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Learning the intrinsic dynamics of
spatio-temporal processes through
Latent Dynamics Networks

Francesco Regazzoni 1 , Stefano Pagani1, Matteo Salvador1,2, Luca Dede’ 1 &
Alfio Quarteroni1,3

Predicting the evolution of systems with spatio-temporal dynamics in
response to external stimuli is essential for scientific progress. Traditional
equations-based approaches leverage first principles through the numerical
approximation of differential equations, thus demanding extensive compu-
tational resources. In contrast, data-driven approaches leverage deep learning
algorithms to describe system evolution in low-dimensional spaces. We
introduce an architecture, termed Latent Dynamics Network, capable of
uncovering low-dimensional intrinsic dynamics in potentially non-Markovian
systems. Latent Dynamics Networks automatically discover a low-dimensional
manifoldwhile learning the systemdynamics, eliminating the need for training
an auto-encoder and avoiding operations in the high-dimensional space. They
predict the evolution, even in time-extrapolation scenarios, of space-
dependent fields without relying on predetermined grids, thus enabling
weight-sharing across query-points. Lightweight and easy-to-train, Latent
Dynamics Networks demonstrate superior accuracy (normalized error 5 times
smaller) in highly-nonlinear problems with significantly fewer trainable para-
meters (more than 10 times fewer) compared to state-of-the-art methods.

Mathematical models based on differential equations, such as Partial
Differential Equations (PDEs) and Stochastic Differential Equations
(SDEs), can yield quantitative predictions of the evolution of space-
dependent quantities of interest in response to external stimuli. Pivotal
examples are given by fluid dynamics and turbulence1, wave propa-
gation phenomena2, the deformation of solid bodies and biological
tissues3, molecular dynamics4, price evolution of financial assets5,
epidemiology6. However, the development of traditional modeling-
and-simulation approaches carry several mathematical and computa-
tional challenges. Model development requires a deep understanding
of the physical processes, the adoption of physics first principles or
empirical rules, and their translation intomathematical equations. The
values of parameters and of boundary and initial conditions required
to close the model are often unknown, increasing the intrinsic
dimensionality of the solution space. Finally, the computational cost

that accompanies the (possiblymany-query) numerical approximation
of such mathematical models may be prohibitive and hinder their use
in relevant applications7,8.

In recent years, we are witnessing the introduction of a new
paradigm, namely data-driven modeling9–15, as opposed to traditional
physics-based modeling, enabled by recent advances in optimization,
high-performance computing, GPU-based hardware, artificial neural
networks (NNs) and Machine/Deep Learning in general. Data-driven
modeling methods hold promise in overcoming the limitations of
traditional physics-based models, either as a replacement for them or
in synergy with them16,17. On the one hand, data-driven techniques are
employed to learn a model directly from experimental data9,10. On the
other hand, instead, they are used to build a surrogate for a high-
fidelity model – the latter being typically based on the numerical
approximation of systems of differential equations – from a dataset of
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precomputed high-fidelity simulation snapshots14,16. This paradigm is
successful in many-query contexts, that is when the computational
resources spent in the offline phase (generation of the training data
and construction of the data-driven surrogate model) are repaid by a
large number of evaluations of the trained model (online phase), as is
the case of sensitivity analysis, parameter estimation and uncertainty
quantification. Another caseof interest iswhen real-time responses are
needed, like, e.g., in clinical scenarios18.

Several methods have been recently proposed for automatically
learning the dynamics of systems exhibiting spatio-temporal
behavior12,19–23. Typically, these methods discretize the space-
dependent output field into a high-dimensional vector (e.g., by
point-wise evaluation on a grid, or by expansion with respect to a
Finite Element basis or to a Fourier basis) and then compress it by
means of dimensionality reduction techniques, based e.g. either on
proper orthogonal decomposition (POD) of a set of snapshots7,24–26,
or on fully connected auto-encoders, or else on convolutional auto-
encoders19,20,27–30. The underlying assumption is that the dynamics
can be represented by a limited number of state variables, called
latent variables, whose time evolution is learned either through NNs
with recurrent structure (such as RNNs31, LSTMs20,29 or ODE-Nets32),
dynamic mode decomposition27, SINDy12,33, fully-connected NNs
(FCNNs)30, or DeepONets19.

When a high-fidelity model is available, there are also techniques
for building reduced-order models by exploiting knowledge of the
equations34–41. These latter methods are however intrusive, unlike the
formers, which learn a model in a data-driven manner using only a
dataset of input-output pairs. Intrusive techniques are typically based
on projecting the high-fidelity model into a low-dimensional space,
obtained by POD or by greedy algorithms. In the case of nonlinear
models, however, such techniques require special arrangements, such
as the (discrete) empirical interpolation method42–44, but this entails a
difficult trade-off between accuracy and computational cost. Further-
more, many problems feature a slow decay of the Kolmogorov n-
width, an index of the amenability of the solution manifold to be
approximated by an n-dimensional linear subspace45,46. In many cases
of interest, such as advection-dominated problems or high Reynolds
number flow equations, POD-based methods achieve reasonable
accuracy only for high values of n28. This limits their use in practical
applications.

In this paper, we introduce a family of NNs, called Latent
Dynamics Networks (LDNets), that can effectively learn, in a data-
driven manner, the temporal dynamics of space-dependent fields and
predict their evolution for unseen time-dependent input signals and
unseen scalar parameters. LDNets automatically discover a compact
encoding of the system state in terms of (typically a few) latent scalar
variables. Remarkably, the latent representation is learned without the
need of using an auto-encoder to explicitly compress a high-
dimensional discretization of the system state. Furthermore, LDNets
are based on an intrinsically space-dependent reconstruction of the
output fields. Indeed, instead of yielding a discrete representation of
the fields (e.g. point values on a spatial mesh), LDNets are able to
generate output fields defined at any point of space, in a meshless
manner. As a consequence, the (typically high-dimensional) discrete
representation of the output is never explicitly constructed. These
featuresmake the training of LDNets extremely lightweight, and boost
their generalization ability even in thepresenceof few training samples
and even in time-extrapolation regimes, that is for longer time hor-
izons than those seen during training.

We denote by y : Ω× ½0,T � ! Rdy an output field we aim to pre-
dict, whereΩ � Rd is the space domain and T > 0 is the final time. The
evolution of y is driven by the input u : ½0,T � ! Rdu , that is, a set of
time-dependent signals or, more simply, constant parameters. Our
goal is to unveil, starting from data, the laws underlying the

dependence of y on u. We denote by Strain the set of training samples.
For each i 2 Strain, we assume to have available some observations of
ui(τ) and of yi(ξ, τ), sampled at a finite set of points ξ∈Ω and times
τ∈ [0, T], originating, for example, from a collection of sensors.

An important (albeit not exclusive) example is the case when the
dynamics we aim to learn underlies a differential model in the form of

∂tzðx, tÞ=F ðzðx, tÞ,uðtÞÞ in Ω× 0,Tð �
yðx, tÞ=Gðzðx, tÞ,xÞ in Ω× 0,Tð �

zðx, 0Þ= z0ðxÞ in Ω

8><
>:

ð1Þ

where z(x, t) is the state variable, F is a differential operator and G is
the observation operator. Meaningful examples are provided in the
Results section. In particular, LDNets can be also used to generate a
reduced-order model of (1), by passing through data generated via a
numerical approximation of (1), e.g. by the Finite Element method,
called full-order model (FOM).

An LDNet consists of two sub-networks,NN dyn andNN rec, that is
two FCNNs with trainable parameters wdyn and wrec, respectively (see
Fig. 1). The first NN, namelyNN dyn, evolves the dynamics of the latent
variables sðtÞ 2 Rds according to the differential equation

_sðtÞ=NN dynðsðtÞ,uðtÞ;wdynÞ in 0,Tð �: ð2Þ

We remark that, thanks to the hidden nature of s(t), we can assume
without loss of generality the initial condition s(0) =0 (see47 for a
discussion on this topic in a similar framework). The inputs of NN dyn

are the latent states s(t) and the input signal u(t) at the current time t.
Instead, the second NN, NN rec, is used to reconstruct ey, an approx-
imation of the output field y at any time t∈ [0, T] and at any query
point x∈Ω:

eyðx, tÞ=NN recðsðtÞ,x;wrecÞ in Ω× 0,Tð �: ð3Þ

We remark that the reconstruction network NN rec is independently
queried for every point x∈Ω for which the solution is sought. The
input signal u(t) can optionally be given as input to the reconstruction
network NN rec (an example is given in Test Case 2). Normalization
layers are employed to facilitate training. They are defined to guar-
antee that each feature approximately spans the interval [ − 1,1]. We
also normalize the time variable, by dividing the time steps by a
characteristic time scale Δtref, considered as an hyperparameter of the
model. In case an output feature has a long-tailed distribution, we
supplement the normalization layer with a non-trainable nonlinear
layer to compress the tails. See Methods for further details.

Optionally, the architecture of NN dyn and NN rec are adapted to
enforce a-priori knowledge.On the one hand, in casedata are collected
starting from an equilibrium configuration associated with the input
ueq, we define NN dyn as

NN dynðs,u;wdynÞ= gNN dynðs,u;wdynÞ � gNN dynð0,ueq;wdynÞ,

where gNN dyn is a trainable FCNN, thus enforcing by construction the
equilibrium condition. On the other hand, if the value of the output
fields is a priori knownon a subset of the domainΩ, wedefineNN rec as

NN recðs,u,x;wrecÞ= yliftðxÞ+ gNN recðs,u,x;wrecÞψðxÞ,

where gNN rec is a trainable FCNN, ylift is the lifting of the value to be
prescribed, that is an extension to thewhole domain, andψ : Ω ! R is
a mask, that is a smooth function vanishing on the region where the
output is prescribed. See Methods for further details.

The two NNs, NN dyn and NN rec, are simultaneously trained via
empirical risk minimization, that is by minimizing the quadratic
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difference between predictions and observations on the training
dataset. Tikhonov regularization on the NNs’ weights is employed to
mitigate overfitting. Thanks to the simultaneous end-to-end training of
the twoNNs, the latent space is discovered at the same timeas learning
the dynamics of the system. This generalizes the approach presented
in47 for the case of time signals as outputs.

To train the parameters, we employ a two stage strategy,
consisting of a few hundreds epochs of the Adam optimizer48,
followed by the BFGS algorithm49. BFGS is more accurate than
Adam, but more prone to get stuck in local minima, which is why
it is useful to precede it with some Adam iterations, which pro-
vide a good initial guess. To tune hyperparameters, we employ a
Bayesian approach, namely the Tree-structured Parzen
Estimator algorithm50, combined with Asynchronous Successive
Halving scheduler to early terminate bad hyperparameters
configurations51.

Further details about the time discretization of (2), features nor-
malization, parameters training and hyperparameter tuning are pro-
vided in Methods.

Results
We demonstrate the effectiveness of LDNets through several test
cases. First, we consider a linear PDE model to analyze the ability
of LDNets to extract a compact latent representation of models
that are progressively less amenable to reduction. Then, we
consider the time-dependent version of a benchmark problem in
fluid dynamics. Finally, we compare LDNets with state-of-the-art
methods in a challenging task, that is, learning the dynamics of
the Monodomain equation coupled with the Aliev-Panfilov
model52, a highly non-linear excitation-propagation PDE model
used in the field of cardiac electrophysiology modeling, of which
we consider both a one-dimensional and a two-dimensional ver-
sion. For more details on the test cases and on the results, we
refer the interested reader to SI.

We focus on synthetically generated data obtained by
numerical approximation of differential models, thus allowing us
to test LDNet predictions against ground-truth results. We eval-
uate the prediction accuracy of the trained models using two
metrics: the normalized root-mean-square error (NRMSE) and the
Pearson dissimilarity, 1 − ρ, where ρ is the Pearson correlation
coefficient.

Test Case 1: advection-diffusion-reaction equation
Weconsider the linear advection-diffusion-reaction (ADR) equation on
the interval Ω = ( − 1, 1):

∂zðx, tÞ
∂t

� μ1
∂2zðx, tÞ

∂x2 � μ2
∂zðx, tÞ

∂x
+μ3zðx, tÞ

= f ðx, tÞ x 2 ð�1, 1Þ, t 2 0,Tð �:
ð4Þ

This PDE is widely used, e.g., to describe the concentration z(x, t) of a
substance dissolved in a channel53. The constant parameters μ1, μ2 and
μ3 respectively represent diffusion, advection and reaction coeffi-
cients, while the forcing term f(x, t) is a prescribed external source. We
consider an initial condition z(x, 0) = z0(x) and periodic boundary
conditions.

To generate the training dataset, we employ a high-fidelity
FFT-based solver on 101 equally spaced grid points, combined
with an adaptive-time integration scheme for stiff problems54,55.
Then, we subsample the time domain in 100 equally distributed
intervals. We challenge LDNets in predicting the space-time
evolution of the target variable y(x, t) = z(x, t) by considering
three cases of increasing complexity (Test Cases 1a, 1b, 1c), in
which the input u is associated either with the parameters μ1, μ2

and μ3, or with the forcing term f(x, t).

Test Case 1a: finite latent dimension, constant parameters
First, we consider z0ðxÞ= cosðπxÞ and f ≡0. We aim at predicting the
evolution of z(x, t), depending on the constant parameters
u(t) ≡ (μ1, μ2, μ3). Due to the linearity of the equation, the solution is, at
any time t, a sine wave with period 2, and can be thus unambiguously
identified by two scalars (namely, the wave amplitude and phase, or
equivalently, the real and imaginary part of the Fourier transform at
frequency 0.5). In other terms, the intrinsic dimension of the solution
manifold is strictly equal to 2. This provides therefore an ideal testbed
for the capability of LDNets to recognize and learn a low-dimensional
encoding of the system state from data.

The LDNet, trained on 100 samples, achieves an excellent
accuracy when tested on 500 unseen samples. Indeed, the NRMSE
is 1.88 ⋅ 10−5 on the test set, against a training NRMSE of 1.81 ⋅ 10−5.
Pearson dissimilarity is 3.30 ⋅ 10−9 on the test set and 3.00 ⋅ 10−9 on
the training set. The very small differences in the accuracy
metrics between training and test sets provide evidence that the

Fig. 1 | LDNet architecture. The network NN dyn receives the input u(t) and the
latent state s(t) and returns the time derivative of the latent state, thus defining its
dynamics. The network NN rec, instead, is evaluated only when an estimate of the
output field y is sought. More precisely, an approximation of y(x, t) is recovered by

giving as an input toNN rec the latent state at time t and the query space coordinate
x∈Ω. In general, the reconstruction networkNN rec might take as an input u(t) as
well (see e.g. Results, Test Case 2); for simplicity, in the figure we represent the
special case when NN rec does not depend on u(t).
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trained LDNet reproduces the FOM dynamics with great fidelity
and without overfitting, that is with remarkably good general-
ization capabilities.

Test Case 1b: finite latent dimension, time-dependent inputs
We now consider the case of time-dependent inputs, with a forcing
term f ðx, tÞ=u1ðtÞ cosðπx � u2ðtÞÞ, where u(t) = (u1(t),u2(t)) represents
an input signal that can vary in time within a bounded set. Similarly to
Test Case 1a, the solution manifold has dimension 2 (thanks to the
equation being linear and to the forcing term having constant fre-
quency), but learning the dynamics becomes more challenging due to
the presence of time-dependent inputs.

We test the accuracy of LDNets for an increasing number of
training samples, ranging from 25 to 400 (Fig. 2a). Remarkably,
LDNets generalize well to unobserved samples even for a very
small number of training samples, such as 25. As desirable, the
accuracy of predictions improves as the time discretization step
size is reduced and as the number of training samples increases
(Fig. 2b). Indeed, because of the non-intrusive nature of LDNets,

their ability to discover system dynamics is limited by the infor-
mation contained in the training set, as it is common in data-
driven model reduction/discovery methods22,23,47. Still, as the
input space is covered more densely, LDNets are able to leverage
that information as attested by the significantly decreasing
test error.

In this test case, despite the FOM state is discretized using 101
space points, the intrinsic dimension of the solutionmanifold is much
lower, namely 2. In fact, a compact representationof the systemstate is
obtained bymeans of the Fourier transform at frequency 0.5 (denoted
by ẑð0:5Þ) and consists of two scalars (i.e. Reðẑð0:5ÞÞ and Imðẑð0:5ÞÞ).
Therefore, we test whether LDNets can discover an equivalent
encoding of the system state: in Fig. 2e, we plot Reðẑð0:5ÞÞ and
Imðẑð0:5ÞÞ along the testing trajectories in the latent space (s1, s2). In
this figure a well-defined mapping emerges from the two latent states
to the two Fourier coefficients: LDNets are capable of discovering a
compact encoding based on an operator that is equivalent to the
Fourier transform, without being explicitly instructed to do so, that is
in a fully data-driven manner.

Fig. 2 | Results of Test Case 1. a–cTesting accuracy of Test Case 1b, as a function of
the number of training samples (with Δt =0.05 and 2 latent variables), of Δt (with
100 training samples and 2 latent variables), and of the number of latent variables
(with Δt =0.05 and 100 training samples). For each setting we perform 5 training
runs with random weights initialization. Each dot corresponds to a training run,
while the solid line is the geometric mean. d FOM against LDNet predictions on 8
testing samples for Test Case 1b. The abscissa corresponds to space and the

ordinate to time.eMapping fromthe latent space trajectories and the Fourier space
coefficients of the FOM solution for the testing samples of Test Case 1b. f Testing
accuracy of Test Case 1c as a function of the number of latent states and of the
maximum input frequency fmax. g FOM against LDNet predictions on 4 testing
samples for Test Case 1c, obtained by employing 5 latent states, for different
maximum input frequencies (reported above the figure).
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Finally, we train LDNets for increasing number of latent variables,
ranging from 1 to 5 (Fig. 2c). As expected, the prediction accuracy
significantly dropswhen going from 1 to 2 latent variables, that iswhen
the intrinsic solutionmanifold dimension is reached.Withmore than 2
latent variables, it reaches a plateau, showing only a slight decrease
due to increased model capacity, accompanied by a larger variance in
the output.

Test Case 1c: infinite latent dimension
Finally, we consider a forcing term f ðx, tÞ=u1ðtÞ cosð2πu3ðtÞx � u2ðtÞÞ,
where u(t) = (u1(t), u2(t), u3(t)) is the time-dependent input signal. The
forcing frequency u3(t) varies within an interval ½0:25, fmax�. Hence, the
solution manifold of (4) has a potentially infinite dimension, being z
the superimposition of a continuum of frequencies. Still, the results
show that LDNets are able to discover effective low-dimensional
encodings of the state.

First, we set fmax =0:5 and we train LDNets for increasing
number of latent states, from 2 to 7. Remarkably, as the number of
latent states increases, LDNets discover more effective encod-
ings, that reflect in an increasing prediction accuracy (Fig. 2f, blue
line). Unlike Test Case 1b, where the intrinsic size of the solution
manifold is 2 and this leads to a stagnation of the error, here the
error decreases significantly even for higher numbers of latent
variables. Still, for higher numbers of latent variables, we have a
slowdown in the decreasing trend of the error, due to two factors:
on the one hand, the finite size (100 samples) of the training set
(see in this regard Fig. 2a), on the other hand, the optimizer that
may not find the global minimum of the loss function. By
increasing fmax to 1 and 2, the FOM state gets less prone to be
represented by a compact encoding, since the spectrum of the
solution is wider. Prediction accuracy is indeed lower than in the
case fmax =0:5, but it improves greatly by increasing the number
of latent variables.

To further assess the crucial role of including latent states in the
model, we analyze the results obtained by removing the latent vari-
ables, namely by considering an ODE-Net fed by the input signal and
the query point, and tracking the evolution of the output at the con-
sidered point (see SI for more details). We train this architecture by
considering Test Case 1c, with fmax =0:5. To ensure a fair comparison,
we employ the same dataset and the same hyperparameter tuning
algorithm used for LDNets. The results (see Fig. 3) reveal that without
latent states the prediction accuracy of the model is significantly
reduced.Moreover, the greater thenumber of latent states, the greater
the ability of the model to capture finer and finer features of the
dynamics. We conclude that the presence of a latent state is a crucial
architectural choice for LDNets. The latent variables allow nonlocal
information to propagate across the computational domain Ω. With
the architecture considered in this comparison, instead, the solution
evolves in each point unaware of the state of surrounding points,
despite the point coordinate is provided to the ODE-Net. Conversely,
LDNets are able to learn systems whose dynamics is determined by
spatial correlations. Notable examples are provided in the next
sections.

Test Case 2: unsteady Navier–Stokes
The 2D lid-driven cavity is a well-known benchmark problem in fluid
dynamics56, whichmayexhibit awide range offlowpatterns and vortex
structures when increasing the Reynolds number. We challenge
LDNets in learning an unsteady version of the lid-driven cavity pro-
blem, where the velocity prescribed on the lid Γtop (the top portion of
the boundary) is a time-dependent input u(t) (see Fig. 4a). During the
simulations, the Reynolds number varies over time by reaching peaks
of nearly 1500. This problem is challenging also because of dis-
continuities in the velocity field at the two top corners. The goal here is
to predict the velocity field (that is, we set y(x, t) = v(x, t)) for each

prescribed u(t):

ρ ∂v
∂t +ρ v � ∇ð Þv� μΔv+∇p=0 x 2 Ω, t 2 0,Tð �,

∇ � v=0 x 2 Ω, t 2 0,Tð �,
v=uðtÞex x 2 Γtop, t 2 0,Tð �,
v=0 x 2 ∂Ω n Γtop, t 2 0,Tð �,
v=0 x 2 Ω, t =0,

ð5Þ

where the dependence of the velocity v and pressure p on space and
time is understood. As shown in57, a simple quadratic loss function is
not adequate for capturing small vortex structures, because of their
small impact, compared to medium- and large-scale structures, on the
loss function. Therefore, we use the following goal-oriented metric,
where we denote by v and v̂ the reference and predicted velocities,
respectively:

Eðv, v̂Þ= k v� v̂k2
v2norm

+ γ
v

ϵ+ k v k �
v̂

ϵ + k v̂ k

����
����
2

ð6Þ

with hyperparameters γ and ϵ≪ 1, and where vnorm is a reference
velocitymagnitude. The second termof themetric (6) allows tomatch
the flow direction, even in the regions of small flow magnitude.

We generate training data through a FEM-based solver of (5), on a
100 × 100 triangular grid, accounting for nearly 91K degrees of free-
dom. To train LDNets, we take 100 evenly distributed snapshots in
time, andwe randomly take 200points in space for each time step.We
train three LDNets, by increasing thenumber of latent states from1 to 5
and 10. The accuracy in the flowprediction for unseen inputs increases
with the number of latent states (Fig. 4b and c). Furthermore, we
challenge the trained LDNets inpredicting theflowevolution evenona
longer time horizon than that considered in the training dataset
(specifically, twice as long). Remarkably, we observe a negligible pro-
pagation of the approximation error along the prolonged time frame,
making the trained LDNets reliable also for time-extrapolation (Fig. 4b
and d).

Test Case 3: 1D electrophysiology model
We consider a nonlinear system of partial and ordinary differential
equations describing the propagation of the electrical potential z(x, t)
in an excitable tissue, namely theMonodomain equation coupled with
the Aliev-Panfilov (AP) model52,58. The AP model envisages a recovery
variable w(x, t) that tracks the refractoriness of the tissue by mod-
ulating the repolarization phase. The model, supplemented with
homogeneous Neumann boundary conditions (encoding electrical
insulation) and zero initial conditions for both the variables, reads

∂z
∂t � D ∂2z

∂x2 =Kzð1� zÞðz � αÞ � zw+ Istimðx, tÞ x 2 ð0, LÞ, t 2 0,Tð �,
∂w
∂t = γ + μ1w

μ2 + z

� �
�w� Kzðz � b� 1Þð Þ x 2 ð0, LÞ, t 2 0,Tð �:

ð7Þ

The excitation-propagation process is triggered by an external
stimulus Istimðx, tÞ, applied at two stimulation points, respectively
located at x = 1/4L and x = 3/4L, and consisting of square impulses, to
mimic the action of a (natural of artificial) pacemaker. The AP model
solution features the fast-slow dynamics of a cardiac action potential
(steep depolarization fronts followed by slow repolarization of the
electrical potential to its resting value) and the wavefront propagation
in space generating collisions of waves from different stimulation
points. These features make this problem a challenging test case for
comparing the proposed method against popular approaches to
learning space-time dynamics of complex systems.

We compare LDNets with state-of-the-art approaches in which
dimensionality reduction is achieved by training an auto-encoder (AE)
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on a discrete representation of the output z( ⋅ , t). Once trained, the
encoder is employed to compute the trajectories of the latent states
throughout the training set, and the dynamics in the latent space is
learned either through an ODE-Net32 or an LSTM59. We denote the
resulting models by AE/ODE and AE/LSTM, respectively. Then, we
further train the NN that tracks the dynamics of the latent states
simultaneouslywith the decoder, that is in anend-to-end (e2e) fashion,
and we denote the resulting models by AE/ODE-e2e and AE/LSTM-e2e,
respectively. Furthermore, we benchmark LDNets against a classical
method of model-order reduction of PDE models, namely the POD-
DEIM method60,61. These methods are described in detail in the SI.

We challenge LDNets and the above-mentioned methods in the
task of predicting the space-time dynamics of the target value y(x,
t) = z(x,t), given the time series of impulses in the two stimulation
points. To ensure a fair comparison, we rely on an automatic tuning
algorithm to select the optimal hyperparameter values for the differ-
ent methods, setting an upper bound of ds≤12 on the latent space
dimension. The reported results are obtained with the optimal
hyperparameter configuration selected by the tuning algorithm,
independently for each method.

The results of this comparison are reported in Figs. 5–6 and
Table 1. Due to the presence of traveling fronts, this problem features a
slowdecayof theKolmogorovn-width7, that reflects in apoor accuracy
of the electrical potential reconstruction given by the POD-DEIM
method when 12 modes are used. As shown in the SI (see also Sup-
plementaryMovies 21–30),more than 24modes are needed to achieve
acceptable results, but this is accompanied by an increase of the
computational cost in the prediction phase (see Table 1). A better
accuracy is achieved by both auto-encoder-based methods and by
LDNets, thanks to their ability to express a nonlinear relationship
between the latent states and the solution. Still, LDNet outperforms
the other methods, with a testing NRMSE equal to 7⋅10−3. The testing
NRMSE of auto-encoder-based methods is nearly 5 times larger than
with LDNets or more. Remarkably, our method achieves better accu-
racywith significantly fewer trainable parameters: auto-encoder-based
methods require more than tenfold the number of parameters. This
testifies to the good architectural design of LDNets.

Furthermore, we observe that the POD-DEIM method results
in a very limited speed-up with respect to the other methods
considered. This limitation is intertwined with the necessity, due

Fig. 3 | Test Case 1c: impact of latent states.We compare, for a sample belonging
to the test dataset, the results obtained by using LDNets with increasing number of
latent states (2, 3, 5, 7) and by using an ODE-Net fed by the input signal and the
query point (denoted by (x,u(t))-ODE-Net). The left-most column reports the FOM
solution (the abscissa denotes time, the ordinate denotes space). For eachmethod

we report:a the space-time solution;b the space-time errorwith respect to the FOM
solution; c the time-evolution of the latent variables; d–f three snapshots of the
space-dependent output field at t = 2, 5 and 7, in which we compare the predicted
solution (red solid line) with the FOM solution (black dashed line).
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to numerical stability reasons, for the POD-DEIM model to be
solved on the same temporal discretization as the high-fidelity
model. This requirement represents a considerable constraint
compared to the other methods outlined in this paper. As a
matter of fact, as shown in Table 1, the computational cost for
each sample with the FOM is about 37 s, the POD-DEIM method
with 60 modes allows it to be reduced to about 8 s, when the
other methods all lead to times less than 0.02 s. To this amount of
time must be added the time required to evaluate the solution
given the latent state variables, which, however, depends on the
number of time steps and points at which this is required. For
auto-encoder methods, the points at which this evaluation occurs
are pre-established, taking 8.9 ⋅ 10−7 s for each timestep. Con-
versely, LDNets, thanks to their mesh-less nature, offer the flex-
ibility to evaluate at arbitrary locations, requiring 1.9 ⋅ 10−7 s for
each point in time and space. In this test case, should we want to

evaluate the solution at all time steps and training points, this
would correspond to about 4.5 ⋅ 10−4 s for auto-encoder-based
methods and 9.5 ⋅ 10−3 s for LDNets. That said, we observe that,
with the exception of POD/DEIM, the inference times associated
with the other methods are virtually negligible compared to the
time required to evaluate the Full Order Model (FOM).

Concerning the offline time, associated with model construction,
the training cost of LDNets (22,887 s) is lower than that of auto-
encoder-based methods, except for AE/LSTM (11,009 s), which, how-
ever, yields a poor accuracy in the predictions. In fact, the accuracy
achievedbyAE/LSTM ismatchedby LDNets after just 1354 sof training.
On the other hand, the accuracy levels of AE/ODE and AE/ODE-e2e are
attained by LDNet after 6510 and 9090 s, respectively. The POD-DEIM
method, as expected, is characterized by a less heavy offline phase,
which, however, does not lead to a speed-up comparable to the other
methods in evaluation.

Fig. 4 | TestCase 2. aComputational domain and equations of the FOM. b Error
metrics (NRMSE and Pearson dissimilarity) of LDNets for different number of
latent variables (ds = 1, 5 and 10). The training dataset consists of 80 simu-
lations with T = 20, while the test dataset comprises 200 simulations with
T = 40. The blue lines refer to the test error obtained in the interval t∈ [0, 20]
(that is the same interval seen during training), while orange lines refer to the

test error in the interval t∈ [0, 40]. c A snapshot of the velocity field within
the interval t∈ [0, 20] (interpolation interval) of a testing sample. d A snap-
shot of the velocity field within the interval t∈ [20, 40] (extrapolation
interval) of a testing sample. For an animated version of this figure, see
Supplementary Movies 1–10.
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Test Case 4: 2D electrophysiology model with reentrant activity
We consider the induction and sustainment of reentrant activity based
on a two-dimensional version of the electrophysiological model (7).
The experiment, inspired by62, involves a first rightward propagating
wavefront, followed by a second circular stimulus Istimðx, tÞ applied at
the center of the square domain. Depending on the radius of the sti-
mulus and on the stimulation time, three possible scenarios arise:
1. tissue refractoriness: the solution does not present a second

activation because the circular stimulus is delivered while the
tissue is still in a refractory state;

2. focal activation: the solution presents a single second focal acti-
vation originated by delivering the circular stimulus after the so-
called vulnerable window;

3. reentrant drivers: the solution presents two self-sustained
reentrant drivers that continuously reactivate the tissue.

Differently from Test Case 3, where we considered a one-
dimensional wave propagation, here more complex spatial patterns
with bifurcating phenomena are possible, as described above. We
therefore want to test the ability of the proposed method in learning
the spatio-temporal dynamics of this electrophysiological model,

upon variations of the stimulation radius and timing. Moreover, we
further compare LDNets against state-of-the-art methods. For the sake
of brevity, we only examine the three methods that have proven to
perform best in Test Case 3, namely LDNet, AE/ODE and AE/ODE-e2e.
Again, we select hyperparameters, independently for each algorithm,
by means of the tuning algorithm described above, so as to ensure a
fair comparison. The selected hyperparameters and further details on
this test case are reported in the SI.

The comparison results are shown in Figs. 7–8 and Table 2. The
results show that in this test case, which, compared to Test Case 3, has
the added complexity of an extra spatial dimension, the advantage of
LDNets over the considered methods is even more marked. As shown
in Fig. 8, auto-encoder-based methods exhibit diverse artifacts in the
solution, and, in particular, they fall short in accurately representing
scenarios where tissue refractoriness does not result in signal propa-
gation. The LDNet, on the other hand, produces predictions that are
almost indistinguishable from those of the FOM, and is able to well
capture the three different behaviors presented by the system con-
sidered in this test case. As a matter of fact, the LDNet achieves an
RMSE on the test set that ismore than 5.5 times smaller with respect to
the other methods, despite using a significantly more parsimonious

Fig. 5 | Test Case 3: methods comparison.We compare the results obtained with
differentmethods for a sample belonging to the test dataset. The left-most column
reports the FOM solution of the AP model (the abscissa denotes time, the ordinate
denotes space). For eachmethodwe report: a the space-time solution; b the space-
time error with respect to the FOM solution; c the time-evolution of the 12 latent

variables; d–f three snapshots of the space-dependent output field at t = 250, 300
and 350, in which we compare the predicted solution (red solid line) with the FOM
solution (black dashed line). For an animated version of this figure, see Supple-
mentary Movies 11–20.

Article https://doi.org/10.1038/s41467-024-45323-x

Nature Communications |         (2024) 15:1834 8



number of parameters (2.2 thousand, compared with more than
1 million for auto-encoder-based methods). The trained model infer-
ence time (online time) is comparable among the three methods
considered. The time required to reconstruct the solution from the
latent states for auto-encoder-based methods is 1.1 ⋅ 10−4 s per time
instant, while for LDNet it is 3.9 ⋅ 10−6 s per time and space point. In all
cases, the methods considered lead to a remarkable speedup with
respect to the time required by the FOM (807 s per simulation). As for
the offline stage, the time required to complete training with the three
models is similar (nearly between 75,000 and 95,000 s). The LDNets,
however, achieve higher levels of accuracy in less time. In fact, the
accuracy achieved with AE/ODE is reached by LDNet after only 3569 s,
while that of AE/ODE-e2e after 4530 s.

Discussion
We have introduced LDNets, a class of NNs that learn in a data-driven
manner the evolution of systems exhibiting spatio-temporal dynamics
in response to external input signals.

An LDNet is trained in a supervised way from observations of
input-output pairs, which can either come from experimental mea-
surements or be synthetically generated through the numerical
approximation ofmathematicalmodelsofwhich one seeks a surrogate
or reduced-order model. This latter case is the one considered in this
manuscript to demonstrate the capabilities of the proposed method.

LDNets provide a paradigm-shift from state-of-the-art methods
based on dimensionality reduction (e.g., exploiting POD or auto-
encoders) of a high-dimensional discretization of the system state.
Specifically, LDNets automatically discover a compact representation
of the system state, without necessitating the explicit construction of
an encoder. This enables the training algorithm to select a compact
representation of the state that is functional not only in reconstructing
the space-dependent field for each time instant, but also in predicting
its dynamics; an auto-encoder, conversely, when trained, extracts
features on a purely statistical basis, being agnostic of the importance
of each feature in determining the evolution of the system. The latent
states allow indeed the trained model to capture non-Markovian

effects by tracking the system history, and to propagate nonlocal
information across the domain.

Unlike standard approaches that reconstruct a high-dimensional
discretization of the output, corresponding e.g. to evaluations at the
vertices of a computational mesh, our approach is in this sense
meshless. The reconstruction NN is indeed queried for each point in
space independently. This design principle gives LDNets several ben-
efits. First, the meshless nature of LDNets combined with the auto-
matic discovery of the latent space allows them to operate in a low-
dimensional space without ever going through a high-dimensional
discretization, as auto-encoder-basedmethods do. This makes LDNets
very lightweight structures, easy to train, and not prone to overfitting.
The LDNet architecture enables the sharing of the trainable para-
meters needed to evaluate the solution at different points (that is, the
same weights are employed regardless of the query point). The low
overfitting of LDNets is thus not surprising, as weight-sharing is often
the key of good generalization properties of many architectures, such
as CNNs and RNNs49. Second, it provides a continuous representation
of the output, and, thus, allows for additional and possibly physics-
informed terms to be introduced into the loss function63, opening up
countless possibilities for extending the purely black-box method
proposed in this paper to grey-box approaches. Third, the loss func-
tion can be defined by stochastically varying the points in space at
which the error is evaluated (see Test Case 2 and 4), thus lightening the
computational burden associated with training. Note that this is not
possiblewhen themodel returns the entire batch of observations. This
aspect also opens up to multiple developments, such as stochastic,
minibatch-based training algorithms, or even adaptive refinements of
the evaluation points, by sampling more densely where the error is
larger.

The time-dynamics of LDNets is based on a recurrent architecture
that is consistent, by construction, with the arrow of time. This dif-
ferentiates LDNets from other approaches in which time is seen as a
parameter30, or approaches, based e.g. on DeepONets, that take as
input the entire time-history of u(t) with a fixed length19,64. The latter
approaches do not easily allow for predictions over time frames longer

Fig. 6 | Results of Test Case 3. a Boxplots of the distribution of the testing (blue)
and training (light blue) errors obtained with each method. The boxes show the
quartiles while the whiskers extend to show the rest of the distribution. The red
diamonds represent the average error on each dataset. b Number of trainable

parameters of each method. The bin encoder is present only for auto-encoder-
basedmethods, but not for LDNets. The bin dynamics refers to the NN that evolves
the latent states. The POD-DEIM method is not included, as it does not envisage a
training stage.
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than those used during training, or allow for time-extrapolation only in
periodic o quasi-periodic problems65. LDNets, on the other hand, allow
predictions for arbitrarily long times. We remark that the reliability of
time-extrapolation is constrained by the characteristics of the problem
at hand and the available training data. For example, if the system is
characterized by a divergent behavior such that, as time progresses,
the state enters regions increasingly distant from the initial condition,
then the reliability of the predictions is not guaranteed in time-
extrapolation regimes. When the system state remains bounded,
however, the predictions of LDNets are significantly accurate even in
time-extrapolation regimes, as showcased in Test Case 2.

We notice that the trajectories of the latent states s(t) obtained
with LDNets are smoother than those obtained with auto-encoder-

based methods (see Fig. 5). This difference can be understood by
considering how the latent state is constructed within auto-encoder-
based methods. First, these methods learn a compact encoding of the
high-dimensional output, thus defining a low-dimensional set of state
variables, and then they attempt to find a law ruling their time evolu-
tion. However, while training the auto-encoder, the latent space is
constructed with the sole purpose of allowing the output to be accu-
rately reconstructed, without it necessarily being significant to the
systemdynamics. This issue is partiallymitigated by a subsequent end-
to-end training phase, which partially redefines the state variables in a
way that is functional not only to reconstruct the solution, but also to
capture the dynamics of the system. LDNets, instead, thanks to the
simultaneous training of the dynamics NN and the reconstruction NN,

Fig. 7 | Results of Test Case 4. a: Boxplots of the distribution of the testing
(blue) and training (light blue) errors obtained with different methods. The
boxes show the quartiles while the whiskers extend to show the rest of the
distribution. The red diamonds represent the average error on each dataset.

b: Number of trainable parameters of each method. The bin encoder is pre-
sent only for auto-encoder-based methods, but not for LDNets. The bin
dynamics refers to the NN that evolves the latent states. The inset shows an
enlargement relative to LDNet.

Table 1 | Test Case 3: metrics of methods comparison

NRMSE Number of trainable parameters Wall time (s)

training testing NN enc NN dec,NN rec RNN dyn total offline online

FOM 37.321

POD-DEIM (ds = 12) 4.05 ⋅ 10−1 3.92 ⋅ 10−1 797 5.839

POD-DEIM (ds = 24) 3.59 ⋅ 10−1 3.47 ⋅ 10−1 799 7.720

POD-DEIM (ds = 36) 1.71 ⋅ 10−1 1.62 ⋅ 10−1 861 7.442

POD-DEIM (ds = 48) 7.48 ⋅ 10−2 7.57 ⋅ 10−2 1124 7.976

POD-DEIM (ds = 60) 2.97 ⋅ 10−2 2.90 ⋅ 10−2 1242 8.408

AE/LSTM 1.90 ⋅ 10−1 1.98 ⋅ 10−1 8562 8651 720 17,933 11,009 0.005

AE/LSTM-e2e 2.05 ⋅ 10−2 5.87 ⋅ 10−2 8562 8651 720 17,933 33,851 0.005

AE/ODE 2.09 ⋅ 10−2 4.58 ⋅ 10−2 8562 8651 5484 22,697 23,982 0.017

AE/ODE-e2e 1.78 ⋅ 10−2 3.37 ⋅ 10−2 8562 8651 5484 22,697 97,821 0.017

LDNet 7.09 ⋅ 10−3 7.37 ⋅ 10−3 0 1480 228 1708 22,887 0.014

Trainingand test errorsobtainedwith thedifferentmethods, number of trainable parameters, andwall time associatedwith theofflinephase andonlinephase.Computational timesareobtainedona
Intel Xeon Processor E5-2640 2.4GHz. The offline phase refers to the construction of themodel: for POD/DEIM, this involves building the basis for the solutionmanifold and for DEIM, while for the
othermethods it is associatedwith theNN training. The online phase, instead, involves predicting the evolution of the system for a new sample once themodel has been constructed. This timeframe
is referred to a single sample and excludes the evaluation of the output field, given its dependence on the number of considered time and space points. Further details are provided in themain text.
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do not incur in this issue, as the training algorithm seeks the latent
space that simultaneously pursue the twofold role of tracking the
system dynamics and reconstructing the output at each time.

LDNets represent, as proved by the results of this work, an
innovative tool capable of learning spatio-temporal dynamics with

great accuracy and by using a remarkably small number of trainable
parameters. They are able to discover, simultaneously with the sys-
tem dynamics, compact representations of the system state, as
shown in Test Case 1 where the Fourier transform of a sinusoidal
signal is automatically discovered. Once trained, LDNets provide

Fig. 8 | Test Case 4: solution comparison. Snapshots of the solutionobtainedwith
the different methods (reported on the left) at different time instants (reported on
top). The figure refers to three samples belonging to the test set, corresponding to

three different behaviors of the system: a tissue refractoriness; b focal activation;
c reentrant drivers. For an animated version of this figure, see Supplementary
Movie 31.
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predictions for unseen inputs with negligible computational effort
(order of milliseconds for the considered Test Cases). LDNets pro-
vide a flexible and powerful tool for data-driven emulators that is
open to a wide range of variations in the definition of the loss
function (like, e.g., including physics-informed terms), in the training
strategies, and, finally, in the NN architectures. The comparison with
state-of-the-art methods on a challenging problem, such as predict-
ing the excitation-propagation pattern of a biological tissue in
response to external stimuli, highlights the full potential of LDNets,
which outperform the accuracy of existingmethods while still using a
significantly lighter architecture.

A limitation of our work is that it does not consider the case of
space-dependent inputs andof variable initial conditions, whichwill be
the subject of future works; still, we remark that the class of problems
that can be tackled with the proposed method encompass a broad
range of real-life applications. Future developments will also focus on
the topic of interpretability of the latent space, which is not covered in
this work.

Methods
Notation
We denote input signals as u: [0, T]→U, taking values in the set
U � Rdu , and we denote by U � fu : ½0,T � ! Ug the set of admissible
input signals. Then, we denote by y:Ω × [0, T]→ Y the output (space-
time dependent) field, with values in Y � Rdy . For each time t∈ [0, T],
the output field is defined within a space domain Ω � Rd . Finally, we
denote by Y � fy : Ω× ½0,T � ! Y g the space of possible outputs. We
assume that the map u↦ y is well defined (i.e. the output y is unam-
biguously determined by the input u) and it is consistent with the
arrow of time (i.e. y(x, t) depends on u(s)∣s∈[0, t] but not on u(s)∣s∈(t, T)).

A relevant case is represented by a map u↦ y defined as the
composition of an observation operator and the solutionmap u↦ z of
a partial differential equation (PDE) in the form of (1), where
z 2 Z � fz : Ω× ½0,T � ! Zg, with Z � Rdz , is the state variable (typi-
cally, Z is a Sobolev space). Here, z0:Ω→ Z is the initial state, F is a
differential operator, and G is the observation operator. We remark
that, in this paper, neither knowledge nor even the existence of a
model such as (1) is required: the training of an LDNet only requires
input-output pairs.

Remark 1. The case when the output field y is determined not only by
some time-dependent inputs u, but also by some inputs that are time-
independent (typically called parameters) is a special case of the one
considered here. Still, to keep the notation compact, we use the same
symbol u to collectively denote time-dependent inputs (i.e. signals)
and time-constant inputs (i.e. parameters).

Remark 2. The full-ordermodel (FOM)of (1) is an autonomous system.
The non-autonomous case can be recovered as a special case by set-
ting u(t) ⋅ ek = t for some k, where ek is the kth element of the canonical
base of Rdu .

Training data
The training data are collected by considering a finite number of rea-
lizations of the map u↦ y, each one referred to as a training sample.
For each training sample i 2 Strain, we collect the following discrete
observations:

• ui(τ), for τ 2 Si;
• yi(ξ, τ), for τ 2 T i, ξ 2 Pi

τ ;

where Si � ½0,T �, T i � ½0,T � and Pi
τ � Ω are discrete sets of observa-

tions. We remark that the observation times and points can be either
shared among samples (i.e. Si � S , T i � T and Pi

τ � P for any i and
for any τ) or be different from one sample to another.

Our goal is to learn themapu↦ y, that is to infer the output y(x, t)
corresponding to inputs u(t) outside the training set.

LDNets
An LDNet is made of two fully-connected neural networks (FCNNs),
namely the dynamics networkNN dyn, with trainable parameterswdyn,
and the reconstructionnetworkNN rec, with trainable parameterswrec.
The LDNet defines a map from a time-dependent input signal u 2 U to
a space-time dependent field ey 2 Y through the solution of the fol-
lowing system of ordinary differential equations (ODEs):

_sðtÞ=NN dynðsðtÞ,uðtÞ;wdynÞ in 0,Tð �
sð0Þ=0

eyðx, tÞ=NN recðsðtÞ,uðtÞ,x;wrecÞ for x 2 Ω and t 2 ½0,T �,

8><
>:

ð8Þ

where sðtÞ 2 Rds is the vector of latent states. The number of latent
states ds is set by the user, and should be regarded as an hyperpara-
meter. The latent variables s(t) allow to keep track of the state of the
system. These, however, are not defined a priori (unlike methods
based on dimensionality reduction techniques, see SI), but the latent
space is discovered during the training process. This is similar to47 for
the case of time signals as outputs and to the Recurrent Neural
Operator (RNO)22,23, used to learn microscopic internal variables cap-
able of tracking the history dependence in multiscale materials.
However, while in the RNO the latent variables correspond to a local
material memory, LDNets have a single set of latent variables for the
entire domain. In this work, we always consider hyperbolic tangent
(tanh) activation functions.

Remark 3. The formulation (8) is the most general one. A special case
is the one where NN rec does not depend on u(t). Whether or not to
include the latter dependency inNN rec is an architectural choice that
shall be regarded as a hyperparameter, possibly subject to selection
via cross-validation. Inmany cases, however, the choice can be driven
by the physics of the underlying process. Specifically, we will leave an
explicit dependency whenever the output y(x,t) depends on the
input u(t) instantaneously. The case where the dependency is
neglected is the one that wemostly consider in our test cases, expect
for Test Case 2, in which we allow NN rec to depend on u(t) in a
direct way.

Table 2 | Test Case 4: metrics of methods comparison

NRMSE Number of trainable parameters Wall time (s)

training testing NN enc NN dec,NN rec RNN dyn total offline online

FOM 807.210

AE/ODE 6.96 ⋅ 10−2 7.83 ⋅ 10−2 594,889 597,574 1269 1193,732 75,315 0.191

AE/ODE-e2e 3.97 ⋅ 10−2 4.23 ⋅ 10−2 594,889 597,574 1269 1193,732 95,479 0.188

LDNet 7.31 ⋅ 10−3 7.57 ⋅ 10−3 0 2276 513 2789 90,349 0.139

Training and test errors obtainedwith the differentmethods, number of trainable parameters, andwall time associatedwith the offline phase and online phase. See caption of Fig. 1 formore details.
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In practice, the ODE system (8) is discretized by a suitable
numerical method. In this work, we employ a Forward Euler scheme
with a uniform time step size Δt, but other schemes could be con-
sidered as well (e.g. time-adaptive Runge-Kutta schemes53). In case the
observation times Si do not coincide with the discrete times kΔt, for
k = 1,…, we perform a re-sampling of u through a piecewise linear
interpolation. Similarly, to evaluate the predicted output ey in corre-
spondence of the observation times τ 2 T i, we interpolate the discrete
solution of s(t) at the time instants τ.

We denote with the symbol RNN dyn (to evoke its recurrent nat-
ure) the operator mapping the time series of inputs fuiðτÞgτ2Si asso-
ciated with a given sample i to the latent state si evolution. More
precisely, we have, for any sample i and at any time t∈ [0, T]:

siðtÞ=RNN dynðfuiðτÞgτ2Si , t;wdynÞ

With this notation, the LDNet output eyiðx, tÞ is the result of the com-
position of NN rec with RNN dyn:

eyiðx, tÞ=NN recðRNN dynðfuiðτÞgτ2Si , t;wdynÞ,uiðtÞ,x;wrecÞ: ð9Þ

To train the LDNet, we define the loss function:

where the symbol denotes the average operator (that is the sum
over a set divided by the cardinality of the set), and where eyiðξ , τÞ are
theoutputs of the LDNet associatedwith the trainable parameterswdyn

andwrec as defined in (9). The discrepancymetric E is typically defined
as

Eðey,yÞ= ey� y
�� ��2
y2norm

ð10Þ

with ynorm being a normalization factor defined from case to case and
where ∥ ⋅ ∥ denotes the euclidean norm. The first term of L represents
therefore the normalized mean square error between observations
and LDNet predictions. Moreover, to mitigate overfitting, suitable
regularization terms on the NN weights could be introduced, with
weighting factorsαdyn andαrec. In thiswork,wedefineR as themeanof
the squares of the NN weights (yielding the so-called L2-regularization
or Tikhonov regularization).

Remark4. Thequadraticdiscrepancymetric (10),while being themost
natural choice, is not the unique one. For instance, it can be replaced
by goal-oriented metrics (an example is given in Test Case 2).

Training an LDNet consists in employing suitable optimization
methods to approximate the solution of the following non-convex
minimization problem:

ðw*
dyn,w

*
recÞ= argmin

wdyn,wrec

Lðwdyn,wrecÞ:

The two NNs are simultaneously trained.

Normalization layers
In order to facilitate training, we normalize the inputs and the outputs
of the NNs. Specifically:

• We normalize the signals u, the output fields y and the space
variables x, so that each entry approximately spans the interval
[ − 1, 1]. We normalize each entry independently of the others.
More precisely we normalize each scalar variable α through the

affine transformation ~α = ðα � α0Þ=αw where α0 is a reference
value and αw is a referencewidth. To define α0 and αw, we follow
two different strategies.

1. If the variable takes values in a bounded interval ½αmin,αmax�, we
set

α0 = ðαmin +αmaxÞ=2,
αw = ðαmax � αminÞ=2:

2. If the variable is sampled from a distribution with unbounded
support (e.g., when α is normally distributed), we set α0 equal to
the samplemean and αw equal to three times the sample standard
deviation.

• We also normalize the time variable, by dividing the time steps
by a characteristic time scale Δtref. The normalization constant
Δtref impacts the output of NN dyn, that is dimensionally pro-
portional to the inverse of time. Since finding a good value for
Δtref is in general not straightforward, we typically consider it as
a hyperparameter, tuned through a suitable automatic algorithm
(described below).

• Wedonot normalize the latent states s, since their distribution is
not known before training. Indeed, when hyperparameters are
well tuned, the training algorithm tends to generate models that
produce latent states with approximately normalized values.

In practice, normalization canbe achieved either bymodifying the
training data accordingly, or by embedding the two NNs between two
normalization layers (namely, one input layer and one output layer)
each. Formally, the second approach consists in defining NN dyn and
NN rec as follows, where we gNN dyn and gNN rec are two FCNNs:

NN dynðs,u;wdynÞ= Δt�1
ref

gNN dynðs, ðu� u0Þ � uw;wdynÞ
NN recðs,u,x;wrecÞ= y0 +yw 	 gNN recðs, ðu� u0Þ � uw, ðx� x0Þ � xw;wrecÞ

where⊙ and⊘denote the Hadamard (i.e. element-wise) product and
division, respectively.

In case the distribution of a given output field features long tails,
we introduce a nonlinear layer aimed at compressing them. The layer
applies the transformation y↦ (y3 + βy)/(1 + β), where the hyperpara-
meter β >0 tunes the compression strength.

Imposing a-priori physical knowledge
The architecture of LDNets reflects certain features of the physics they
are meant to capture. With respect to the space variable, the repre-
sentation is continuous, unlike methods that reconstruct a discretized
solution thus losing the correspondence between neighboring points.
With respect to the time variable, the dynamics is driven by a systemof
differential equations which makes LDNets consistent with the arrow
of time (i.e., with the causality principle47). These features make it
natural to introduce a-priori physical knowledge in the construction
and training of LDNets. In this regard, we distinguish between weak
imposition and strong imposition.

Weak imposition consists of introducing physics-informed
terms63 into the loss function, aimed at promoting solutions that
satisfy certain requirements (such as irrotationality of a velocity field,
to make an example). In this paper we do not show examples in this
regard, but simply highlight that the continuous representation of the
outputfield used by LDNetsmakes the introduction of such terms very
straightforward through the use of automatic differentiation.

Strong imposition, on the other hand, consists of modifying the
architecture of the LDNet components in order to obtain models that
automatically satisfy certain properties66,67. Inwhat follows,weprovide
two examples of how this can be applied to ensure both temporal
(acting on NN dyn) and spatial (acting on NN rec) properties.
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Equilibrium configuration imposition. In many real-life applications,
data are collected starting from an equilibrium configuration. This
entails that the initial state should be an equilibrium for the latent
dynamics as well, in virtue of the interpretation of s as a compact
encoding of the full-order system state. Therefore, we define the right-
hand side of the latent state evolution equation as follows, where
gNN dyn is a trainable FCNN and where ueq∈U is the input at equili-
brium:

NN dynðs,u;wdynÞ= gNN dynðs,u;wdynÞ � gNN dynð0,ueq;wdynÞ

As a consequence, the initial state s =0 of the model is an equilibrium
for any choice of the trainable parameters wdyn.

Prescribed solution in subsets of the domain (e.g. Dirichlet
boundary conditions). The evolution of the output field is often
unknown except on a subset of the domain Ω, such as for example a
portion ΓD of its boundary ∂Ω. This happens, e.g., when there is a FOM
that features a Dirichlet boundary condition like

yðx, tÞ= yDðxÞ on ΓD: ð11Þ

In this case, the solution is constrained to satisfy (11) by defining
NN rec as

NN recðs,u,x;wrecÞ=yliftðxÞ+ gNN recðs,u,x;wrecÞψðxÞ,

where gNN rec is a trainable FCNN, ylift is the lifting of the boundary
datum, that is an extension of yD to the whole domain Ω, and ψ : Ω !
R is a mask, that is a smooth function such that ψ(x) = 0 if and only if
x∈ ΓD. See

57 for further details and68 for a general approach to con-
struct the mask ψ based on approximate distance functions.

Training algorithm
To train the LDNet, we employ a two stage strategy. First, we perform a
limited number of epochs (typically, a few hundreds) with the Adam
optimizer48, starting with a learning rate of 10−2. Then, we switch to a
second-order accurate optimizer, namely BFGS49.

To evaluate the gradient of the loss function with respect to the
trainable parameters, we combine back-propagation-through-time for
RNN dyn with back-propagation for NN rec

49. To initialize the para-
meters of the two NNs, we employ a Glorot uniform strategy for
weights and zero values for the biases49.

Training ODE-Nets often presents challenges and typically
involves an adaptive time integration to deal with stiff dynamics,
which makes the computational graph potentially very deep and the
computational cost often prohibitive69–72. In this work, instead, we
rely on a fixed time step size to integrate the latent variables. Thanks
to the fact that the latent variables are not fixed a priori, but are
defined at training stage, the training algorithm tends to define latent
variables with non-stiff dynamics, whose evolution is well captured
through a fixed time step size, regardless of the stiffness of full-order
model employed to generate the data. An evidence for this is pro-
vided by Test Case 3: the ground-truth model (Aliev-Panfilov, Eq. (7))
features, as it is well known, very stiff dynamics58, thus imposing the
use of a timestep of 5 ⋅ 10−6 s, whereas the LDNet succeeds in fitting
the results with great accuracy while using a much larger timestep
(equal to 1 ⋅ 10−3 s). This behavior is observed in our preliminary
work73 as well.

Hyperparameter tuning algorithms
The hyperparameters of the proposed method are the number of
layers and neurons ofNN dyn andNN rec, the L2 regularization weights
αdyn and αrec, the normalization time constant Δtref and, whenever
necessary in the different test cases, the number of latent states ds. To

automatically tune them, we employ the Tree-structured Parzen Esti-
mator (TPE) Bayesian algorithm50,74. The hyperparameters search
space is defined as an hypercube, with a log-uniform sampling. We
perform K-fold cross validation while monitoring the value of the
discrepancy metric in Eq. (10). We also employ the Asynchronous
Successive Halving (ASHA) scheduler to early terminate hyperpara-
meters configurations that are either bad or not promising51,75.

We simultaneously train multiple NNs associated to different
hyperparameters settings on a supercomputer endowed with several
CPUs via Message Passing Interface (MPI). Each NN exploits Open
Multi-Processing (OpenMP) for Hyper-Threading, which allows for a
speed-up in the computationally-intensive tensor operations involved
during the training phase. For the implementation, we rely on the Ray
Python distributed framework76.

Data availability
The data necessary to reproduce the results presented here are pub-
licly available on Zenodo in the repository77, available at the URL
https://doi.org/10.5281/zenodo.10436489.

Code availability
The software implementation of the proposed methodology and the
code supporting the results presented here arepublicly available in the
LDNets repository at https://github.com/FrancescoRegazzoni/
LDNets.
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