
1

Message Passing Neural Network Versus Message
Passing Algorithm for Cooperative Positioning
Bernardo Camajori Tedeschini, Graduate Student Member, IEEE, Mattia Brambilla, Member, IEEE,

Monica Nicoli, Senior Member, IEEE

Abstract—Cooperative Positioning (CP) relies on a network
of connected agents equipped with sensing and communication
technologies to improve the positioning performance of
standalone solutions. In this paper, we develop a completely
data-driven model combining Long Short-Term Memory (LSTM)
and Message Passing Neural Network (MPNN) for CP, where
agents estimate their state from inter-agent and state-dependent
measurements. The proposed LSTM-MPNN model is derived
from a parallelism with the probability-based Message Passing
Algorithm (MPA) for CP, from which the graph-based structure
of the problem and message passing scheme is inherited. In our
solution, the LSTM block predicts the motion of the agents, while
the MPNN elaborates the node and edge embeddings for an
effective inference of the agent’s state. We present numerical
evidence that our approach can enhance position estimation,
while being at the same time an order of magnitude less
complex than typical particle-based implementations of MPA for
non-linear problems. In particular, the presented LSTM-MPNN
model can reduce the error on agents’ positioning to one third
compared to MPA-based CP, it holds a higher convergence speed
and better exploits cooperation among agents.

Index Terms—Message passing neural network, message
passing algorithm, belief propagation, cooperative positioning,
LSTM, message passing.

I. INTRODUCTION

A. Contextualization and background

S IGNAL processing techniques operating over centralized
or distributed network architectures have been largely

studied in the past, especially for Situation Awareness
(SA) applications [1]–[4]. The main application domains
include Internet of Things (IoT) [5], Connected Autonomous
Vehicles (CAVs) [6], [7] and Maritime Situational Awareness
(MSA) [8], [9]. These applications are critical as they require
sensors (hereafter generally referred as agents) monitoring and
perceiving their surroundings and making informed decisions
based on the perceived information. The key aspect is
the cooperation among agents which enables Cooperative
Positioning (CP) techniques and enhances the perception of
the environment.

The Message Passing Algorithm (MPA), also known
as Belief Propagation (BP) or Sum-Product Algorithm
(SPA) [10], [11], is a probabilistic iterative technique which

B. Camajori Tedeschini and M. Brambilla are with
Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB),
Politecnico di Milano, 20133 Milan, Italy
(e-mail: bernardo.camajori@polimi.it, mattia.brambilla@polimi.it).

M. Nicoli is with Dipartimento di Ingegneria Gestionale (DIG), Politecnico
di Milano, 20133 Milan, Italy (e-mail: monica.nicoli@polimi.it).

Corresponding author: B. Camajori Tedeschini.

has gain a lot of interest in the field of CP [12] given its
ability of linearly scaling with the number of agents [13].
MPA has been largely employed in a different number of SA
frameworks, mainly addressing the Multiple Object Tracking
(MOT) problem with static or mobile sensing agents [14]–
[24], embedding or not the measurement to target association
problem [25]–[28].

B. Related works

MPA attains optimal performances in case linear models
and Gaussian processes, where the marginal posterior belief
converges to the exact marginal posterior distribution.
When the conditions of linearity and Gaussianity are not
met, particle-based MPA can be employed, although this
typically results in a notable increase of computational and
communication expenses (i.e., due to particles’ sharing and
aggregation). Some works tried to improve performances of
particle-based MPA implementations by reducing the particle
degeneracy in dense and large networks [29], [30] or by auto-
tuning the parameters of time-varying system models [31].
However, they did not resolve the main issue of MPA, which
is related to the convergence of the beliefs.

Since MPA involves a repeated exchange of information
(i.e., an iterative message passing) over a graph that is
representative of the considered problem, the intrinsic cyclic
structure of graphs leads the MPA’s outcome to be only
an approximation of the true marginal posterior distribution
as the algorithm converges to a local optimum [32]–[35].
Specifically, the approximation of beliefs can be considered
satisfactory if the optimization problem is locally convex.
To improve the performances, Neural Enhanced Belief
Propagation (NEBP) have been recently proposed [36]–[39],
wherein MPA and Message Passing Neural Network (MPNN)
are combined to rectify errors caused by cycles and model
mismatch.

The MPNN [40], [41] is an extension of Neural Network
(NN) customized to work on graph structures. Indeed, in
conventional MPNN, a NN is present in each node and
edge of the graph, elaborating the input features through an
iterative message passing. The elaborated features, i.e., node
and edge embeddings, are usually taken as input to perform
a specific task, like node/edge regression or classification.
Given their similarity with the message passing in MPA,
they have been used within the NEBP framework to address
the problems of Data Association (DA) [39], CP [37] and
also MOT [38], as well as with the implicit cooperative

This article has been accepted for publication in IEEE Transactions on Cognitive Communications and Networking. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCCN.2023.3307953

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

2

positioning framework [42]. However, NEBP approaches
require performing both iterations of MPNN and MPA,
increasing the already high computational time of particle-
based methods. Furthermore, it has been demonstrated that in
cases where sufficient training data is available, MPNN exhibit
superior performance to MPA on cyclic graphs [43], while
at the same time being scalable and able to learn non-linear
dependencies.

C. Contribution

Given the higher complexity of real-world problems, we
deem it to be convenient to completely replace MPA with
an equivalent MPNN version. A first attempt of using the
MPNN as an alternative to MPA was done in [44], in which we
focused on solving the DA task for pairing lidar detections in a
network of connected vehicles. Here, we address the CP task,
which requires intra-temporal characterization of the network
dynamics and cannot be fulfilled by a stand-alone MPNN. In
CP, a model of the temporal evolution (e.g., motion) of the
agents is required to enable tracking. Thus, in this paper, we
propose a joint architecture composed of a Long Short-Term
Memory (LSTM) and an MPNN model. The LSTM learns the
motion model of agents in time, while the iterative update of
estimates based on measurements is obtained with the MPNN.

The main contributions of this paper are as follows:
• definition of a theoretical framework based on the analogy

between MPA and MPNN, with focus on the definition
of exchanged messages, iterative processing steps and
inference prediction;

• proposal of an LSTM-MPNN model which completely
replaces MPA for the task of CP. The model is trained
using a centralized approach, while it is able to perform
a completely distributed inference after deployment;

• comparison with the conventional particle-based MPA,
with particular focus on positioning performances and
generalization properties.

D. Paper organization

This paper is organized as follows. Sec. II is devoted
to the description of the adopted system model. Sec. III
first describes the MPA for CP, giving the main steps of
the algorithm, and then defines the proposed LSTM-MPNN
model with a one-to-one parallelism with MPA. Lastly, it
provides insights on distributed inference and centralized
training procedures. Sec. IV first presents the simulation
scenario and implementation details, followed by simulation
results. Lastly, Section V draws the conclusions.

II. SYSTEM MODEL

We denote with In = {1, . . . , In} a set of connected
agents at timestep n. The connectivity graph between agents
is denoted with Gn = (Vn, En), where each node i ∈ Vn

corresponds to an agent, while the edge (i, j), with i ̸= j,
indicates the presence of a communication link from agent i
to agent j. Note that the graph is directed, i.e., edges (i, j)
and (j, i) differ, and might not necessarily be contemporary

present. Each agent i ∈ In communicates with the set
Ni,n of its neighbors and it is described by the state xi,n,
including kinematic parameters such as position and velocity.
The motion model of agent i from time n − 1 to time n is
described by:

xi,n = f (x)(xi,n−1,w
(x)
i,n−1) , (1)

where w
(x)
i,n−1 is the driving noise process that accounts for

motion uncertainty. The derived state-transition probability
density function (pdf) is indicated with p(xi,n|xi,n−1), which,
at time n = 0, coincides with the prior pdf p(xi,0).

Each agent has access to two types of measurements:
a partial and noisy observation z

(A)
i,n = f (A)(xi,n,w

(A)
i,n)

of its own state vector, and an inter-agent measurement
z
(A2A)
j→i,n = f (A2A)(xj,n,xi,n,w

(A2A)
i,n), ∀j ∈ Ni,n, where w

(A)
i,n

and w
(A2A)
i,n are the state and inter-agent measurement noises,

respectively. The functions f (A)(·) and f (A2A)(·), jointly
with the statistics of noises w

(A)
i,n and w

(A2A)
i,n , define the

likelihood functions p(z
(A)
i,n |xi,n) and p(z

(A2A)
j→i,n|xj,n,xi,n),

respectively. The driving processes and measurement noises
are assumed to be independent across agent pairs (i, j)
and time n. We indicate with xn = {xi,n}Ini=1

the set of state vectors of all agents at time n,
while the two set of measurements are indicated with
z
(A)
n = {z(A)

i,n }i∈In
and z

(A2A)
n = {z(A2A)

j→i,n}i∈In,j∈Ni,n
. The

overall set of measurements at time n is zn = {z(A)
i,n , z

(A2A)
i,n }.

CP aims at estimating the states of agents from all the
aggregated measurements up to time n, i.e., z(A)

1:n and z
(A2A)
1:n .

The estimated state is indicated with x̂n. Probabilistic
Bayesian methods, such as MPA, use the marginal posterior
pdf p(xi,n|z(A)

1:n, z
(A2A)
1:n) to estimate x̂n, e.g., through

the Minimum Mean Square Error (MMSE) estimator
x̂
(MMSE)
i,n =

∫
xi,n p(xi,n|z(A)

1:n, z
(A2A)
1:n) dxi,n [18]. On the other

hand, discriminative probabilistic approaches, like Deep
Learning (DL), directly define the posterior with a parametric
model, i.e., p(xi,n|z(A)

1:n, z
(A2A)
1:n) = p(xi,n|z(A)

1:n, z
(A2A)
1:n ,θ),

and try to find the parameter vector θ that maximizes
x̂i,n = Exi,n [p(xi,n|z(A)

1:n, z
(A2A)
1:n ,θ)] [45]. This is done using

as input a training dataset S train = {(xn, z
(A)
n , z

(A2A)
n)}Ntrain

n=1

and minimizing the negative log-likelihood, i.e.,
θ = argminθ[− log(p(xi,n|z(A)

1:n, z
(A2A)
1:n ,θ))].

A compact representation of the temporal evolution of the
system model is reported in Fig. 1, where two different
network topologies (i.e., different measurement availability) at
time n and n+1 are illustrated. The purpose of the figure is to
highlight the temporal sequence of CP and visualize different
combinations of the graph Gn.

III. COOPERATIVE POSITIONING METHODS

In this section, we first review the MPA Bayesian solution
for CP and then we perform a one-to-one comparison with our
newly proposed LSTM-MPNN model. Lastly, a description of
the inference and training procedure is given.

This article has been accepted for publication in IEEE Transactions on Cognitive Communications and Networking. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCCN.2023.3307953

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

3

x3,n

x2,n

x1,n

z
(A2A)
2→1,n

z
(A2A)
1→2,n

z
(A2A)
3→2,n

z
(A2A)
2→3,n

z
(A)
1,n

z
(A)
2,n

z
(A)
3,n

xn = {x1,n,x2,n,x3,n}

z
(A)
n = {z(A)

1,n, z
(A)
2,n, z

(A)
3,n}

z
(A2A)
n = {z(A2A)

1→2,n, z
(A2A)
2→1,n, z

(A2A)
2→3,n, z

(A2A)
3→2,n}

x3,n

x2,n

x1,n

z
(A2A)
1→3,n+1

z
(A2A)
2→3,n+1

z
(A2A)
3→2,n+1

z
(A2A)
3→1,n+1

z
(A)
1,n+1

z
(A)
2,n+1

z
(A)
3,n+1

xn+1 = {x1,n+1,x2,n+1,x3,n+1}

z
(A)
n+1 = {z(A)

1,n+1, z
(A)
2,n+1, z

(A)
3,n+1}

z
(A2A)
n+1 = {z(A2A)

1→3,n+1, z
(A2A)
3l→1,n+1, z

(A2A)
2→3,n+1, z

(A2A)
3→2,n+1}

Time n− 1 Time n Time n+ 1 Time n+ 2

CP State
prediction CP State

prediction CP State
prediction · · ·

Gn Gn+1

Fig. 1. Illustration of the working principle of CP, with highlighted state vectors and measurement sets for two consecutive time instants. The figure highlights
the variation of the graph Gn due to varied network topology and sets of measurements.

A. MPA-based CP

The agent’s marginal posterior probability
p(xi,n|z(A)

1:n, z
(A2A)
1:n) can be obtained by marginalizing the joint

posterior pdf p(x0:n|z(A)
1:n, z

(A2A)
1:n), where x0:n = {xn′}nn′=0.

Assuming statistical independence across agents at timestep
n = 0 and adopting Bayes’ rule, the joint posterior pdf is:

p(x0:n|z(A)
1:n,z

(A2A)
1:n) ∝

In∏
i=1

p(xi,0)

n∏
n′=1

p(xi,n′ |xi,n′−1)

p(z
(A)
i,n′ |xi,n′)

∏
j∈Ni,n′

p(z
(A2A)
j→i,n′ |xj,n′ ,xi,n′) . (2)

Since computing the marginalization of (2) can be unfeasible
or extremely complex, the MPA addresses this issue by
approximating the marginal posterior with an iterative message
passing scheme over a factor graph which factorizes the
joint posterior pdf in (2). Denoting the beliefs of agent i at
timestep n and message passing iteration t ∈ {1, . . . , T} with

b
(t)
i,n ≜ b

(t)
i (xi,n) ≈ p(xi,n|z(A)

1:n, z
(A2A)
1:n), the MPA-based CP

performs the following operations in parallel for each agent.

1) Prediction message: The predicted state of agent i is
represented by the message:

µi,−→n (xi,n) ∝
∫

p(xi,n|xi,n−1)b
(T)
i,n−1dxi,n−1 , (3)

where b
(T)
i,n−1 is the agent’s belief computed at previous

time n− 1 after T message passing steps. Note that the
beliefs are initialized at time n = 0 as b

(T)
i,0 ≜ p(xi,0).

2) Beliefs exchange: During message passing iteration
t ∈ {1, . . . , T}, each agent i broadcasts b

(t−1)
i,n and

receives b
(t−1)
j,n from its neighbors j ∈ Ni,n. At t = 1,

the exchanged beliefs are b
(0)
i,n = µi,−→n (xi,n).

3) Measurement messages computation: During message
passing iteration t ∈ {1, . . . , T}, each agent i computes
two measurements messages (one for each type of

This article has been accepted for publication in IEEE Transactions on Cognitive Communications and Networking. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCCN.2023.3307953

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

4

measurement) as:

µ
(t)(A)
i,n (xi,n) ≜ p(z

(A)
i,n |xi,n) , (4)

µ
(t)(A2A)
j→i,n (xi,n) ∝

∫
p(z

(A2A)
j→i,n|xj,n,xi,n)b

(t−1)
j,n dxj,n

∀j ∈ Ni,n.
(5)

4) Beliefs update: At message passing iteration
t ∈ {1, . . . , T}, the beliefs are updated as:

b
(t)
i,n ∝ µi,−→n (xi,n)µ

(t)(A)
i,n (xi,n)

∏
j∈Ni,n

µ
(t)(A2A)
j→i,n (xi,n) .

(6)

5) State inference: Lastly, after T message passing steps,
the state of agent i is estimated with the MMSE
estimator as:

x̂i,n = E
[
b
(t)
i,n

]
. (7)

Step 1) is indicated as prediction step and it is computed once
per timestep n. On the contrary, steps 2), 3) and 4) are called
update steps as they involve the measurements available at
current timestep n and they are performed for all T message
passing iterations per each timestep n.

For graphs with a tree structure, the MPA provides exact
approximation of the beliefs, which coincide with the true
marginal posterior pdf [10]. However, for cyclic graphs,
MPA only provides a reasonably accurate approximation of
the marginal posterior with a computational complexity that
linearly scales with the number of agents In and message
passing iterations T . Moreover, in case of non-linear motion or
measurement models, particle-based methods can be exploited,
despite incurring in a significant increase of communication
and computational costs.

In comparison, MPNN holds the same time scalability [46],
it has fewer parameters and it is able to catch any linear or non-
linear relationships between input-output data, outperforming
BP on loopy graphs if there is a sufficient amount of training
data [43]. However, MPNN does not have the knowledge
of features relation between time instants, i.e., each message
passing iteration t at timestep n is completely independent
with respect to the previous timestep n − 1. To solve this
issue, we propose an LSTM-MPNN model which combines
the time-dependent capabilities of the recurrent network as
well as the flexibility and scalability of the message passing
over NNs.

B. LSTM-MPNN-based CP

The idea behind the proposed model is to build an equivalent
DL-based model of the MPA-based CP described in Sec. III-A.
We start describing the overall model structure, shown in
Fig. 2, and then we analyze each single model block. The
proposed architecture is composed of two main components,
an LSTM block and an MPNN block. Adopting the same logic
of the MPA at prediction step, the LSTM at time n receives
in input the output of the MPNN x̂i,n−1 and predicts the most
likely change of feature state according to the learned motion

Time n = 0 Time n = 1

E[p(xi,0)] x̂i,0

x̂i,0 x̂i,1

zn zn

×T ×T

LSTM LSTM

MPNN MPNN

Fig. 2. Block representation of the proposed LSTM-MPNN model.

model of the agent. This is done by forwarding the hidden
states of the LSTM throughout the timesteps. Therefore, the
LSTM represents the equivalent block of (3) in the MPA. On
the other hand, the MPNN block is performed over T message
passing steps, exactly as the message passing in the MPA, and,
at last iteration T , it returns the update of feature states, i.e.,
x̂i,n. We remark that, by analogy with MPA, we adopt the
MPNN at the place of a Graph Neural Network (GNN) since
the final prediction in the inference step (7) is a direct function
of only the beliefs.

The MPNN runs on the same physical graph of the
agent network, i.e., Gn. It does not create a different graph
abstraction, thus it can be computed among the physically
connected agents. An MPNN considers two types of features:
node embeddings, i.e., v(t)

i,n, and edge embeddings, i.e., e(t)j→i,n.
The embeddings, also called attributes, contain elaborated
latent information that propagates throughout Gn at every
message passing step t. We can see an analogy between MPA
update step and MPNN if we consider the node embeddings
v
(t)
i,n as a elaborated versions of the beliefs b

(t)
i,n, and the

edge embeddings e
(t)
j→i,n as the corresponding measurement

messages between agents µ
(t)(A2A)
j→i,n .

The proposed MPNN model is composed of NNs for
three different functions, encoding of input features (g(A)

v (·)
and g

(A2A)
e (·)), update of node and edge embeddings (gv(·)

and ge(·)) and inference regression (g(regres)
v). The encoding

of input features is used to extract the most effective
representation of measurements z(A)

i,n and z
(A2A)
j→i,n to accomplish

the regression task, i.e., agent state estimation. The update
of the node and edge embeddings takes the role of (4), (5)
and (6), preparing the node embeddings v

(t)
i,n for the inference

prediction computed by the regressor g(regres)
v .

The complete proposed LSTM-MPNN algorithm is shown
in Fig. 3 and it is computed by each agent i in parallel.

1) Prediction LSTM: The LSTM model in agent i predicts
the node embeddings v

(t)
i,n at time n as

v
(0)
i,n = g(LSTM)

v (x̂i,n−1) , (8)

where g
(LSTM)
v is the LSTM model. At n = 0, the

inference is initialized as x̂i,n−1 ≜ E[p(xi,0)]. Note that

This article has been accepted for publication in IEEE Transactions on Cognitive Communications and Networking. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCCN.2023.3307953

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

5

3

2

1

z
(A2A)
2→1,n

z
(A2A)
1→2,n

z
(A2A)
3→2,n

z
(A2A)
2→3,n

z
(A)
1,n

z
(A)
2,n

z
(A)
3,n

x1,n

x2,n

x3,n

(a) Agent network

LSTMx3,n

v
(0)
3,n

LSTMx2,n

v
(0)
2,n

LSTMx1,n

v
(0)
1,n

3

2

1

e
(0)
3→2,n

e
(0)
2→1,n e

(0)
1→2,n

z
(A2A)
2→3,n

zh
(A2A)
2→3,n

=

e
(0)
2→3,n

(b) LSTM prediction and node/edge
embedding initialization

3

2

1

{v(t−1)
3,n } {v(t−1)

2,n }

{v(t−1)
2,n } {v(t−1)

1,n }

(c) Node embedding exchange

3

2

1

e
(t)
3→2,n e

(t)
2→3,n

e
(t)
2→1,n e

(t)
1→2,n

ge(e
(t−1)
2→1,n, zh

(A2A)
2→1,n,v

(t−1)
2,n ,v

(t−1)
1,n)

(d) Edge embedding update

3

2

1

v
(t)
3,n

v
(t)
2,n

v
(t)
1,n

gv(v
(t−1)
1,n ,v

(0)
1,n, zh

(A)
1,n,Φ({e

(t)
j→1,n}j ∈ N1,n))

z
(A)
1,n

zh
(A)
1,n

(e) Node embedding update

3

2

1

x̂
(T)
3,n

x̂
(T)
2,n

x̂
(T)
1,n

g
(regres)
v (v

(T)
1,n)

(f) State inference

Fig. 3. LSTM-MPNN algorithm for CP. (a) graph representation of the agent network with agent states and measurements. (b) LSTM prediction at time
n and initialization of node and edge embeddings at message passing iteration t = 0. (c) exchange of node embeddings among agents. (d) update of edge
embeddings according to (11). (e) update of node embeddings according to (12). (f) state inference at time n after T message passing iteration according to (13).

the output of the LSTM coincides with the initialization
of the node embeddings at message passing iteration
t = 0. Observing the parallelism with MPA, the belief
estimate b

(T)
i,n−1 is replaced by the state estimate x̂i,n−1,

while the state-transition probability pdf p(xi,n|xi,n−1)
is learned by the LSTM.

2) Measurements encoding: At each time n, before
starting the message passing, the agent and inter-agent
measurements are encoded as:

zh
(A)
i,n = g(A)

v (z
(A)
i,n) , (9)

zh
(A2A)
j→i,n = g(A2A)

e (z
(A2A)
j→i,n) , ∀j ∈ Ni,n . (10)

The encoding is necessary to elaborate the input features,
it transforms the input measurements into a hidden

representation. This is important since all features within
the message passing should not belong to the original
feature space, but to the hidden space for data privacy
reasons. At message passing iteration t = 1, the edge
embeddings are initialized as: e(0)j→i,n = zh

(A2A)
j→i,n.

3) Node embeddings exchange: At message passing
iteration t ∈ {1, . . . , T}, each agent i broadcasts v

(t−1)
i,n

and receives v
(t−1)
j,n from its neighbors j ∈ Ni,n.

Here, the analogy with MPA is straightforward if we
compare the beliefs exchange with the node embeddings
exchange.

4) Edge and node embeddings update: At message passing
iteration t ∈ {1, . . . , T}, the edge embeddings are

This article has been accepted for publication in IEEE Transactions on Cognitive Communications and Networking. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCCN.2023.3307953

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

6

updated as:

e
(t)
j→i,n =

ge(e
(t−1)
j→i,n, zh

(A2A)
j→i,n,v

(t−1)
j,n ,v

(t−1)
i,n) , ∀j ∈ Ni,n .

(11)

Note that (11) is the analogous of (5). Subsequently, the
node embeddings are updated as:

v
(t)
i,n = gv(v

(t−1)
i,n ,v

(0)
i,n, zh

(A)
i,n ,Φ({e

(t)
j→i,n}j ∈ Ni,n

)) ,

(12)

where Φ(·) is called aggregation function, i.e., a function
invariant to permutations of its inputs (e.g., element-wise
summation, mean, maximum). In the node embeddings
update, exactly as in the beliefs update in (6), the initial
node embeddings v

(0)
i,n are used as a short-connection

from the output of the LSTM, i.e., prediction step.
5) State inference: Lastly, after T message passing steps,

the regressor NN predicts the state of agent i as:

x̂i,n = x̂
(T)
i,n = g(regres)

v (v
(T)
i,n) . (13)

The MMSE estimator in (7) is substituted here by the
node regressor g

(regres)
v (·) which has the objective of

extracting the state prediction from the compact node
embeddings.

An interesting fact to point out is that the dimension of
the node and edge embeddings, as well as the dimension
of the encoded measurements, can be changed according
to the problem. As an example, for the case of a state
vector described in terms of 2D position and 2D velocity,
we need a dimension of eight for the encoding of the node
vector, i.e., corresponding to a propagation of a Gaussian
belief distribution which holds only two parameters (mean
and variance). Increasing the latent feature size leads to a
higher complexity of the model which becomes able to learn
more complex non-linear dependencies. On the contrary, in
particle-based BP, each agent has to exchange a number of
parameters equal to the number of adopted particles, each of
them with a dimension of the state space, which overall is
order of magnitudes higher than the dimension of the latent
features in MPNN.

C. Inference and training procedure

The proposed LSTM-MPNN model for CP, exactly as the
MPA-based CP, is suited for distributed inference. This is
due to the fact that each agent i has its own NNs, i.e.,
g
(LSTM)
v (·), g(A)

v (·), g(A2A)
e (·), gv(·), ge(·) and g

(regres)
v (·). The

physical exchange of embeddings only happens at step 3)
of the algorithm at each message passing iteration t and
each agent predicts its own state update according to (13).
However, in order to have a convergence of the method,
each NN at each agent should retain the same parameters,
as in classical MPNN. This permits a scalable solution to a
non-predetermined number of edges, i.e., measurements, and
nodes, i.e., agents.

To this aim, we propose a centralized training procedure in
which the NNs are firstly trained to learn the CP task and then

deployed in an agent network. To compute the training loss
and perform back-propagation, we employ the Residual Sum
of Squares (RSS) that is estimated at each timestep n and at
the end of each message passing iteration t after the regressor
prediction x̂

(t)
i,n as:

L =
1

N

N∑
n=1

1

|Vn|

T∑
t=1

∑
i ∈ Vn

∥x̂(t)
i,n − x

(t)
i,n∥

2
2, (14)

where N is the time sequence length on which the LSTM is
trained for tracking. For performance evaluation, we analyze
the Root Mean Square Error (RMSE) on the position and
velocity of agents.

IV. SIMULATION EXPERIMENTS

A. Dataset
We consider a 2D scenario in which In = 16 connected

agents move in an area of 200 × 200 m for 100 timesteps
sampled at 1 s. The agent trajectories create a star shape
starting from the origin and moving towards the limits
of the area (see Fig. 4a), and the graph Gn is fully
connected. The state of the agents is xi,n = [pT

i,nṗ
T
i,n]

T,
where pi,n ∈ R2 and ṗi,n ∈ R2 are the 2D position and
velocity, respectively. The measurements are defined as
z
(A)
i,n = xi,n +w

(A)
i,n and z

(A2A)
j→i,n = ∥pj,n − pi,n∥2 +w

(A2A)
i,n .

Unless otherwise specified, we model the kinematics
with a constant velocity model, while the state
measurements and inter-agent measurements are zero-
mean Gaussian distributed, i.e., w

(A)
i,n ∼ N (04,Cw(A)),

with Cw(A) = diag(σ2
p,w(A) , σ

2
p,w(A) , σ

2
ṗ,w(A) , σ

2
ṗ,w(A)),

and w
(A2A)
i,n ∼ N (0, σ2

w(A2A)), with standard deviations
σp,w(A) = 5 m, σṗ,w(A) = 1 m/s and σw(A2A) = 2 m.

For both MPA and MPNN, we consider T = 10
message passing iterations. The proposed LSTM-MPNN
model has been trained on 10000 instances of constant velocity
trajectories, varying ṗi,n ∈ [−10, 10] m/s. In order to enhance
model convergence and prevent biases, we standardized all the
samples by performing a min-max scaler so that each feature
lies in [0, 1]. This is done by having a prior knowledge on
the agent position, i.e., pi,n ∈ [−100, 100] m, and velocity,
i.e., ṗi,n ∈ [−10, 10] m/s. We highlight that this is not a
strong assumption, since to cover higher areas, we just need to
enlarge the maximum range of the state features. We trained
the LSTM-MPNN model for a total of 300 epochs, using a
batch size of 32 samples and randomizing the order of the
dataset at the beginning of each epoch. Here a sample refers
to an instance of trajectories composed of N = 10 timesteps,
i.e., the training sequence length of the LSTM model.

For the training and testing phases of the model, we
used PyTorch version 1.12 and Python version 3.7.11. These
operations were conducted on a workstation equipped with
an Intel(R) Xeon(R) Silver 4210R CPU, which operates at a
frequency of 2.40 GHz. The workstation was also supported
by 96 GB of RAM and a Quadro RTX 6000 GPU with 24
GB of memory. For what concerns the optimizer, we used the
Adam optimization algorithm [47] with an initial learning rate
of 0.0001, and momentum values of 0.9 and 0.999 for β1 and
β2, respectively.

This article has been accepted for publication in IEEE Transactions on Cognitive Communications and Networking. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCCN.2023.3307953

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

7

R
M

SE
po

s.
[m

]
R

M
SE

ve
l.

[m
/s

]

Time n

Y
[m

]

X [m]

non-coop. KF
non-coop. PF
MPA
LSTM-MPNN

non-coop. KF
non-coop. PF
MPA
LSTM-MPNN

(a) Agent network scenario (b) Position and velocity RMSE

Fig. 4. Performance evaluation of the proposed LSTM-MPNN for CP. (a) scenario with 16 moving agents. (b) RMSE of position and velocity over time for
the non-cooperative Kalman and particle filters, and the cooperative MPA and the proposed LSTM-MPNN.

B. Model and implementation details

The LSTM architecture has been inspired by [48], but here
we reduced the complexity such that it is constituted by
two LSTM layers and a hidden output dimension, i.e., node
embeddings, of 16. The complexity reduction is motivated
by considering that the state estimation in CP comprises
two steps (i.e., prediction and update). For the measurement
encoding, update of node and edge embeddings, and state
inference, we use Multi-Layer Perceptrons (MLPs) with
linear layers and Gaussian Error Linear Unitss (GELUs)
activation functions [49]. The complete LSTM and MLPs
model structures are reported in Table I.

The selected final architecture of our model was derived
upon experimentation, including varying the number of layers
and neurons. However, the main rationale behind the general
structures is the following. First, the NN encoders g

(A)
v (·) and

g
(A2A)
e (·), despite their small input sizes of 1 × 1 and 4 × 1,

are characterized by a higher computational complexity when
normalized by input size in comparison to the node and edge
embedding updates. Second, between gv(·) and ge(·), the latter
is more complex given its primary role at the initial step of
each iteration and the need of processing non-linear inter-agent
measurements z

(A2A)
j→i,n. Finally, the state inference regressor

g
(regres)
v (·) is the most challenging task and thus it requires

an additional linear layer (4 in total) to effectively predict the
state.

C. Simulation results

1) Tracking performances: The first test aims at assessing
the performances of the proposed LSTM-MPNN model to
highlight the advantages of adopting a data-driven solution.
The comparison includes two non cooperative algorithms, i.e.,
a Kalman Filter (KF) and a Particle Filter (PF), which only
use the agent state measurements z

(A)
i,n , and the cooperative

MPA described in Sec. III-A, which uses the agent state
measurements z

(A)
i,n and the inter-agent ones z

(A2A)
j→i,n, and it is

implemented following a particle based approach.
For the particle-based methods, the number of particles

was set to NPF = 1000. We would like to point out that
the KF represents the optimal non-cooperative case since all
noises are Gaussian and all models, i.e., motion and agent
state measurements, are linear. On the contrary, the MPA
results to be sub-optimal given the non-linearity of inter-agent
measurements and the full connectivity of the agent graph.

The results of the comparison are reported in Fig. 4, where
we plot a realization of the scenario (Fig. 4a) and the RMSE
of the position and velocity for each timestep (Fig. 4b)
(averaged over 30 simulations). Starting from non-cooperative
methods, we notice that the KF is well approximated by
the particle-based MPA and reaches a positioning error of
1.62 m while tracking. The cooperative MPA permits to
increase furthermore the performances by reaching 89 cm
at convergence. Lastly, the proposed LSTM-MPNN method
outperforms all the other methods, achieving an RMSE of 21
cm on the position. Concerning the velocities, all the methods
converge at about 0.05 m/s of RMSE. Apart from regime
performances, an additional important aspect to consider is
the model convergence. Indeed, the LSTM-MPNN method
is able to converge after few timesteps, while BP-based
algorithms require more time. This feature allows the LSTM-
MPNN model to fast react in case of track initialization and
recovery after a sudden trajectory variation as it rapidly forgets
the previous estimates, updating the state knowledge through
LSTM hidden states.

2) Generalization capabilities: This experiment compares
the performances of MPA and LSTM-MPNN under different
validation conditions. In particular, we test different intensities
of driving process and state-measurement noises. The MPA
retains inside the true value of the motion and measurement

This article has been accepted for publication in IEEE Transactions on Cognitive Communications and Networking. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCCN.2023.3307953

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

8

TABLE I
DETAILS ABOUT THE LAYER STRUCTURE OF LSTM AND MLPS MODELS.

LSTM
Type Output
Input 4× 1

LSTM layer 128× 1
LSTM layer 256× 1

Maxout 128× 1
Linear 64× 1
Linear 16× 1

g
(A)
v g

(A2A)
v gv ge g

(regres)
v

Type Output Type Output Type Output Type Output Type Output
Input 4× 1 Input 1× 1 Input 64× 1 Input 64× 1 Input 16× 1

Linear+GELU 72× 1 Linear+GELU 18× 1 Linear+GELU 18× 1 Linear+GELU 80× 1 Linear+GELU 16× 1
Linear+GELU 16× 1 Linear+GELU 18× 1 Linear+GELU 16× 1 Linear+GELU 256× 1

Linear+GELU 16× 1 Linear+GELU 16× 1 Linear+GELU 128× 1
Linear 4× 1

noises, while the LSTM-MPNN has been trained with noise-
free driving and measurement models. This is done in order
to prove the efficacy of the method with a full-calibrated MPA
and a completely miscalibrated LSTM-MPNN.

In a first test, we consider a zero-mean Gaussian-distributed
driving noise, i.e., w

(x)
i,n ∼ N (04,Cw(x)), with Cw(x) =

diag(σ2
p,w(x) , σ

2
p,w(x) , σ

2
ṗ,w(x) , σ

2
ṗ,w(x)). In Fig. 5, we compare

the MPA and LSTM-MPNN in terms of RMSE on position,
with σp,w(x) = 0 m and varying σṗ,w(x) ∈ [0, 10] m/s.
From the results, we notice that when σṗ,w(x) < 0.5 m/s,
the proposed LSTM-MPNN outperforms the particle-based
MPA. On the contrary, increasing the noise intensity leads
to a faster degradation of performances with respect to the
MPA. This is justified by two main factors. Firstly, the model
has been trained using error-free trajectories, leading it to
anticipate motion models that adhere to the distribution of
the training trajectories. Secondly, the increased noise raises
the likelihood of encountering an agent with a speed beyond
the training range of [−10, 10] m/s, potentially leading to
inaccurate predictions.

In a second test, we consider a constant motion model and
a varying state-measurement noise, i.e., σp,w(A) ∈ [0, 10] m.
This time, analyzing the results in Fig. 6, we observe that the
LSTM-MPNN achieves a lower RMSE across all considered
values of state measurement noise. This confirms the trend that
on peak performances, i.e., with same noises and within the
same area of cooperation, the proposed LSTM-MPNN model
outperforms the cooperative MPA method by reducing the
error to one third. Moreover, even with unfavorable conditions,
i.e., training on absence of noise, the LSTM-MPNN model
better generalizes against noisy state-measurements.

3) Impact on different number of agents: For this last
assessment, we evaluate how the different number of
cooperative agents affects the performances of the two
methods. To this aim, in Fig. 7, we plot the RMSE on the
position varying the number of connected agents In ∈ [2, 22].
As expected, we observe that, for a low number of agents,
the two methods tend to converge to the RMSE achieved
for the non-cooperative case, i.e., about 1.5 m. This confirms
that with a decreasing number of agents, the LSTM-MPNN

R
M

SE
po

s.
[m

]

σṗ,w(x) [m/s]

MPA
LSTM-MPNN

Fig. 5. Comparison of the impact of driving noise error in terms of RMSE
of the position between MPA and LSTM-MPNN.

model converges to the optimal case of single-agent KFing.
Increasing In, the cooperation plays a crucial role in improving
CP, especially for the proposed LSTM-MPNN model. As a
matter of fact, in LSTM-MPNN with only 6 cooperative agents
the same RMSE of 20 agents for the MPA method is achieved.

4) Computational complexity: Given the same graph
structure and same number of message passing iterations
between MPA and LSTM-MPNN models, the major difference
in computational complexity lies in the computation of the
prediction and update steps. In order to compare one-to-
one the two methods, we define with NPF and Nh the
number of particles in MPA and the dimension of the node
and edge embeddings, respectively. These variables drive
the computational complexity since they tune the trade-off

This article has been accepted for publication in IEEE Transactions on Cognitive Communications and Networking. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCCN.2023.3307953

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

9

R
M

SE
po

s.
[m

]

σp,w(A) [m]

MPA
LSTM-MPNN

Fig. 6. Comparison of the impact of state-measurement noise error in terms
of RMSE of the position between MPA and LSTM-MPNN.

R
M

SE
po

s.
[m

]

In agents

MPA
LSTM-MPNN

Fig. 7. Comparison of the impact of varying number of cooperative agents
in terms of RMSE of the position between MPA and LSTM-MPNN.

between performances and efficiency. Indeed, NPF and Nh

are the dimension of the messages exchanged during each
message passing step. Moreover, in MPA, NPF regulates the
capability of the model of approximating the distributions
according to the importance sampling principle. In LSTM-
MPNN, Nh has the same function of NPF in MPA, but with
the fundamental difference that here the exchanged vector, i.e.,

Ti
m

e
[s

]

NPF - Nh

MPA
LSTM-MPNN

Fig. 8. Comparison of the impact of varying number of particles NPF and
node embedding dimension Nh in terms of inference time between MPA and
LSTM-MPNN.

node embedding, does not represent an approximation of the
distributions using a sampling mechanism. On the contrary, it
represents an effective combination of distribution parameters,
e.g., moments, in order to accomplish the CP task.

To this aim, in Fig. 8 we show the whole prediction time
of an instance of agent trajectories, i.e., 16 agents moving as
shown in Fig. 4a, varying NPF or Nh according to the model.
Note that here the time required to exchange the particles
and the node embeddings are not considered. Moreover, for
a fair comparison, all agent predictions are computed on
CPU and in a sequential manner. Observing the results, we
notice that the LSTM-MPNN is very efficient for a number of
latent dimension Nh < 100, performing the whole inference
in less than 1 s. On the contrary, the MPA is slower even
with NPF = 100 particles. Comparing the two methods for
NPF = Nh, we note that, from a pure inference time point
of view, it is more convenient to adopt the LSTM-MPNN
if NPF = Nh < 1000. However, we would like to point out
that, comparing the two methods with the previously adopted
NPF = 1000 and Nh = 16, we obtain an inference time of
600 ms and 11 s for the LSTM-MPNN and MPA, respectively.
Thus, with the proposed method, we reach one third of the
error at 1/18 of the time.

V. CONCLUSION

This paper addressed the problem of CP by proposing
an innovative LSTM-MPNN model that can be considered
as a promising alternative to conventional probabilistic
MPA. Besides providing for the first time a one-to-one
parallelism with respect to MPA, we demonstrated the
improved performance of a fully DL-based model. We detailed

This article has been accepted for publication in IEEE Transactions on Cognitive Communications and Networking. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCCN.2023.3307953

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

10

each part of the proposed model, starting from the need of
temporal-dependence solved using an LSTM block, up to
the message passing structure. The MPNN runs on the same
physical graph created by the network of connected agents
and it is able to perform inference in a completely distributed
way. Mirroring the MPA, the messages, i.e., node embeddings,
are exchanged between agents until convergence. Finally, as
opposed to the MMSE estimator in MPA, the state inference
is carried out through a NN at the node.

We validated the proposed approach in a synthetic network
of cooperative agents moving in a scenario over straight
trajectories. Numerical results showed that the proposed
approach is able to address the problem of CP in an efficient
and effective way by outperforming particle-based MPA in
a different number of aspects. First, under peak performances
point of view, the LSTM-MPNN model reaches a lower RMSE
on the position by a factor of 3. Second, the LSTM-MPNN
model holds a much higher speed of convergence, an order of
magnitude lower computational complexity. As an example, in
our experiments, the dimension of the messages exchanged by
the MPNN is 16, while the number of particles exchanged by
the BP is 1000. Moreover, the proposed model better handles
different state-measurement noises, as well as driving noises if
trained on all ranges of state feature values. Finally, the LSTM-
MPNN model better exploits the power of cooperation, giving
a huge improvement even with small number of cooperating
agents.

The value of cooperative positioning is foreseen to
dramatically grow over the next several years, especially
in the context of automated and connected mobility, where
dense networks of agents have to handle complex and
dynamic environments. It results that an effective data-driven
approach is of paramount importance to enhance positioning
capabilities. Our method makes a step toward this direction, by
enabling distributed and efficient cooperative inference. Future
developments could be implementing not only a distributed
inference but also a distributed training, maintaining at
the same time the agent’s local data privacy. Moreover,
applications of fully DL-based methods are foreseen for the
major fields of target detection and tracking.

CODE AVAILABILITY STATEMENT

The GitHub repository with the dataset and the Python code
for the model, training and inference is available upon request
to the corresponding author.

REFERENCES

[1] M. Z. Win, Y. Shen, and W. Dai, “A theoretical foundation of network
localization and navigation,” Proceedings of the IEEE, vol. 106, no. 7,
pp. 1136–1165, Jul. 2018.

[2] M. Z. Win, W. Dai, Y. Shen, G. Chrisikos et al., “Network operation
strategies for efficient localization and navigation,” Proceedings of the
IEEE, vol. 106, no. 7, pp. 1224–1254, Jul. 2018.

[3] M. Win, A. Conti, S. Mazuelas, Y. Shen et al., “Network localization and
navigation via cooperation,” IEEE Communications Magazine, vol. 49,
no. 5, pp. 56–62, May 2011.

[4] D. Gaglione, G. Soldi, F. Meyer, F. Hlawatsch et al., “Bayesian
information fusion and multitarget tracking for maritime situational
awareness,” IET Radar, Sonar & Navigation, vol. 14, no. 12, pp. 1845–
1857, Dec. 2020.

[5] A. A. Saucan and M. Z. Win, “Information-seeking sensor selection for
ocean-of-things,” IEEE Internet of Things Journal, vol. 7, no. 10, pp.
10 072–10 088, Oct. 2020.

[6] M. Brambilla, M. Nicoli, G. Soatti, and F. Deflorio, “Augmenting vehicle
localization by cooperative sensing of the driving environment: Insight
on data association in urban traffic scenarios,” IEEE Transactions on
Intelligent Transportation Systems, vol. 21, no. 4, pp. 1646–1663, Apr.
2020.

[7] S. Zhang, E. Staudinger, T. Jost, W. Wang et al., “Distributed
direct localization suitable for dense networks,” IEEE Transactions on
Aerospace and Electronic Systems, vol. 56, no. 2, pp. 1209–1227, Apr.
2020.

[8] G. Ferri, A. Munafo, A. Tesei, P. Braca et al., “Cooperative robotic
networks for underwater surveillance: an overview,” IET Radar, Sonar
& Navigation, vol. 11, no. 12, pp. 1740–1761, Dec. 2017.

[9] P. Braca, P. Willett, K. LePage, S. Marano et al., “Bayesian tracking
in underwater wireless sensor networks with port-starboard ambiguity,”
IEEE Transactions on Signal Processing, vol. 62, no. 7, pp. 1864–1878,
Apr. 2014.

[10] F. Kschischang, B. Frey, and H.-A. Loeliger, “Factor graphs and the sum-
product algorithm,” IEEE Transactions on Information Theory, vol. 47,
no. 2, pp. 498–519, Feb. 2001.

[11] D. Bickson, O. Shental, and D. Dolev, “Distributed Kalman filter via
Gaussian belief propagation,” in 2008 46th Annual Allerton Conference
on Communication, Control, and Computing, Sep. 2008, pp. 628–635.

[12] H. Wymeersch, J. Lien, and M. Z. Win, “Cooperative localization in
wireless networks,” Proceedings of the IEEE, vol. 97, no. 2, pp. 427–
450, Feb. 2009.

[13] R. Sánchez-Cauce, I. Parı́s, and F. J. Dı́ez, “Sum-product networks:
A survey,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 44, no. 7, pp. 3821–3839, Jul. 2022.

[14] W. Zhang and F. Meyer, “Multisensor multiobject tracking with high-
dimensional object states,” Dec. 2022, arXiv:2212.14556.

[15] D. Gaglione, P. Braca, G. Soldi, F. Meyer et al., “Fusion of sensor
measurements and target-provided information in multitarget tracking,”
IEEE Transactions on Signal Processing, vol. 70, pp. 322–336, Dec.
2022.

[16] F. Meyer and J. Williams, “Scalable detection and tracking of geometric
extended objects,” IEEE Transactions on Signal Processing, vol. 69, pp.
6283–6298, Oct. 2021.

[17] R. Mendrzik, M. Brambilla, C. Allmann, M. Nicoli et al., “Joint
multitarget tracking and dynamic network localization in the underwater
domain,” in ICASSP 2020 - 2020 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). Barcelona, Spain:
IEEE, May 2020, pp. 4890–4894.

[18] F. Meyer, T. Kropfreiter, J. L. Williams, R. Lau et al., “Message passing
algorithms for scalable multitarget tracking,” Proceedings of the IEEE,
vol. 106, no. 2, pp. 221–259, Feb. 2018.

[19] F. Meyer, P. Braca, P. Willett, and F. Hlawatsch, “A scalable algorithm
for tracking an unknown number of targets using multiple sensors,” IEEE
Transactions on Signal Processing, vol. 65, no. 13, pp. 3478–3493, Jul.
2017.

[20] M. Brambilla, D. Gaglione, G. Soldi, R. Mendrzik et al., “Cooperative
localization and multitarget tracking in agent networks with the sum-
product algorithm,” IEEE Open Journal of Signal Processing, vol. 3,
pp. 169–195, Mar. 2022.

[21] B. Teague, Z. Liu, F. Meyer, A. Conti et al., “Network localization
and navigation with scalable inference and efficient operation,” IEEE
Transactions on Mobile Computing, vol. 21, no. 6, pp. 2072–2087, Jun.
2022.

[22] F. Meyer and M. Z. Win, “Joint navigation and multitarget tracking in
networks,” in 2018 IEEE International Conference on Communications
Workshops (ICC Workshops). Kansas City, MO: IEEE, May 2018, pp.
1–6.

[23] F. Meyer, E. Riegler, O. Hlinka, and F. Hlawatsch, “Simultaneous
distributed sensor self-localization and target tracking using belief
propagation and likelihood consensus,” in 2012 Conference Record of
the Forty Sixth Asilomar Conference on Signals, Systems and Computers
(ASILOMAR), Nov. 2012, pp. 1212–1216.

[24] E. Leitinger, S. Grebien, and K. Witrisal, “Multipath-based SLAM using
belief propagation with interacting multiple dynamic models,” in 2021
15th European Conference on Antennas and Propagation (EuCAP).
Dusseldorf, Germany: IEEE, Mar. 2021, pp. 1–5.

[25] F. Meyer and M. Z. Win, “Scalable data association for extended object
tracking,” IEEE Transactions on Signal and Information Processing over
Networks, vol. 6, pp. 491–507, May 2020.

This article has been accepted for publication in IEEE Transactions on Cognitive Communications and Networking. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCCN.2023.3307953

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

11

[26] D. Gaglione, G. Soldi, P. Braca, G. De Magistris et al., “Classification-
aided multitarget tracking using the sum-product algorithm,” IEEE
Signal Processing Letters, vol. 27, pp. 1710–1714, Sep. 2020.

[27] F. Meyer and M. Z. Win, “Data association for tracking extended
targets,” in MILCOM 2019 - 2019 IEEE Military Communications
Conference (MILCOM). Norfolk, VA, USA: IEEE, Nov. 2019, pp.
337–342.

[28] F. Meyer, Z. Liu, and M. Z. Win, “Scalable probabilistic data association
with extended objects,” in 2019 IEEE International Conference on
Communications Workshops (ICC Workshops). Shanghai, China: IEEE,
May 2019, pp. 1–6.

[29] L. Wielandner, E. Leitinger, F. Meyer, B. Teague et al., “Message
passing-based cooperative localization with embedded particle flow,”
in ICASSP 2022 - 2022 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). Singapore, Singapore: IEEE,
May 2022, pp. 5652–5656.

[30] W. Zhang and F. Meyer, “Graph-based multiobject tracking
with embedded particle flow,” in 2021 IEEE Radar Conference
(RadarConf21). Atlanta, GA, USA: IEEE, May 2021, pp. 1–6.

[31] G. Soldi, F. Meyer, P. Braca, and F. Hlawatsch, “Self-tuning algorithms
for multisensor-multitarget tracking using belief propagation,” IEEE
Transactions on Signal Processing, vol. 67, no. 15, pp. 3922–3937, Aug.
2019.

[32] Y. Weiss and W. T. Freeman, “Correctness of belief propagation in
Gaussian graphical models of arbitrary topology,” Neural Computation,
vol. 13, no. 10, pp. 2173–2200, Oct. 2001.

[33] J. Yedidia, W. Freeman, and Y. Weiss, “Constructing free-energy
approximations and generalized belief propagation algorithms,” IEEE
Transactions on Information Theory, vol. 51, no. 7, pp. 2282–2312, Jul.
2005.

[34] M. J. Wainwright and M. I. Jordan, “Graphical models, exponential
families, and variational inference,” Foundations and Trends® in
Machine Learning, vol. 1, no. 1-2, pp. 1–305, Nov. 2007.

[35] E. Riegler, G. E. Kirkelund, C. N. Manchon, M.-A. Badiu et al.,
“Merging belief propagation and the mean field approximation: A free
energy approach,” IEEE Transactions on Information Theory, vol. 59,
no. 1, pp. 588–602, Jan. 2013.

[36] V. G. Satorras and M. Welling, “Neural enhanced belief propagation on
factor graphs,” in Proceedings of The 24th International Conference on
Artificial Intelligence and Statistics. PMLR, Mar. 2021, pp. 685–693.

[37] M. Liang and F. Meyer, “Neural enhanced belief propagation for
cooperative localization,” in 2021 IEEE Statistical Signal Processing
Workshop (SSP). Rio de Janeiro, Brazil: IEEE, Jul. 2021, pp. 326–
330.

[38] ——, “Neural enhanced belief propagation for multiobject tracking,”
Dec. 2022, arXiv:2212.08340.

[39] ——, “Neural enhanced belief propagation for data association in
multiobject tracking,” in 2022 25th International Conference on
Information Fusion (FUSION), Jul. 2022, pp. 1–7.

[40] F. Scarselli, M. Gori, Ah Chung Tsoi, M. Hagenbuchner et al.,
“Computational capabilities of graph neural networks,” IEEE
Transactions on Neural Networks, vol. 20, no. 1, pp. 81–102,
Jan. 2009.

[41] ——, “The graph neural network model,” IEEE Transactions on Neural
Networks, vol. 20, no. 1, pp. 61–80, Jan. 2009.

[42] L. Barbieri, B. Camajori Tedeschini, M. Brambilla, and M. Nicoli,
“Implicit vehicle positioning with cooperative lidar sensing,” in ICASSP
2023 - 2023 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), Jun. 2023.

[43] K. Yoon, R. Liao, Y. Xiong, L. Zhang et al., “Inference in probabilistic
graphical models by graph neural networks,” in 2019 53rd Asilomar
Conference on Signals, Systems, and Computers. Pacific Grove, CA,
USA: IEEE, Nov. 2019, pp. 868–875.

[44] B. Camajori Tedeschini, M. Brambilla, L. Barbieri, G. Balducci et al.,
“Cooperative lidar sensing for pedestrian detection: Data association
based on message passing neural networks,” IEEE Transactions on
Signal Processing, pp. 1–15, Aug. 2023.

[45] C. M. Bishop, Pattern Recognition and Machine Learning. Springer,
2006, vol. 4, no. 4.

[46] J. Zhou, G. Cui, S. Hu, Z. Zhang et al., “Graph neural networks: A
review of methods and applications,” AI Open, vol. 1, pp. 57–81, Apr.
2020.

[47] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
Jan. 2017, arXiv:1412.6980.

[48] J. Liu, Z. Wang, and M. Xu, “Deepmtt: A deep learning maneuvering
target-tracking algorithm based on bidirectional LSTM network,”
Information Fusion, vol. 53, pp. 289–304, Jan. 2020.

[49] D. Hendrycks and K. Gimpel, “Gaussian error linear units (gelus),” Jul.
2020, arXiv:1606.08415.

Bernardo Camajori Tedeschini (Graduate Student
Member, IEEE) received the B.Sc. (Hons.) in
Computer Science and M.Sc. (Hons.) degrees
in Telecommunications Engineering from the
Politecnico di Milano, Italy, in 2019 and 2021,
respectively. From November 2021 he started
as PhD fellow in Information Technology at
Dipartimento di Elettronica, Informazione e
Bioingegneria (DEIB), Politecnico di Milano.
He is currently a visiting researcher with the
Laboratory for Information & Decision Systems at

the Massachusetts Institute of Technology (MIT), Cambridge, MA.
His research interests include federated learning, machine learning and

localization methods. He was a recipient of the Ph.D. grant from the ministry
of the Italian government Ministero dell’Istruzione, dell’Università e della
Ricerca (MIUR) and the Roberto Rocca Doctoral Fellowship granted by
MIT and Politecnico di Milano.

Mattia Brambilla (Member, IEEE) received the
B.Sc. and M.Sc. degrees in telecommunication
engineering and the Ph.D. degree (cum laude) in
information technology from the Politecnico di
Milano, in 2015, 2017, and 2021, respectively. He
was a Visiting Researcher with the NATO Centre for
Maritime Research and Experimentation (CMRE),
La Spezia, Italy, in 2019. In 2021 he joined the
faculty of Dipartimento di Elettronica, Informazione
e Bioingegneria (DEIB) at the Politecnico di Milano
as Research Fellow. His research interests include

signal processing, statistical learning, and data fusion for cooperative
localization and communication. He was the recipient of the Best Student
Paper Award at the 2018 IEEE Statistical Signal Processing Workshop.

Monica Nicoli (Senior Member, IEEE) received the
M.Sc. (Hons.) and Ph.D. degrees in communication
engineering from Politecnico di Milano, Milan,
Italy, in 1998 and 2002, respectively. She was a
Visiting Researcher with ENI Agip, from 1998 to
1999, and Uppsala University, in 2001. In 2002,
she joined Politecnico di Milano as a Faculty
Member. She is currently an Associate Professor
in telecommunications with the Department
of Management, Economics and Industrial
Engineering.

Her research interests include signal processing, machine learning, and
wireless communications, with emphasis on smart mobility and Internet
of Things (IoT). She was a recipient of the Marisa Bellisario Award,
in 1999, and a co-recipient of the best paper awards of the EuMA
Mediterranean Microwave Symposium, in 2022, the IEEE Symposium on
Joint Communications and Sensing, in 2021, the IEEE Statistical Signal
Processing Workshop, in 2018, and the IET Intelligent Transport Systems
journal, in 2014. She is an Associate Editor of the IEEE Transactions on
Intelligent Transportation Systems. She has also served as an Associate Editor
for the EURASIP Journal on Wireless Communications and Networking,
from 2010 to 2017, and a Lead Guest Editor for the Special Issue on
Localization in Mobile Wireless and Sensor Networks, in 2011.

This article has been accepted for publication in IEEE Transactions on Cognitive Communications and Networking. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCCN.2023.3307953

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

	Introduction
	Contextualization and background
	Related works
	Contribution
	Paper organization

	System model
	Cooperative positioning methods
	MPA-based CP
	LSTM-MPNN-based CP
	Inference and training procedure

	Simulation experiments
	Dataset
	Model and implementation details
	Simulation results
	Tracking performances
	Generalization capabilities
	Impact on different number of agents
	Computational complexity

	Conclusion
	References
	Biographies
	Bernardo Camajori Tedeschini
	Mattia Brambilla
	Monica Nicoli

