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1. Introduction

The set Seg(k, n) of rank-one tensors in P
(⊗k

i=1 C
n
)

is a projective variety; it is 
the image under the Segre embedding of a Cartesian product of projective spaces. Given 
a non-zero endomorphism f of the vector space 

⊗k
i=1 C

n, the Zariski closure of the 

set f(Seg(k, n)) is an irreducible algebraic set in P
(⊗k

i=1 C
n
)
, i.e. a projective variety 

(Definition 3.1 and Proposition 3.2). Under the standard action of the symmetric group 
Sk, the tensor product 

⊗k
i=1 C

n has the structure of a module over the group algebra 
C[Sk]. The induced representations of simple representations of a subgroup G ⊆ Sk

provide idempotents of C[Sk] which are endomorphism of the tensor product above. The 
images of such endomorphisms are the so-called symmetry classes of tensors (see e.g. 
[24] for a general theory, [12] for a survey, and [23] for generalized matrix functions).

This construction allows us to associate to each simple character χ of G ⊆ Sk a 
projective variety Grχ(k, n) which we call immanant variety (Definition 3.17), since 
for G = Sk the parametric equations defining it are written in terms of immanants 
(Theorem 3.16), which are generalizations of the determinant of a square matrix (see e.g. 
[29] and reference therein). In our context we use in a wider sense the word immanant
for a matrix (see Definition 3.12), including the standard notions of immanants and 
generalized matrix functions for simple characters of finite groups (see [23]).

Among immanant varieties there is a famous one, namely the complex Grassmannian; 
it arises by considering the alternating character of a symmetric group and the immanant 
involved in the parametric equations is the determinant. In this article we prove results 
recovering part of the geometrical and combinatorial richness of Grassmannians for a 
wide class of immanant varieties. The main features explored are the following ones.

χ-matroids: it is well-known that the points of a Grassmannian GrC(k, n) correspond 
to rank k matroids on the ground set [n], representable over C. A characterization of 
matroids, due to Gale, is by their maximality property (see [5, Theorem 1.3.1]). A max-
imality property can be defined in the more general case of one-dimensional characters 
χ of any finite group, leading to the definition of χ-matroid, see Definition 4.4. Although 
the points of Grχ(k, n) are not χ-matroids in general (Example 4.7), the points of the 
varieties associated to trivial characters are χ-matroids (Corollary 5.4).

Incidence stratifications: the notion of incidence stratification has been introduced by 
the authors in [3]. The stratification of a Grassmannian variety by its Schubert varieties 
is an example of incidence stratification (see [3, Proposition 4.16]). This construction 
provides a correspondence between Schubert varieties and principal order ideals of the 
Bruhat order on Grassmannian permutations, thanks to the maximality property of ma-
troids. In the same vein, for the trivial character 1G : G → {1}, the maximality property 
of Gr1G

(k, n) guarantees the existence of an incidence stratification whose strata are pro-
jective varieties (Proposition 6.1 and Corollary 6.3) and whose inclusion poset is graded 
by dimension (Theorem 6.4) and rank-symmetric (Corollary 5.9). These stratifications 
are closely related to Seshadri stratifications, as recently introduced by Chirivì, Fang and 
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Littelmann in [9]. In fact, all the axioms defining Seshadri stratifications are satisfied by 
our stratifications, except possibly smoothness in codimension one (Example 6.5).

Chow vector spaces: it is well-known that the Chow group of the Grassmannian is 
free, with a basis given by the classes of Schubert varieties (see e.g. [14, Section 14.7]). 
By using the combinatorial results proved along the paper, we find a set of generators for 
the vector space obtained tensoring by Q the Chow group of Gr1G

(k, n) (Theorem 6.4), 
namely the set of rational equivalence classes of the strata of the incidence stratification 
explained above. Moreover, applying Proposition 5.8, we give an upper bound for the 
Hilbert-Poincaré polynomial of the Chow vector space.

The last part of the paper is devoted to some conjectures and open problems. One of 
them concerns shellability of intervals in posets arising from the geometry of Gr1G

(k, n). 
In parabolic quotients of Coxeter groups, the order complexes of Bruhat intervals are 
shellable (see [2, Theorem 2.7.5]); in particular, this holds for the Bruhat order of 
Grassmannian permutations, which is the inclusion poset of Schubert varieties in a Grass-
mannian. Since the latter is a distributive lattice, the shellability of its intervals can be 
deduced from a general result of Björner [1]. The same can be easily proved for the 
intervals of the inclusion poset of the incidence strata in Gr1Sk

(k, n) (see the end of 
Section 5). Despite the fact that, for arbitrary groups G ⊆ Sk, this poset is not a lattice 
in general (see Example 5.7), several experiments led us to conjecture that it is shellable 
(Conjecture 7.2).

2. Notation and preliminaries

In this section we fix notation and recall some definitions useful for the rest of the 
paper. We refer to [27] for posets and their incidence algebras, to [21, Chapter XVIII]
for the representation theory of finite groups, to [5] and [3, Section 2.3] for matroids, to 
[20] and [24] for tensors, and to [14] for intersection theory.

Let Z be the ring of integer numbers, Q the field of rational numbers, R the field of 
real numbers, C the field of complex numbers and N the set of positive integers. For 
n ∈ N, we use the notation [n] := {1, 2, . . . , n}. For a finite set X, we denote by |X|
its cardinality, by P(X) its power set, by Xn or X×n its n-th power under Cartesian 
product. If x ∈ Xn, we denote by xi the projection of x on the i-th factor. If f : X → Y

is a function, we let Im(f) := {f(x) : x ∈ X}. We denote by f also the induced function 
f : P(X) → P(Y ).

If (X, �) is a poset, then Xn is the poset given by letting x � y if and only if xi � yi, 
for all i ∈ [n] and x, y ∈ Xn. The set [n] is a poset under the natural order; so, for 
k ∈ N, the set [n]k is considered to be a poset. We denote by � a covering relation in 
a poset P , i.e. x � y if and only if x < y and {z ∈ P : x < z < y} = ∅. In the category 
of graded posets, a morphism f : X → Y is an order preserving function such that 
ρ2(f(x)) = ρ1(x), for all x ∈ X, where ρ1 is the rank function of X and ρ2 is the rank 
function of Y .
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Let O, O1 and O2 be objects in a category. The notation Hom(O1, O2) stands for 
the set of morphisms between O1 and O2. We let End(O) := Hom(O, O) and O1 � O2
denotes the existence of an isomorphism.

Let n ∈ N and V be an n-dimensional C-vector space; define an equivalence relation 
∼ on V \ {0} by setting u ∼ v if and only if dim (spanC{u, v}) = 1, for all u, v ∈
V \ {0}. Then, for any subset X ⊆ V , we let P (X) := π(X \ {0}), where π : V \ {0} →
(V \ {0}) / ∼ is the canonical projection. In particular, P(V ) is the projective space of 
V . For v ∈ V \ {0}, we let [v] := π(v) ∈ P (V ). Let k ∈ N; with V ⊗k we denote the k-th 
tensor power of V . We let segk,n : P (V )×k → P

(
V ⊗k

)
be the function defined by

segk,n([v1], . . . , [vk]) = [v1 ⊗ . . .⊗ vk],

for all v1, . . . , vk ∈ V \{0}. This is the so-called Segre embedding and we set Seg(k, n) :=
Im(segk,n). It is well-known that Seg(k, n) is a k(n −1)-dimensional projective subvariety 
of P

(
V ⊗k

)
.

We end this section by recalling the definition of incidence stratification of a projective 
set, as appears in [3, Section 4]. Let P = ([n],�P ) be a poset of cardinality n. An order 
ideal of P is a subset I ⊆ P such that i ∈ I and j �P i imply j ∈ I. The distributive 
lattice of order ideals of a poset P is denoted by J (P). It is clear that there is a bijection 
between J (P) and the sets {max(I) : I ∈ J (P)}. For x ∈ P , we define the principal 
order ideal generated by x by setting

x↓ := {y ∈ P : y �P x} .

For h, k ∈ N we denote by Math,k(C) the algebra of matrices whose entries are 
complex numbers. If A ∈ Math,k(C), i ∈ [h] and j ∈ [k], Ai,j is the entry in position 
(i, j) of the matrix A.

Definition 2.1. The incidence algebra of P over C is

I(P ;C) := {A ∈ Matn,n(C) : i �P j ⇒ Ai,j = 0} .

The incidence group I∗(P ; C) of P over C is the group of invertible elements of I(P ; C).

The subalgebra I(P ; C) ⊆ End(Cn) has invariant-subspace lattice isomorphic to 
J (P ), where I(P ; C) acts on the elements of Cn by left multiplication. Clearly this 
action carries an action of I∗(P ; C) on P (Cn), whose orbits are described as follows (see 
[3, Theorem 4.2]).

Let {e1, . . . , en} be the canonical basis of Cn and VI := spanC {ei : i ∈ I}, for any 
subset I ⊆ [n]. An orbit of the action of I∗(P ; C) on P (Cn) is of the form

CI := P (VI) \
⋃

P
(
VI\{i}

)
,

i∈max(I)
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for any I ∈ J (P) \{∅}, and the set of orbits {CI : I ∈ J (P) \{∅}} is a partition of 
P (Cn). The Zariski closure of CI is a projective space, given by

CI =
⊎

H∈J (I)\{∅}
CH = P (VI) ,

for all I ∈ J (P ).
The notion of incidence stratification of a subset of a projective space, introduced 

in [3], includes some known affine ones, such as the stratifications given by Schubert 
varieties in Grassmannians and flag varieties (see [3, Propositions 4.16 and 5.5]); the 
following is the formal definition.

Definition 2.2. Let X ⊆ P (Cn) and P be a poset of cardinality n. The set

{
CI ∩X : I ∈ J (P )

}
\ {∅}

is an incidence stratification of X.

For a projective variety X, A∗X denotes the group of k-cycles modulo rational equiv-
alence on X (see [14, Chapter 1]). We let A∗(X; Q) := A∗X⊗ZQ to be the Chow vector 
space of X over Q.

3. The projective variety Grf(k, n)

Immanant varieties, which we are going to define in the following subsection, are 
particular cases of a general construction that we describe here.

Let k, n ∈ N, V be an n-dimensional complex vector space and {e1, . . . , en} a basis. 
Let {ex : x ∈ [n]k} be the corresponding basis of V ⊗k, where ex := ex1 ⊗ . . . ⊗ exk

and 
xi is the projection on the i-th component of x, for all x ∈ [n]k. For f ∈ End

(
V ⊗k

)
, in 

order to introduce the main objects of our study, define a function

f̂ : Seg(k, n) \ P (ker(f)) → P
(
V ⊗k

)
by setting f̂([v1 ⊗ . . . ⊗ vk]) = [f(v1 ⊗ . . .⊗ vk)], for all v1, . . . , vk ∈ V \ {0} such that 
f(v1 ⊗ . . .⊗ vk) 
= 0.

Definition 3.1. Let f ∈ End
(
V ⊗k

)
. The algebraic set Grf (k, n) ⊆ P (V ⊗k) is defined by 

setting

Grf (k, n) := Im( f̂ ),

where the overline stands for the Zariski closure.
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The notation Grf (k, n) is motivated by the fact that, for suitable choices of the 
function f , this construction leads to combinatorial and geometrical notions naturally ap-
pearing in the study of Grassmannian varieties. We observe that Grf (k, n) ⊆ P (Im(f))
and that the set Im( f̂ ) is described by a system of nk parametric polynomial equations 
with kn parameters. When Grf (k, n) 
= ∅, i.e. f 
= 0, by a standard result (see e.g. [10, 
Proposition 4.5.5]), it is irreducible, hence a projective variety.

Proposition 3.2. Let f ∈ End
(
V ⊗k

)
\{0}; then the algebraic set Grf (k, n) is a projective 

variety.

In several cases, the set Im( f̂ ) is already closed in the Zariski topology, as the next 
result shows.

Proposition 3.3. Let f ∈ End
(
V ⊗k

)
; then

Seg(k, n) ∩ P (ker(f)) = ∅ ⇒ Grf (k, n) = Im( f̂ ).

Proof. By [26, Theorem 5.2.2], given an algebraic set X ⊆ P (W ) and W a complex vector 
space, if F : X → P (W ) is a polynomial function, then F is closed. Since Seg(k, n) ∩
P (ker(f)) = ∅, it holds that f̂ is a polynomial function from Seg(k, n) to P

(
V ⊗k

)
. From 

the fact that Seg(k, n) is a projective variety it follows that f̂ is closed. �
The simplest example of these varieties corresponds to f = IdV ⊗k ; in this case 

Im( f̂ ) = Grf (k, n) = Seg(k, n). By using Proposition 3.3, it is not difficult to show 
that if f ∈ End

(
V ⊗k

)
is invertible, then Grf (k, n) � Seg(k, n) as projective varieties. 

The general situation is summarized in the following result.

Proposition 3.4. Let f, g ∈ End
(
V ⊗k

)
\ {0} with g invertible. Then Grg◦f (k, n) �

Grf (k, n), as projective varieties.

Proof. The isomorphism is immediate since the parametric equations of Grg◦f (k, n) in 
the basis {g(ex) : x ∈ [n]k} are the ones of Grf (k, n) in the basis {ex : x ∈ [n]k}. �
Remark 3.5. For g ∈ End

(
V ⊗k

)
invertible, Grf◦g(k, n) and Grf (k, n) could be not iso-

morphic as projective varieties. For example, let k = 2, n = 4, �lex be the lexicographic 
order on [4]2, f(ex) = e(x1,x2) − e(x2,x1), and

g(ex) =

⎧⎨⎩
∑

y�lexx

ey, if x �lex (3, 1);

ex, otherwise,

for all x ∈ [4]2. Then Grf (2, 4) is the complex Grassmannian GrC(2, 4) and Grf◦g(2, 4) =
P (Im(f)) � P (C6).
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Now we provide an example of a variety Grf (k, n) corresponding to a not invertible 
endomorphism.

Example 3.6. Let k = 3, n = 2 and f ∈ End
(
V ⊗3) defined by setting

f(ex) =
{

e(2,1,2) + e(2,2,1) + e(2,2,2), if x ∈ {(2, 1, 2), (2, 2, 1), (2, 2, 2)};
ex, otherwise,

for all x ∈ [2]3. Then Im( f̂ ) is described by the following parametric equations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x111 = a1b1c1
x112 = a1b1c2
x121 = a1b2c1
x122 = a1b2c2
x211 = a2b1c1
x212 = a2b1c2 + a2b2c1 + a2b2c2
x221 = a2b1c2 + a2b2c1 + a2b2c2
x222 = a2b1c2 + a2b2c1 + a2b2c2

With the help of Sagemath [25], the Gröbner basis method for implicitization by using 
the monomial order degrevlex (see for instance [10]) provides the following Cartesian 
equations for Grf (3, 2):⎧⎪⎪⎪⎨⎪⎪⎪⎩

(x112 + x121 + x122)x211 − x111x222 = 0
x112x121 − x111x122 = 0
x212 − x222 = 0
x221 − x222 = 0

This is a projective variety of dimension 3, obtained as intersection of two hypersurfaces 
of P (Im(f)) � P (C6). Notice that the last two equations are the equations of P (Im(f))
in P

(
V ⊗3). The set Im( f̂ ) is not Zariski-closed. In fact, if v := e(1,2,2) +e(2,1,1)−e(1,2,2), 

then [v] ∈ Grf (3, 2) \ Im( f̂ ).

We end this section by showing that some varieties Grf (k, n) are actually Cartesian 
products. For h ∈ N and a ∈ Nh, let a(i) :=

∑i
j=1 aj , for all i ∈ [h], and k := a(h). 

Given fi ∈ End (V ⊗ai), for all i ∈ [h], we define f1 ⊗ . . .⊗ fh ∈ End
(
V ⊗k

)
by setting

(f1 ⊗ . . .⊗ fh)(ex) := f1(ex[1,a(1)]) ⊗ . . .⊗ fh(ex[a(h−1)+1,a(h)]),

for all x ∈ [n]k, where, for i, j ∈ [k], i � j, x[i,j] := (xi, . . . , xj) ∈ [n]j−i+1.

Proposition 3.7. Let h ∈ N, a ∈ Nh and k := a(h). Let fi ∈ End (V ⊗ai) \ {0}, for all 
i ∈ [h]. Then, as projective varieties,
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Grf1⊗...⊗fh(k, n) � Grf1(a1, n) × . . .× Grfh(ah, n).

The following corollary provides a realization of a product of projective spaces as a 
variety Grf (k, n).

Corollary 3.8. Let f1, . . . , fk ∈ End(V ) \ {0}. Then, as projective varieties,

Grf1⊗...⊗fk(k, n) � P (Cb1) × P (Cb2) × . . .× P (Cbk),

where bi := dim (Im(fi)), for all i ∈ [k].

3.1. Immanant varieties

In this section we introduce the class of varieties Grf (k, n) in which we are mostly 
interested, namely the ones corresponding to an endomorphism of V ⊗k arising from an 
action of the symmetric group Sk. For k > 0, a permutation w ∈ Sk induces a graded 
automorphism of the poset [n]k, where the action is defined by

w(x) =
(
xw−1(1), . . . , xw−1(k)

)
,

for all x ∈ [n]k. Hence w ∈ Sk acts on V ⊗k by setting w(ex) = ew(x), for all x ∈ [n]k. 
This action induces an algebra morphism γ : C[Sk] → End

(
V ⊗k

)
, where C[Sk] is the 

group algebra over C of Sk.
Let G ⊆ Sk be a group. It is clear that the group algebra C[G] is a subalgebra of 

C[Sk]. For P ∈ C[Sk], we set P (n) := γ(P ) ∈ End
(
V ⊗k

)
; hence, if P =

∑
g∈G agg, with 

ag ∈ C for all g ∈ G, we have

P (n)(ex) =
∑
g∈G

ageg(x),

for every x ∈ [n]k. The set {P (n) : P ∈ C[Sn]} coincides with the set of endomorphisms 
of V ⊗k commuting with the action of GL(V ) on V ⊗k defined by setting h(v1⊗. . .⊗vk) =
h(v1) ⊗ . . .⊗ h(vk), for all h ∈ GL(V ), v1, . . . , vk ∈ V (see e.g. [7, Theorem 8.2.8]).

For a group G, let 1G : G → {1} be its trivial character. If χ1 : G → C and χ2 : G → C

are characters, their scalar product is defined by 〈χ1, χ2〉 :=
∑

g∈G χ1(g)χ2(g−1). If χ is 
a simple character of a subgroup G ⊆ Sk, then the element

Pχ := χ(e)
|G|

∑
g∈G

χ(g−1)g ∈ C[Sk]

is an idempotent, whose image is a representation of Sk with character χ(e)IndSk

G (χ). 
For such idempotents, we write Grχ(k, n) instead of Gr

P
(n)
χ

(k, n). The following are well-
known examples of varieties recovered in this way.
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Segre embeddings: if G = {e}, the trivial subgroup of Sk, there is only the trivial 
character χ := 1G. In this case P (n)

χ = IdV ⊗k and Grχ(k, n) = Seg(k, n).

Grassmannians: if G = Sk and χ is its alternating character, then

Pχ = 1
k!
∑
σ∈Sk

sgn(σ)σ,

where sgn(σ) denotes the sign of the permutation σ. Hence, as vector spaces, Im
(
P

(n)
χ

)
�∧k

V and, for k � n, Grχ(k, n) = Im
(
P̂

(n)
χ

)
is the complex Grassmannian GrC(k, n); 

for k > n it is clear that Grχ(k, n) = ∅.

Chow varieties G(1, k, n): another important class of varieties are the so-called Chow 
varieties G(1, k, n), the projectivization of the set of homogeneous polynomial of degree 
k in n variables factorizing in polynomials of degree 1. These varieties are recovered as 
follows. If G = Sk and χ := 1Sk

, then

Pχ = 1
k!
∑
σ∈Sk

σ.

Hence, as vector spaces, Im
(
P

(n)
χ

)
� SymkV and Grχ(k, n) = Im

(
P̂

(n)
χ

)
is the Chow 

variety G(1, k, n). For more details see e.g. [16, Chapter 4] and [20, Section 8.6].
The following construction realizes a Cartesian product of projective spaces differently 

with respect to Corollary 3.8.

Cartesian product of projective spaces: let h ∈ N, a ∈ Nh and k := a(h), where 
a(j) :=

∑j
i=1 ai, for all j ∈ [h]. The symmetric group Sk is generated by the simple 

transpositions {s1, . . . , sk−1}; for i, j ∈ [k − 1], i � j, define the parabolic subgroup

S[i,j] :=
{

〈si, si+1, . . . , sj−1〉, if i < j;
{e}, if i = j.

We define the parabolic subgroup Ga ⊆ Sk by

Ga := S[1,a(1)] × S[a(1)+1,a(2)] × . . .× S[a(h−1)+1,a(h)].

Hence P1Ga
= 1

a1!···ah!
∑

g∈Ga
g ∈ C[Sk] is the idempotent corresponding to the Young 

module Ma (see e.g. [7, Section 3.6.2]). Since, for k � 1, the Chow variety G(1, k, 2) is 
isomorphic to P (Ck+1) (because any homogeneous polynomial of positive degree in two 
variables factorizes as product of degree one polynomials), we obtain

Gr1G (k, 2) � P (Ca1+1) × P (Ca2+1) × . . .× P (Cah+1). (1)

a
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For a simple character χ of G ⊆ Sk, define V ⊗k
χ := Im

(
P

(n)
χ

)
. We denote by ResGH(χ)

the restriction to a group H ⊆ G of a character χ of G. Given an action of a group G on a 
set X, let Gx be the isotropy group of the element x ∈ X, i.e. Gx := {g ∈ G : g(x) = x}.

A set of generators and the dimension of the vector space V ⊗k
χ are known, see [24, 

Eq. 6.13 and 6.23].

Theorem 3.9. Let G ⊆ Sk be a subgroup and χ a simple character of G. Then P (n)
χ (ex) =

0 if and only if 
〈
ResGGx

(χ),1Gx

〉
= 0, for every x ∈ [n]k, and

dim
(
V ⊗k
χ

)
= χ(e)

|G|
∑
g∈G

χ(g)nc(g),

where c(g) is the number of cycles of the permutation g ∈ Sk.

In particular, by Theorem 3.9, we have that

V ⊗k
χ = spanC

{
P (n)
χ (ex) :

〈
ResGGx

(χ),1Gx

〉

= 0
}
.

For a more explicit description of the spanning set in Theorem 3.9 when G = Sk, see 
[24, Theorem 6.37]. In general, this set is not a basis, as shown in the following example. 
Moreover, this is an example of immanant variety where Grχ(k, n) 
= Im

(
P̂

(n)
χ

)
.

Example 3.10. Let n = 2, k = 3, G = S3 and χ the two-dimensional simple character of 
S3 corresponding to the partition (2, 1). Then Pχ = 1

3 (2e− st− ts), where s = 213 and 
t = 132 are the simple transpositions (we write permutations in one-line notation). By 
Theorem 3.9, dim

(
V ⊗k
χ

)
= 4. We have that P (2)

χ (e(1,1,1)) = P
(2)
χ (e(2,2,2)) = 0 and

• P
(2)
χ (e(1,1,2)) = 1

3
(
2e(1,1,2) − e(1,2,1) − e(2,1,1)

)
,

• P
(2)
χ (e(1,2,1)) = 1

3
(
2e(1,2,1) − e(2,1,1) − e(1,1,2)

)
,

• P
(2)
χ (e(2,1,1)) = 1

3
(
2e(2,1,1) − e(1,1,2) − e(1,2,1)

)
.

Hence P (2)
χ (e(1,2,1)) = −P

(2)
χ (e(1,1,2)) −P

(3,2)
χ (e(2,1,1)) (similarly for P (2)

χ

(
e(2,1,2)

)
) and a 

basis for V ⊗3
χ is

{
P (2)
χ (e(1,1,2)), P (2)

χ (e(2,1,1)), P (2)
χ (e(2,2,1)), P (2)

χ (e(1,2,2))
}
.

Parametric equations for Im
(
P̂

(n)
χ

)
are
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x111 = 0
x112 = 2a1b1c2 − a2b1c1 − a1b2c1
x121 = 2a1b2c1 − a1b1c2 − a2b1c1
x122 = 2a1b2c2 − a2b1c2 − a2b2c1
x211 = 2a2b1c1 − a1b2c1 − a1b1c2
x212 = 2a2b1c2 − a2b2c1 − a1b2c2
x221 = 2a2b2c1 − a1b2c2 − a2b1c2
x222 = 0

where (a1, a2), (b1, b2), (c1, c2) ∈ C2 \{(0, 0)}. Using Gröbner basis method for impliciti-
zation, we find the following Cartesian equations for Grχ(3, 2):⎧⎪⎪⎪⎨⎪⎪⎪⎩

x112 + x121 + x211 = 0
x221 + x212 + x122 = 0
x111 = 0
x222 = 0

These equations are the ones for P(V ⊗3
χ ) in P (V ⊗3); hence Grχ(3, 2) = P (V ⊗3

χ ) �
P (C4). It is not difficult to see that Im

(
P̂

(n)
χ

)
� Grχ(3, 2); in fact it can be checked by 

hand that [
P (2)
χ (e(1,1,2)) − P (2)

χ (e(2,1,1))
]
∈ P (V ⊗3

χ ) \ Im
(
P̂ (n)
χ

)
.

In the following, we are going to introduce a generalization of the immanant of a 
square matrix to matrices with arbitrary size, depending on a subgroup G ⊆ Sk and a 
simple character of G. Our definition extends to submatrices the notion of generalized 
matrix function (see [24, Chapter 7]).

Let k, m, n ∈ N; recall that V is an n-dimensional complex vector space. If W
is an m-dimensional complex vector space and f ∈ Hom(V, W ), the element f⊗k ∈
Hom(V ⊗k, W⊗k) is defined by setting

f⊗k(ex) = f(ex1) ⊗ . . .⊗ f(exk
),

for all x ∈ [n]k.

Remark 3.11. When W = V , we have that (f ◦ g)⊗k = f⊗k ◦ g⊗k, for all f, g ∈ End(V ), 
and (IdV )⊗k = IdV ⊗k , i.e. the function f �→ f⊗k defines a monoid morphism End(V ) →
End(V ⊗k).

Given a matrix M ∈ Matm,n(C), the matrix M⊗k ∈ Matmk,nk(C) is defined by setting

(
M⊗k

)
x,y

=
k∏

Mxi,yi
,

i=1
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for all x ∈ [m]k, y ∈ [n]k, i.e. if M is the matrix associated to f ∈ Hom(V, W ) with 
respect to bases of V and W , the matrix associated to f⊗k is M⊗k. In the following 
definition we extend the notion of immanant of a square matrix.

Definition 3.12. Let x ∈ [m]k, y ∈ [n]k and χ a simple character of a group G ⊆ Sk. The 
χx,y-immanant of a matrix M ∈ Matm,n(C) is defined by

χx,y(M) :=
∑
g∈G

χ(g)
(
M⊗k

)
g(x),y .

Let M ∈ Matn,n(C), k = n and x = y = (1, . . . , n) =: �n. In this setting, for G = Sn, 
we recover some well-known numbers associated to M .

• If χ is the alternating character of Sn, then χ�n,�n(M) is the determinant of the matrix 
M .

• If χ := 1Sn
, then χ�n,�n(M) is the permanent of the matrix M .

• If χ is any simple character of Sn, then χ�n,�n(M) is the so-called immanant of the 
matrix M , see for instance [29] and references therein.

Example 3.13. Let M ∈ Mat2,3(C) be the generic matrix

M =
(
a11 a12 a13
a21 a22 a23

)
.

Then, by ordering [2]2 and [3]2 lexicographically, the matrix M⊗2 is

⎛⎜⎝ a2
11 a11a12 a11a13 a11a12 a2

12 a12a13 a11a13 a12a13 a2
13

a11a21 a11a22 a11a23 a12a21 a12a22 a12a23 a13a21 a13a22 a13a23
a21a11 a21a12 a21a13 a22a11 a22a12 a22a13 a23a11 a23a12 a23a13
a2
21 a21a22 a21a23 a22a21 a2

22 a22a23 a23a21 a23a22 a2
23

⎞⎟⎠ .

If χ is the trivial character of S2, we have χ(2,2),(2,3)(M) = 2a22a23. If χ is the alter-
nating character of S2, we have χ(1,2),(1,3)(M) = a11a23 −a21a13 and χ(2,2),(2,3)(M) = 0.

Let P ∈ C[Sk]; it is clear that

f⊗k ◦ P (n) = P (m) ◦ f⊗k,

i.e. f⊗k ∈ HomC[Sk]
(
V ⊗k,W⊗k

)
, for all f ∈ Hom(V, W ).

The χx,y-immanant of a matrix M is related to the (x, y)-entry of the matrix 
M⊗kP

(n)
χ , as the next proposition asserts.

Proposition 3.14. Let x ∈ [m]k, y ∈ [n]k, χ a simple character of a group G ⊆ Sk and 
M ∈ Matm,n(C). Then
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(
M⊗kP (n)

χ

)
x,y

= χ(e)
|G| χx,y(M).

Proof. Let y ∈ [n]k and {wi : i ∈ [m]} be a basis of the m-dimensional vector space W . 
We have that

M⊗kP (n)
χ ey = P (m)

χ M⊗key

= χ(e)
|G|

∑
g∈G

χ(g−1)
∑

x∈[m]k

(
M⊗k

)
x,y

wg(x)

= χ(e)
|G|

∑
g∈G

χ(g−1)
∑

x∈[m]k

(
M⊗k

)
g−1(x),y wx

= χ(e)
|G|

∑
x∈[m]k

⎛⎝∑
g∈G

χ(g)
(
M⊗k

)
g(x),y

⎞⎠wx. �

Remark 3.15. For P ∈ C[Sk], we can define, by restriction, an element f⊗k
P ∈

Hom
(
Im(P (n)), Im(P (m))

)
; if P = Pχ for some simple character χ of a group G ⊆ Sk, 

then f⊗k
P ∈ HomC[G]

(
Im(P (n)), Im(P (m))

)
, since gPχ = Pχg, for all g ∈ G, and then 

Im(P (n)), Im(P (m)) are C[G]-modules. See [22] for a more extended treatment on such 
induced morphisms.

Now we provide parametric equations for the set Im
(
P̂

(n)
χ

)
in terms of immanants. 

Let A ∈ Matn,k(C) defined by

A :=

⎛⎜⎜⎜⎜⎝
a11 a12 · · · a1k
a21 a22 · · · a2k
...

... · · ·
...

an1 an2 · · · ank

⎞⎟⎟⎟⎟⎠
where none of the columns is the zero vector.

Theorem 3.16. Let k, n ∈ N and χ be a simple character of a group G ⊆ Sk. Then the 
set Im(P̂ (n)

χ ) ⊆ P
(
V ⊗k

)
is described by the parametric equations

{
xz = χz,(1,...,k)(A) : z ∈ [n]k

}
,

where A is the generic matrix defined above.

Proof. Let vi = a1ie1 + . . .+anien, for all i ∈ [k], and let W be a vector space with basis 
{ẽ1, . . . , ̃ek}. Then A ∈ Hom(W, V ) and, by Proposition 3.14,
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P (n)
χ (v1 ⊗ . . .⊗ vk) = P (n)

χ ((Aẽ1) ⊗ . . .⊗ (Aẽk))

= P (n)
χ A⊗kẽ(1,...,k)

= A⊗kP (k)
χ ẽ(1,...,k)

= χ(e)
|G|

∑
x∈[n]k

χx,(1,...,k)(A)ẽx. �

The statement of Theorem 3.16 leads us to the following definition.

Definition 3.17. If χ is a simple character of a group G ⊆ Sk, we call Grχ(k, n) an 
immanant variety.

We observe that, if two subgroups G ⊆ Sk and H ⊆ Sk are conjugated in Sk, i.e. 
H = σGσ−1 for some σ ∈ Sk, and χ is a character of G, then, as projective varieties, 
Grχ(k, n) � Grχσ(k, n), where χσ(h) := χ(σ−1hσ), for all h ∈ H. In fact Pχσ = σPχσ

−1. 
Let f := γ(Pχσ

−1) ∈ End
(
V ⊗k

)
, where γ : C[Sk] → End

(
V ⊗k

)
is the algebra morphism 

introduced above. Then Im( f̂ ) = Im(P̂ (n)
χ ) and

Grχσ(k, n) = Grγ(σ)◦f (k, n) � Grf (k, n) = Grχ(k, n),

by Proposition 3.4. In the following example we see that G � H and χG � χH do not 
imply GrχG

(k, n) � GrχH
(k, n) as projective varieties.

Example 3.18. Let G := {e, 2134} ⊆ S4 and H := {e, 4321} ⊆ S4. Then Gr1G
(4, 2) �

P (C3) × P (C2) × P (C2), by (1), because G = G(2,1,1). Hence it is a smooth four-
dimensional projective variety. On the other hand, we checked by using Macaulay2 [17]
that Gr1H

(4, 2) is a singular four-dimensional projective variety. Then, as projective 
varieties, they are not isomorphic.

4. One-dimensional characters and χ-matroids

In this section we restrict our attention to one-dimensional characters of a subgroup 
G ⊆ Sk. This includes, for example, the trivial character of G and all the simple charac-
ters of an abelian group.

For x ∈ [n]k we let Ox := {g(x) : g ∈ G} ⊆ [n]k and �lex the lexicographic order on 
Ox. Then we define

x := min (Ox,�lex) . (2)

For completeness, we give a proof of the following theorem, ensuring that, for one-
dimensional characters, the spanning set of Theorem 3.9 provides a basis in a canonical 
way. It is known in another formulation, see [24, Corollary 6.32].
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Theorem 4.1. Let G ⊆ Sk be a subgroup and χ a one-dimensional character of G, i.e. a 
group morphism χ : G → C \{0}. Then{

P (n)
χ (ex) : x ∈ [n]k, Gx ⊆ ker(χ)

}
is a basis of V ⊗k

χ .

Proof. By Theorem 3.9 we have that P (n)
χ (ex) = 0 if and only if 

∑
g∈Gx

χ(g) = 0 and this is 

equivalent to Gx � ker(χ). In fact, it is straightforward to see that 
∑

g∈Gx

χ(g) = 0 implies 

Gx � ker(χ). On the other hand, let h ∈ Gx \ker(χ); therefore 
∑

g∈Gx

χ(g) =
∑

g∈Gx

χ(hg) =

χ(h) 
∑

g∈Gx

χ(g) and we find that (1 − χ(h)) 
∑

g∈Gx

χ(g) = 0. This implies 
∑

g∈Gx

χ(g) = 0.

Let x, y ∈ [n]k with Gx ⊆ ker(χ) and Gy ⊆ ker(χ). Moreover assume y = g(x) for 
some g ∈ G. Notice that

P (n)
χ (ex) = 1

|G/Gx|
∑

c∈G/Gx

χ(c̃−1)ec̃(x),

for all x ∈ [n]k, where c̃ is any representative of the class c ∈ G/Gx. By using this formula, 
it can be easily shown that P (n)

χ (ey) = χ(g)P (n)
χ (ex). It follows that it is sufficient to 

choose an element for each orbit Ox, for instance x. Since x1, x2, ..., xh ∈ [n]k are in h
distinct orbits then clearly P (n)

χ (ex1), P
(n)
χ (ex2), . . ., P

(n)
χ (exh

) are linearly independent. 
This concludes the proof. �

We define

Bχ(k, n) :=
{
x : x ∈ [n]k, Gx ⊆ kerχ

}
,

ordered by setting

x � y if and only if x � g(y),

for some g ∈ G, for all x, y ∈ Bχ(k, n), where � is componentwise. We need to prove 
that this is really a partial order.

Proposition 4.2. The relation � on Bχ(k, n) is a partial order.

Proof. We claim that x � g(x) if and only if g ∈ Gx. One implication is obvious. Let 
x � g(x) for some g ∈ G. Let ρ be the rank function of the poset ([n]k, �). Then 
ρ(x) = ρ(g(x)). This implies that g(x) = x.

1. reflexivity: clearly x � e(x) = x and then x � x, for all x ∈ Bχ(k, n).
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2. symmetry: let x � y and y � x. Then x � g(y) and y � h(x), for some g, h ∈ G. 
Therefore x � g(y) � gh(x). Hence x � gh(x) and by our claim we conclude that 
gh(x) = x. Then x = g(y), i.e. y ∈ Ox and x = y.

3. transitivity: let x � y and y � z; then x � g(y) and y � h(z) for some g, h ∈ G. This 
implies x � g(y) � gh(z), i.e. x � z. �

For example, if G = {e} is the trivial group, then Bχ(k, n) =
(
[n]k,�

)
. When χ is 

the alternating character of Sk, the poset Bχ(k, n) is isomorphic to the poset S(k)
n of 

Grassmannian permutations with the Bruhat order (see [3, Proposition 4.9]).

Example 4.3. [Lyndon words] Let Ck := {e, k12 . . . k − 1, . . . , 23 . . . 1} ⊆ Sk be a cyclic 
group of order k, σ := k12 . . . k − 1 ∈ Ck and χ : Ck → C \{0} the character defined by 
χ(σh) = exp

( 2πhi
k

)
, for all h ∈ [k]. Since ker(χ) = {e}, we have that Bχ(k, n) is the poset 

of Lyndon words of length k over the alphabet [n]. The poset Bχ(k, n) has maximum 
(n −1, n, . . . , n) and minimum (1, . . . , 1, 2). The cardinality of Bχ(k, n) is given by Witt’s 
formula:

|Bχ(k, n)| = 1
k

∑
d|k

μ(d)nk/d,

where μ is the Möbius function. For more information on Lyndon words, see e.g. [28, 
Exercise 7.89]. The following is the Hasse diagram of Bχ(6, 2).

(1, 2, 2, 2, 2, 2)

(1, 1, 2, 2, 2, 2) (1, 2, 1, 2, 2, 2)

(1, 1, 2, 2, 1, 2) (1, 1, 1, 2, 2, 2) (1, 1, 2, 1, 2, 2)

(1, 1, 1, 1, 2, 2) (1, 1, 1, 2, 1, 2)

(1, 1, 1, 1, 1, 2)
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Now we extend the notion of rank k matroids to all one-dimensional characters χ of 
a group G ⊆ Sk. Let σ ∈ Sn; then σ acts on [n]k by letting

σ∗(x) := (σ(x1), . . . , σ(xk)),

for all x ∈ [n]k. Hence we have an action of Sn on V ⊗k, commuting with the previously 
defined action of Sk on V ⊗k.

Definition 4.4. Let X ⊆ Bχ(k, n). We say that X is a χ-matroid if, for every σ ∈ Sn, 
the induced subposet 

{
σ∗(x) : x ∈ X

}
⊆ Bχ(k, n) has a unique maximum, where for 

x ∈ [n]k, x is defined in (2).

Remark 4.5. A characterization of matroids, due to Gale, is by their maximality property 
(see [5, Theorem 1.3.1]). Therefore, if χ is the alternating character of G = Sk, we recover 
the set of bases of a rank k matroid on the ground set [n].

For a one-dimensional character χ of G ⊆ Sk and [v] ∈ P (V ⊗k
χ ), we define a set 

suppχ[v] ⊆ Bχ(k, n) by letting

suppχ[v] := {x ∈ Bχ(k, n) : ax 
= 0} ,

where v =
∑

x∈Bχ(k,n)
axP

(n)
χ (ex).

We now introduce the maximality property for Im
(
P̂

(n)
χ

)
, whenever χ is a one-

dimensional character of a subgroup G ⊆ Sk.

Definition 4.6. Let χ be a one-dimensional character of a subgroup G ⊆ Sk. We say that 
Im
(
P̂

(n)
χ

)
has the maximality property if the induced subposet suppχ[v] is a χ-matroid, 

for all [v] ∈ Im
(
P̂

(n)
χ

)
.

In the following example we see a case in which the maximality property does not 
hold.

Example 4.7. Let n = 3, k = 4 and G = {e, g} = {e, 3412} ⊆ S4 and χ :
G → C defined by setting χ(3412) = −1. Then the action of the group G on 
V ⊗4 is given by g

(
e(i1,i2,i3,i4)

)
= e(i3,i4,i1,i2), for all i1, i2, i3, i4 ∈ [3]. We have that 

P
(3)
χ (e(3,3,3,3)) = 0 and that the poset Bχ(4, 3) has maxima (2, 3, 3, 3) and (3, 2, 3, 3). Let 

v := P
(3)
χ ((e2 + e3) ⊗ (e2 + e3) ⊗ e3 ⊗ e3); therefore

v = P (3)
χ (e(2,2,3,3)) + P (3)

χ (e(2,3,3,3)) + P (3)
χ (e(3,2,3,3)).

Hence suppχ[v] = {(2, 2, 3, 3), (2, 3, 3, 3), (3, 2, 3, 3)} is not a χ-matroid because this poset 
has two maximal elements.



D. Bolognini, P. Sentinelli / Linear Algebra and its Applications 682 (2024) 164–190 181
Several important varieties have the maximality property. For example, the Grass-
mannian GrC(k, n) has this property. In fact, the elements of GrC(k, n) correspond to 
representable matroids of rank k and matroids can be defined by their maximality prop-
erty ([5, Theorem 1.3.1]). This is also the case for Segre varieties.

Proposition 4.8. The set Seg(k, n) has the maximality property.

Proof. For k ∈ N, let e(k) be the identity in Sk. The statement is equivalent to say 
that supp1{e(k)}

[v1 ⊗ . . . ⊗ vk] has a unique maximum for all v1, . . . , vk ∈ V \ {0}. Let 
v := v1 ⊗ . . .⊗ vk; hence

max(supp1{e(k)}
[v]) =

(
max(supp1{e(1)}

[v1]), . . . ,max(supp1{e(1)}
[vk])

)
and this concludes the proof. �

More in general, when χ is a trivial character, the set Im
(
P̂

(n)
χ

)
has the maximality 

property, as we prove in the next section (see Corollary 5.4). We end this section with 
one more definition.

Definition 4.9. We say that a subset X ⊆ Bχ(k, n) is representable over C if X ∈{
suppχ[v] : [v] ∈ Im

(
P̂

(n)
χ

)}
.

Notice that Im
(
P̂

(n)
χ

)
has the maximality property if and only if all representable 

subsets X ⊆ Bχ(k, n) are χ-matroids. Differently to the Grassmannian case, there exist 
representable subsets in Bχ(k, n) which are not χ-matroids, see Example 4.7.

Remark 4.10. Let m := dim
(
V ⊗k
χ

)
. If Grχ(k, n) = Im

(
P̂

(n)
χ

)
and the variety Grχ(k, n)

has the maximality property, then the action on P
(
V ⊗k
χ

)
of the group of invertible 

diagonal matrices of size m (i.e. the incidence group of the trivial poset of cardinality 
m), provides an incidence stratification of Grχ(k, n) whose strata are in bijection with 
representable χ-matroids. If χ is the alternating character of Sk, we recover the matroidal 
strata introduced in [15]. These strata provide a geometric interpretation of the Tutte 
polynomials via the K-theory of Grassmannians, see [13].

5. The combinatorics of Gr1G(k, n)

In this section we consider the trivial character 1G of a subgroup G ⊆ Sk. In this case 
B1G

(k, n) = {x : x ∈ [n]k} because the condition Gx ⊆ ker(1G) = G (see Theorem 4.1) 
is trivially satisfied. Moreover we have that P

(
ker
(
P

(n)
1G

))
∩ Seg(k, n) = ∅; this is a 

consequence of the following more general result.
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Proposition 5.1. Let P ∈ C[Sk] be such that P (n)(ex) 
= 0 for all x ∈ [n]k. Then 
GrP (n)(k, n) = Im(P̂ (n)).

Proof. Let v := v1 ⊗ . . . ⊗ vk ∈ V ⊗k. Hence max
(
supp1G

[v]
)

= {x} ⊆ [n]k, by the 
maximality property of Seg(k, n). Let ρ be the rank function of [n]k; then ρ(y) < ρ(x) =
ρ(z), for all y ∈ supp1G

[v] \{x} and for all z ∈ supp1G

[
P (n)(ex)

]
, because the action of Sk

on [n]k preserves its rank. This implies P (n)(v) 
= 0; hence Seg(k, n) ∩P
(
ker
(
P (n))) = ∅

and the result follows by Proposition 3.3. �
Corollary 5.2. Let G ⊆ Sk be a subgroup. Then Gr1G

(k, n) = Im
(
P̂

(n)
1G

)
.

Notice that, in the trivial character case, we have the following commutative dia-
gram of functions, where ∼G is the equivalence relation on P(V )×k defined by setting 
([u1], . . . , [uk]) ∼G ([v1], . . . , [vk]) if and only if ([v1], . . . , [vk]) = ([ug−1(1)], . . . , [ug−1(k)]), 
for some g ∈ G, and πG is the canonical projection on the quotient.

P (V )×k P (V ⊗k) \ P (ker(P (n)
1G

))

P (V )×k
�∼G P (V ⊗k

1G
)

segk,n

πG P
(n)
1G

segk,n
G

The function segk,nG is the unique one such that P̂ (n)
1G

◦ segk,n = segk,nG ◦ πG. It is an 
injective function by [24, Theorem 6.60]; moreover Im(segk,nG ) = Gr1G

(k, n).
Our next aim is to prove that the variety Gr1G

(k, n) has the maximality property. 
We define an idempotent function p1G

: [n]k → B1G
(k, n) by setting p1G

(x) = x, for all 
x ∈ [n]k.

Proposition 5.3. The function p1G
: ([n]k, �) → B1G

(k, n) is order preserving.

Proof. Let x, y ∈ [n]k be such that x � y, and g, h ∈ G such that p1G
(x) = g(x) and 

p1G
(y) = h(y). Hence p1G

(x) = g(x) � g(y) = gh−1(p1G
(y)), i.e. p1G

(x) � p1G
(y). �

Corollary 5.4. The set Gr1G
(k, n) has the maximality property. In particular, supp1G

[v]
is a 1G-matroid, for every [v] ∈ Gr1G

(k, n).

Proof. Let 
[
P

(n)
1G

(v1 ⊗ ....⊗ vk)
]
∈ Gr1G

(k, n). By Proposition 4.8, supp1G
[v1 ⊗ .... ⊗ vk]

has a unique maximum m ∈ [n]k. Hence, by Proposition 5.3, p1G
(m) is the maximum of 

supp1G

[
P

(n)
1G

(v1 ⊗ ....⊗ vk)
]
. �

Let ρ : [n]k → N ∪{0} be the rank function of [n]k, i.e. ρ(x) =
∑k

i=1(xk − 1), for all 
x ∈ [n]k. The restriction of ρ provides the rank function of the poset B1G

(k, n), as the 
next result shows.
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Proposition 5.5. The poset B1G
(k, n) is graded with rank function ρ.

Proof. The poset B1G
(k, n) has maximum and minimum, (n, n, . . . , n) and (1, 1, . . . , 1), 

respectively. Let x � y in B1G
(k, n). Then x � g(y) for some g ∈ G. Let z ∈ [n]k be such 

that x < z < y. By Proposition 5.3 we have that x � p1G
(z) � y. Since ρ(z) = ρ(h(z)), 

for all h ∈ G, we have x ≺ p1G
(z) ≺ y, a contradiction. From this fact we conclude that 

x � y in B1G
(k, n) implies ρ(y) = ρ(x) + 1. �

Remark 5.6. Notice that Proposition 5.5 follows directly by [18, Lemma 7] since B1G
(k, n)

is a homogeneous quotient of the poset B1{e}(k, n). Moreover, by Propositions 5.3 and 
5.5 it follows that p1G

is a morphism of graded posets.

In the following example we depict the Hasse diagram of one of these posets.

Example 5.7. Let k = n = 3, A3 be the alternating subgroup of S3. The poset B1A3
(3, 3)

has the following Hasse diagram:

(3, 3, 3)

(2, 3, 3)

(1, 3, 3) (2, 2, 3)

(1, 2, 3) (1, 3, 2) (2, 2, 2)

(1, 2, 2) (1, 1, 3)

(1, 1, 2)

(1, 1, 1)

By the weighted Pólya enumeration theorem, one can deduce the rank-generating 
function of B1G

(k, n).

Proposition 5.8. The rank-generating function of the poset B1G
(k, n) is

∑
x∈B (k,n)

qρ(x) = 1
|G|
∑
g∈G

k∏
i=1

(
[n]qi

)ci(g)
,

1G
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where [n]q :=
n−1∑
i=0

qi is the q-analog of n and ci(g) is the number of cycles of length i ∈ [k]

of the permutation g ∈ Sk.

Proof. The result follows by using the weighted Pólya enumeration theorem with [n] as 
set of colours and weights w(i) = i −1, for all i ∈ [n]. Then the generating function of the 
colours is [n]q and ρ(x) =

∑k
i=1 w(xi), for all x ∈ B1G

(k, n). Therefore the generating 
function of the number of colored arrangements by weight is the rank-generating function 
of B1G

(k, n). �
Corollary 5.9. Let G ⊆ Sk be a group; then the poset B1G

(k, n) is rank-symmetric.

Proof. Let B(q) := 1
|G|
∑
g∈G

k∏
i=1

(
[n]qi

)ci(g). Since deg(B(q)) = k(n − 1), the result can be 

deduced by the easy equality qk(n−1)B(q−1) = B(q). �
For the rest of this section, we focus on the case G = Sk. As for the Bruhat order on 

Grassmannian permutations, the poset B1Sk
(k, n) is an induced subposet of [n]k (see [3, 

Proposition 4.9] for a similar statement in the Grassmannian context). It is not difficult 
to prove that it is a distributive lattice. Then, a direct consequence of [1, Theorem 3.7 
and Proposition 4.2] is that the intervals of B1Sk

(k, n) are shellable.

Remark 5.10. The poset B1G
(k, n) could be not a lattice; see Example 5.7.

In the last result of this section we provide an easy way to produce 1Sk
-matroids.

Proposition 5.11. Let [x, y] be an interval of B1Sk
(k, n); then [x, y] is a 1Sk

-matroid 
representable over C.

Proof. We first prove that [x, y] is representable over C. This follows by noting that, if

[w] :=
[(

y1∑
i1=x1

ei1

)
⊗ . . .⊗

(
yk∑

ik=xk

eik

)]
∈ Seg(k, n),

then supp1Sk

[
P

(n)
1Sk

(w)
]

= [x, y]. The inclusion [x, y] ⊆ supp1Sk

[
P

(n)
1Sk

(w)
]

is trivial. The 
other inclusion follows since x1 � x2 � . . . � xk and y1 � y2 � . . . � yk, and then the 
following fact holds: if 1 � i < j � k and a > b such that xi � a � yi, xj � b � yj , then 
xi � b � yi and xj � a � yj . By Corollary 5.4 we have that [x, y] is a 1Sk

-matroid. �
Remark 5.12. Notice that a Bruhat interval [x, y] of Grassmannian permutations is a 
matroid (see [3, Section 2.3] and references therein). In general, any Bruhat interval in 
a parabolic quotient of a finite Coxeter group is a Coxeter matroid (see [6]).
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The result of Proposition 5.11 is not true for the trivial character of an arbitrary 
group. In fact, consider the poset of Example 5.7, and its interval [(1, 1, 3), (1, 3, 3)]. 
Hence, if σ = 132 ∈ S3, we obtain

{σ∗(x) : x ∈ [(1, 1, 3), (1, 3, 3)]} = {(1, 1, 2), (1, 2, 3), (1, 3, 2), (1, 2, 2)} .

This set has two maxima, (1, 2, 3) and (1, 3, 2), so [(1, 1, 3), (1, 3, 3)] is not a χ-matroid; in 
particular, it is not representable over C, because Gr1A3 (3,3) has the maximality property 
by Corollary 5.4.

6. The geometry of Gr1G(k, n)

In this section we use ideas from [3] and the combinatorial tools of Section 5 to realize 
an incidence stratification of the variety Gr1G

(k, n). This stratification provides a set 
of generators for the Chow Q-vector space of Gr1G

(k, n), as we prove in Theorem 6.4. 
We consider the incidence group over C of the poset B1G

(k, n) acting on the projective 
space P

(
V ⊗k
1G

)
. Then, by [3, Theorem 5.1] the orbits of this action are in bijection with 

the order ideals of B1G
(k, n). Given an order ideal I ∈ J (B1G

(k, n)) let CI be the 
corresponding orbit and define

C1G

I := CI ∩ Gr1G
(k, n).

Proposition 6.1. We have that C1G

I 
= ∅ if and only if I is a principal order ideal. Hence 
as posets

{
I ∈ J (B1G

(k, n)) : C1G

I 
= ∅
}
� B1G

(k, n).

Proof. Let I be principal with m := max(I). Then 
[
P

(n)
1G

(em)
]
∈ CI∩Gr1G

(k, n). On the 

other hand, let [v] ∈ CI ∩ Gr1G
(k, n) for some v ∈ V ⊗k

1G
. By Corollary 5.4, we have that 

max(I) = max(supp1G
[v]) = {m} for some m ∈ B1G

(k, n). The rest of the statement is 
an immediate consequence. �

For x ∈ B1G
(k, n), we set Cx := C1G

x↓ . By Proposition 6.1, it follows that

Gr1G
(k, n) =

⊎
x∈B1G

(k,n)

Cx.

Let x ∈ [n]k and A ∈ Matn,k(C) be the matrix of parameters (see Theorem 3.16). 
We let Ax ∈ Matn,k(C) be the matrix whose entries are Ax

i,j = Ai,j if i � xj , and 
Ax

i,j = 0 otherwise. We now provide a system of parametric equations for the algebraic 
set Cx↓ ∩ Gr1G

(k, n).
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Theorem 6.2. Let x ∈ B1G
(k, n). Then Cx↓ ∩ Gr1G

(k, n) is described by the parametric 
equations {

zy = |Gy|−1(1G)y,(1,...,k)(Ax) : y ∈ x↓} ∪ {zy = 0 : y /∈ x↓} .
Proof. First consider the case G = {e}, the trivial group. Let x ∈ [n]k and [u] ∈
Cx↓ ∩ Seg(k, n); hence, by Proposition 6.1, z := max(supp1G

[u]) � x and then 
v =

∑
y�x(Ax)⊗k

y,(1,...,k)ey is a representative of [u], for the choice aij = 0 whenever 
i > zi, for all i ∈ [n] and for all j ∈ [k].

Let G 
= {e}, x ∈ B1G
(k, n) ⊆ [n]k and [u] ∈ Cx↓G ∩Gr1G

(k, n), x↓G ∈ J (B1G
(k, n)). 

Then, by Proposition 5.3, a representative of [u] is w = 1
|G|
∑
g∈G

gv, for some v ∈ Cx↓ ∩

Seg(k, n), where x↓ ∈ J ([n]k) and x = x.
We claim that, if x ∈ [n]k, then p1G

(x↓) = (p1G
(x))↓. First we prove that p1G

(x↓) ⊆
(p1G

(x))↓. Let y ∈ p1G
(x↓); then y = p1G

(z) for some z � x. By Proposition 5.3 the 
function p1G

is order preserving, hence y = p1G
(z) � p1G

(x), i.e. y ∈ (p1G
(x))↓. We 

prove now that (p1G
(x))↓ ⊆ p1G

(x↓). Let y ∈ (p1G
(x))↓; then y � p1G

(x), i.e. y � g(x), 
for some g ∈ G. Therefore z := g−1(y) � x. Hence z ∈ x↓ and the result follows because 
y = p1G

(z).
Our claim implies that, as sets,

J ([n]k) � x↓ �
⊎
z�x

⋃
{g∈G:g(z)�x}

{(z, g(z))} .

Therefore, by the previous case and our claim,

w = 1
|G|
∑
h∈G

h
∑
y�x

(Ax)⊗k
y,(1,...,k)ey

= 1
|G|
∑
h∈G

h
∑
y�x

∑
u∈Oy

u�x

(Ax)⊗k
u,(1,...,k)eu

= 1
|G|
∑
y�x

⎛⎝∑
u∈Oy

(Ax)⊗k
u,(1,...,k)

⎞⎠∑
h∈G

eh(y)

=
∑
y�x

|Gy|−1(1G)y,(1,...,k)(Ax)P (n)
1G

(ey). �

Corollary 6.3. Let x ∈ B1G
(k, n). Then the projective algebraic set Cx↓ ∩ Gr1G

(k, n) is 
irreducible. In particular

Cx = Cx↓ ∩ Gr1G
(k, n),

where Cx and Cx↓ are the Zariski closures in Gr1G
(k, n) and P

(
V ⊗k
1
)
, respectively.
G
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Proof. As in Proposition 3.2, Theorem 6.2 implies that Cx is irreducible. The equality 
can be deduced by noting that Cx↓ ∩ Gr1G

(k, n) is an open set of the projective variety 
Cx↓ ∩ Gr1G

(k, n). �
We have proved in the previous section that the poset B1G

(k, n) is graded; in the 
last result of this section we interpret geometrically its rank function. Moreover we 
provide a set of generators for the Chow vector space A∗ (Gr1G

(k, n);Q) of Gr1G
(k, n)

over Q. Recall from Proposition 5.8 that ci(g) is the number of cycles of length i ∈ [k]
of the permutation g ∈ Sk, and denote by HPG the Hilbert-Poincaré polynomial of 
A∗ (Gr1G

(k, n);Q).

Theorem 6.4. Let G ⊆ Sk be a group and x ∈ B1G
(k, n). Then:

1. dim(Cx) = ρ(x); in particular dim(Gr1G
(k, n)) = k(n − 1).

2.
{
[Cx] : x ∈ B1G

(k, n)
}

is a set of generators of the Chow vector space over Q of 
Gr1G

(k, n); in particular

HPG(q) � 1
|G|
∑
g∈G

k∏
i=1

(
[n]qi

)ci(g)
,

where the partial order on polynomials is taken coefficient-wise.

Proof. Let G = {e}. It is easy to verify that Cx �
∏k

i=1 P (Cxi) as projective varieties. 
Hence dim(Cx) =

∑
i∈[k]

(xi − 1) = ρ(x). In this case the second statement is clear. In fact 

Seg(k, n) �
∏k

i=1 P (Cn) as algebraic varieties, and a basis for the Chow vector space 

of the second is 
{∏k

i=1[Cxi
] : x ∈ [n]k

}
; this basis corresponds to 

{
[Cx] : x ∈ [n]k

}
by 

using the exterior product isomorphism (see [14, Example 8.3.7]).
Assume now {e} � G. The morphism P̂ (n)

1G
: Seg(k, n) → Gr1G

(k, n) has finite fibers 
by [24, Theorem 6.60]. Since it is a surjective morphism between projective varieties, for 
every subvariety X ⊆ Seg(k, n) of dimension d we have that P̂ (n)

1G
(X) is a d-dimensional 

subvariety of Gr1G
(k, n). As we stated in the proof of Theorem 6.2, p1G

(x↓) = (p1G
(x))↓; 

hence P̂ (n)
1G

(Cx↓) = Cx↓G ⊆ P (V ⊗k
1G

). It follows that

P̂
(n)
1G

(
Cx↓ ∩ Seg(k, n)

)
⊆ P̂

(n)
1G

(Cx↓) ∩ Gr1G
(k, n) = Cx↓G ∩ Gr1G

(k, n).

Therefore, by Corollary 6.3 and the fact that P̂ (n)
1G

preserves the dimensions, we obtain 

P̂
(n)
1G

(
Cx↓ ∩ Seg(k, n)

)
= Cx↓G ∩ Gr1G

(k, n). This proves the first statement.
We prove now the second statement. The morphism P̂ (n)

1G
preserves the dimensions 

and then the push-forward

(P̂ (n)
1 )∗ : A∗(Seg(k, n);Q) → A∗(Gr1G

(k, n);Q)

G
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is surjective; so the result follows by the G = {e} case and the fact that P̂ (n)
1G

(Cx↓ ∩
Seg(k, n)) = Cx↓G ∩ Gr1G

(k, n). The inequality is a consequence of Proposition 5.8. �
For the Segre variety Seg(k, n), the strata of the incidence stratification defined above 

are smooth. Hence, the incidence stratification of Seg(k, n) we have realized in this 
section, is a Seshadri stratification, in the sense of [9, Definition 2.1]. Now we provide an 
example of incidence stratification which is not Seshadri.

Example 6.5. Let k = 2, n = 3 and G = S2. By using Theorem 6.2 and Corollary 6.3 for 
x = (3, 3), and the implicitization method, we obtain that the Chow variety Gr1S2

(2, 3) ⊆
P
(
V ⊗2
1G

)
is defined by the equation

x2
13x22 − x12x13x23 + x11x

2
23 + x2

12x33 − 4x11x22x33 = 0.

Notice that this is a Brill’s equation, see [4, Section 5.4].
The variety C(2,3) has dimension ρ((2, 3)) = 3 and C(2,2) is its singular locus, whose 

defining ideal is (x13, x23, x33) + I(Gr1S2
(2, 3)) = (x13, x23, x33), and it has dimension 2. 

Hence C(2,3) is not smooth in codimension one, i.e. the incidence stratification {Cx : x ∈
B1S2

(2, 3)} of Gr1S2
(2, 3) is not a Seshadri stratification.

7. Two conjectures and three problems

It is well-known that Schubert varieties of the Grassmannian are Cohen-Macaulay, 
see [8], [11] and [19] and reference therein. Supported by several computations with 
Macaulay2, we formulate a conjecture about the geometry of the incidence strata of 
Gr1G

(k, n) defined in the previous section.

Conjecture 7.1. Let G ⊆ Sk be a group and x ∈ B1G
(k, n); then Cx is Cohen-Macaulay.

If the techniques based on flat deformations of LS algebras would be available in our 
context (see [8]), the previous conjecture could be related to the following one, which 
has an independent interest.

Conjecture 7.2. Let G ⊆ Sk be a group. Then the order complex of the poset B1G
(k, n)

is shellable.

In Section 4 we defined a poset Bχ(k, n) for one-dimensional characters χ. In this 
case, what we know is that if χ is the alternating character of Sk, Bχ(k, n) is the Bruhat 
order on Grassmannian permutations, hence it has shellable intervals (see [2, Chapter 
2]).

Our conjecture does not extend to other characters, because, for instance, if G =
{e, 4321} ⊆ S4 and χ(4321) = −1, then the order complex of Bχ(4, 3) is not shellable. 
This leads to the following problem.
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Problem 7.3. For which one-dimensional characters χ have we that Bχ(k, n) is graded? 
What is the topology of its intervals?

In Proposition 3.3, we provide a condition ensuring that Im( f̂ ) is Zariski closed; this 
condition is satisfied in the case of trivial characters (Corollary 5.2). Then the following 
problem seems to be natural.

Problem 7.4. For which f ∈ End
(
V ⊗k

)
have we that Im( f̂ ) is Zariski closed, i.e. 

Grf (k, n) = Im( f̂ )?

Along the paper, we define χ-matroids for a one-dimensional character χ of a group 
G ⊆ Sk (see Definition 4.4). We believe that this notion has an independent interest.

Problem 7.5. Find cryptomorphic definitions of χ-matroids and explore their combina-
torial properties.
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