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A B S T R A C T

The funicular analysis of curved masonry structures is addressed, considering the stereotomy of the voussoirs,
a limited compressive strength, and a limited friction coefficient. The force density method is used to handle
the equilibrium of the loaded nodes of the network, whose vertices lie along vertical lines passing through the
centroids of the blocks. For the resulting grid with fixed plan projection, the minimization of the horizontal
thrusts is formulated in terms of the height of the restrained nodes and of any set of independent force densities.
Anti-funicular networks are sought by enforcing compression-only branches of the network. Local constraints
are stated at each joint addressing the hypothesis of a limited compressive strength and a finite value of the
friction coefficient between two adjacent voussoirs. To enforce no-tension blocks, lower and upper bounds for
the vertical coordinates of the unrestrained vertices of the network are prescribed, as well. Sequential convex
programming is used to solve the arising multi-constrained minimization problem. The algorithm, which can
handle networks with general topology, is assessed by comparisons with results achieved with the Durand–
Claye method, a semi-analytical method for the equilibrium analysis of symmetric masonry arches and domes
that accounts for the limited compressive strength of masonry, the friction coefficient and the stereotomy of
the voussoirs. Numerical examples concern arches, domes and a cloister vault, considering varying mechanical
parameters.
. Introduction

The current study addresses a topical research problem in modern
tructural mechanics, namely the investigation of the structural re-
ponse of unreinforced masonry arches, vaulted structures and domes.
ith reference to this issue, this contribution aims at extending the

unicular analysis method to evaluate the mechanical response of struc-
ural elements of any complex shape, taking into account the geometry
f the blocks and the mechanical properties of the joints.

The theoretical background is based on those methods which, re-
valuating pre-elastic theories [1], have framed the study of the me-
hanical behaviour of masonry structures in the context of limit anal-
sis. As is well known, Heyman [2], by starting from insights in [3],
ransferred the philosophy of plastic theory from steel structures to the
tone skeleton, and formulated his safe theorem for masonry arches
y assuming the following hypotheses: the arch is made of perfectly
igid voussoirs having infinite compressive strength; there is no sliding
etween the voussoirs (i.e. the friction coefficient can be considered
nfinite); the tensile strength is nil. According to these hypotheses the
esearch of the collapse condition can be determined either through
he lower-bound or the upper-bound theorem of limit analysis, since
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the normality law holds between statically admissible stress states
and the associated flow rule for the displacement field. A number of
studies have re-worked historical methods based on the lower bound
theorem of limit analysis; among them the thrust line method has been
exploited e.g. in [4]. The modern re-visitation of the inversed catenary
concept [5], as well as the progresses of the thrust line method in terms
of graphical statics [6], have allowed the development of computerized
methods aimed at drawing the funicular polygon corresponding to the
actual loads for the assessment of masonry structures with complex ge-
ometry. The funicular analysis approach is one of the general methods
arising from the context described above. A review of the state of the art
on the scientific literature related to this method is beyond the scope of
this contribution. The interested reader can refer e.g. to [7,8]. Without
claiming completeness, however, we briefly recall some contributions
that are significant for framing the research object of this paper. The
funicular analysis method was firstly introduced in [9], suggesting a
technique able to model the principal stresses in a masonry vault as a
discrete network of forces. The forces meeting at each node must be
in equilibrium with the forces applied at that node. By assuming that
the forces in the network cannot be tensile, the nodes must lie within
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the thickness of the vault. This approach has been developed by various
scholars, see in particular the contribution in [10] and the recent devel-
opments in [11,12]. Some outcomes provided in [13] have contributed
to improve the method by exploiting the force density concept for
linearizing the equilibrium of the nodes of a general network. In [14]
an effective technique of matrix algebra is implemented to detect the
dependent and independent sets of force densities that arise in the
case of fixed horizontal projection of the network. The thrust network
analysis approach has also led to interesting re-interpretations in terms
of truss-like stress paths derived from Airy stress functions [15–17] or
singular stress fields based on the Airy function [18–21].

As regards Heyman’s hypotheses, which are usually adopted in the
context of thrust network analysis, it should be noted that crushing
and sliding can occur in real masonry structures. Neglecting the pos-
sibility of these events could lead to an overestimation of the collapse
load, or result in unsafe solutions. Furthermore, the equilibrium of
masonry structures is influenced by the stereotomy of the voussoirs,
see in particular [22,23]. This is the starting point for the advances
proposed in the current paper, where the problem is formulated within
the framework of multi-constrained optimization. The outcome is a
method of funicular analysis, introducing restrictions related to the
compressive strength of masonry and assuming a limited finite friction
at the interfaces of each block. This implies that the stereotomy of the
voussoirs is taken into account. As for the mathematical formalization
of the problem, reference is made to the contribution in [24], of which
the algorithm proposed in the current paper can be viewed as an
extension. The procedure consists in fixing the plan projection of the
structural grid. Then, the equilibrium equations of the loaded nodes are
written in terms of any independent set of force densities, along with
the height of the restrained nodes. To achieve anti-funicular networks,
compression-only constraints are implemented for the force densities.
To guarantee that the blocks are not subjected to tensile stresses,
lower and upper bounds for the vertical coordinates of the unrestrained
vertices of the network are imposed. Furthermore, local constraints
are enforced at each joint with the aim to take into account the
effects of the limited compressive strength, as well as the limited fric-
tion coefficient. The arising multi-constrained minimization problem
is solved through methods of sequential convex programming, which
were originally conceived to tackle problems of structural optimization
including multiple sets of local enforcements. The method is validated
by considering some benchmark case studies. The results are compared
with those obtained by means of a classical semi-analytical graphical
method, originally devised by the French scholar Durand–Claye [25]. A
re-visited version of this method, formulated in [26–28] in terms of the
static theorem of limit analysis, is exploited and further developed in
order to determine the complete set of admissible solutions with respect
to both the equilibrium conditions, the strength requirements of the
material, and the finite friction coefficient.

Before proceeding further, some remarks on the hypotheses adopted
to describe the behaviour of masonry are necessary to rigorously setting
the problem from a mechanical point of view. The introduction of a
limited compressive strength enriches Heyman’s assumptions imposing
a more restrictive condition on the stresses, according to which the
thrust line must pass inside each joint. Such an assumption allows to
solve the equilibrium problem in terms of the lower bound theorem
of limit analysis. On the contrary, considering the presence of finite
friction opens a very subtle question from the mechanical point of view.
If friction is finite, any two adjacent voussoirs may slide with respect
to one another, and the normality rule does not hold. The material
has therefore a non-standard plastic behaviour and is governed by a
non-associated flow rule. As first observed by Drucker [29], the case
of finite friction coefficient requires investigating if the system is ‘‘still
intelligent enough to distribute the stress to avoid collapse’’, as well as
assessing if the theorems of limit analysis are still valid. Since extreme
theorems cannot be applied to limit analysis of non-standard materials,
2

some scholars conceived modified bounding criteria. Radenkovic [30] a
demonstrates two theorems which allow for re-interpreting the re-
sults of limit analysis when the normality rule is not respected. The
contribution in [31] is aimed at constructing a non-associated plastic
potential to obtain a sufficient condition of uniqueness. The theoretical
background on this subject is exploited by several scholars, see e.g. [32,
33], to develop computational strategies for limit analysis of masonry
structures. In [34] a mathematical programming procedure is proposed,
based on non-linear and non-convex optimization, to determine the
minimum of a class of statically and kinematically admissible load
factors. This approach is implemented by [35,36] for non-standard limit
analysis of block masonry structures. In [37] this issue is considered
as a special constrained optimization problem. To the aims of this
research, reference is made to some studies which identify, within
non-standard limit analysis, some classes of problems for which the
uniqueness of the solution is guaranteed, as well as the possibility of
determining safe stress states. In [38] it is proved that the collapse of
masonry arches with symmetric loading and geometry belongs to such
class of problems. In [39] these results are extended to axisymmetric
masonry domes, by proposing a lower-bound computer method able to
take into account the effect of different friction coefficients at the joints.
As regards the examination of more complex cases where non-standard
behaviour occurs, the current study refers to the contribution by [32],
where the yield surface for an assembly of blocks with Coulomb friction
is analysed and a condition on stress-resultant systems is formulated
to conclude about the safety of the achieved statically admissible
solutions. Some further remarks on Coulomb friction as regards the
equilibrium of masonry arches are given in [40,41]. The interest in non-
standard limit analysis of masonry arches is testified also nowadays by
some recent works focused on different aspects related to the presence
of friction between the voussoirs, see e.g. [42–46]. It is interesting to
observe that the method proposed in this paper, by considering the
influence of both the shape of the voussoirs and restrictions on the
material behaviour at the joints, can also offer interesting points of
contact with the procedure adopted in [42]. In the latter contribution,
the discrete element method is employed to investigate the mechanical
behaviour of masonry oval domes with finite friction.

In the remainder of this paper, Section 2 recalls fundamentals of
the force density method for networks with fixed plan projection. Sec-
tion 3 presents the minimization problem, with focus on the constraints
enforced at the joints between adjacent voussoirs, whereas Section 4
introduces the Durand–Claye method for the equilibrium of arches and
domes. In Section 5 the performed simulations are reported, including
comparisons of the results achieved by the proposed numerical method
with those found through the aforementioned semi-analytical graphical
approach. Section 6 concludes the paper, summarizing the outcome of
this work and outlining the ongoing research.

2. Force density method for networks having fixed plan projection

The equilibrium of funicular networks is handled by means of the
‘‘force density method’’ [13]. A spatial network is made of 𝑛𝑠 = 𝑛 + 𝑛𝑓
nodes and 𝑚 branches, the latter undergoing axial forces only. Denoting
by 𝑥, 𝑦, and 𝑧 the axes of the Cartesian reference system with origin
𝑂, the vectors 𝐱𝑠, 𝐲𝑠, 𝐳𝑠 gather the coordinates of the 𝑛𝑠 nodes: 𝐱, 𝐲,

refer to the 𝑛 unrestrained nodes, where external loads are applied;
𝑓 , 𝐲𝑓 , 𝐳𝑓 address the 𝑛𝑓 restrained nodes, where reactions arise. Upon
ntroduction of the connectivity matrix 𝐂𝑠, the vectors 𝐮, 𝐯, 𝐰 collect
he difference in the coordinates of the nodes at the ends of each branch
long the axis 𝑥, 𝑦, 𝑧, respectively, i.e.:

= 𝐂𝑠𝐱𝑠, 𝐯 = 𝐂𝑠𝐲𝑠, 𝐰 = 𝐂𝑠𝐳𝑠. (1)

or instance, 𝑢𝑖 is the difference in terms of the 𝑥 coordinate between
he nodes at the end of the 𝑖-th branch. The force densities vector
= 𝐋−1𝐬 stores the ratio force to length for each branch of the

etwork, being 𝐬 the vector gathering the forces in the 𝑚 branches,

nd 𝐋 = diag(𝐥) a square matrix collecting, along its diagonal, the
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Fig. 1. The 𝑖-th joint between two adjacent voussoirs: view of the blocks (a); close-up of the joint (b).
length of the branches 𝑙𝑖 =
√

𝑢2𝑖 + 𝑣
2
𝑖 +𝑤

2
𝑖 . Point loads are prescribed

at the unrestrained nodes through vectors 𝐩𝑥, 𝐩𝑦, 𝐩𝑧, which define
the components of the nodal forces along the Cartesian axes. The
introduction of the force densities allows for writing the equilibrium
of the loaded nodes by means of linear equations which are uncoupled
in the three spatial directions. It is assumed that the topology of the
network is such that it can withstand the prescribed loads. As discussed
in [14,47–50], for networks with fixed plan projection, the horizontal
equilibrium of the unrestrained nodes reads:
[

𝐂𝑇 diag(𝐂𝑠𝐱𝑠0)
𝐂𝑇 diag(𝐂𝑠𝐲𝑠0)

]

𝐪 =
[

𝐩𝑥
𝐩𝑦

]

, (2)

where the vectors 𝐱𝑠0 and 𝐲𝑠0 store the prescribed and fixed 𝑥 and
𝑦 coordinates of the nodes, respectively, and 𝐂 is the subset of 𝐂𝑠
referring to the unrestrained nodes. Eq. (2) implies that a set of 𝑚 − 𝑟
independent force densities 𝐪 exists, being 𝑟 the rank of the coefficient
matrix. The 𝑟 dependent force densities 𝐪 may be re-written as:

𝐪 = 𝐁𝐪 + 𝐝, (3)

where 𝐁 and 𝐝 are matrices whose constant entries can be derived by
applying Gauss–Jordan elimination to Eq. (2), see [51]. Upon introduc-
tion of 𝐐 = diag(𝐪), the vertical coordinates of the unrestrained nodes
can be found by solving the equilibrium along the 𝑧 axis, i.e.:

𝐂𝑇𝐐𝐂𝐳 + 𝐂𝑇𝐐𝐂𝑓 𝐳𝑓 = 𝐩𝑧, (4)

where 𝐂𝑓 is the subset of 𝐂𝑠 referring to the restrained nodes.
For simplicity, the adopted approach has been presented consider-

ing only unrestrained nodes, along with fully restrained ones, see [13].
Partially restrained nodes can be tackled upon introduction of suitable
subsets of the connectivity matrix: 𝐂𝑓𝑥, 𝐂𝑓𝑦 and 𝐂𝑓𝑧 denote the subsets
of 𝐂𝑠 referring to the nodes with restraints along 𝑥, 𝑦 and 𝑧, respec-
tively, whereas 𝐂𝑥, 𝐂𝑦 and 𝐂𝑧 stand for their complementary subsets
to 𝐂𝑠. The horizontal equilibrium is given by Eq. (2), provided that 𝐂 is
replaced by 𝐂𝑥 and 𝐂𝑦 in the first and in the second row, respectively.
Eq. (4) holds, if 𝐂 is changed into 𝐂𝑧, and 𝐂𝑓 into 𝐂𝑓𝑧. In the latter
equation, 𝐳𝑓 refers to the nodes with restraints along 𝑧, while 𝐳 is its
complement to 𝐳𝑠.

3. Funicular analysis with finite strength and finite friction

3.1. Forces and eccentricities at the joint between two adjacent voussoirs

In Fig. 1, the 𝑖-th branch of the network spans from the unrestrained
node 𝑗 to the node 𝑗 + 1, crossing a (dry) joint between two adjacent
voussoirs. The nodes 𝑗 and 𝑗+1 are located along vertical lines passing
3

through the centre of gravity of the blocks, which are 𝐺𝑗 , with coordi-
nates (𝑥𝐺𝑗 , 𝑦𝐺𝑗 , 𝑧𝐺𝑗 ), and 𝐺𝑗+1, respectively. Due to the assumption of
networks with fixed plan projection, only the vertical coordinates 𝑧𝑗
and 𝑧𝑗+1 are allowed to change during the optimization.

In the implementation that follows it is assumed that the 𝑖-th joint
can be handled as a rectangular section. The largest rectangle that may
be inscribed in the original shape is adopted. The centroid 𝐶𝑖 of the
considered rectangular section has coordinates (𝑥𝐶𝑖 , 𝑦𝐶𝑖 , 𝑧𝐶𝑖 ). Denoting
by 𝐞𝑥, 𝐞𝑦, 𝐞𝑧 a triplet of unit vectors aligned with 𝑥, 𝑦, 𝑧, respectively,
the principal axes of inertia are given by 𝝃𝑖 = 𝜉𝑖,𝑥 𝐞𝑥 + 𝜉𝑖,𝑦 𝐞𝑦 + 𝜉𝑖,𝑧 𝐞𝑧
and 𝜼𝑖 = 𝜂𝑖,𝑥 𝐞𝑥 + 𝜂𝑖,𝑦 𝐞𝑦 + 𝜂𝑖,𝑧 𝐞𝑧, where 𝜉𝑖,𝑥, 𝜉𝑖,𝑦, 𝜉𝑖,𝑧 and 𝜂𝑖,𝑥, 𝜂𝑖,𝑦, 𝜂𝑖,𝑧 are
the direction cosines. The size of the section is 𝑙𝑖,𝜉 × 𝑙𝑖,𝜂 . The normal
outgoing from the 𝑗-th voussoir is defined as 𝐧𝑖 = 𝑛𝑖,𝑥 𝐞𝑥+𝑛𝑖,𝑦 𝐞𝑦+𝑛𝑖,𝑧 𝐞𝑧,
with 𝑛𝑖,𝑥, 𝑛𝑖,𝑦, 𝑛𝑖,𝑧 direction cosines.

The force acting upon the 𝑗-th block, due to the entry 𝑠𝑖 of the force
vector 𝐬, is:

𝐅𝑖 = 𝑠𝑖

(

𝑢𝑖
𝑙𝑖

𝐞𝑥 +
𝑣𝑖
𝑙𝑖

𝐞𝑦 +
𝑤𝑖
𝑙𝑖

𝐞𝑧
)

= 𝑞𝑖
(

𝑢𝑖 𝐞𝑥 + 𝑣𝑖 𝐞𝑦 +𝑤𝑖 𝐞𝑧
)

. (5)

With respect to the plane of the 𝑖-th joint, i.e. that defined by the unit
vectors 𝝃𝑖 and 𝜼𝑖, a normal and a shear component of 𝐅𝑖 are introduced,
𝐍𝑖 and 𝐕𝑖 respectively. The magnitude of the normal component of the
force may be computed by observing that:

𝑁𝑖 = 𝐅𝑖 ⋅ 𝐧𝑖 = 𝑞𝑖
(

𝑢𝑖 𝑛𝑖,𝑥 + 𝑣𝑖 𝑛𝑖,𝑦 +𝑤𝑖 𝑛𝑖,𝑧
)

, (6)

where a negative value of 𝑁𝑖 stands for compression. Hence, the
magnitude of the shear component may be found as the modulus of
the vector difference 𝐅𝑖 − 𝐍𝑖, i.e. 𝐅𝑖 −𝑁𝑖𝐧𝑖, that implies:

𝑉 2
𝑖 =

(

𝑞𝑖 𝑢𝑖 −𝑁𝑖 𝑛𝑖,𝑥
)2 +

(

𝑞𝑖 𝑣𝑖 −𝑁𝑖 𝑛𝑖,𝑦
)2 +

(

𝑞𝑖𝑤𝑖 −𝑁𝑖 𝑛𝑖,𝑧
)2 . (7)

The eccentricity of 𝐍𝑖 with respect to 𝝃𝑖 may be found by evaluating
the moment of the normal component of the force about the same
axis, 𝑀𝑖,𝜉 , scaled by 𝑁𝑖. Recalling that the shear component of the
force does not provide any contribution to 𝑀𝑖,𝜉 , and denoting by 𝐫𝑖 =
(𝑥𝑠𝑗 − 𝑥𝐶𝑖 ) 𝐞𝑥 + (𝑦𝑠𝑗 − 𝑦𝐶𝑖 ) 𝐞𝑦 + (𝑧𝑠𝑗 − 𝑧𝐶𝑖 ) 𝐞𝑧 the vector drawn from 𝐶𝑖 to
the 𝑗-th node of the network, one has that 𝑀𝑖,𝜉 = 𝝃𝑖 ⋅ (𝐫𝑖 × 𝐅𝑖). Hence:

𝑒𝑖,𝜉 = abs
(𝑀𝑖,𝜉

𝑁𝑖

)

,with
𝑀𝑖,𝜉

𝑁𝑖
=

= 1
𝑢𝑖 𝑛𝑖,𝑥 + 𝑣𝑖 𝑛𝑖,𝑦 +𝑤𝑖 𝑛𝑖,𝑧

|

|

|

|

|

|

|

𝜉𝑖,𝑥 𝜉𝑖,𝑦 𝜉𝑖,𝑧
𝑥𝑠𝑗 − 𝑥𝐶𝑖 𝑦𝑠𝑗 − 𝑦𝐶𝑖 𝑧𝑠𝑗 − 𝑧𝐶𝑖

𝑢𝑖 𝑣𝑖 𝑤𝑖

|

|

|

|

|

|

|

, (8)

where abs(⋅) stands for the absolute value of a scalar argument and | ⋅ |
for the determinant of a matrix argument. Analogously, the eccentricity
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of 𝐍𝑖 with respect to 𝜼𝑖 may be found as:

𝑒𝑖,𝜂 = abs
(𝑀𝑖,𝜂

𝑁𝑖

)

,with
𝑀𝑖,𝜂

𝑁𝑖
=

= 1
𝑢𝑖 𝑛𝑖,𝑥 + 𝑣𝑖 𝑛𝑖,𝑦 +𝑤𝑖 𝑛𝑖,𝑧

|

|

|

|

|

|

|

𝜂𝑖,𝑥 𝜂𝑖,𝑦 𝜂𝑖,𝑧
𝑥𝑠𝑗 − 𝑥𝐶𝑖 𝑦𝑠𝑗 − 𝑦𝐶𝑖 𝑧𝑠𝑗 − 𝑧𝐶𝑖

𝑢𝑖 𝑣𝑖 𝑤𝑖

|

|

|

|

|

|

|

, (9)

here 𝑀𝑖,𝜂 stands for the moment of the force 𝐅𝑖 about the same axis
𝑖.

The above formulas do not change when the 𝑖-th branch of the
etwork connects a restrained node with one of the unrestrained set,
he latter lying along a vertical line passing through the centroid of

block at the boundary of the curved structure. The assessment of
he joint crossed by the considered branch is performed looking at the
elevant section of the voussoir. The ingoing normal is selected, instead
f the outgoing one, if the first node of the branch is the restrained one.

.2. A multi-constrained minimization problem for funicular networks of
inimum thrust

The method herein proposed, framed in the theoretical context
f limit analysis, investigates the existence of statically admissible
unicular networks for the vault under examination. In particular,

multi-constrained minimization/maximization problem allows for
dentifying the funicular networks corresponding to the minimum and
aximum thrust values. In order to validate the numerical procedure,
focus on determining networks of minimum thrust is provided in this

ection. It should be observed that such networks do not correspond
o the ‘‘true’’ solution, but to one of the infinite statically admissible
nes. It is worth mentioning that, under Heyman’s hypotheses, ma-
onry vaults often attain a state of minimum thrust after the onset of
ettlement at the supports, see e.g. [2,52]. In these cases the choice
o minimize the thrust is also significant from a mechanical point of
iew. Aiming at minimizing the overall thrust, the following problem
s considered:
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

min
𝐪≤𝟎

𝐳min
𝑓 ≤𝐳𝑓 ≤𝐳max

𝑓

𝑓 =
𝑛𝑓
∑

ℎ

(

𝑅2
𝑥ℎ + 𝑅

2
𝑦 ℎ

)

(a)

s.t. 𝐪 = 𝐁𝐪 + 𝐝, (b)

𝐂𝑇𝐐𝐂𝐳 + 𝐂𝑇𝐐𝐂𝑓 𝐳𝑓 = 𝐩𝑧, (c)

𝑞𝑘 ≤ 0 for 𝑘 = 1...𝑟, (d)
𝑁𝑖

𝜎𝑐
(

𝑙𝑖,𝜉−2𝑒𝑖,𝜂
)(

𝑙𝑖,𝜂−2𝑒𝑖,𝜉
) ≤ 1 for 𝑖 = 1...𝑚, (e)

𝑉 2
𝑖

(𝑁𝑖 tan𝜓)2
≤ 1 for 𝑖 = 1...𝑚, (f)

𝑧𝑗 (𝐪, 𝐳𝑓 ) ≥ 𝑧min
𝑗 for 𝑗 = 1...𝑛, (g)

𝑧𝑗 (𝐪, 𝐳𝑓 ) ≤ 𝑧max
𝑗 for 𝑗 = 1...𝑛, (h)

(10)

where the vector storing the components of the reactions along the
and 𝑦 direction, 𝐑𝑥 and 𝐑𝑦 respectively, can be computed as 𝐑𝑥 =
𝑇
𝑓 diag(𝐂𝑠𝐱𝑠0)𝐪 and 𝐑𝑦 = 𝐂𝑇𝑓 diag(𝐂𝑠𝐲𝑠0)𝐪, see e.g. [24]. The mini-
ization unknowns consist of any reduced set of independent force
ensities 𝐪 and of the vertical coordinates of the restrained nodes
𝑓 . The dependent force densities 𝐪 are recovered from the indepen-

dent set 𝐪 by means of Eq. (10)-(b). Eq. (10)-(c) is the equilibrium
of the unrestrained nodes in the vertical direction, which allows for
computing 𝐳. Side constraints are used to prevent the arising of any
positive independent force density and to prescribe lower and upper
bounds to the vertical coordinates of the 𝑛𝑓 restrained nodes, see
vectors 𝐳min

𝑓 and 𝐳max
𝑓 , respectively. Depending on the connectivity of

the spatial grid, the former condition may not be sufficient to ensure
the achievement of anti-funicular networks, see [13]. To overcome this
issue, local constraints on the set of the 𝑟 dependent force densities
4

are implemented in Eq. (10)-(d). Denoting by 𝜎𝑐 ≤ 0 the strength
in compression, Eq. (10)-(e) consists of a set of local constraints that
avoid crushing at each joint, by imposing a finite compressive strength
and a nil tensile strength. A constant distribution of compressive stress
is assumed to arise in a limited portion of the section of the 𝑖-th
joint, i.e. the area with size

(

𝑙𝑖,𝜉 − 2𝑒𝑖,𝜂
)

×
(

𝑙𝑖,𝜂 − 2𝑒𝑖,𝜉
)

, to withstand the
eccentric axial force 𝑁𝑖. The adopted strength criterion is commonly
used in the engineering practice, see, for instance, the ultimate limit
state design of shallow foundations. When 𝑒𝑖,𝜉 = 0, or 𝑒𝑖,𝜂 = 0, it
reduces to the well-known criterion for 𝑀𝑖,𝜂 and 𝑁𝑖 only, or 𝑀𝑖,𝜉 and
𝑁𝑖 only, as discussed e.g. in [22,26]. Upon introduction of the friction
ngle 𝜓 , the set of local enforcements in Eq. (10)-(f) prevents the
ttainment of a limit condition at the 𝑖-th joint, by imposing that the
atio 𝑉𝑖 to 𝑁𝑖 must obey the Coulomb’s law [1]. Finally, Eqs. (10)-
g) and (10)-(h) are used to prevent the occurrence of tensile stresses
n the voussoirs, by enforcing lower and upper bounds to the vertical
oordinates of the 𝑛 unrestrained nodes. Indeed, 𝑧min

𝑗 and 𝑧max
𝑗 , are,

espectively, the minimum and the maximum value of the vertical
oordinate that the 𝑗-th node may assume without exiting the voussoir.
y using 𝜎𝑐 → −∞ in Eq. (10)-(e) and neglecting Eq. (10)-(f), the
ormulation in Eq. (10) retrieves networks of minimum thrust that
omply with Heyman’s assumptions. For finite values of 𝜎𝑐 and tan𝜓 ,
he assumption of infinite strength and no-sliding are removed at all
oints. In the context of limit analysis it may be useful to study the range
f admissible solutions, looking for both the minimum and maximum
hrust. Networks of maximum thrust can be retrieved through the
inimization problem in Eq. (10) by using −𝑓 as objective function.

It must be remarked that Eq. (10) implements a method of funic-
lar analysis, meaning that equilibrium is enforced at the nodes only.
ssuming that each voussoir corresponds to a vertex whose position can
ary only along the line of action of the resultant of the external forces
herein self-weight acting as a vertical force through the centroid), any
easible solution of Eq. (10) retrieves equilibrium of the rigid blocks.
t the 𝑖-th rectangular joint, strength constraints are enforced on the

imit bending moment, accounting for 𝐍𝑖, 𝑒𝑖,𝜉 and 𝑒𝑖,𝜂 , see Eq. (10)-
e), whereas the strength/friction constraints on the magnitude of the
wisting moment resulting from the eccentricity of 𝐕𝑖 are implicitly
isregarded, see Eq. (10)-(f). This simplification allows for a direct
omparison of the achieved numerical results with respect to those
ound through the Durand–Claye method, addressing symmetric struc-
ures that are symmetrically loaded. To tackle more general cases,
q. (10) can be straightforwardly endowed with constraints related
o the torsional capacity of the frictional interfaces, either including
dditional constraints, see e.g. [35], or replacing both Eq. (10)-(e) and
q. (10)-(f) with limit functions accounting for interactions of torsion
trength with bending moments and shear forces, see in particular
he piece-wise linear approximation for rectangular interfaces proposed
n [53].

.3. Numerical details

As investigated in [24], Eq. (10) can be efficiently tackled through
echniques of sequential convex programming that were originally
onceived to handle problems of size optimization with multiple sets of
ocal enforcements, see also the application in [54]. Due to its effective-
ess in the solution of stress-based problems of topology optimization,
ee e.g. [55–59], the gradient-based Method of Moving Asymptotes
MMA) [60] is herein adopted. The sensitivity information is provided
t each iteration. The gradient of 𝐪 and 𝐳 with respect to both sets of
inimization unknowns 𝐪 and 𝐳𝑓 can be computed by differentiation

of the equilibrium equations following [50]. Once these are available,
the chain rule allows to complete the task. When differentiating the
relations in Eq. (1), the assumption of grids with fixed plan projection
implies that:

𝜕𝐰 = 𝐂 𝜕𝐳 , 𝜕𝐰 = 𝐂𝑠
𝜕𝐳𝑠 = 𝐂 𝜕𝐳 + 𝐂𝑓

𝜕𝐳𝐟 . (11)

𝜕𝑞𝑘 𝜕𝑞𝑘 𝜕𝑧𝑓 ℎ 𝜕𝑧𝑓 ℎ 𝜕𝑧𝑓 ℎ 𝜕𝑧𝑓 ℎ
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Fig. 2. Modelling of staggered masonry: the 𝑗-th voussoir is split into two sub-blocks,
thus defining a pair of nodes of the funicular network (vertices and branches in blue);
only the coloured sections are accounted as joints. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)

It must be also remarked that the constraint in Eq. (10)-(e) is non-
differentiable when the eccentricities 𝑒𝑖,𝜉 and 𝑒𝑖,𝜂 are equal to zero,
see Eqs. (8) and (9). To overcome this issue, the absolute value of the
argument 𝑎, which is abs(𝑎), is replaced with an approximation whose
lower bound is the absolute value itself [61]:

𝑎 erf
(

𝑎
√

2𝛽

)

+
√

2
𝜋
𝛽 exp

(

− 𝑎2

2𝛽2

)

, (12)

where erf is the error function and 𝛽 = 0.05min
(

𝑙𝑖,𝜉 , 𝑙𝑖,𝜂
)

. The convolu-
tion operator introduces a minor bias around 𝑎 = 0, i.e. for 𝑒𝑖,𝜉 → 0 and
𝑒𝑖,𝜂 → 0, while providing the required differentiability.

The enforcement of the constraints in Eqs. (10)-(e) and (10)-(f)
can be conveniently restricted, if needed, to a subset of joints (and
related network branches). In this regard, the strategy adopted to model
staggered joints is exemplified in Fig. 2 . The 𝑗-th voussoir is split
into two sub-blocks, thus defining a pair of nodes of the funicular
network which can be connected to those representing the staggered
blocks around. Only the sections connecting the 𝑗-th voussoir to its
surroundings are accounted as joints, meaning that Eqs. (10)-(e) and
(10)-(f) are disregarded at the inner interface between the two sub-
blocks making the voussoir. The same splitting technique may be used
to address voussoirs with complex shapes, see e.g. the blocks lying at
the intersection of the four lunes in the cloister vault of Section 5.3.
When no splitting is operated, each node of the network has a fixed plan
projection corresponding to the horizontal coordinates of the centroid
of the relevant block. This means that the topology of the network only
depends on the connectivity among nodes whose horizontal projection
is given. When sub-blocks are used, a number of different voussoir
partitions can be adopted, thus allowing for additional degrees of
freedom in the definition of the network. This can be exploited to create
a correspondence between the geometry/layout of the blocks and the
branches of the grid, by searching for the arising of networks that
are consistent with the expected load path. In this regard, reference
is also made to [22], where new equilibrium states are investigated
considering networks where all the forces applied to one block do not
intersect in the same point.

It is finally pointed out that Eq. (10) does not retrieve a collapse
load, but searches among possible equilibrium states under a given
loading condition, herein self-weight. A comparison with classical block
methods for the limit analysis of masonry structures, see Section 1,
can be done in terms of admissible equilibrium states. When the forces
5

applied to each block, both the external ones and the reactions due to
the adjacent voussoirs, are concurrent, the approaches are equivalent.
When sub-blocking is used, the equilibrium states allowed by the
funicular approach here presented may be seen as a subset of those
considered when adopting classical block methods. The number of
parameters that are needed to handle the equilibrium are remarkably
less when working with the proposed funicular approach.

4. The Durand–Claye method and its modern version

In view of the assessment of the implemented numerical method, a
classical semi-analytical graphical approach, known as ‘‘stability area
method’’, is outlined. This method is based on the static theorem of
limit analysis, and aims at determining the complete set of admis-
sible solutions with respect to both the equilibrium conditions and
the strength capacity of the material. Originally conceived for the
analysis of symmetric masonry arches subject to symmetric vertical
loads [25,62], this graphical procedure consists in drawing the so-called
‘‘area of stability’’, i.e. the locus of points formed by the extremes
of the vectors representing all the horizontal thrusts satisfying both
the equilibrium conditions for the entire structure, and the strength
limitations related to masonry. More precisely, the stability area 𝐴 is
a region plotted in the (𝑓, 𝑒0) plane, where 𝑓 is the horizontal thrust
acting at point 𝑃0 of the vertical cross-section at the crown, while 𝑒0 is
the eccentricity of 𝑓 with respect to the cross-section’s centre of gravity
𝐶0. In Fig. 3(a) the stability area is represented as a green region,
being the intersection between the rotational domain 𝐴𝑟𝑜𝑡 (the yellow
region) and the sliding domain 𝐴𝑠𝑙 (the bright blue one). The stability
area method was re-visited and re-formulated in [26,27], framing
it within the theoretical background of limit analysis. An enhanced
version of this method was proposed in [28] to evaluate the stability
of masonry domes. The graphical procedure was translated in terms of
internal forces, and computerized, by resulting to be an effective tool
for assessing the stability of symmetric masonry arches and domes of
revolutions, loaded symmetrically. By adopting the same notation used
in Section 3, it should be observed that, for symmetric arches with
symmetric loading, only the bending moment 𝑀𝑖,𝜉 exists, see Fig. 3(b).
By denoting as 𝜃𝑖 the colatitude of the 𝑖-th joint with respect to the
𝑧 axis, the equilibrium conditions related to the portion of the arch
comprised between the vertical section at the crown and the 𝑖-th joint
allow for writing the formal expressions of the internal forces 𝑀𝑖,𝜉 and
𝑁𝑖 as 𝑀𝑖,𝜉 =𝑀𝑖,𝜉 (𝑓, 𝑒0, 𝜃𝑖) and 𝑁𝑖 = 𝑁𝑖(𝑓, 𝜃𝑖), respectively, for any joint.
At each joint 𝑖, the limit bending moment 𝑀 𝑙𝑖𝑚

𝑖,𝜉 and the shear capacity
can be defined according to a given criterion. In the following, 𝑀 𝑙𝑖𝑚

𝑖,𝜉
corresponds to a constant distribution of the limit compressive stresses
𝜎𝑐 at the joint, with possible partialization of the cross-section due to
the zero tensile strength. Hence, 𝑀 𝑙𝑖𝑚

𝑖,𝜉 is determined as a function of
the normal force 𝑁𝑖, of the dimensions of the cross-section, 𝑙𝑖,𝜉 and 𝑙𝑖,𝜂 ,
and of the masonry compressive strength, 𝜎𝑐 :

𝑀 𝑙𝑖𝑚
𝑖,𝜉 =

𝑁𝑖
(

𝑁𝑖 − 𝑙𝑖,𝜉 𝑙𝑖,𝜂 𝜎𝑐
)

2 𝑙𝑖,𝜉 𝜎𝑐
. (13)

This condition is fully equivalent to that used in Eq. (10)-(e) when
𝑀𝑖,𝜂 = 0. In Fig. 3, the red and blue curves in the (𝑓, 𝑒0) plane
correspond to the attainment of +𝑀 𝑙𝑖𝑚

𝑖,𝜉 and −𝑀 𝑙𝑖𝑚
𝑖,𝜉 at the 𝑖-th joint,

respectively. The shear capacity of the cross-section is obtained by
assuming the existence of internal friction along the joints, see Eq. (10)-
(f) with the Coulomb’s friction coefficient tan𝜓 . The values of the
crown thrust such that the shear force 𝑉𝑖 attains its limit value are:

𝑓 𝑠𝑙±𝑖 = 𝑊𝑖 tan
(

𝜋∕2 − 𝜃𝑖 ± 𝜓
)

, (14)

where 𝑊𝑖 is the weight of the arch’s portion comprised between the
vertical section at the crown and the generic joint. At any given joint:
(i) the inequalities −𝑀 𝑙𝑖𝑚

𝑖,𝜉 ≤ 𝑀𝑖,𝜉 ≤ +𝑀 𝑙𝑖𝑚
𝑖,𝜉 implicitly define the region

𝐴𝑟𝑜𝑡 in the (𝑓, 𝑒 ) plane, which corresponds to the rotational domain
𝑖 0
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Fig. 3. The ‘‘stability area method’’: stability area 𝐴 corresponding to all the admissible solutions in the (𝑓, 𝑒0) plane with respect to both the equilibrium conditions and the
strength capacity of the material (a); thrust line corresponding to one of the infinite solutions (b).
related to the 𝑖-th joint; (ii) the conditions 𝑓 𝑠𝑙−𝑖 ≤ 𝑓𝑖 ≤ 𝑓 𝑠𝑙+𝑖 define the
region 𝐴𝑠𝑙𝑖 , bounded by two vertical straight lines, which represents the
sliding domain related to joint 𝑖. By repeating the procedure for all the
joints and intersecting all the 𝐴𝑟𝑜𝑡𝑖 and 𝐴𝑠𝑙𝑖 regions, the rotational and
sliding domains related to the entire arch are obtained, namely 𝐴𝑟𝑜𝑡

and 𝐴𝑠𝑙. In Fig. 3(a) the former is plotted as a yellow area, whereas
the latter is in bright blue. The area of stability 𝐴 is obtained by
intersecting the rotational and sliding domains 𝐴𝑟𝑜𝑡 and 𝐴𝑠𝑙, i.e. the
green area. When the stability area related to the entire arch is reduced
to a single point (or a single segment), a limit condition is attained and
the corresponding collapse mechanism is identified.

An extension of the method to masonry domes was proposed in [28],
assuming an infinite friction coefficient as well as an infinite compres-
sive strength. The dome is ideally sliced along the meridian planes
by obtaining a series of ‘‘lunes’’. First, the stability area method is
applied to the single lunes, conceived as independent arches. Then,
it is observed that the limit condition identified by the vanishing of
the stability area could not correspond to the activation of a collapse
mechanism. To identify the limit condition, the possibility of activating
a kinematically admissible collapse mechanism for the entire dome
must be checked. It is also remarked that the presence of (statically
indeterminate) hoop compressive forces in the upper portion of the
dome could allow equilibrium although the area of stability related to
the single lune is nil.

5. Numerical simulations

In Sections 5.1 and 5.2, the analysis of symmetric masonry arches
and domes subjected to their self-weight, loaded symmetrically, is
addressed. The stability area method is exploited to retrieve refer-
ence solutions for validation of the proposed numerical method. In
Section 5.3 the equilibrium of a cloister vault is dealt with.

In case of infinite friction, the existence of any force network that
is in equilibrium with the prescribed loads implies that the structure
is safe for loading smaller than the given one, see the well-known
lower-bound theorem of limit analysis. When a non-standard material
is addressed, the normality of the flow rule is lost and the equilibrium
is not enough to conclude about the safety of the structure [30]. As
outlined in Section 1, a criterion to check the validity of any statically
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admissible solution is given in [32]. According to this contribution,
safety can be questionable only if a set of self-equilibrating stress
resultants exists, which respects all the constraints on the strength of
the material. With reference to the implemented method of funicular
analysis, this can be investigated by looking at the linear system that
gathers Eqs. (2) and (4), assuming 𝐩𝑥 = 𝐩𝑦 = 𝐩𝑧 = 𝟎. Non-trivial
solutions did not arise for any of the structures analysed next.

All the achieved optimal solutions are fully feasible with respect to
the set of the enforced constraints, meaning that no violation of any
local enforcement was reported at convergence.

In all the pictures representing funicular networks, the symbols +
and ◦ denote joint sections whose crossing branches activate a strength
constraint. The former symbol is used when the point of intersection
of the branch with the joint lies above the centroid of the section,
the latter otherwise. The symbol × refers to any joint section whose
crossing branch activates a friction constraint. The symbols ▵ and ▿
stand for points where a vertex of the network touches the extrados or
the intrados of the existing envelope, respectively.

A material with specific weight 𝛾𝑚 = 15 kN/m3 is assumed through-
out the section.

5.1. Arch with non-conventional stereotomy

The arch with the profile represented in Fig. 4(a) is considered.
The intrados lies along a circle with centre in 𝐶𝑖𝑛 = (0, 0, 0.5) m and
radius 𝑟𝑖𝑛 = 6.0 m. The extrados lies along a circle having centre in
𝐶𝑒𝑥 = (0, 0,−0.5) m and radius 𝑟𝑒𝑥 = 7.5. One half of the angle of
embracement reads 𝛼 = 30◦. The out-of-plane thickness of the arch is
𝑡ℎ = 0.5 m. The arch is made of thirteen voussoirs, whose stereotomy
is defined by radial lines originating from the point 𝐶𝑠𝑡 = (0, 0,−2.5) m.
The funicular polygon has fifteen nodes (𝑛𝑠 = 15). Two external nodes
are needed to define the branches crossing the boundaries of the arch.
They are conventionally located along vertical lines passing through
the outer edge of the boundary voussoirs. The nodes are restrained to
the ground, thus generating two sets of reactions along the horizontal
and the vertical direction (𝑛𝑓 = 2). Each one of the unrestrained inner
nodes is loaded by the resultant of the self-weight of the relevant
voussoir (𝑛 = 13). The resultant of the vertical forces reads 41.90 kN.

One independent force density exists, meaning that the minimization
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Fig. 4. Parametric geometry and stereotomy for the considered arcuated structures.
Fig. 5. Funicular polygons of minimum thrust for an arch with infinite friction: 𝜎𝑐 = −1000 MPa (𝑅𝑥ℎ = 16.76 kN) (a); 𝜎𝑐 = −0.15 MPa (𝑅𝑥ℎ = 20.09 kN) (b). The colours correspond
to the value of the forces in the branches (in kN).
problem Eq. (10) is formulated in terms of three unknowns (one force
density and the vertical coordinates of the two restrained nodes).
Indeed, the funicular polygon of an arch is indeterminate to the third
degree. The same initialization is used in all the simulations presented
in Section 5. The starting guess for any independent force density
is 50 kN/m, whereas entries of 𝐳𝑓 are arbitrarily set to half of the
maximum vertical coordinates of the vertices defining the geometry of
the voussoirs along the boundary.

At first, the funicular polygon of minimum thrust is sought under
Heyman’s assumptions, i.e. looking at the case of infinite compressive
strength and infinite friction resistance. The former requirement is
approximated by using 𝜎𝑐 = −1000 MPa in Eq. (10)-(e), whereas
the constraints in Eq. (10)-(f) are disregarded to meet the latter. The
computed funicular polygon, along with the value of the element forces
in its branches, gathered in 𝐬, is reported in Fig. 5(a). Constraints
of the type in Eq. (10)-(e) are active at both end joints, whereas
a no-tension constraint is active for the block at the keystone, see
Eq. (10)-(h). The funicular polygon spans from the lowest level of
the abutments to become tangent to the extrados of the arch at the
keystone, thus engaging the full envelope and getting the minimum
horizontal reaction 𝑅𝑥ℎ = 16.76 kN. A further simulation is performed,
considering 𝜎𝑐 = −0.15 MPa in Eq. (10)-(e). The choice of such a
low compressive strength value is related to the goal of validating the
proposed procedure, without making explicit reference to any specific
material. Incidentally, it can be recalled that Durand–Claye proposes a
7

safety coefficient to evaluate the stability of masonry arches (in the hy-
pothesis of an infinite friction coefficient) referring to the compressive
strength of the material. By decreasing the magnitude of 𝜎𝑐 , the area
of stability progressively shrinks, until an ultimate value is identified
(at which the area of stability is reduced to a single point). The ratio
between the actual compressive strength and the ultimate value thus
determined provides the so-called Durand–Claye safety factor [25].
Hence, assuming a very low, fictitious magnitude of 𝜎𝑐 can be useful
for defining the safety margin of a masonry structure with respect
to the real compressive strength. The achieved funicular polygon of
minimum thrust is given in Fig. 5(b). As expected, a flatter solution is
found, with an increased horizontal component of the reaction, which
is 𝑅𝑥ℎ = 20.09 kN. Again, two constraints of the type in Eq. (10)-(e) are
active at both end joints. With respect to the previous case, a suitable
increase in the area of the stress block at the joint is required to provide
equilibrium with the axial component of the force in the outer branches
of the polygon. Another pair of (symmetrically distributed) constraints
according to Eq. (10)-(e) is active at the joints of the keystone, again
calling for an area of the stress block that is large enough to avoid
crushing.

Then, the case of finite friction is considered by implementing
the full statement in Eq. (10). The method outlined in Section 4 is
preliminary adopted to detect values of the angle of friction inducing
some sliding at incipient collapse. The funicular polygon of minimum
thrust for an arch with 𝜎 = −1000 MPa and tan𝜓 = 0.0046 is
𝑐
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Fig. 6. Funicular polygons of minimum thrust for an arch with finite friction: 𝜎𝑐 = −1000 MPa and tan𝜓 = 0.0046 (𝑅𝑥ℎ = 35.90 kN) (a); 𝜎𝑐 = −0.15 MPa and tan𝜓 = 0.1036
(𝑅𝑥ℎ = 28.92 kN) (b). The colours correspond to the value of the forces in the branches (in kN).
Fig. 7. The stability area method for an arch with 𝜎𝑐 = −1000 MPa and tan𝜓 = 0.0046. The stability area is reduced to a green vertical segment (a); the set of corresponding limit
thrust lines (b). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
represented in Fig. 6(a). The extremely low value of the friction angle
calls for a very flat network, whose branches are almost perpendicular
to the joints. Four friction constraints of the type in Eq. (10)-(f) are
active. Compared to the case represented in Fig. 5(a), which assumes
the same 𝜎𝑐 , the value of the horizontal reaction is more than double
(𝑅𝑥ℎ = 35.90 kN). Another simulation is performed considering a small
value of the compressive strength, i.e. 𝜎𝑐 = −0.15 MPa, while slightly
increasing the friction coefficient, that is tan𝜓 = 0.1036. The achieved
solution is represented in Fig. 6(b). Friction constraints are active at
the end joints only, whereas those where the limit bending moment is
attained according to Eq. (10)-(e) are active both at the end joints and
at the edges of the keystone. With respect to the solution represented in
Fig. 6(a), the (slight) increase in the value of tan𝜓 allows for a (minor)
decrease in the magnitude of the horizontal component of the reaction
(𝑅𝑥ℎ = 28.92 kN). Also, comparing the solution represented in Fig. 6(b)
with that given in Fig. 5(b) for the same value of 𝜎𝑐 , the reversal of
the compressive region with respect to the median line of the arch is
pointed out.

The results reported in Fig. 6 are in full agreement with the pre-
diction of the Durand–Claye method. More in detail, with reference
to Fig. 7(a), for tan𝜓 = 0.0046 the sliding domain 𝐴𝑠𝑙 shrinks to the
bright blue vertical straight line in the (𝑓, 𝑒0) plane, with max𝑖 𝑓 𝑠𝑙−𝑖 =
min𝑖 𝑓 𝑠𝑙+𝑖 = 35.88 kN, see Eq. (14). The intersection between this straight
line and the rotational domain 𝐴𝑟𝑜𝑡 (the yellow region) identifies the
area of stability 𝐴, which is reduced to a green vertical segment. Al-
though a single value of the crown thrust is obtained, the stability area
thus defined matches a set of infinite solutions defined by 0.0688 m
8

≤ 𝑒0 ≤ 0.2541 m. This set corresponds to the green vertical segment
in Fig. 7(a), and to the thrust lines contained in the green region of
Fig. 7(b). Each of these solutions identifies a limit condition, since the
internal reaction at the red and at the blue joint in Fig. 7(b) touches the
friction cone defined by the angle 𝜓 . Moreover, the direction of sliding
is defined by means of Eq. (14): the arch’s portion above the red joint
slides outwards, while that comprised between the red and the blue
joint slides inwards. It is remarked that the location of the critical joints
is the same as found by the proposed approach of funicular analysis, see
Fig. 6(a).

As regards the area of stability represented in Fig. 8(a), the sliding
domain 𝐴𝑠𝑙, which corresponds to the bright blue region in the (𝑓, 𝑒0)
plane, has only one point in common with the rotational domain 𝐴𝑟𝑜𝑡

(the yellow region). The coordinates of this point in the (𝑓, 𝑒0) plane
are 𝑓 = 28.90 kN, 𝑒0 = 0.0593 m, and provide only one statically
admissible solution. This is plotted as a green point, at the intersection
between: (i) the two bold curves, blue and red, corresponding to the
attainment of a negative and a positive limit value of the bending
moment, respectively; (ii) the blue vertical straight line, corresponding
to max𝑖 𝑓 𝑠𝑙−𝑖 . By recalling Eqs. (13) and (14), this solution identifies
a limit condition: (i) the negative limit bending moment −𝑀 𝑙𝑖𝑚

𝑖,𝜉 is
attained at the joint near the crown section, see the blue thick curve in
Fig. 8(a) and the blue dot in Fig. 8(b); (ii) the positive limit bending
moment +𝑀 𝑙𝑖𝑚

𝑖,𝜉 is attained at the springing joint, see the red thick curve
in Fig. 8(a) and the red dot in Fig. 8(b); (iii) the limit condition related
to friction arises at the springing joint, see the vertical straight line in
Fig. 8(a) and the blue joint in Fig. 8(b). The location of the critical
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Fig. 8. The stability area method for an arch with 𝜎𝑐 = −0.15 MPa and tan𝜓 = 0.1036. The stability area is reduced to a single point (a); the thrust line corresponding to the limit
condition thus identified (b).
joints and the value of the crown thrust are in full agreement with those
obtained by the proposed approach of funicular analysis, see Fig. 6(b).

It is finally remarked that such very low values of the friction
coefficient have been adopted in the presented simulations with the
aim of testing the proposed algorithm on two non-trivial cases, both
corresponding to degenerated layouts of the stability area, see Figs. 7(a)
and 8(a).

5.2. Domes

A dome of revolution, whose reference profile is the same as the
arch analysed in the previous section, is addressed. Staggered voussoirs
are considered in this investigation, see Section 3.3. Introducing a polar
reference system with centre 𝐶𝑠𝑡, see Fig. 4(a), the sub-blocks are such
that each voussoir spans 𝛥𝜃 = 4.615◦ in terms of polar angle (colatitude)
and 𝛥𝜙 = 15◦ in terms of azimuthal angle. All the parameters defined in
the referenced figure take the same values already given in Section 5.1.
The keystone consists of a single block with polygonal top and bottom
faces.

At first, a network made of meridians only is considered. All the
nodes along the perimeter are fully restrained (𝑛𝑓 = 24). Each one of
the remaining unrestrained nodes (𝑛 = 145) is loaded by the resultant
of the self-weight of the relevant sub-block, or of the voussoir itself
(for the keystone). The resultant of the vertical forces reads 637.43 kN.
A Gauss–Jordan elimination procedure performed on the system of
Eq. (2) allows to conclude that, out of 𝑚 = 168 branches making the
meridians, only 𝑚 − 𝑟 = 22 independent force densities exist (one for
each meridian, except two). The number of joints at which strength
and friction constraints are enforced equals 𝑚. The problem in Eq. (10)
was iteratively solved at a first stage, searching for the minimum
friction angle for which a statically admissible solution can be found
for 𝜎𝑐 = −1000 MPa. In Fig. 9(a), the funicular network of minimum
thrust retrieved for tan𝜓 = 0.1209 is given, along with the forces in the
branches. In this picture and those that follow, only the cross-section of
the joints controlled within the optimization procedure are represented
(in grey). In each lune, a friction constraint of the type in Eq. (10)-
(f) is active at the outer joint. Nearby, a no-tension constraint of the
type in Eq. (10)-(h) prevents the vertical coordinate of the vertex of
the end voussoir from crossing the extrados. A limited compressive
strength/nil tensile strength constraint of the type in Eq. (10)-(e) is
active at the joint of the keystone, where the meridian approaches the
intrados. Overall, a very flat network is achieved.

As outlined in Section 4, modelling the lunes as independent arches
does not always allow for capturing the structural behaviour of the
dome. For instance, the activation of the hinges at the keystone cannot
occur when such a simplification is dropped. A further investigation is
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performed searching for funicular networks comprising both meridians
and parallels. The number of branches for the full network is 𝑚 = 312,
with only 𝑚− 𝑟 = 28 independent force densities (one for each parallel,
in addition to those already detected in the case of meridians only). The
number of joints at which strength and friction constraints are enforced
equals 240, which is less than 𝑚, due to the staggered arrangement of
the voussoirs and the adopted sub-blocking technique. The funicular
network of minimum thrust is represented in Fig. 9(b). The only active
constraints are those controlling friction at the outer joint. All the
parallels are acted upon by compressive forces. This does not affect
the magnitude of the horizontal reactions, which are the same as those
of the previous solution, but allows decreasing the magnitude of the
compressive forces in the central and upper part of the meridians.
Indeed, it is remarked that neither limited compressive strength/nil ten-
sile strength constraints nor compression-only enforcements are active
at convergence. As already pointed out for the solution represented in
Fig. 9(a), a very flat network is retrieved. The active friction constraints
force the meridians to lie next to the extrados at the outer joints,
while approaching the intrados in the vicinity of the keystone. This
layout is not far from the maximum thrust solution that is expected
for a dome while considering Heyman’s assumptions. In the latter case,
the magnitude of the hoop forces is found to increase with increasing
polar angle (colatitude), see e.g. the numerical investigations reported
in [24], as it can also be observed in Fig. 9(b).

For the validations performed by means of the Durand–Claye method
for a single lune, an absolute Cartesian system (𝑂; 𝑥, 𝑦, 𝑧) is chosen, such
that the origin 𝑂 coincides with point 𝐶𝑠𝑡, while the (𝑥, 𝑧) plane belongs
to the vertical plane of symmetry of the lune, see Fig. 3(b). The 𝑧 axis is
the axis of revolution of the dome. The generic cross section, i.e. the 𝑖-th
joint in Fig. 3(b), is schematized as a rectangle of area 𝑙𝑖,𝜂 ×𝑥𝐶𝑖 𝛥𝜙. The
area of stability for 𝜎𝑐 = −1000 MPa and tan𝜓 = 0.1209 is represented
in Fig. 10(a). It coincides with the narrow green region of the (𝑓, 𝑒0)
plane, i.e. the intersection between the rotational domain 𝐴𝑟𝑜𝑡 (the
yellow region) and the sliding domain 𝐴𝑠𝑙 (the bright blue region). The
area of stability is delimited by the three curves drawn with a thicker
stroke and the blue vertical straight line corresponding to max𝑖 𝑓 𝑠𝑙−𝑖 .
Despite its narrowness, this region identifies a set of infinite admissible
thrust lines. Those corresponding to the minimum crown thrust (𝑓 =
max𝑖 𝑓 𝑠𝑙−𝑖 = 35.79 kN) are defined by 0.2117 m ≤ 𝑒0 ≤ 0.2603 m, being
comprised in the green region plotted in Fig. 10(b). All these thrust
lines are characterized by the attainment of the limit condition related
to friction at the springing section, see the blue joint in Fig. 10(b).
Concerning the thrust lines corresponding to the two extreme values of
𝑒0, the lower thrust line matches the attainment of the negative limit
bending moment −𝑀 𝑙𝑖𝑚

𝑖,𝜉 at the joint near the crown section, see the blue
dot in Fig. 10(b). The upper thrust line corresponds to the attainment
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Fig. 9. Funicular networks of minimum thrust for a dome with 𝜎𝑐 = −1000 MPa and tan𝜓 = 0.1209: solution with meridians only (𝑅ℎ = 35.58 kN) (a); solution with meridians and
parallels (𝑅ℎ = 35.58 kN) (b). The colours correspond to the value of the forces in the branches (in kN).
Fig. 10. The stability area method for a dome with 𝜎𝑐 = −1000 MPa and tan𝜓 = 0.1209. The stability area (a); the set of thrust lines corresponding to the minimum value of the
admissible thrust (b).
of the positive limit bending moment +𝑀 𝑙𝑖𝑚
𝑖,𝜉 at the joint above the

springing section, see the red dot in Fig. 10(b). The location of the
critical joints, as well as the value of the minimum thrust, are in good
agreement with the results obtained by means of the proposed approach
of funicular analysis, see Fig. 9(a). Indeed, it must be remarked that
the semi-analytical approach does not control the vertical coordinates
of the centroids of the voussoirs, as it is considered in the implemented
multi-constrained problem.

A further investigation using the method presented in Section 3 is
performed addressing the dome of revolution whose reference profile
is depicted in Fig. 4(b). The intrados and the extrados are given by
the surface of spheres with centre in 𝐶𝑖𝑛 = 𝐶𝑒𝑥 = (0, 0, 0) m, and
radius 𝑟𝑖𝑛 = 2.35 m and 𝑟𝑒𝑥 = 2.51 m, respectively. One half of the
angle of embracement reads 𝛼 = 80◦. The stereotomy of the staggered
voussoirs is defined by radial lines originating from the same point,
that is 𝐶𝑠𝑡 = 𝐶𝑖𝑛 = 𝐶𝑒𝑥. The sub-blocks are such that each block spans
𝛥𝜃 = 9.41◦ in terms of polar angle (colatitude) and 𝛥𝜙 = 11.25◦ in terms
of azimuthal angle. As before, the keystone consists of a single block
with polygonal top and bottom faces. The resultant of the self-weight
for the entire dome reads 72.57 kN.

At first, an investigation for a network consisting of meridians
only is considered. The minimum friction coefficient for which a stat-
ically admissible solution can be retrieved by solving Eq. (10) with
𝜎𝑐 = −0.15 MPa is tan𝜓 = 0.1242. The relevant funicular network of
minimum thrust is represented in Fig. 11(a). Friction constraints of
10
the type in Eq. (10)-(f) are active at a colatitude equal to 5.5 times
𝛥𝜃. Constraints of the type in Eq. (10)-(e) are active at the joints of
the keystone and at a colatitude equal to 7.5 times 𝛥𝜃. No-tension
enforcements of the type in Eq. (10)-(h) prevent the vertices at colat-
itude equal to 3 times 𝛥𝜃 from crossing the upper face of the relevant
voussoirs. It is still worth remarking that the activation of the hinges at
the keystone is feasible only in case of the assumption of independent
lunes. The same dome is further addressed considering both meridians
and parallels. The relevant funicular network of minimum thrust is
represented in Fig. 11(b). The active constraints are those found in
the case of meridians only, except those referring to the joints of the
keystone, as expected. Hoop forces arise in the upper part of the dome
only. Parallels that lie at colatitude equal to, or greater than, 4 times 𝛥𝜃
are not represented in the picture, being inactive. Indeed, the lower part
of the dome behaves as a set of independent lunes, see investigations on
the structural behaviour of cracked domes under self-weight [63,64].
Hoop forces are responsible for a decreasing in the meridian forces
next to the keystone, with no modification in the magnitude of the
horizontal reactions of the solution in Fig. 11(a).

In order to validate the results of the numerical procedure, the
Durand–Claye method is applied to the lunes of the dome. It is assumed
that 𝜎𝑐 = −0.15 MPa, whereas the friction coefficient tan𝜓 varies. The
analysis shows that the rotational domain 𝐴𝑟𝑜𝑡 (the yellow region) is
very narrow, near a limit condition related to the single lune, see the
stability area in Fig. 12(a), and points 𝑎 and 𝑏 in the detail. By assuming
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Fig. 11. Funicular networks of minimum thrust for a dome with 𝜎𝑐 = −0.15 MPa and tan𝜓 = 0.1242: solution with meridians only (𝑅ℎ = 0.633 kN) (a); solution with meridians
and parallels (𝑅ℎ = 0.633 kN) (b). The colours correspond to the value of the forces in the branches (in kN).
Fig. 12. The stability area method for a dome with 𝜎𝑐 = −0.15 MPa and tan𝜓 = 0.1211. The stability area (a); the set of thrust lines corresponding to the minimum value of the
admissible thrust (b).
an infinite friction coefficient, the minimum value of the crown thrust
is identified by point 𝑎 (𝑓 = 0.6380 kN, 𝑒0 = 0.0145 m) of the rotational
domain, corresponding to the attainment of the limit bending moment
at two joints: at a colatitude equal to 2.5 times 𝛥𝜃 (positive limit
bending moment +𝑀 𝑙𝑖𝑚

𝑖,𝜉 ), and at a colatitude equal to 7.5 times 𝛥𝜃
(negative limit bending moment −𝑀 𝑙𝑖𝑚

𝑖,𝜉 ). The dashed blue line in the
detail of Fig. 12(a) corresponds to max𝑖 𝑓 𝑠𝑙−𝑖 for tan𝜓 = 0.1260. It passes
through point 𝑎, equating the value of the minimum admissible thrust
determined above, and identifies a joint subjected to local sliding at a
colatitude equal to 5.5 times 𝛥𝜃. By decreasing the friction coefficient,
the vertical straight line that corresponds to 𝑓 = max𝑖 𝑓 𝑠𝑙−𝑖 moves to the
right. In particular, for tan𝜓 = 0.1211, it passes through point 𝑐, see the
thick blue line in the detail of Fig. 12(a). The area of stability results
to be the narrow green region of the (𝑓, 𝑒0) plane, which corresponds
to a set of infinite admissible thrust lines. Those characterized by the
minimum value of the crown thrust 𝑓 = max𝑖 𝑓 𝑠𝑙−𝑖 are defined by
the vertical segment 𝑐 − 𝑑, with 0.0159 m ≤ 𝑒0 ≤ 0.0323 m, see
Fig. 12(a). The corresponding thrust lines are plotted in Fig. 12(b). All
of these solutions match the attainment of the limit condition related
to friction at a colatitude equal to 5.5 times 𝛥𝜃. Moreover, the thrust
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line identified by point 𝑐 corresponds to the attainment of the negative
limit bending moment −𝑀 𝑙𝑖𝑚

𝑖,𝜉 at two joints: the joint near the crown
section, and that identified by a colatitude equal to 7.5 times 𝛥𝜃, see the
blue dots in Fig. 12(b). The thrust line related to point 𝑑 identifies the
attainment of the positive limit bending moment +𝑀 𝑙𝑖𝑚

𝑖,𝜉 . This occurs at
the joint defined by a co-latitude equal to 2.5 times 𝛥𝜃, see the red dot
in Fig. 12(b). Also in this case, a good agreement is observed between
the results obtained by means of the two methods.

5.3. Cloister vault

A cloister vault is addressed, which is found by intersection at
right angles of two barrel vaults. For both, the reference section is
the one represented in Fig. 4(a). The parameters defined in the figure
are assumed to take the same value already used to investigate the
arch of Section 5.1. This holds for both the geometry of the masonry
envelope and the stereotomy aspects, with the only exception that
the number of blocks is here set to fourteen. Staggered voussoirs are
considered, according to the sub-block modelling approach described
in Section 3.3. The same technique is used to address the voussoirs
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Fig. 13. Geometry and stereotomy of a cloister vault, along with a funicular network of
the type implemented in the numerical investigation. Independent branches are marked
in red. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

lying at the intersection of the four lunes. Their complex shape is
handled by subdividing each voussoir in two symmetric sub-blocks,
thus defining two vertices of the network per voussoir. The branch
connecting these two vertices inside the corner block is disregarded
when enforcing constraints in Eqs. (10)-(e) and (10)-(f), see Fig. 2. In
Fig. 13, a funicular network of the type investigated next is depicted,
along with the geometry of the entire cloister vault and the stereotomy
of the voussoirs. It is remarked that the shape of the resulting grid is not
far from that suggested e.g. in [65] to analyse the load path in cloister
vaults.

The grid is made of 𝑛𝑠 = 276 vertices. The nodes lying along
the perimeter are fully restrained (𝑛𝑓 = 56), whereas the remaining
ones are loaded by the self-weight of the relevant sub-blocks. The
resultant of the vertical forces reads 821.80 kN. The analysis of the
augmented matrix governing the horizontal equilibrium points out that
the independent force densities are 𝑚−𝑟 = 10, out of 𝑚 = 444 branches.
The independent branches used in the simulation are marked in red in
Fig. 13. Hence, the optimization problem of Eq. (10) is set up in terms
of a small number of minimization unknowns, which is 66. The number
of joints at which strength and friction constraints are enforced is 332.

The first investigation on the equilibrium of the vault is performed
considering Heyman’s assumptions. The requirement of infinite com-
pressive strength is approximated by using 𝜎𝑐 = −1000 MPa in Eq. (10)-
(e), whereas the constraints in Eq. (10)-(f) are disregarded to deal with
infinite friction resistance. The computed funicular network, along with
the element forces in its branches, is reported in Fig. 14(a). Limited
compressive strength/nil tensile strength constraints of the type in
Eq. (10)-(e) are active at the joints all along the perimeter, except for
the corner voussoirs, where a limited set of enforcements of the type
in Eq. (10)-(g) prevents the arising of tensile stresses in the upper part
of the blocks. Local enforcements of the type in Eq. (10)-(f) are active
at the crown, preventing the arising of any tensile stress in the lower
part of the voussoirs. Indeed, meridians span from the lowest level of
the abutments, some of them becoming tangent to the extrados of the
vault at the keystone. A remarkable difference in the magnitude of the
horizontal reaction exists, when comparing the meridians located in the
middle of the lune (where 𝑅max

ℎ = 17.67 kN is achieved) and those at the
corners (where 𝑅min

ℎ = 0.25 kN is found). It is pointed out that parallels
are almost inactive in the lower part of the vault.

A further investigation is performed accounting for finite strength
and finite friction, assuming 𝜎𝑐 = −0.15 MPa and tan𝜓 = 0.4, re-
spectively. The achieved network of minimum thrust is depicted in
Fig. 14(b). Its overall shape is characterized by noticeable differences
with respect to the network represented in Fig. 14(a). Friction con-
straints are active for all the joints along the perimeter. A limited
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number of strength constraints is active at the corner to prevent crush-
ing of the lower part of the voussoirs. A set of constraints of the type
in Eq. (10)-(e) is active at some joints around the keystone, either
crossed by meridians or parallels, calling for a suitable depth of the
stress block to avoid crushing. Because of the friction constraints, a
smaller inclination on the horizontal plane is found, with respect to
the previous case, in the branches at the base of the vault. This implies
an overall increase in terms of resulting horizontal reactions (i.e. the
objective function). However, the difference between the maximum
value of the horizontal reaction (𝑅max

ℎ = 16.81 kN) and the minimum
one (𝑅min

ℎ = 3.01 kN) is less marked, pointing out a more homogeneous
response of the meridians. Looking at the parallels, most of them are
remarkably more stressed than in the network of Fig. 14(a).

6. Conclusions and ongoing research

A numerical method has been proposed to address the funicular
analysis of masonry structures such as arches, domes, and vaults,
taking into account stereotomy aspects. The force density method has
been employed to handle the equilibrium of the loaded vertices of
the funicular network. These lie along vertical lines passing through
the centroids of the voussoirs, or of suitable sub-blocks introduced
to handle staggered masonry and blocks with complex geometry. For
the resulting grid having fixed plan projection, the minimization of
the horizontal thrusts has been stated in terms of the height of the
restrained nodes and of any set of independent force densities. An
optimization problem characterized by a limited number of unknowns
has been formulated and solved by means of techniques of sequential
convex programming, which can effectively account for multiple sets of
local enforcements. These include no-tension constraints for the force
densities to achieve anti-funicular networks, and the enforcement of
lower and upper bounds for the vertical coordinates of the unrestrained
vertices of the network to get compression-only blocks. Local con-
straints have been introduced at each joint to control the value of the
maximum normal stress and the ratio shear to normal component of the
force between two adjacent voussoirs. The former prescription calls for
a suitable area of the compression-only stress block to avoid crushing.
In this regard, a strength criterion for axial loads having eccentricity
with components along the principal axes of the cross-section has been
implemented. The latter prescription enforces Coulomb’s friction law
to prevent sliding failure.

The proposed numerical method has been validated against results
found through the semi-analytical graphical approach known as the
stability area method, considering at first the equilibrium of an arch
for different assumptions on the compressive strength and the friction
coefficient (see Section 5.1) and, then, the equilibrium of domes of
revolutionwith different geometry and stereotomy in meridians-only
networks (see Section 5.2). Grids allowing for both meridians and
parallels have been investigated, as well, by means of the proposed
algorithm. A cloister vault has been analysed to point out peculiar fea-
tures of the solution attained for finite strength and finite friction with
respect to that found under Heyman’s assumptions (see Section 5.3).

The proposed method allows generating statically admissible solu-
tions for any given loading scenario. When infinite friction is assumed,
with finite either infinite compression strength, the safety of the struc-
ture follows. In the case of finite friction, the validity of the solution can
be checked, as suggested in the literature, by investigating the possible
arising of self-equilibrating stress resultants. No critical issue is reported
for the curved structures considered in the numerical studies. This was
expected, because of symmetry.

The current research is mainly devoted to the assessment of the pro-
posed method in case of general loading, including the effect of seismic
actions. Investigations of networks inspired by load paths retrieved via
linear elastic no-tension analyses of vaults, see e.g. [66,67], and testing
of grids that are consistent with the expected behaviour of different
masonry patterns are ongoing. Special attention will be devoted to
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Fig. 14. Funicular networks of minimum thrust for a cloister vault: 𝜎𝑐 = −1000 MPa and infinite friction (𝑅max
ℎ = 17.67 kN, 𝑅min

ℎ = 0.25 kN) (a); 𝜎𝑐 = −0.15 MPa and tan𝜓 = 0.4
(𝑅max

ℎ = 16.81 kN, 𝑅min
ℎ = 3.01 kN) (b). The colours correspond to the value of the forces in the branches (in kN).
the implementation of general failure criteria at the joint interfaces,
and to the validation of the proposed method focusing on structures
characterized by challenging equilibrium solutions, see e.g. the case of
masonry spiral stairs [68].
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