fuel sold (2019) fi 2.43 × 108 L 1.36 × 108 L 9.75 × 108 L -
Fuel density ρi 0.743 kg/L 0.510 kg/L 0.832 kg/L -
IT Market share fshare,i 46.8% 6.5% 44.2% -
IT EV 2030 market share EVshare 10%
Efficiency ηi 25% 25% 28% 80%

Then, an energy-based approach is developed: the main idea is that through energy
conversion, fuel sold on the highway is used to estimate the energy requirements for
the electric fleet. Adequate correcting factors are introduced to consider the different
powertrain efficiencies and characteristics. In Italy, highways are tolled and managed
under concession by private companies. It is common in Italy for gas stations along
highways to pay royalties to the concession provider, which also applies to the provision of
electrical energy to automobiles. This leads to increased pricing when combined with other
economic factors. Unavoidably, a higher price reflects demand. The charging infrastructure
is being developed by concessionaires [7,8]. Minimum requirements for services can be
written in the contracts as essential public services, as decided by policymakers. To provide
incentives for the diffusion of BEVs, minimum service clauses can be included to guarantee
the charging service.
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The article is organized as follows: Section 2 provides the scientific background of the
research; Section 3 shows the data used for the model; Section 4 outlines the methodological
approach adopted in this work with the presentation of the results; and finally, Section 5
provides the conclusions and possible developments of the work.

2. Literature Review

Compared to internal combustion engine (ICE) vehicles, battery electric vehicles (BEVs)
have unique characteristics to consider [9]. The model differences in range and maximum
charging power, which are influenced by usage circumstances [9], can be substantial.
Currently, only 18% of BEV models can handle 150 kW or more [9]. Home charging is an
option for electric vehicles. Due to the convenience of overnight charging and the lower
cost of slow charging at home, this possibility may have an impact on user behavior [8].
This information about EVs is not common knowledge among the average car user, as
investigated in a survey in Canada [10,11]. This work showed that people find it difficult
to recognize the basic characteristics and functions of EVs.

Studies on the location and quantification of roadway CSs frequently focus on specifics,
including site detection, without taking the occupation duration into account [12,13]. The
method suggested an approach from the user’s perspective to get around the remaining
two restrictions. However, the techniques need to be used by utilizing the available data.
A study uses machine learning to foresee occupancy time using disaggregated recharge
data [14]. This serves to notify users, direct them to service stations that will be free
when they arrive in the short term, and focus investments over the long run based on
the algorithm’s findings. It could be a supplement to this effort since it can only be
performed with the current infrastructure. The same problem can be solved using the
optimization technique, where the location is a degree of freedom of the problem, such
as in [15]. It undertakes an innovative approach to the problem of determining charging
facility locations and capacities, demonstrating its capability of achieving optimal strategies
for EV drivers by modeling queues at CSs. A promising scheduler is proposed in this
work [16], where it optimize the charging time based on the bookings made to the chargers
to reduce the queue time. The issues of installing such power-intensive loads in potentially
rural areas such as highways have potential downsides that need to be considered, such as
infrastructure costs, energy demand management, and environmental impacts.

The value of forecasting is indeed important for infrastructure planning but also
relevant to reducing the impact on the grid. For example, it has been calculated that when
EVs are charged uncontrollably, only about one-third of EV electricity can be charged
directly by photovoltaic feed-in [17]. Smart charging, also referred to as electric vehicle
smart charging (EVSC), is an advanced approach to charging EVs that optimizes the
charging process for various beneficial outcomes. Unlike conventional charging, which
simply involves plugging in an EV to charge until its full, smart charging actively manages
the charging process based on a range of factors [18]. One example of smart charging
applications is the introduction of an Energy Storage System (ESS). Given the predictability
of the traffic flow on the highway, it is possible to introduce economical optimization
techniques that introduce locally distributed generation and ESS to reduce the impact on
the grid and increase the available peak output power [19]. Related to smart charging
and V2G, is it worth noting that even if they are seen as promising technologies that will
provide many benefits to users, grid operators, and other stakeholders [20], if most of the
users of the highway perceive the time spent charging as a cost, it is not advisable to try to
defer the charging process.

In the context of recharging infrastructure development, the effect that the building
infrastructure has on the demand for it becomes relevant. This relationship is called induced
demand. This has been greatly investigated in the literature with regard to the impact that
building new infrastructure has on traffic growth [21]. The cause lies in the shift of the
supply curve and the shift of the equilibrium point between supply and demand. Induced
demand is also observed in the case of the installation of electric vehicle charging stations.
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In Norway, the country with the largest relative spread, a 200% increase over five years in
the number of electric vehicles since the introduction of the first charger in the area has been
measured. In the same study, however, it is pointed out that the robustness of the result is
reduced only if fast chargers, the ones examined in this study, are considered [22]. Also,
consumer emotions significantly impact the adoption of electric vehicles (EVs). Positive
feelings like environmental pride can increase willingness to adopt EVs, while negative
emotions like embarrassment may hinder it. Understanding these emotional factors is
crucial for developing strategies to encourage EV adoption [23]. Developing a reliable
charging network would help ease range anxiety. Range anxiety could be addressed by
connecting and automating the infrastructure, vehicles, and users [24].

Charging Technology and Connectors Overview

Presently, the field of electric vehicle (EV) charging technology encompasses three
primary methodologies: inductive charging, battery swap, and conductive charging. In-
ductive charging, alternatively known as wireless charging, harnesses the principle of
electromagnetic induction to replenish EV batteries. The concept of battery swap, as im-
plied by its name, involves the physical exchange of a depleted battery for a fully charged
one [25]. Conductive charging, on the other hand, facilitates the recharging of EV batteries
by establishing a physical connection between the EV and the electrical grid, typically
through a cable. This method is versatile, with the capability of being implemented in
various locations such as residential settings, highways, public roads, and commercial or
private properties. Currently, conductive charging is the predominant method employed
by EVs in the marketplace, particularly in Europe, where it has achieved mass market adop-
tion. A crucial aspect of charging stations is the adherence to the IEC 61851–1 standard [26],
which mandates the inclusion of control electronics using a “universal” communication
system between the charging station and the EV. This system typically employs a Pulse
Width Modulation (PWM) circuit [27], which is vital for ensuring the safety of the charging
process, both for individuals and to prevent damage to the vehicle’s battery pack. The
standard delineates four distinct charging modes, as illustrated in Figure 3a.

Infrastructures 2023, 8, x FOR PEER REVIEW  6  of  16 
 

   

(a)  (b) 

Figure 3. Different (a) charging modes for electric vehicles and (b) connectors for electric vehicles. 

3. Sources of Data for the Model 

3.1. Traffic and Fuel Sold Data 

Investigating  the energy sold  in  the highway network, rather  than  just  the energy 

needed or consumed, is of great importance. This is because there is a low tendency to 

refuel vehicles on the highway, as highlighted in the Aiscat (Italian Highway Concession 

Companies Association) report [4]. Despite the fact that ICE vehicles have a consumption 

rate of about 6–7 Lge/100 km in the EU [27], the average sold value is less than 0.3 L per 

100 km traveled [28]. This implies that only 5% of the gasoline that is necessary to travel 

is bought on the highway. For example, on average, for a trip of 500 km, only 25 km of 

gasoline is refueled on highways, with the remaining 475 km sourced from outside the 

highway. The method employed in this study is based on the actual fuel sold (gasoline, 

diesel, and LPG—Liquefied Petroleum Gas) [4]. These values are considered realistic es‐

timates of the amount of electricity that will be sold to EVs, as they represent the actual 

refueling behavior of drivers on highways. The data also note that Light Vehicles (LVs) 

have  increased their presence on highways over the years, as shown in Figure 4, while 

fuel sales have decreased, with the values in 2020 being biased due to COVID‐19 [28]. The 

calculations considered two scenarios, one assuming all vehicles are gasoline and LPG‐

powered, and the other considering all fuels. As almost all of the gasoline and LPG sold 

go to cars, diesel fuel sales may be biased by trucks, buses, and other vehicles. 

Figure 3. Different (a) charging modes for electric vehicles and (b) connectors for electric vehicles.

In the realm of connector types, there are specific variations designated for AC charging
of EVs (Mode 2 and Mode 3), namely Type 1, Type 2, and Type 3A connectors. For DC
charging (Mode 4), CHAdeMO and CCS Combo2 are the established standards. However,
recent developments in the European Union have seen a shift towards the CCS (Combined
Charging System) as a replacement for the CHAdeMO connector, aligning with the region’s
regulatory and market trends. This transition is reflective of the evolving landscape in EV
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charging infrastructure, where the CCS standard is increasingly favored for its versatility
and compatibility with a broader range of vehicles. Additionally, it is pertinent to note the
power limitations imposed on these connectors, which are critical for ensuring safe and
efficient charging processes. Figure 3b provides a detailed technical and graphic description
of the various connector types utilized in EV charging.

3. Sources of Data for the Model
3.1. Traffic and Fuel Sold Data

Investigating the energy sold in the highway network, rather than just the energy
needed or consumed, is of great importance. This is because there is a low tendency to
refuel vehicles on the highway, as highlighted in the Aiscat (Italian Highway Concession
Companies Association) report [4]. Despite the fact that ICE vehicles have a consumption
rate of about 6–7 Lge/100 km in the EU [27], the average sold value is less than 0.3 L per
100 km traveled [28]. This implies that only 5% of the gasoline that is necessary to travel
is bought on the highway. For example, on average, for a trip of 500 km, only 25 km of
gasoline is refueled on highways, with the remaining 475 km sourced from outside the
highway. The method employed in this study is based on the actual fuel sold (gasoline,
diesel, and LPG—Liquefied Petroleum Gas) [4]. These values are considered realistic
estimates of the amount of electricity that will be sold to EVs, as they represent the actual
refueling behavior of drivers on highways. The data also note that Light Vehicles (LVs)
have increased their presence on highways over the years, as shown in Figure 4, while
fuel sales have decreased, with the values in 2020 being biased due to COVID-19 [28].
The calculations considered two scenarios, one assuming all vehicles are gasoline and
LPG-powered, and the other considering all fuels. As almost all of the gasoline and LPG
sold go to cars, diesel fuel sales may be biased by trucks, buses, and other vehicles.
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3.2. EVs Market Share Assumpitions

To effectively plan for the future of electric vehicles, it is necessary to evaluate the
current state of the electric fleet and make projections for the year 2030. Several sources,
including the Smart Mobility Report 2020, ASPI, Autostrade per l’Italia, Motus-E, and
PNIEC (National Plan Integrated For Energy And Climate), have predicted that the total
number of vehicles in Italy will not change significantly by 2030. Instead, a portion of the
fleet, ranging from 10% to 14%, will be composed of plug-in electric vehicles (PEVs). To
provide a broader perspective, Table 2 includes forecasts from international organizations
such as Bloomberg New Energy Finance, the US Energy Information Administration,
the International Energy Agency, and Enerdata [29–35]. Since the values are long-term
forecasting (global) or based on policymaker objectives (Italy and EU), the share is a desired
end-state, and the induced demand would play a role in reaching those objectives. Given
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the data gathered, the share of BEV vehicles on highways can be assumed to be 10& for the
scope of this work.

Table 2. Future electric vehicles share.

Publication Type Region 2030 2040 2050

PNIEC MISE [29] BEV IT 10%
Motus-E [9] BEV IT 10%
ASPI [31] BEV IT 10%
Smart Mobility Report [32] PEV IT 14%
BloombergNEF [33] PEV World 7% 33%

EIA [34]
PEV OECD 34%
PEV non-OECD 28%

IEA [1] PEV World 8%
Enerdata [35] PEV World 24–44%

3.3. Other Assumptions

The 20 most popular BEVs in Italy in 2021 are considered for this work as they
represent 90% of the Italian EV market. In particular, only AC-charging vehicles have
been excluded from the study since these cars are mainly dedicated to urban use, and DC
charging is the center of this study.

4. Model Structure and Design

Utilizing a linear methodology, the process of energy conversion through Equation (1)
results in the generation of the demanded electricity to power the electric fleet. This is
performed under the assumption that by the year 2030, 10% of the vehicles will operate as
battery electric vehicles (BEVs), while the absolute number of cars remains constant. For
coherence, the drivetrain market share (from official data [36]) is about 2019 as the fuel sold.

EEV,2019 =
∑i( fi ∗ ρi ∗ LHVi ∗ ηi)

∑ fshare,i
∗ 1
ηEV

∗ EVshare (1)

The efficiencies (ηi) of various vehicles, found in [25], are evaluated in terms of average
consumption rates and tank-to-wheel (TtW) efficiencies across diverse powertrain types.
The attributes of the fuel are derived from [26], except for the density (ρi) of Liquefied
Petroleum Gas (LPG) as it pertains to automotive applications [37]. All these pertinent data
are comprehensively compiled and presented in Table 1 for convenience and easy reference.

The flow of vehicles is not constant during the year. Several sources of variability
depend on different seasonalities (mainly daily, weekly, and yearly) and other less stable
sources like weather, crashes, etc. The most common scenario is a working day where
the highest flow occurs during the peak hour. To obtain a rough estimate of the flow in a
workday peak hour, Equation (2) is applied, where the Cpeak is the relative part of traffic that
concentrates in the peak hour. The studies that quantified these values have been published
in the Highway Capacity Manual (identified as k) [38]. The EEV,peak then represents the
energy demanded during the traffic peak hour. The suggested value to use depends on the
highway type (around 0.095).

EEV,peak =
EEV,2019

365
∗ Cpeak (2)

Some corrections to the energy balance are taken into account since electric vehi-
cles have different characteristics and performance attributes than internal combustion
energy vehicles (ICEVs). Ctemp in Equation (3) considers the increase in consumption in
winter conditions since electric vehicles cannot reuse part of the heat generated by the
engine; typically, the ratio between results in cold (−10 ◦C) and warm (23 ◦C) conditions
is 1.3 [39]. With the hypothesis of linearity between consumption and temperature, the
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values for minimum temperatures are extracted from Figure 5b, according to the average
minimum temperature in highway sections: 1.2 for Milan–Bologna, Bologna–Florence,
and Florence–Rome, and 1.165 for Rome (Fiano Romano–San Cesareo) and Rome–Naples,
respectively, are representative for an average minimum temperature of 1 ◦C and 5 ◦C. The
linearization of the temperature coefficient calculation presents a constraint, as it does not
encompass higher-temperature scenarios. However, the rationale for this choice is anchored
in the objective of the study, which is to size the infrastructure for scenarios with the highest
energy demand. Considering that extreme cold conditions typically result in elevated
energy requirements, the focus on the −10 ◦C to 23 ◦C range is deemed appropriate. The
methodology thus prioritizes conditions that stress the energy infrastructure, aligning with
the study’s goal of ensuring robustness under high-demand scenarios.
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Crange in Equation (3) estimates an increase in the need to recharge the EV due to its
lower range. This value is the most critical one to be set, and in a conservative approach, it
has been first determined as the ratio between the ICEV median range and the EV median
range (values from the US Department of Energy for the models sold in 2021 presented
in Figure 5a) [40]. This assumption can be made because the number of EV charges is
approximately D/REV , where D is the distance travelled and R is the range, and the number
of refuels ICEV refueling is approximately D/RICEV . Consequently, the ratio between the
recharges and the refueling is approximately RICE/REV . The value used in the baseline
scenario is the ratio of the median values, but in the results in the next section, two other
scenarios are shown, one that is more pessimistically based on the ratio of the maximum
range and one that is more favorable where the range is assumed to be 1:1 between BEV
and ICEV. In addressing the range ratio coefficient, a key component in the calculation, the
study encounters a limitation due to the unavailability of precise origin–destination (OD)
highway data. These data would allow us to determine the Crange more accurately.

EEV,peak,corrected = EEV,peak ∗ Crange ∗ Ctemp (3)

4.1. From Car Power Accepted to Average Power Demand

The following step is to estimate the average power (Pf leet,avg) that will be demanded
from the entire CS. To do this, the methodology used takes the 20 best-selling electric cars
in the Italian market with their respective sales volume. These account for almost 89% of
sales and are therefore assumed to be representative of the electric fleet being created. As
of today, the Italian electric fleet is about 0.3%, so to get to 10%, it makes sense to consider
the models selling now considering the fact that the average life of the car models is in line
with the assumed timeframe. Starting with this, we exclude cars that are not equipped
with DC charging, given the scope of this work. Three scenarios are created: all cars, cars
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with accepted power above 50 kW (baseline), and an optimistic scenario where the average
power turns out to be 150 kW.

To properly consider charging times, the powers must be weighted by the expected
occupancy time and share. It was assumed as the charging time (tv), and the time it takes or
the respective car to reach 60% State of Charge (SoC). Whereas for share (sv), it is assumed
as the current market share. The power is then calculated according to the equation.

Pf leet,avg =
∑v Pv ∗ tv ∗ sv

∑v tv ∗ sv

Also, it needs to be acknowledged that the inlet has been assumed to be able to provide
as much as 300 kW.

4.2. Energy Allocation to Sections

The fuel sold data are only available in aggregate form (975.2, 242.9, and 136.4 million
liters, respectively, for diesel, gasoline, and LPG; this and all the relevant data for calcu-
lation are synthesized in Table 1). It is necessary to allocate it to each examined highway
section. To do so, flows categorized as Class A and Class B, namely, 2-axle vehicles, were
chosen. For allocation, the disaggregated traffic must also be considered [41–44] (highway
concessionaire of the analyzed highway section), while the fuel sale figure is only available
in the aggregate for the entire highway network. Therefore, Equation (4) is used for alloca-
tion. Where j is the reference highway section of the calculation, and fAISCAT is the whole
network traffic [4]. The unit of measure needs to be adjusted.

EEV,peak,corrected,j = EEV,peak,corrected ∗
f j

fAISCAT
(4)

Then, to determine the Ninlets, the energy that needs to be provided in the peak hour
is divided by the average power absorbed, as shown in Equation (5); the value obtained
represents the total time needed to recharge the vehicles allocated to that section. Since
the energy calculation is relative to one hour, i.e., the peak hour, and the objective is not to
produce unsteady queues during the peak hour, the serviceable energy must be more than
or equal to the demanded energy. So, to obtain the number of ports such that equality is
verified, we divide by 1 h.

Ninlets,j =
EEV,peak,corrected,j

Pf leet,avg ∗ Tpeak
(5)

5. Results

Since there could be more than one service area in the same highway section and the
punctual flow was not available, the allocation was dependent on the km covered by the SA. It
has been assumed that the SAs cover half of the km preceding and half of the km succeeding.
The result of the presented methodology is now presented for a series of scenarios.

A baseline scenario has been chosen based on the literature and data revised in the
preceding section. It assumes an EV fleet at 10% share, that all the EVs can charge at least
50 kW, and a Crange coefficient of 1.47 (the ratio of the median ranges between ICEVs and
EVs). In this scenario, after the allocation process to the SA, the Ninlets is 382. The factor
that most influences the Ninlets is vehicle traffic.

Then, some results are shown in tabular form to illustrate in better detail the results
for the Milan–Bologna, the path with the most traffic. The intersection between the range
and the power scenario is shown in Figure 6a to provide a better picture of the relationship
between them. Then, Figure 6b shows the results of the power scenario translation in the
direct quantifications of Ninlets; in particular, the km values before and after the previous
and next SA are taken into account to allocate Ninlets, and every value is then ceiled to
guarantee the service. The sum of the combined total is then calculated.
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5.1. Range Correction

To better understand the sensitivity of the model to the most uncertain parameter, two
other different scenarios are compared to the baseline one. In these, an optimistic and a
pessimistic scenario are shown. The optimistic scenario predicts that the range of BEVs will
be comparable to ICEVs, or at least that it will be that of cars traveling on highways. In
favor of this scenario are the high growth rates of battery density. In addition, users who
travel long distances would prefer models with higher ranges. Otherwise, the pessimistic
scenario involves using the ratio of maximum autonomy as the range corrector, which
turns out to be more unfavorable than the medians. This scenario is more conservative,
and it essentially predicts no improvement in range. The results observed in these two
scenarios are a 41% reduction in the Ninlets and a 9% increase, respectively. The baseline
scenario still turns out to be conservative but suitable for guaranteeing the users’ demand.
Figure 7a shows the Ninlets for each SA on the A1 highway from Milan to Naples.

5.2. Accepted Charging Power

Similar to the previous paragraph in Figure 7b, more scenarios are shown compared to
the chosen baseline case. These differ because in the ‘Current Fleet’ case, the average power
accepted by the fleet composed of the most sold cars in early 2021 in Italy, sale proportions
are considered. In the other scenarios, the powers are progressively increased, assuming a
likely performance increase in super-fast and ultra-fast charging in next-generation vehicles
until the most optimistic case where the average power that can be absorbed is 150 kW. The
baseline scenario assumes that all vehicles can charge at least 50 kW, and the third scenario
assumes that all vehicles can absorb 100 W. In the given scenarios, we obtain overall Ninlets
changes of 16% and −14%, respectively, in the worst to best scenarios.
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6. Discussion on the Methodology

The methodology proposed in this paper for sizing fast chargers along highways, partic-
ularly the A1 highway in Italy, offers a novel approach for addressing the growing demand
for electric vehicle (EV) charging infrastructure. The core of this method involves a detailed
energy-based calculation that starts with the fuel sold in the highway network and converts it
into the number of charging inlets needed to meet the future electric fleet’s energy require-
ments. This approach is innovative in its use of real-world data, such as fuel consumption
rates and vehicle flow on highways, to estimate the energy requirements for EVs.

The energy conversion process in the methodology is underpinned by several key
assumptions and data points. It takes into account the current and projected market share
of EVs, the variations in vehicle charging power, and the specific energy requirements of
different vehicle types. This is significant because it allows for a more tailored and realistic
estimation of the charging infrastructure needed. Additionally, the method considers the
effects of seasonal variations and daily peak hours on energy demand, which is crucial for
ensuring the reliability and efficiency of the charging stations.

One of the most striking aspects of this methodology is its integration of various
corrective factors. These include adjustments for winter conditions, which affect EV energy
consumption, and considerations for the range limitations of EVs compared to internal
combustion engine vehicles (ICEVs). This holistic approach ensures that the model is
not just theoretical but grounded in practical realities that affect EV usage. However, the
methodology also faces certain limitations, such as the challenges in obtaining precise
origin–destination highway data, which would have provided a more accurate estimation
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of range correction factors. Despite these limitations, the methodology presents a robust
framework that can adapt to different scenarios, including varying assumptions about
future car distribution and charging power capabilities.

The application of this method to the A1 highway provides valuable insights into
the infrastructure requirements for supporting EVs in Italy. It highlights the need for a
significant increase in charging inlets, considering future EV adoption rates and energy
demands. The results show that the infrastructural needs vary considerably based on
different scenarios, underscoring the importance of flexible and forward-thinking planning
in the development of EV charging networks.

Overall, the methodology offers a comprehensive and adaptable framework for as-
sessing and planning EV charging infrastructure on highways. It contributes significantly
to the field of sustainable transport planning by providing a practical tool for transitioning
towards cleaner and more efficient transportation systems.

7. Conclusions and Future Works

In conclusion, this study presented a novel approach for estimating the number
of charging inlets required on highways to support the increasing number of electric
vehicles. The proposed methodology, which is based on energy conversion from fuel sold
on the highway to the electricity needed by the electric fleet, was found to be effective in
estimating the required number of charging ports. The results of the study showed that
vehicle traffic is the most influential factor in determining the Ninlets required; the difference
in Ninlets between different SAs is relevant. This study also emphasized the importance
of considering correcting factors, such as powertrain efficiencies and characteristics, in
estimating the energy requirements for an electric fleet, varying the Crange and Pfleet variates
proportionally, and varying the Ninlets both inversely and proportionally. Overall, this study
provides valuable insights for policymakers and industry stakeholders in planning and
implementing public charging infrastructure for electric vehicles. The method discussed
can be applied to large traffic arteries, especially in cities, which often accommodate
vehicles that have extended travel distances. These vehicles typically have a high demand
for charging to extend their range, which is commonly achieved through High-Power DC
(HPDC). Furthermore, incorporating a correction factor that is dependent on the proportion
of energy recharged at the destination could enhance the applicability of this model to
urban scenarios.

The absence of detailed OD highway data necessitates the adoption of alternative
approaches or assumptions, potentially impacting the precision of the calculated range
ratio coefficient. Consequently, this limitation must be acknowledged as it introduces a
degree of uncertainty in the final results, emphasizing the need for cautious interpretation
and potential future research to refine this aspect of the model.

Future work should focus on validating the proposed model to ensure its accuracy and
applicability in real-world scenarios. This can be achieved through a Monte Carlo simulation,
which will calculate the probability distribution of demanded power, taking into account the vari-
ability and uncertainty inherent in such predictions. Additionally, the use of origin–destination
(OD) data in the simulation can provide more precise estimates of the range requirements for
electric vehicles on highways. This approach will not only validate the model but also refine the
estimation of the number of charging inlets needed, thereby aiding in more effective planning
and implementation of electric vehicle charging infrastructure.
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