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Abstract
In this paper we discuss some notions of analyticity in associative algebras with unit.
We also recall some basic tool in algebraic analysis and we use them to study the
properties of analytic functions in two algebras of dimension four that played a relevant
role in some work of the Italian school, but that have never been fully investigated.

1 Introduction

The algebraic treatment of systems of linear partial differential equationswith constant
coefficients that was introduced mostly by Palamodov in [13], and to a lesser degree
by Ehrenpreis in [8], remained for many years an important theoretical tool that found
relatively few applications to the study of specific systems. In a series of papers that
began as joint work with Carlos Berenstein (see [1]), the authors showed how to use
Palamodov’s ideas to describe and develop a rather powerful theory of functions that
satisfy the Cauchy–Fueter system in several variables. The theory of these functions,
usually referred to as Cauchy–Fueter regular functions, is a very appropriate analog,
in the quaternionic domain, of the theory of several complex variables. The reader
interested in these developments can find a full description of this theory in [3], where
other systems of differential equations of interest are examined as well.
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What made these advances possible was the (at the time relatively recent) develop-
ment of the theory of Gröbner bases, as well as the introduction of computer packages
such as CoCoA, that allowed explicit calculations of the otherwise unwieldy modules
that naturally appear when studying the syzygies of the systems under scrutiny. Thus,
a new powerful tool became available for the algebraic study of systems of linear par-
tial differential equations with constant coefficients, and the authors analyzed many
important situations from this novel point of view, including the Dirac system, [3], as
well as holomorphic functions on bicomplex numbers, [5,6].

Quite recently, while translatingMichele Sce’sworks in hypercomplex analysis, see
[7], we realized that the case of quaternions, or of bicomplex numbers, were only the
tip of the iceberg and that it was possible to consider other generalizations by looking
at large classes of high dimensional algebras, in which the notions of “holomorphy” or
“analyticity” could be understood in a deeper sense than we had originally imagined.
From a purely historical point of view, it is worth noting that, at the turn of last
century,mathematicianswere interested in generalizing the theory of complex analysis
to higher dimension. In so doing some researchers took the direction of studying
several complex variables, while others went on to the study of analyticity in higher
dimensional algebras, a direction that was intensely studied for several decades.
In this second case, there were two fundamental questions. The first was to classify
all the algebras of a given dimension, a task to which the Italian school of algebraists
dedicated significant efforts (see e.g. [21]), and the second was to understand how to
generalize the notion of holomorphy from the complex case to the case of other alge-
bras. As it turns out, there were essentially two different ways to generalize analyticity.
On one hand, one could define the notion of total differentiability that expresses (as
we will see later) the fact that a function admits derivatives in the traditional sense of
limit of the difference quotient with increment taken in the algebra. On the other hand,
one could define a notion of monogenicity, that represents the best generalization of
holomorphicity in the sense of the Cauchy–Riemann system.

The Italian school that culminated in Sce’s works in the fifties, clearly understood
these different approaches, and described what happened in a large class of algebras,
many of which remain of great interest today.

In this paper we recall these two notions, and we discuss not only what they mean
in the very well known cases of complex and quaternionic variables, but we use them
to rethink the notion of holomorphicity in the cases (already studied at least in some
of their aspects) of bicomplex or hyperbolic variables. In addition to identifying what
the different notions of holomorphicity mean in these cases, we use the algebraic
machinery that we mentioned above, to study some less evident properties of these
functions. In our final section we tackle two algebras that played a relevant role in
the work of the Italian school, but that have never been fully investigated. They are
known, in accordance with the classification provided by Scorza in [21], as algebras
LXXIX and LXXXI, and we offer a treatment of holomorphicity in that case.
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2 Totally Derivable Functions andMonogenic Functions

The notion of totally derivable functions for functions defined in a algebra of hyper-
complex numbers was introduced in the mid-thirties by N. Spampinato, see [26],
generalizing what G. Scorza Dragoni had done for bicomplex numbers in [22], and
what L. Sobrero had done in the case of bidual numbers, see [25]. In the sequel, we
denote byA a real or complex algebra, associative, with unit, over the basis u1, . . . , un
and we set u = (u1, . . . , un).

The following definition is well known:

Definition 2.1 The algebras A ′, A ′′ are the first and second regular representation
of A if their elements are, respectively, order n matrices X ′, X ′′ defined, for any
x = x1u1 + · · · + xnun ∈ A , by the relations

xu = uX ′ (1)

ux = u(X ′′)T . (2)

To understand the meaning of the definition, consider a function y : A → A and
denote by x = (x1, . . . , xn), y = (y1, . . . , yn) the coordinates of x , y, respectively,

with respect to the given basis, i.e. x = xuT , y = yuT . The definition of total
derivability is as follows:

Definition 2.2 If y is derivable, that is, all the components of y are derivable with
respect to the components of x , we say that y is right (resp. left) totally derivable if the
Jacobian dy/dx belongs to A ′ (resp. the transpose of the jacobian belongs to A

′′
).

Remark 2.3 The notion of right or left total derivability is designed on the notion of
right or left differentiability, in the standard sense. To see this, consider a function y
with values in A . Using the notation above, we can write:

y(x) = y1(x)u1 + · · · + yn(x)un,

where x = x1u1 +· · ·+ xnun . Note that xi , yi , i = 1, . . . , n are real (or complex) and
x varies in an open set ofA of when we identifyA with Rn (or Cn). Let the functions
y� admit derivatives with respect to xi and set

dx = dx1u1 + · · · + dxnun, dy = dy1u1 + · · · + dynun,

with

dy� = ∂ y�
∂x1

dx1 + · · · + ∂ y�
∂xn

dxn, � = 1, . . . , n.

Then the function y is left differentiable or totally derivable on the left if there exists
a function z(x) such that

dy = dx z(x),
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y is right differentiable or totally derivable on the right if there exists a function z(x)
such that

dy = z(x) dx, (3)

for every dx . By setting z(x) = z1(x)u1 + · · · + zn(x)un and

uiu j =
n∑

�=1

γi j�u�,

then (3) becomes

n∑

�=1

dy�u� =
n∑

i, j,�=1

γi j�zi dx j u�,

so that

dy� =
n∑

i, j=1

γi j�zi dx j , � = 1, . . . , n.

Since dy� = ∑n
j=1

∂ y�
∂x j

dx j and dxi are independent we get

n∑

i=1

γi j�zi = ∂ y�
∂x j

, j, � = 1, . . . , n. (4)

We deduce that the total derivability on the right (3) is equivalent to (4) and this latter
expression is equivalent to the fact that the Jacobian matrix (∂ y�/∂x j ) belongs to A′.

As recalled by Sce in [15], see also [7], the notion of total derivability does not
depend on the choice of the basis. Indeed, at least when the elements of a basis of the
algebra can be chosen to be invertible, this notion corresponds to the derivability of
the function y with respect to the hypercomplex variable x , as shown in the next result
(probably well known but for which we could not find any reference.

Proposition 2.4 Let A be an algebra with unit, and let {u1, . . . , un} be a basis for
A consisting of invertible elements. A function y : A → A of class C1 admits left
(right) derivative with respect to x at a point if and only if it is left (right) totally
derivable in that point.

Proof We give the proof in the case of the right derivative since the other case is
similar. The function y admits right derivative if and only if

lim
h→0

(y(x + h) − y(x))h−1

exists and is finite (the limit is independent of how h approaches zero, though obviously
we have to make sure that h avoids zero-divisors). Let us assume for simplicity that
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the basis of A is such that u1 = 1, something that is always possible by a change of
basis, and let us write the multiplication rules of the basis elements in the form

uiu j =
n∑

k=1

γ k
i j uk .

We can choose the increment such that h = tui , t ∈ R, i = 1, . . . , n. Then, by
definition,

lim
h→0

(y(x + h) − y(x))h−1 = ∂ y

∂xi
u−1
i , i = 1, . . . , n. (5)

If the derivative exists, all these value coincide and taking for i = 1 at the right side

of (5) we have
∂ y

∂x1
and we deduce

∂ y

∂x1
ui = ∂ y

∂xi
.

Let us write y = ∑n
�=1 y�u�, so that

n∑

k=1

∂ yk
∂x1

ukui =
n∑

�=1

∂ y�
∂xi

u�

and

n∑

k,�=1

∂ yk
∂x1

γ �
ki u� =

n∑

�=1

∂ y�
∂xi

u�

from which we deduce
∂ y�
∂xi

=
n∑

k=1

γ �
ki

∂ yk
∂x1

. (6)

We now consider the jacobian matrix J =
[
∂ y�
∂xi

]
. Equation (6) shows that y is right

derivable if and only if the Jacobian matrix belongs to the first representation, in fact
it is of the form

∂ y�
∂xi

=
n∑

k=1

γ �
ki zk,

see [7], Remark 2.1. ��
Remark 2.5 The previous result shows that the notion of total right or left derivability
and of right or left derivability in the algebra, namely the existence of the limit of a
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right or left difference quotient, coincide. When an algebra is commutative there is
no need to consider separately the right and the left case. In the particular case of the
complex numbers, total derivable functions coincide with holomorphic functions. In
the quaternionic case, total derivability coincides with the existence of quaternionic
derivability and in this case the function is affine, namely it is of the form f (q) =
qa + b,a, b ∈ H as proved by Meilikhson [12] in 1948, and then repeated also by
Sudbery in [27].

Besides the notion of derivability, the Italian School considered also the notion of
monogenicity which is inspired by the Cauchy–Riemann conditions for holomorphic
functions of a complex variables. This notion in the case of a more general algebra is
as follows:

Definition 2.6 Let y = y(x) be a function of a variable x ∈ A with values in A .
Let u1, . . . , un be a basis of A and let us set u = (u1, . . . , un), y = ∑n

i=1 yiui ,
x = ∑n

i=1 xi ui . The function y = y(x) is said to be right monogenic if its Jacobian

J =
[
∂ yk
∂xi

]
satisfies

u JuT = 0

or left monogenic if

u J T uT = 0.

Remark 2.7 We point out that the two conditions of right and left monogenicity do not
coincide in a noncommutative algebra. In fact (u JuT )T �= u J T uT , in general.

Remark 2.8 In the complex case, monogenicity coincides with holomorphicity in the
classical sense. For quaternionic functions, the notion identifies left or right Cauchy–
Fueter regular functions, i.e. functions in the kernel of the operator

∂

∂q̄
= ∂

∂x0
+ i

∂

∂x1
+ j

∂

∂x2
+ k

∂

∂x3

where we denoted a quaternion by q = x0 + i x1 + j x2 + kx3.
In the bicomplex case the notion of monogenicity amounts to the well known holo-
morphicity condition given by Scorza Dragoni and later on used by Bayley Price
and it coincides with total derivability. In the case of hyperbolic numbers this notion
coincides with the notion of holomorphicity given in [24].

Remark 2.9 The conditions of total derivability are expressed by n2 − n differential
conditions on the n components yi (x) of a function y(x), while the conditions ofmono-
genicity are n. Total derivability is basis independent, while monogenicity depends on
the chosen basis. In [16], Sce studies the relations between the two notions, according
to the type of algebra. An algebra with unit is called solenoidal if in this algebra func-
tions right totally derivable are right monogenic, it is called bisolenoidal if and only if
the right totally derivable are left monogenic and in this latter case, the functions are
also right monogenic.
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3 Algebraic Analysis

In this section we recall only the basic notions and the techniques that we need in the
sequel. For more details we refer the reader to [3].
By R we denote the ring of polynomials in n variables and complex coefficients,
i.e. R = C[z1, . . . , zn]. We can regard R as the ring of symbols of linear constant
coefficients partial differential operators if we formally replace z = (z1, . . . , zn) with
D = (∂/∂x1, . . . , ∂/∂xn). This formal substitution of derivatives with polynomials
and viceversa basically corresponds to taking the Fourier transform. This is allowed
only if the function space in which we work satisfies suitable conditions and these
conditions will be satisfied in the spaces where we will work.

Then, we consider an r1 × r0 matrix P = [Pi j ] of elements in R. In the cases of
interest for us, such a matrix is the symbol of a matrix of differential operators P(D),
and if S is a space of generalized functions, P(D) defines a natural map

P(D) : Sr0 → Sr1 ,

whose kernel is a set of functions of interest from the analysis point of view.
In reality, the more general setting in which one should work is the one of sheaves

of generalized functions, to which we will apply the algebraic theory, in fact if S is a
sheaf, for suitable choices of S we have that P(D) is a sheaf homomorphism whose
kernel (again a sheaf) is denoted by S P .

Usually we work with the sheaf A of real analytic functions, the sheaf B of hyper-
functions, the sheafD′ of Schwartz distributions, the sheaf E of infinitely differentiable
functions, and also the sheaf O of holomorphic functions.

A first important algebraic object we are interested in is the R-module

M = Rr0/PT Rr1

where PT denotes the transpose of P . This module is of crucial importance, due to
the following fundamental theorem which is basically the ground for all of algebraic
analysis:

Theorem 3.1 Let S be a sheaf of generalized functions. Then there is a sheaf isomor-
phism

S P ∼= Hom(M,S).

This result explains why M is the central object in algebraic analysis, in fact it
shows that the study of solutions of a general system of a linear, constant coefficients,
partial differential equations can be reduced to the study of all the morphisms from M
to S.

Another way to realize that themoduleM is the algebraic object which incorporates
all the interesting information on the solutions of the system of differential equations
P(D) f = 0, is via tools from commutative algebra. In fact, by the Hilbert’s syzygy
theorem, we can always write a finite resolution of the module M :
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Theorem 3.2 There exists an integer m ≤ n and a finite exact resolution of the module
M with free modules as follows:

0 −→ Rrm
PT
m−1−→ Rrm−1 −→ · · · PT

1−→ Rr1 PT−→ Rr0 −→ M −→ 0. (7)

Themapswhich appear in this resolutions are called the syzygies ofM . The importance
of the result is the fact that one can find a finite resolution, which has a natural bound
on its length. It is important to note, however, that such a resolution is not unique.

By taking the dual of this finite free resolution through the Hom functor (roughly
speaking, one takes the duals of the spaces involved, the transpose of the matrices
representing the operators, and reverse arrows) we obtain:

0 −→ Rr0 P−→ Rr1 P1−→ · · · −→ Rrm−1
Pm−1−→ Rrm −→ 0 (8)

The complex (8) is not necessarily exact, so that one can consider its cohomology (the
measure of how inexact the complex is) by taking the quotients of kernels and images.
The quotients one obtains are actually R-modules:

Definition 3.3 The Ext–modules of M are defined as:

Ext j (M, R) = H j (M, R) = ker(Pj )

im(Pj−1)
.

Remark 3.4 Themap in the finite free resolution in Hilbert’s theorem, i.e. the syzygies,
are not uniquely defined, however Ext–modules are uniquely determined by M and
R, and thus are invariant algebraic objects which contain some analytic information.
For example, we have that for every open set U , the following sequence is exact:

0 −→ S P (U ) −→ Sr0(U ) −→ Sr1(U ) −→ · · · −→ Srm−1(U ) −→ Srm (U ) −→ 0

The map Pr+1(D) constructed from the maps appearing in the resolution of an
operator P(D) has an analytical interpretation: it gives the compatibility conditions
on the datum g of the non homogeneous system Pr (D) f = g that assure the solvability
of the system on a convex open set. More in general, we have:

Theorem 3.5 Let U be a convex open (or convex compact) set inRn (orCn). Then the
sequence

0 −→ S P (U ) −→ S(U )r0
P(D)−→ S(U )r1

P1(D)−→ . . .

. . .
Pm−1(D)−→ S(U )rm −→ 0

is exact.

Another analytic result which can be immediately deduced from the algebraic study
of the matrix P is the validity of an Hartogs’ phenomenon for the functions in S P .
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Theorem 3.6 Let P = [Pi j ] be a r1 × r0 matrix of polynomials in n variables with
complex coefficients, 1 ≤ r0 ≤ r1, r1 ≥ 2, such that coker(P) is torsion free. Let
f = ( f1, . . . , fr0) be a vector of hyperfunctions on R

n such that

r0∑

j=1

Pi j (D) f j = 0, i = 1, . . . , r1,

on R
n\K, for K a compact convex subset in R

n. Then there exists a vector f ∗ =
( f ∗

1 , . . . , f ∗
r0) of hyperfunctions on R

n such that

f ∗
j = f j on R

n\K , j = 1, . . . , r0

and

r0∑

j=1

Pi j (D) f ∗
j = 0, i = 1, . . . , r1,

on all of Rn.

The condition on the cokernel that appears in this last result is equivalent to the
vanishing of the Ext-modules Exti (M, R) for i = 0, 1. This condition was further
studied in [1] and amounts to the following simple algebraic characterization:

Proposition 3.7 If P ismaximal rank, coker(P) is torsion free if and only if the greatest
common divisors of the minors of P of maximal order is 1.

More in general, we have the following result that gives an analytic meaning to the
algebraic study of minimal free resolutions and their properties:

Theorem 3.8 Let K be a compact set in R
n, let P(D) be the matrix associated to a

system such that Ext j (M, R) = 0 for j = 0, . . . ,m − 1, where m is the length of a
minimal free resolution, and let Q(D) = PT

m−1(D). Suppose that either

dim H j
K (Rn,BP ) < +∞, j = 1, . . . ,m

or

dim Hm− j (K ,AQ) ≤ ℵ0, j = 0, 1, . . . ,m − 1.

Then H j
K (Rn,BP ) and Hm− j (K ,AQ) are respectively aFS-space and anDFS-space,

and, for j = 0, 1, . . . ,m, they are strong dual to each other.

4 Some Algebras of Order Four

The classification of algebras of order four, on any field, has been provided by Scorza
(we note that he classified algebras of order 2 and 3 in [19] and [20], respectively).
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He showed that they are 128, up to isomorphisms. In this rather general framework,
only some of these algebras were studied from the point of view of function theory.
The two most studied algebras of order four are the algebra of quaternions and the
one of bicomplex numbers. In this section we will study in some more detail the case
of two algebras that Sce considered of particular interest, namely algebra LXXIX and
algebra LXXXI. We will then conclude with a remark on the bicomplex case that may
lead to further interesting investigations.

4.1 Algebra LXXIX

Generally speaking one can consider cyclic algebras of order 2n whose basis elements
1, j, j2, . . . , j2n−1 satisfy the relation (1+ j2)n = 0; by setting ω = 1+ j2, one can
further express j through the imaginary unit i , ω and their products and powers. In
this general case, these algebras are direct product of the algebra of complex numbers
and algebras with basis 1, ω, . . . , ωn−1. In this subsection we consider the case n = 2
which corresponds to the case of the algebra LXXIX in Scorza’s classification, see
[21]:

Definition 4.1 The algebra LXXIX is the associative real algebra, that we shall denote
by A79, generated by 1, j, j2, j3 satisfying (1 + j2)2 = 0. Equivalently, it is the
associative real algebra generated by 1, i, ω, iω such that i2 = −1,ω2 = 0, iω−ωi =
0.

Remark 4.2 This algebrawas studied byKetchum [9] and Sobrero [25]. It is interesting
to note that Sobrero defined this algebra starting by some differential equations in
elasticity. He also pointed out that it was Levi Civita who showed him the second

way to describe the algebra, by setting ω = 1 + j2 and i = 1

2
(3 j + j3), which is

convenient to make computations in the algebra.
We observe that, in general, one may consider the change of basis given by relations

of the form i = 1

2
(3 j+ j3),ω = a(1+ j2)+b( j+ j3), iω = −b(1+ j2)+a(1+ j3)

with a, b arbitrary real numbers (non both zero).

Given two elements in A79, they can be added considering j and its powers as
monomials, and multiplied by using the multiplication rules for j : let x = x1 + x2 j +
x3 j2 + x4 j3, x ′ = x ′

1 + x ′
2 j + x ′

3 j
2 + x ′

4 j
3

x + x ′ = x = (x1 + x ′
1) + (x2 + x ′

2) j + (x3 + x ′
3) j

2 + (x4 + x ′
4) j

3

x x ′ = (x1x
′
1 − x4x

′
2 − x3x

′
3 − x2x

′
4 + 2x4x

′
4) + (x2x

′
1 + x1x

′
2 − x4x

′
3 − x3x

′
4) j

+ (x3x
′
1 + x2x

′
2 − 2x4x

′
2 + x1x

′
3 − 2x3x

′
3 − 2x2x

′
4 + 3x4x

′
4) j

2

+ (x4x
′
1 + x3x

′
2 + x2x

′
3 − 2x4x

′
3 + x1x

′
4 − 2x3x

′
4) j

3

With some standard computations, one can easily show that for anygiven x the equation
xx ′ = 1 is uniquely solvable if and only if the determinant of the matrix of the
coefficients which is equal to ((x0 − x2)2 + (x1 − x3)2)2 is nonzero. We will define
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the modulus ‖ · ‖ of an element x1 + x2 j + x3 j2 + x4 j3 by

‖x‖ = ((x0 − x2)
2 + (x1 − x3)

2)1/2.

It is evident that the algebra A79 contains zero divisors.
In order to deal with the product, it is more convenient to use the Levi Civita basis,
so that an element x can be written as x = ξ1 + ξ2i + ξ3ω + ξ4iω = z1 + z2ω and if
x ′ = ξ ′

1 + ξ ′
2i + ξ ′

3ω + ξ ′
4iω = z′1 + z′2ω, with obvious meaning of the symbols, we

have

x + x ′ = (z1 + z′1) + (z2 + z′2)ω
x x ′ = (z1z

′
1) + (z1z

′
2 + z2z

′
1)ω.

It is interesting to note that

xn = zn1 + nzn−1
1 z2ω

so that z2 can only appear at most at degree 1 in any power of the variable x . With this
basis, the modulus of x rewrites as

‖x‖ = |z1|

where |z1| denotes the modulus of the complex number z1. The product x x ′ is zero if
and only if

z1z
′
1 = 0 z1z

′
2 + z2z

′
1 = 0

which implies either one of the two elements is zero or both have modulus equal to
zero. This is a complete characterization of the zero divisors: they are all the elements
of the algebra with zero modulus, i.e. they are elements of the form z2ω, z2 �= 0.

To discuss the notion of total derivability we follow Sobrero’s paper [25] and we
go back to the basis 1, j, j2, j3.

Proposition 4.3 The condition of total derivability in the algebra A79 is expressed
in matrix form as P(D)y = 0 where y, x are identified with the vectors y =



   26 Page 12 of 22 I. Sabadini, D. C. Struppa

(y1, y2, y3, y4)T x = (x1, x2, x3, x4)T and

P(D) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂x2 0 0 ∂x1
∂x1 −∂x2 0 0
0 ∂x1 −∂x2 −2∂x1
0 0 ∂x1 −∂x2

∂x3 0 0 ∂x2
∂x2 −∂x3 0 0
0 ∂x2 −∂x3 −2∂x2
0 0 ∂x2 −∂x3

∂x4 0 0 ∂x3
∂x3 −∂x4 0 0
0 ∂x3 −∂x4 −2∂x3
0 0 ∂x3 −∂x4

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (9)

where we write ∂xi instead of ∂/∂xi .

Proof We can write the first representation of the algebra by looking for a matrix X ′
with real entries such that xu = uX ′. Easy computations show that

X ′ =

⎡

⎢⎢⎣

x −v −w −y + 2v
y x −v −w

w y − 2v x − 2w −2y + 3v
v w y − 2v x − 2w

⎤

⎥⎥⎦ .

By imposing that the Jacobian has the form X ′, we get the system P(D)y = 0 as
stated. ��
Remark 4.4 Wenote that Sobrero did not use in his paper the notion of total derivability.
He computed the derivatives along the directions of the elements of the basis, and he
observed that having this four derivatives one can construct the derivatives along any
direction not associated with a zero divisor. The elements j , j2, j3 are invertible, in
fact from the relation j4 + 2 j2 + 1 = 0 we immediately have

j(− j3 − 2 j) = 1

j2(− j2 − 2) = 1

which shows that j , j2 admit inverse. Finally, a simple calculation gives j3(3 j +
2 j3) = 1 and so also j3 is invertible, as stated. As we observed, by virtue of Proposi-
tion 2.4, this is equivalent to total derivability.

Functions of the form y = y1 + y3 j2 + y4 j3 are totally derivable (or monogenic,
in Sobrero’s terminology) if and only if they satisfy the elastic strain equations. As
a general remark, it is interesting to point out that Sobrero became interested in A79
because of some specific equations that arise naturally in physics. This is not a newphe-
nomenon. Holomorphicity derives its interest from the fact that the Cauchy–Riemann
operator factorizes the Laplacian, and as such the theory of holomorphic functions
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has an intimate connection with the theory of harmonic functions and potential the-
ory. Similarly, the study of analyticity in the hyperbolic setting is connected to the
solution of the D’Alambert operator and the wave equation. And as Sce pointed out
in [18], under suitable conditions one can construct an algebra where holomorphicity
identifies the solutions to a specific system of differential equations.

Remark 4.5 The matrix P(D) can be written as three 4 × 4 blocks all of the same
form but we respect to different variables. In the computations below we will need
the symbol of this matrix which we write up to a factor −i in terms of the variables
x1, . . . , x4 as

P =
⎡

⎣
P(x1, x2)
P(x2, x3)
P(x3, x4)

⎤

⎦ where P(a, b) =

⎡

⎢⎢⎣

b 0 0 −a
a −b 0 0
0 a −b −2a
0 0 a −b

⎤

⎥⎥⎦

We then have:

Proposition 4.6 The module M = R4/PT R12 admits a finite free resolution of the
form

0 −→ R4(−3)
PT
2−→ R12(−2)

PT
1−→ R12(−1)

PT−→ R4 −→ M −→ 0,

where

P1 =
⎡

⎣
0 Q(x3, x4) −Q(x2, x3)

Q(x3, x4) 0 −Q(x1, x2)
Q(x2, x3) −Q(x1, x2) 0

⎤

⎦ Q(a, b) =

⎡

⎢⎢⎣

a b 0 0
−b a −b −a
0 0 a −b

−b 0 0 a

⎤

⎥⎥⎦ ,

P2 = [
R(x1, x2) S(x2, x3) R(x3, x4)

]
,

where

R(a, b) =

⎡

⎢⎢⎣

−a −b 0 −b
b −a b 0
0 0 −a b
b 0 0 −a

⎤

⎥⎥⎦ , S(a, b) =

⎡

⎢⎢⎣

a b 0 a
−b a −b 0
0 0 a −b

−b 0 0 a

⎤

⎥⎥⎦ ,

moreover depth(M) = 1 = dim(M).

Proof The minimal free resolution as well as the depth can be computed using any
software to perform computations in commutative algebra. The explicit form of the
syzygies can be checked by direct computations. ��
Remark 4.7 We note that the vanishing of Ext1(M, R) = 0 is easily proved since the
greatest common divisor of the minors of order 4 of the matrix P is 1. It is interesting
to note that, although a minimal free resolution is linear, it is not self-dual. In fact,
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not only the matrices PT and PT
2 are different, fact that depends on the above explicit

construction, but it may be checked that the module generated by the rows of PT and
of PT

2 are different.

Corollary 4.8 Let U be an open convex set in R
4. The system P(D)y = g has a

solution in (S(U ))12 if and only if g ∈ (S(U ))12 satisfies P1(D)g = 0. Writing
g = [g

1
g
2
g
3
]T with g

i
= [gi1, gi2, gi3, gi4]T this is equivalent to

Q(∂x3 , ∂x4)g2 − Q(∂x2 , ∂x3)g3 = 0

Q(∂x3, ∂x4)g1 − Q(∂x1, ∂x2)g3 = 0

Q(∂x2 , ∂x3)g1 − Q(∂x1, ∂x2)g2 = 0.

(10)

The system
Q(∂x3, ∂x4)g2 − Q(∂x2 , ∂x3)g3 = h1

Q(∂x3, ∂x4)g1 − Q(∂x1, ∂x2)g3 = h2

Q(∂x2 , ∂x3)g1 − Q(∂x1, ∂x2)g2 = h2

(11)

has a solution in S4(U ) if and only if

R(∂x1 , ∂x2)h1 + Q(∂x2 , ∂x3)h2 + R(∂x3 , ∂x4)h3 = 0.

Remark 4.9 As we pointed out, the solutions of the system associated with P(D) can
be interpreted in the framework of the study of an elastic plate. From the physical point
of view, the compatibility conditions expressed by P2(D)g = 0 could be interpreted
as conservation laws, see [4], in the case g represents for instance external forces
applied to the plate.

Theorem 3.8 in this framework gives:

Proposition 4.10 Let K be a compact set in R
4, and let S P be the sheaf of solu-

tions of P(D)y = 0 where P(D) is as in (9). Assume that dim H0
K (R4,BP ) is finite

dimensional. Then H0
K (R4,BP ) and H3(K ,APT

2 ) are are strong dual to each other.

Proof ByProposition 4.6 dim(M) = 1which implies the vanishingof theExt-modules
Exti (M, R) for i = 0, 1, 2. By Theorem 3.8 we obtain the assertion. ��

By Remark 4.7 since the system is not self-dual, the maps P and PT
2 are different, so

the sheaf APT
2 does not coincide with BP .

In the algebra A79 we can also consider the condition of monogenicity. To write
it is real coordinates, we have a very simple matrix representation if we use the basis
1, i, ω, iω. Let us consider ξ ∈ A79, ξ = ξ1+iξ2+ωξ3+iωξ4 and a functionη = η(ξ).
As before we identify ξ , η in A79 with ξ = [ξ1, ξ2, ξ3, ξ4]T , η = [η1, η2, η2, η4]T in
R
4, respectively and we have:
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Definition 4.11 A function y : U ⊆ A79 → A79 of class C1 is monogenic if and only
if P(D)η = 0 in U where

P(D) =

⎡

⎢⎢⎣

∂ξ1 −∂ξ2 0 0
∂ξ2 ∂ξ1 0 0
∂ξ3 −∂ξ4 ∂ξ1 −∂ξ2

∂ξ4 ∂ξ3 ∂ξ2 ∂ξ1

⎤

⎥⎥⎦ , (12)

where we write ∂ξi instead of ∂/∂ξi .

Remark 4.12 It is clear that this system is not elliptic sinceA79 contains zero divisors,
see [18] or the translation [7], Chapter 3, and that the variety of zero divisors is in
fact the characteristic variety. In fact, ξ = z + ωw with z, w ∈ C and we already
observed that the elements of the form ωw are all and the only zero divisors. Indeed,
it is apparent that the system expressing monogenicity in A79 is parabolic as it easily
seen from the fact that its characteristic equation det(P) = ξ21 + ξ22 depends on the
two variables ξ1, ξ2 only.

Proposition 4.13 A function y : U ⊆ A79 → A79 of class C2 is monogenic if and
only if

y(x) = y(z, w) = F(z, w) + G(z, w)ω,

where F(z, w) is holomorphic in z, G(z, w) is polyanalytic of order 2 in z and

∂w̄F(z, w) + ∂z̄G(z, w) = 0. (13)

Proof Functions monogenic in A79 can be written as sum of two complex valued
functions F,G of the form F(z, w) + ωG(z, w) where F is holomorphic in z and
F,G satisfy ∂w̄F + ∂z̄G = 0. We deduce that ∂z̄(∂w̄)F + ∂2z̄ G = 0 so that ∂2z̄ G = 0
and G is a polyanalytic function of order 2 in z. ��
Example 4.14 As an example of function monogenic in A79 we consider the case in
which F , G can be expanded in power series of z:

F(z, w) =
+∞∑

n=0

znα0n(w), G(z, w) =
+∞∑

n=0

znα1n(w) + z̄
+∞∑

n=0

znα1n(w)

where, in order to satisfy (13), the functions α�n(z), � = 0, 2 must satisfy

α2n(w) = −1

2
∂w̄α0n(w).

If additionallywe suppose that bothα�n(z), � = 0, 2 are analytic inw, and recalling that
w cannot appear with powers higher than 2 we can take for example α0n(w) = a+wb,
α2n(w) = b/2, a, b ∈ C.
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In his paper [18] Sce raised the question of establishing if the components of a mono-
genic function all satisfy a common equation. In general, one can guarantee that this
equation exists of order n if n is the dimension of the algebra seen as vector space. In
some cases this order can be less, as in the case of quaternions where we know that all
the components of a monogenic function are harmonic. In the case of A79 we have:

Corollary 4.15 All the components y�, � = 0, . . . , 3 of a monogenic function in A79
satisfy the bilaplacian equation

	2
1,2y� = 0.

where 	1,2 = ∂2

∂ξ21
+ ∂2

∂ξ22
.

Proof The corollary easily follows from the fact that F is holomorphic in z, and thus
its components satisfy 	1,2y� = 0, � = 1, 2 while G is polyanalytic of order 2 in z.

��

We end this section by observing that one can consider the system giving the mono-
genicity in n variables inA79, but since the variables commute among themselves the
resulting minimal free resolution is of Koszul-type and so well known.

4.2 Algebra LXXXI

A variation of the algebra A79 is the algebra LXXXI in Scorza’s classification. This
algebra is noncommutative and is defined as follows:

Definition 4.16 The algebra LXXXI is the real associative algebra generated by
1, i, ω, iω such that i2 = −1, ω2 = 0, iω + ωi = 0.

For simplicity, we will denote this algebra by A81. Sum and multiplication of
x = z1 + z2ω, x ′ = z′1 + z′2ω, z�, z′� ∈ C, � = 1, 2 are given by:

x + x ′ = z′1 + z′2ω
xx ′ = z1z

′
1 + (z1z

′
2 + z2 z̄

′
1)ω.

An element x = z1 + z2ω = x1 + x2i + x3ω + x3iω ∈ A81 is invertible if and only if
x x ′ = 1 and x ′ exists, and is unique, if and only if the system of 4 real equations in
the 4 components of x ′ has matrix of the coefficients non singular. The determinant of
such amatrix is (x21 +x22 )

2 = |z1|2.We conclude that the invertibility of x is equivalent
to z1 �= 0. As a consequence, all the elements of the form z2ω with z2 �= 0 are zero
divisors. We set ‖x‖ = |z1|.
Also in this case, we study total differentiability:

Proposition 4.17 The condition of total derivability in the algebra A81 is expressed
in matrix form as P(D)y = 0 where y, x are identified with the vectors y =
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(y1, y2, y3, y4)T x = (x1, x2, x3, x4)T and

P(D) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂x1 −∂x2 0 0
∂x2 ∂x1 0 0
0 0 ∂x1 ∂x2
0 0 −∂x2 ∂x1

∂x3 0 0 0
∂x4 0 0 0
0 ∂x3 0 0
0 ∂x4 0 0

∂x1 0 −∂x3 0
∂x1 0 0 −∂x4
0 0 ∂x4 ∂x3

∂x2 0 −∂x4 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (14)

Proof We write the first representation of the algebra by looking for a matrix X ′ with
real entries such that xu = uX ′. It turns out that

X ′ =

⎡

⎢⎢⎣

x −y 0 0
y x 0 0
w v x −y
v −w y x

⎤

⎥⎥⎦ .

By imposing that the Jacobian has the form X ′, we get the system P(D)y = 0 as
stated. ��

As it is well known, in the quaternionic case the notion of total derivability char-
acterizes affine functions, i.e. functions of the form f (q) = a + qb, where a, b are
quaternions. Thus onemaywonder if there are non trivial examples of functions totally
derivable in the algebra A81. The answer is contained in the next result:

Proposition 4.18 Let x = x1 + x2i + x3ω + x4iω = z + wω with z = x1 + x2i ,
w = x3 + x4i and let y = y1 + y2i + y3ω + y4iω = F + Gω, y = y(x) = y(z, w),
F = y1 + iy2, G = y3 + iy4 of class C2. Then y is totally derivable if and only if

y = F(z) + G(z, w)ω

with F holomorphic in z, G anti-holomorphic in z, holomorphic and linear in w and
such that ∂x2Re(F) = ∂x4Re(G), ∂x1Re(F) = ∂x3Re(G).
The conditions are satisfied for example by functions of the form

y(x) = y(z, w) = a0 + za1 +
⎛

⎝
∑

n≥0

z̄nbn + wa1

⎞

⎠ ω, a0, a1, bn ∈ R + iR,

where the series converge.
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Proof The first four conditions in the matrix (14) are equivalent to the fact that F and
G are holomorphic and anti-holomorphic in z, respectively. The next four conditions
impose that F does not depend on w, in fact both y1 and y2 do not depend on x3,
x4. From ∂x1 y1 = ∂x3 y3 and ∂x1 y1 = ∂x4 y4 we deduce ∂x3∂x1 y1 = ∂2x3 y3 = 0 since
∂x3∂x1 y1 = ∂x1∂x3 y1 = 0 and, similarly, we deduce that ∂2x4 y4 = 0, ∂x3∂x4 yi = 0,
i = 3, 4. Thus G is linear in x3, x4 and so in w and w̄ since x3 = 1

2 (w + w̄),
x4 = 1

2i (w − w̄).
Then we have

∂w̄G = 1

2
(∂x3 + i∂x4)(y3 + iy4) = 1

2
[(∂x3 y3 − ∂x4 y4) + i(∂x4 y3 + ∂x3 y4)] = 0

in fact the last but one condition in (14) is ∂x4 y3 + ∂x3 y4 = 0 while ∂x1 y1 = ∂x3 y3 and
∂x1 y1 = ∂x4 y4 imply that ∂x3 y3 − ∂x4 y4 = 0.
Finally, a function is right totally derivable in A81 if and only if also last equation is
satisfied.

To see that the conditions characterize a nontrivial class of functions, we consider
a function y = F +Gω such that F , G are holomorphic in z, z̄, respectively and with
G linear in w. We expand F and G in power series as

F(z) + G(z, w)ω =
∑

n≥0

znan +
⎛

⎝
∑

n≥0

z̄nbn +
∑

n≥0

z̄nwcn

⎞

⎠ ω, an, bn, cn ∈ R + iR

by imposing the last condition in (14) with some lengthy but easy computations we
obtain that cn = −(n + 1)an+1 and the statement follows. ��
Proposition 4.19 The module M = R4/PT R12 admits a finite free resolution of the
form

0 −→ R2(−5)
PT
3−→ R2(−3) ⊕ R6(−4)

PT
2−→ R10(−2) ⊕ R4(−3)

PT
1−→ R12(−1)

PT−→ R4 −→ M −→ 0.

Moreover, thematrix P has rank 4 and the g.c.d. of the 4×4minors is 1, dim(R4/M) =
1, depth(R4/M) = 0.

In view of Theorem 3.6 we immediately have:

Corollary 4.20 Hyperfunctions solutions to the system (14) cannot have compact sin-
gularities.

Remark 4.21 To rewrite the maps in the minimal free resolution in Proposition 4.19 in
terms of some recurring operators, as we did in the case of the resolution in the case
of the algebraA79, does not seem to be an easy task. It also depend on how the matrix
P which can be rewritten in various equivalent ways exploiting the equalities among
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some of its entries. By choosing P as above, the map PT
3 can be written in the form

PT
3 =

[
2x22 0 x1 x2 x3 x4 −x4 0
0 2x22 −x2 x1 0 x3 0 −x4

]
.

Since Exti (M, R) = 0, i = 0, . . . , 3, in fact dim(R4/M) = 1, and Ext4(M, R) �= 0,
we have that the dual of H0(K , (S4)P ) is H0(R4\K , (S6)P3).

We now turn to the notion of (left) monogenicity.

Definition 4.22 The condition of monogenicity in the algebra A81 is expressed in
matrix form as P(D)η = 0 where

P(D) =

⎡

⎢⎢⎣

∂x1 −∂x2 0 0
∂x2 ∂x1 0 0
∂x3 ∂x4 ∂x1 −∂x2
∂x4 −∂x3 ∂x2 ∂x1

⎤

⎥⎥⎦ , (15)

where we write ∂xi instead of ∂/∂ξi .

Remark 4.23 An interesting feature of this system is that, denoting by P the symbol
of P(D), P can be written in the form

P =
[
A 0
B A

]
, A =

[
x1 −x2
x2 x1

]
, B =

[
x3 x4
x4 −x3

]

and that

F =
[
A −B
B A

]

is the symbol of the matrix corresponding to left monogenicity in the algebra of
quaternions H, notions that is commonly known as Cauchy–Fueter regularity. This
difference has some relevant consequences for example, in the construction of the
minimal free resolution in the case of several variables. It contains linear and quadratic
maps not only in the first syzygies but also for other maps. Last map is linear in each
entry starting from three variables on.

Also in this case, the operator associated with monogenicity is parabolic, in fact
we have det(P) = (x21 + x22 )

2. This is also clear from the fact that A81 contains zero
divisors.

Proposition 4.24 A function y : U ⊆ A81 → A81 of class C2 of the form

y(x) = y(z, w) = F(z, w) + G(z, w)ω,

is monogenic if and only if F(z, w) is holomorphic in z, G is harmonic in the compo-
nents of z and ∂w̄F(z, w) + ∂z̄G(z, w) = 0.
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Proof Functions monogenic in A81 can be written as sum of two complex valued
functions F,G of the form F(z, w) + ωG(z, w). The system (15) is satisfied if and
only if F is holomorphic in z and F,G satisfy ∂w̄F + ∂z̄G = 0. Since F,G are
assumed to be of class C2 we deduce that

∂z(∂w̄)F + 	zG = 0

that is

∂w∂z̄ F + 	zG = 0

so that 	zG = 0. ��

4.3 Algebra of Bicomplex Numbers

We conclude with a remark that we hope may spur additional work. A very well
developed analysis in the algebra of bicomplex numbers is the subject of [2] and a
more modern approach that uses the methods of algebraic analysis has also received
consideration and we refer the reader to [10,11] and the references therein for further
information.

As it is well known, the algebra BC of bicomplex numbers is constructed over the
basis 1, i, j, k such that i2 = j2 = −1, i j = j i = k and so it is a commutative
algebra. A bicomplex numbers is then written as x = x1 + x2i + x3 j + x4k.
In this framework the notion of total derivability (without distinguishing left or right
since the product is commutative) is the one of interest and it is commonly known in the
literature as bicomplex holomorphy. If we rewrite x as x = z+ jw with z = x1 + x2i ,
w = x3 + x4i , we can define three conjugates in BC:

x∗ = z − jw,

x̃ = z + jw,

x† = z − jw.

This notation is necessary to show the following result which is well known:

Theorem 4.25 Let U ⊆ BC be an open set and F : U → BC such that F = u+ jv ∈
C1(U ). Then F is bicomplex hyperholomorphic if and only if F satisfies the following
three systems of differential equations:

∂F

∂x∗ = ∂F

∂x†
= ∂F

∂ x̃
= 0. (16)

What this theorem shows is that even in one variable, the condition of hyperholo-
morphicity is overdetermined (in other words, unlike what happens in C or in H, the
condition of holomorphicity is expressed in terms of several differential operators).
This has an immediate algebraic consequence, as it can be shown that, inmany respects,
the theory of hyperholomorphic functions on bicomplex numbers behavemore like the
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theory of several complex or quaternionic variables. Most of the work that the authors
have done in the area of bicomplex numbers takes advantage of this peculiarity. This
raises the question of whether it is possible to envision a holomorphicity theory for
bicomplex that more closely resembles single variable theories. Thus it is interesting
to notice that nobody has paid attention, so far, to the notion of monogenicity for
bicomplex numbers that can be easily written, in the variables x0, . . . , x3, as:

∂ y1
∂x1

− ∂ y2
∂x2

− ∂ y3
∂x3

+ ∂ y4
∂x4

= 0

∂ y1
∂x2

+ ∂ y2
∂x1

− ∂ y3
∂x4

− ∂ y4
∂x3

= 0

∂ y1
∂x3

− ∂ y2
∂x4

+ ∂ y3
∂x1

− ∂ y4
∂x2

= 0

∂ y1
∂x4

+ ∂ y2
∂x3

+ ∂ y3
∂x2

+ ∂ y4
∂x1

= 0.

(17)

This latter condition does not seem to be studied in the literature and corresponds to
the condition ∂F

∂x∗ = 0, and is therefore not overdetermined anymore. Evidently, if the
function y(x) is totally derivable, then it is also monogenic but the converse is not true.
It is a curiosity to observe that the system (17) only differs from the Cauchy–Fueter
system for a sign, and yet clearly yields a very different space. It will be of interest to
develop a theory for this wider class of functions.
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