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Abstract—Semantic segmentation is the process of assigning
each input image pixel a value representing a class, and it
enables the clustering of pixels into object instances. It is a
highly employed computer vision task in various fields such as
autonomous driving and medical image analysis. In particular,
in medical practice, semantic segmentation identifies different
regions of interest within an image, like different organs or
anomalies such as tumors. Fully Convolutional Networks (FCNs)
have been employed to solve semantic segmentation in different
fields and found their way in the medical one. In this context, the
low contrast among semantically different areas, the constraint
related to energy consumption, and computation resource avail-
ability increase the complexity and limit their adoption in daily
practice. Based on these considerations, we propose SENECA
to bring medical semantic segmentation to the edge with high
energy efficiency and low segmentation time while preserving
the accuracy. We reached a throughput of 335.4 ± 0.34 frames
per second on the FPGA, 4.65× better than its GPU counterpart,
with a global dice score of 93.04% ± 0.07 and an improvement
in terms of energy efficiency with respect to the GPU of 12.7×.

Index Terms—Semantic Segmentation, Hardware Acceleration,
U-Net, FPGA

I. INTRODUCTION

Semantic segmentation is a widespread technique in com-
puter vision that segments different objects inside a given
image, relying on a pixel-level classification [1]. It finds
application in a vast range of fields from autonomous driving
and robotic navigation to medical practice, where the under-
standing of the observed scene passes through the clustering
of the different pixels into homogeneous areas representing
different objects or semantic classes [2], [3]. This task is
nowadays resolved thanks to the adoption of Deep Learning
(DL) [4] and, more precisely, thanks to Fully Convolutional
Networks (FCNs) [5]. FCNs output for each image input
pixels a value indicating its class, and, therefore, provide a
fast and easy way to interpret information map regarding the
observed scene. Thanks to their vast development in other
fields, FCNs have found a fertile field in medical practice
[6]–[8], where the low contrast among different object classes
complicates the semantic segmentation task. Indeed, medical
imaging relies on gray-scale images that present different areas
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or organs with similar intensities and with low contrast in the
border regions. For these reasons, through the years, medical
semantic segmentation was performed primarily manually or
in a semi-automatic fashion by experts, requiring a lengthy
analysis time [9]. Since the explosion of interest related to
artificial intelligence, clinical practice has also introduced
new automatic computer-based solutions. In this direction,
simplifying the semantic segmentation task through DL-based
solutions [4] would positively impact the analysis time of
numerous medical imaging tasks.

Unfortunately, the deployment of such solutions requires
computational and energetic resources that are not always
available in the medical field. Indeed, the deployment of se-
mantic segmentation DL models requires a vast and annotated
dataset to be trained on and a powerful computational system
to run on. With these constraints, given that a hospital gen-
erally has a considerable amount of pre-existing data already
analyzed, the main limiting factor remains the computational
configuration. The most employed devices for running FCNs
are GPUs which deliver notable performances in throughput of
segmented images but at the cost of high energy consumption.
Such a need limits this configuration in a surgery scenario
where we want to perform the semantic segmentation of
images acquired in real-time on the surgery table where the
surgery and imaging pieces of machinery require energy.
For these reasons, there are alternative solutions employing
either domain-specific architectures (DSAs) [10] or FPGAs
for their reconfigurable fabrics [11]. While the firsts are frozen
in silicon, FPGA-based ones provide continuously updatable
solutions dividable into two categories. The first one embeds
the FCN structure directly in the fabric through automation
toolchains [12] while the other implements soft-DSAs [13],
[14] that are software configurable for a wide range of FCNs.
These latest engines represent the most flexible solution and
exploit domain specialization being software-programmable,
reconfigurable at hardware level, and tailored for convolutions.

Within this context, we propose SENECA, a quantized
semantic segmentation network, running on FPGA, able to
accurately segment five major abdominal organs, namely
lungs, liver, bones, kidneys, and bladder, from the publicly
available dataset CT-ORG [15]–[17]. We employ Vitis AI
comprehensive stack [18] to develop a systematic workflow
for deploying energy-efficient semantic segmentation network
on Xilinx DPU [14] on an edge device, namely the ZCU104.
SENECA reaches a 4.65× speedup and a 12.7× reduction in



Fig. 1: High-level scheme of the overall proposed framework, which consists of data preparation and pre-processing (A), 32-bit
floating-point weights U-Net definition (B), and its subsequent training (C). Then, it proceeds with model quantization via
Vitis AI quantizer and calibration dataset to obtain the 8-bit integer U-Net version (D). Finally, the Vitis AI compiler generates
DPU-optimized instructions to deploy the quantized model on the FPGA (E).

energy consumption compared to its GPU-based counterpart.
Finally, it improves the accuracy compared to the CT-ORG
work [17], reducing its variability. Our main contributions are:

• The novel tailoring of real medical image semantic seg-
mentation models to a reconfigurable edge device.

• The development of an open-source1 methodological
workflow for deploying efficient medical semantic seg-
mentation models, easily adaptable to other DL networks.

• A systematic design and results analysis to identify the
best semantic segmentation model.

The remainder of the paper is organized as follows: Section II
presents literature works in the semantic segmentation and
acceleration. Section III details the proposed solution imple-
mentation choices, while Section IV describes the experimen-
tal setup and the SENECA evaluation in terms of accuracy,
inference time, and energy efficiency. Finally, Section V draws
the conclusions and discusses possible future improvements.

II. RELATED WORK

Machine Learning (ML), specifically DL and FCNs, have
won the so-called ”hardware lottery” [19] of being a good
research idea that wins for compatibility with available hard-
ware and software. Therefore a considerable body of research
has been done on efficient ML inference on specific hardware.

GPUs are the de-facto standard for DL training. However,
their power-hungry nature opens to different inference engines.
Although silicon development is a considerable cost that is
not always viable, many big companies are developing their
custom DSA for efficient FCN execution, such as the Google
Tensor Processing Unit [10]. Besides, FPGAs are the alterna-
tive to GPUs and DSAs. Their reconfigurable fabric and fine-
grained configurability made them the candidate platform for
energy-efficient quantized DL models execution [11]. In a first
instance, many FPGAs experts developed custom architectures
for specific DL networks embedded in the FPGA logic [20],
[21]. To lower the learning curve barrier, researchers develop
design automation toolchains for Convolutional Neural Net-
works (CNNs) [12]. Hybrid solutions between silicon-based

1https://github.com/RaffaeleBerzoini/SENECA.git

TABLE I: Organ frequencies in the CT-ORG dataset, ex-
pressed as pixel percentage of labeled targets.

Liver Bladder Lungs Kidneys Bones Brain

22.18% 2.51% 34.17% 4.70% 36.26% 0.18%

DSA and logic embedding are soft-DSAs [13], [14] which
adopt the software-programmability of the former and the
hardware reconfigurability of the latter while keeping domain-
specialization. We adopt this latter engine category for our
semantic segmentation workflow, being the optimal trade-off
between flexibility and specialization.

On the semantic segmentation side, there are various ap-
proaches to be considered. The first one is proposed along with
the CT-ORG dataset [15]–[17], which employs a 3D U-Net to
segment the different labeled organs. Exploiting other datasets,
reference [22] employs a DenseVnet reaching high accuracy
for small organs but less impressing results on the bigger
ones. Differently, the Organ Attention Network (OAN) in [23]
segments the labeled organs along the three principal axes and
then combines the obtained maps with a statistical function,
reaching remarkable performance. Unfortunately, its adoption
is limited by the necessity of having organs adjacency.

Based on all these considerations, we exploit Vitis AI
[18] open-ecosystem and its soft-DSA called Deep Learn-
ing Processor Unit (DPU) [14] to deliver high-performance
energy-efficient semantic segmentation inference with a 2D
U-Net-based model. Moreover, to the best of the authors’
knowledge, this is the first solution dealing with medical
semantic segmentation at the edge exploiting an FPGA in a
soft-DSA fashion.

III. PROPOSED APPROACH

This Section describes the systematic workflow for infer-
ence acceleration of the SENECA semantic segmentation FCN
based on Vitis AI [18]. Figure 1 shows the main proposed
steps from the employed dataset, the considered 2D model
and its training to its optimization, and the deployment of the
SENECA model on the edge device, namely the ZCU104.



TABLE II: Number of layers, filters and total parameters of
each implemented and compared model in this work.

Configuration Layers Filters Parameters [×106]

1M 9 8 ∼ 1.034
2M 11 6 ∼ 2.329
4M 11 8 ∼ 4.136
8M 11 11 ∼ 7.814

16M 11 16 ∼ 16.522

A. Data Description and Pre-processing

We start the description of SENECA with some consider-
ations on the data employed that have affected some of the
implementation decisions. We exploit the open source CT-
ORG dataset [15]–[17] to develop our semantic segmentation
workflow. It comprises 140 CT total-body or chest-only acqui-
sition, one per patient, saved in NIfTI format, with a variable
bit-width ranging from 16 to 32. For each volume, CT-ORG
provides a corresponding volume reporting the ground truth
label for six organs, namely bladder, bones, brain, kidneys,
liver, and lungs. Table I reports the frequency of each organ
in the dataset, and we can notice how it correctly reflects the
biological size of the considered organs. The only exception is
the brain, which proves to be highly underrepresented; indeed,
it has a similar dimension to the liver but appears only to
be 0.18% of the total labeled pixels in the dataset. Such a
disproportion derives from the low number of total-body CTs
and makes us remove the brain from the target organs. In
addition, we downsized the input images from 512 × 512 to
256×256 and rescaled them in the [-1, 1] interval to better suit
the further implementation steps. As the final pre-processing
step, we adjust the contrast of the images by saturating the
upper 1% and the lower 1% of the pixels.

B. 2D U-Net Model

The model chosen as the skeleton for SENECA is a 2D
FCN based on a U-Net architecture [24] that allows us to
preserve the spatial information in the output. We prefer a 2D
structure to a 3D one since it is faster to train and requires less
memory without losing accuracy. We have implemented five
models varying the number of layers and filters to identify the
best-suited model to semantically segment the CT data based
on throughput, energy consumption, and accuracy. Table II
shows the considered configurations, highlighting the different
structures and the overall number of trainable parameters. The
high-level structure of the proposed models reflects the U-
Net one with an encoding-decoding shape, as in Figure 1.
Each encoder stack consists of two 3 × 3 convolutional
layers, doubling the number of filters going downward, a
batch-normalization followed by a rectified linear unit (ReLU)
activation function, and ends with a 2 × 2 max pooling
operation for down-sampling and a dropout layer to prevent
overfitting. On the other hand, each decoder stack is similar to
its encoder counterpart with the addition of a 3× 3 transpose
convolution for up-sampling and a concatenation operation to

merge the feature maps coming from the encoders into the
decoder ones. Each decoder stack halves the number of filters
in the convolutional operations. The last layer employs six
3× 3 convolutional filters and a softmax activation operation
to produce six probability maps, one for each of the five
organs and the sixth for the background. Finally, the output
predicted labels are obtained using an argmax function on the
256× 256× 6 output stacks.

C. Training Loss Function

As stated in Section III-A, although we removed the brain
labels, the dataset still presents a class imbalance problem
deriving from the human anatomy, where lungs and liver are
the largest organs along with bones that appear in almost each
image, while kidneys and bladder are the smallest ones. This
dimensions variability leads the model to focus more on easy
target compared to the less frequent examples during training.
To overcome the class imbalance problem we implement a
weighted loss function to force the training towards the most
difficult examples. In particular, we exploit the Focal Tversky
loss, which proves to be the best candidate for the considered
model and dataset. We define the loss as:

FTLw = (1− (

∑
c wc · TIc∑

c wc
))γ (1)

where TIc and wc are the Tversky Index and the weight
assigned to the class c, respectively, and γ is the parameter
that regulates the training towards easier or harder examples.

In particular, TIc is computed as:

TIc =

∑N
i=1 picgic∑N

i=1 picgic + α
∑N

i=1 p̄icgic + β
∑N

i=1 picḡic
(2)

where pic and p̄ic are respectively the predicted probability
that pixel i belongs to class c or not; gic is the ground truth
and it is equal to 1 for pixel belonging to class c while ḡic is
equal to 1 for pixel not belonging to class c; α and β are the
regularization parameters for false negative and false positive,
respectively. We set α = 0.7 and, β = 0.3 which is the best
combination according to [25].

Finally, when in Equation (1) γ > 1, the Focal Tversky
loss pushes the network’s training towards the most difficult
examples (i.e., the organs associated with a lower Tversky
Index). Therefore, we set γ = 4

3 , being in the suggested range
[1− 3] [26], to produce a first mitigation of the dataset class
imbalance problem. Secondly, we assign to each TIc a custom
weight wc inversely proportional to the organ dimensions.
Indeed, the bigger organs are associated with small weight
values, while smaller organs present higher weights.

D. Model Quantization

Generally, training is performed with at least 32-bit floating-
point (FP32) weights, as we have done in this work. However,
while many preserve FP32 at inference time, quantization is
applied to reduce the memory footprint and save energy from
the computation. As many state-of-the-art works demonstrated
[11], [27], [28], employing weights with 8-bit integer (INT8)



TABLE III: Organ frequencies in the calibration data set before
(Random Sampling) and after (Manual Sampling) manual
organs frequencies correction.

Liver Bladder Lungs Kidneys Bones

Random Sampling 24.38% 3.00% 35.27% 3.63% 33.72%
Manual Sampling 21.69% 7.66% 32.02% 6.90% 31.73%

precision drastically reduce the required memory and energy
with an (often) negligible impact on the accuracy. Indeed,
the Vitis AI quantizer can convert FP32 weights to INT8
without degrading the resulting accuracy. In this way, the
final execution engine, i.e., the DPU, can execute a faster
INT8-weights model in an energy-efficient way, thanks also
to a reduced memory bandwidth demand. On top of this, the
quantization tool folds batch-normalization layers and removes
nodes not required for inference, such as dropout layers,
further reducing the overall computation and memory demand.
Vitis AI quantizer tool provides three quantization procedures:
Post Training Quantization (PTQ), Fast Finetuning Quantiza-
tion (FFQ), and Quantization Aware Training (QAT).

PTQ applies quantization through a small (100-1000 im-
ages) unlabeled calibration dataset. Whenever PTQ impacts
the model with accuracy loss, FFQ can reduce such loss
by increasing the quantization time required. Indeed, FFQ is
based on the AdaQuant algorithm [29] that adjusts weights
and quantizes parameters layer-by-layer using a calibration
dataset composed of unlabeled images. Finally, QAT can apply
a drastic quantization technique. Indeed, through this method,
the Vitis AI quantizer rewrites the floating graph and converts
it to a quantized model before network training. However, this
method requires the whole training dataset (input and labeled
images) and longer computational times compared both to
PTQ and standard GPU model training.

We opt for the first method, i.e., PTQ. For all the chosen
models listed in Table II, this quantization method generates
a quantized model with no global performance losses with a
calibration dataset of 500 images. We decide to test both the
remaining FFQ and QAT, but without achieving improvements
over PTQ. Afterward, the quantizer tool exploits the calibra-
tion dataset to identify modifications applied in the FP32 to
INT8 weights transformation. With the information gathered,
the tool reduces inference differences between FP32 and INT8
models as much as possible. Since these adjustments are based
on a portion of the original training dataset, the distribution of
the pixels belonging to the organs remains similar to Table I.

Because of this imbalanced distribution, weights transfor-
mation tries to minimize the changes during inference in the
most frequent cases, and it lets sporadic cases (such as the
bladder) contribute very little to weights transformation and
adjustment. An intuitive and quite effective way to counter
the loss of performance on smaller organs is to build the
calibration dataset to level out organs frequency. However, we
found that an excessive change in the original pixel distribution
led to relevant global performance losses. We experimented
with several combinations of pixels distributions and found
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Fig. 2: System view of the Zynq-based dual core
DPUCZDX8G-B4096 highlighting its internal architecture and
its system-wise components.

the reported distribution in Table III to be the best. This
distribution allows a model quantization with tiny performance
loss on some organs but better generalization, with slight
performances improvement, on some others. All things con-
sidered, we obtained a small global accuracy improvement
supported by a remarkable throughput increase.

E. Model Compilation and Deployment to the Edge

After model training and quantization steps, we are ready
for network compilation, deployment, and evaluation on a
target FPGA, a Xilinx ZCU104 evaluation board in our case.
Before such procedures, we need to compile the model into
binary instructions, namely an xmodel file, of our target
programmable soft-engine, which is the DPU. Figure 2 reports
a system view of the considered edge device composed of a
system-on-a-chip (SoC) with the main memory off-chip. The
SoC is composed of an ARM-based CPU and an FPGA, on
which we implement our target DPU. The default ZCU104
configuration is a dual-core DPUCZDX8G-B4096, which is,
among the DPU configurations, a general-purpose DPU for
CNNs that employs INT8 quantized data containers. It em-
ploys three parallelism degrees called pixel, input channel, and
output channel parallelism, whose multiplication determines
the peak operations per clock cycle of 4096.

We took advantage of the Vitis AI compiler, called VAI C,
to perform the final xmodel translation. The VAI C framework
parses the topology of the quantized input model and con-
structs an internal computation graph. As in the quantization
step, VAI C performs multiple compile-time optimizations.
For instance, batch normalization nodes are fused into preced-
ing convolutional layers, and efficient instruction scheduling
by exploiting parallelism and data reuse is produced. Then,
the back-end generates the compiled xmodel file based on the
target DPU microarchitecture.



Now, we are ready to deploy our compiled xmodel to the
target FPGA. We then employ the Vitis AI Runtime (VART) to
asynchronously submit and collect jobs to/from the accelerator
and take advantage of our multi-core architecture. Gener-
ally, VART enables C++ and Python APIs (here exploited)
to preprocess the input images and start the multithreading
inference process on the ZCU104. In contrast to the original
FP32-weights model trained on FP32 images to generate FP32
segmentations, we now have to account that our compiled
model is INT8. Therefore, it only accepts INT8 images as
input and returns INT8 masks of the segmented organs. Within
this context, we scaled input slices with a specific factor
generated during compilation and stored into the xmodel.

IV. EXPERIMENTAL RESULTS

This Section discusses the performance of SENECA. We
show and analyze the results from different points of view to
better understand and compare all the configurations tested for
each model. Then, we select the best configuration among all
the ones presented, and we will further analyze it by exploiting
more metrics and comparing it with the CT-ORG work [17].

A. Experimental Setup

We develop SENECA by constructing and training the five
proposed models. We exploit TensorFlow 2 for the network
structures definition, and we train them on an Ubuntu 18.04
system with an Intel Core i7-10750H and a NVIDIA GeForce
RTX 2060 Mobile. Such models, as explained in Section III,
are the starting point for the Vitis AI framework and are
also considered as the software baselines. On the FPGA side,
we exploit Vitis AI 1.4.1 and Vitis 2021.1 default image for
the ZCU104. To validate SENECA, we select three metrics,
namely throughput, efficiency, and accuracy.

1) Throughput and Efficiency: During the evaluation of
SENECA, we calculate the throughput as Frames Per Second
(FPS), in other words, how many images we can semantically
segment in one second. On the other hand, we measure the DC
power consumption in Watt during the inference phase with
the Voltcraft 4000 energy logger for FPGAs and NVIDIA smi
with the laptop plugged in for the GPU. Since throughput and
power consumption are dependent variables, we exploit for
the models’ evaluation the Energy Efficiency (EE) as the ratio
between the two as:

EE =
FPS

Watt
=

FRAMES

Joule
(3)

2) Accuracy: We explore the semantic segmentation abil-
ity through the widely employed Dice Similarity Coefficient
(DSC) defined as:

DSC =
2 |P ∩G|
|P |+ |G|

(4)

where P is the predicted segmentation and G is the ground
truth label. Further analysis of the networks’ performance is
based on the Recall (or True Positive Rate TPR) and Speci-
ficity (or True Negative Rate TNR). Such metrics help evaluate
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Fig. 3: Average energy efficiency for each model. The float
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the network overreach towards detecting True Positives (TP)
or avoiding False Positives (FP). The metrics are defined as:

TPR =
|P ∩G|
|G|

(5)

TNR =
|P c ∩Gc|
|Gc ∩ P |

(6)

where P c and Gc are the complement sets of prediction and
ground truth segmentation, respectively.

B. Energy Efficiency Evaluation

As introduced in Section III, we develop five models with
a variable number of trainable parameters, layers, and filters.
To identify the best-performing model, we deploy all of them
on FPGA and run the inference of 2000 images ten times
with an increasing number of threads (1, 2, and 4). Since the
accuracy does not depend on the number of threads employed
and, therefore, is independent of both the power consumption
and the throughput, we first select for each model (1M, 2M,
4M, 8M, and 16M) the best configuration in terms of energy
efficiency and then we further consider the accuracy.

For these reasons, Figure 3 shows for each model the four
considered configurations, namely the FP32 baseline GPU
configuration and the three INT8 quantized FPGA versions
with 1, 2, and 4 threads. We can see how the quantized
configurations are always better than their GPU-based coun-
terparts, with an increase in energy efficiency that varies
between 12.76× (1M) and 6.63× (16M) when considering
the four-thread configurations. In terms of Joule, for the
same amount of processed frames, the FPGA configurations
consume just between the 7.8% (1M) and 15.14% (16M) of
the Joules used by their GPU-based counterparts. On the other
hand, there is an energy efficiency improvement among the
FPGA-based configurations when increasing the number of
computing threads until 4. From a more in-depth analysis,
we have seen that further addition of threads would not be



TABLE IV: FPS, Watt, EE, and DSC comparison between the FP32 model, evaluated on a NVIDIA GeForce RTX 2060
Mobile GPU, and the INT8 model evaluated on a Xilinx ZCU104 with 4 threads. Results are provided as µ± σ2 of 10 runs.

FPS Watt Energy Efficiency [ FPS
Watt

] DSC [%]

Configuration FP32 INT8 FP32 INT8 FP32 INT8 FP32 INT8

1M 72.20± 0.47 335.40 ± 0.34 78.01 ± 0.61 28.40 ± 0.02 0.93 ± 0.01 11.81 ± 0.02 92.98±0.16 93.04±0.07
2M 77.45 ± 0.14 254.87± 0.20 77.63 ± 0.91 24.82 ± 0.02 1.00 ± 0.01 10.27 ± 0.01 92.98±0.16 93.01±0.07
4M 65.90 ± 0.30 273.17± 0.21 77.94 ±0.54 28.54 ± 0.06 0.85 ± 0.01 9.57 ± 0.02 93.41±0.16 93.49±0.07
8M 52.22 ± 0.31 127.91 ± 0.06 77.56±0.90 28.00 ± 0.04 0.67 ± 0.01 4.57 ± 0.01 93.53±0.16 93.65±0.07
16M 37.23± 0.42 98.12 ± 0.19 77.99±0.97 30.98± 0.15 0.48 ± 0.01 3.17 ± 0.02 93.76±0.16 93.84±0.07
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Fig. 4: Energy efficiency associated with models accuracy.
Models tested with 4-threads on the Xilinx ZCU104.

beneficial in terms of energy efficiency; indeed, instantiating
eight or more threads requires more power without a gain in
FPS. We can ascribe this behavior to the overall run-time,
which can time multiplex up to 4 threads without introducing
too much overhead.

Figure 3 also highlights the decreasing trend of the energy
efficiency associated with bigger models. As expected, a
higher number of parameters requires more memory to be
stored and computational resources, such as time and power.
This trend is confirmed by Table IV, where we can see how
bigger models segment fewer images per second. Indeed, for
both GPU- and FPGA-based configurations, we can see how
the 1M and 2M models reach higher FPS values, while the
power necessary to segment the images seems less affected
by the model dimensions.

Based on these analyses, we select as candidates to become
the best model all the FPGA-based models running on 4
threads. We then explore them in terms of accuracy to finally
identify the model to deploy within SENECA.

C. Accuracy Evaluation

From now on, when we refer to the 1M, 2M, 4M, 8M,
and 16M, we are referring to their 4 threads configurations,
so we no longer specify it. To select the best model, we
should study the overall reached accuracy; indeed, we consider
the DSC computed as the weighted mean of single organs

DSCs. Figure 4 reports the results of the accuracy evaluation
formulated as:

DSCi · EEi (7)

where DSCi is the Dice Score of the model configuration i,
while EEi is the Energy Efficiency of the configuration i as
in Equation (3).

Figure 4 shows a similar trend to Figure 3, where the smaller
models perform better then the bigger ones. Indeed, we can see
how the 1M model reaches a 3.7× improvement compared to
the 16M and a 1.15× over the 2M one. Also, in this case,
if we look at the contribution of the two components, we
should notice from Table IV that the most impacting one is
still the FPS rate. The DSC among all the five INT8 models is
almost constant with a maximum variation of 0.83 percentage
points that is negligible compared to the delta in FPS that
reaches 237.28. Moreover, all the FPGA-based models reach
comparable accuracy with their GPU counterparts, further
supporting the decision to move the inference of DL models
to FPGA-based devices, especially in computationally and
energetically restraint scenarios.

Based on all the run experiments, we select the 1M FPGA-
based model running on 4 threads as the best trade-off between
energy consumption, FPS, and accuracy. Indeed, it reaches
a 4.65× FPS rate compared to its GPU counterpart and a
3.42× on the 16M FPGA model, with a negligible accuracy
loss. Therefore from now on, this model will be referred
to as SENECA, and we will further explore its ability to
semantically segment the various considered organs.

D. Best Model Accuracy Evaluation

To better explore the benefits of an embedded FPGA-
based system for medical semantic segmentation, we have
further studied the ability of SENECA to overcome the class
imbalance problem both qualitatively and quantitatively.

As a first step, we have qualitatively evaluated the reached
accuracy; indeed, Figure 5 shows some sample images where
for each row we report the input image, the ground truth label
from CT-ORG, the SENECA output, and the output of its
GPU counterpart. As expected from the results in Table V,
the visual inspection demonstrates the excellent capability of
SENECA to deal with different organs.

We then move to a more systematic analysis of the accuracy
of SENECA by exploring the performance by organs. Figure 6
shows the boxplots of the DSCs for each target organ. We



Fig. 5: Visual comparison of the results obtained by SENECA.
From left to right: original CT slices, ground truth seg-
mentations, INT8 SENECA segmentations, FP32 SENECA
segmentations. The liver is shown in red, bladder in green,
lungs in blue, kidneys in yellow and bones in white.

can see how they present a stable behavior around their mean
value even when their biological shape is not, such as the
bones. The reached DSC is higher than 90% for bigger organs
while around 80% for the smaller ones. Thanks to their regular
shape, high contrast, and dimensions, the lungs reach the best
result. On the other hand, looking at the kidneys and bladder,
the DSCs reflect the organ frequency in the dataset; indeed, the
bladder reaches the lowest DSC being also the less represented
one. From Figure 6 we can see that even if there is still a
gap between small and big organs in terms of accuracy, our
custom training loss reduce the impact of class imbalance; in
fact, in the dataset, the lungs are 13.6× more frequent than
the bladder, but the lungs have just 1.21× higher DSC.

Apart from the achieved low results variability, which
demonstrates the robustness of the proposed solution, another
strength resides in the TPR and the TNR. Indeed, SENECA
reaches remarkable performance in detecting TPs with a global
sensitivity of 93.06%±0.07, and a nearly perfect ability to pre-
vent FP cases with a global TNR of 99.75%± 0.07. A deeper
analysis can then conclude that the proposed network shows a
more conservative behavior when detecting the organs’ edges
since the minimization of the number of FPs.

E. Comparison with baseline and literature

As the last step in the SENECA evaluation, we have
compared it to its GPU counterpart and the work proposed
along with the CT-ORG dataset [17]. We will not compare
to works like [22], [23] since they only approach sub-tasks
like the segmentation of smaller organs or adjacent ones, not
having to deal with relevant class imbalance problems nor with
a large number of organs simultaneously.
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Fig. 6: Box plots of the dice score for all the organs segmented
by SENECA on the CT-ORG dataset.

TABLE V: Comparison of SENECA between the FPGA 4-
threads congifuration, the GPU configuration and the results
obtained by [17]. Results are reported as mean± std.

FPGA GPU CT-ORG [17]

FPS 335.4 ± 0.34 72.20±0.47 [17-197]†
Energy Efficiency 11.81±0.02 0.93±0.01 n/a

Global DSC 93.04±0.07 92.98±0.16 88.17±5.16
Liver DSC 91.63±0.09 91.01±0.20 92.00±3.6

Bladder DSC 79.21±0.09 83.25±0.20 58.10±22.3
Lungs DSC 96.16±0.09 95.93±0.21 93.80±5.9

Kidneys DSC 81.3±0.08 82.02±0.18 88.20±7.9
Bones DSC 94.35±0.03 94.64±0.06 82.70±7.6

† Value extracted from the data provided in [17]. The range is the reported
mean execution time per patient divided by the maximum/minimum number

of images composing a CT stack.

As explained in Section III-D, the Vitis AI Quantizer tunes
the network weights based on the provided calibration dataset.
For this reason, by looking at Table V, we can see that more
frequent organs such as the liver and lungs show better DSCs
after quantization while smaller organs, such as the bladder,
can face some performance losses compared to the GPU im-
plementation. On the other hand, given that the models’ global
DSCs are weighted on the frequency of the organs, we obtain
slightly better global DSC results with the quantized version.
Moreover, as previously introduced, SENECA delivers higher
throughput and is more energy-efficient than its GPU version.
It improves the FPS rate and the energy efficiency by 4.65×
and 12.7×, respectively. Indeed, the compiled quantized model
is able to completely take advantage of hardware resources and
design parallelism of the Xilinx ZCU104.

We have compared SENECA to the CT-ORG 3D U-Net
[17], and Table V reports the obtained results. By comparing
the DSC of the single organs, we can see how SENECA
achieves remarkable results for bigger organs but also reaches
good results on smaller organs such as bladder and kidneys,
proving the ability of our weighted Focal Tversky Loss to
deal with class imbalance. Compared to [17] we obtain similar
results regarding liver and lungs. On the other hand, the FCN



proposed by [17] shows a higher DSC for kidneys but at the
cost of a high variability represented by the 7.9 points of
standard deviation. This issue is observable on all the predicted
organs, particularly on the bladder where SENECA outper-
forms the 3D U-Net by over 20% with a considerable standard
deviation reduction of more than 22%. This low variability
achieved by the presented network shows the capability of
our 2D U-Net to provide stable performance among different
and variable organs. Moreover, SENECA shows an increment
between 1.7× and 19.73× in terms of FPS compared to the
CT-ORG 3D U-Net, which uses four GPUs (whose model is
not specified).

V. CONCLUSIONS AND FUTURE WORK

Within this work, we have proposed an open-source em-
bedded quantized semantic segmentation network for medical
images. Moreover, with SENECA, we have tailored semantic
segmentation at the edge for a medical scenario along with its
methodological workflow. Then, we have demonstrated with
an extensive evaluation the benefits of employing an embedded
reconfigurable hardware accelerator to improve the FPS rate of
4.65× and the energy efficiency of about 12.7× at inference
time compared to GPU. Finally, we preserved the accuracy
of the non-quantized model and improved the model stability
compared to GPU and the CT-ORG work [17].

Future work - as future work, we will explore the possi-
bility of further addressing the class imbalance problem, and
we will study its generalizability more in-depth. Moreover, we
will evaluate some pruning techniques to additionally improve
throughput and energy efficiency.
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