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A B S T R A C T

The new scenarios foreseen in forthcoming space missions have increased interest towards optical-based
relative navigation techniques, which have demonstrated efficacy in a variety of operational conditions.
Although object detection methods have predominantly been used within the visible spectrum, optical payloads
struggle in weak lighting conditions and are susceptible to overexposure. Consequently, thermal imaging
systems are being investigated as a potential solution, as their integration into the current systems would
greatly extend future mission capabilities. This study seeks to fill the gap in literature by assessing the
performance of state-of-the-art object detection algorithms with images captured in the thermal spectrum.
Given the scarcity of readily available thermal infrared (TIR) images captured in orbit, a novel rendering
pipeline is implemented to generate physically accurate thermal images relevant to close-proximity scenarios.
These synthetic representations feature a simplified target spacecraft against Earth and deep space backgrounds,
including variations in illumination conditions, material properties, relative state, and scale. To ensure realistic
outputs, the radiative field of the Earth is modelled based on satellite measurements collected in the cloud and
Earth radiant energy system (CERES) database. To enrich the fidelity of the outputs, a thermal sensor model
and the corresponding noise levels are introduced in the pipeline. The generated images are then used to
test the performance of traditional object detection algorithms in discerning the region of interest (ROI) under
different orbital scenarios. The results demonstrate the effectiveness of the selected methodologies in mitigating
the influence of the Earth in the ROI extraction process, while also revealing a performance degradation due
to the presence of multi-material targets.
1. Introduction

In recent years, the use of optical navigation for relative maneuvers
has grown in interest within the scientific community, and various
methodologies have been proposed to address close-proximity opera-
tions around cooperative or uncooperative targets, whether celestial or
artificial in nature.

In this context, the development of a robust and accurate guidance,
navigation and control procedure that can be executed on-board in
real-time is crucial to ensure successful operations and guarantee the
correct interaction within objects in space. With the current trend
towards autonomous on-board activities, this requirement translates
into the capability of the chaser spacecraft to reconstruct the sur-
rounding scene and recover the relative pose with respect to the
observed mission target. Consequently, cameras and optical sensors are
commonly employed, providing high-frequency measurements crucial
for performing fast actions, especially in unknown environments [1].
Traditionally, monocular visible cameras have found widespread ap-
plications in close-range mission scenarios, due to their mass and
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power-effectiveness [2], demonstrating high performance in recover-
ing the relative state [3–5]. However, these sensors face significant
limitations related to illumination conditions, which strongly impact
the overall robustness and accuracy of the measurements [4,6]. A
promising solution proposed in recent years is the use of TIR imag-
ing [7,8], which enables the discrimination of scene objects based
on their temperature distribution rather than their ability to reflect
light. Their use would thereby introduce notable advantages from a
navigation perspective, allowing for the detection of the spacecraft or
other objects even in shadow conditions.

To demonstrate the applicability of monocular thermal images to
autonomous relative navigation tasks, this work presents a comprehen-
sive insight into the performance attainable with ROI detection algo-
rithms when applied to noisy thermal images of spaceborne scenarios.
Given the limited availability of in-flight infrared images and validated
virtual TIR datasets, a collection of synthetic images is generated
starting from the work proposed in [9–11]. To further stress the perfor-
mance of image processing algorithms, the generated images include
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List of Acronyms
A/D analog to digital
ADU analog to digital unit
CERES cloud and Earth radiant energy system
DoG difference of gaussian
IoU intersection over union
NVD noise voltage density
RMS root mean square
ROI region of interest
SYN synoptic TOA and surface fluxes and clouds
TIR thermal infrared
TOA top of the atmosphere
VIS visible
WGE weak gradient elimination

the Earth as background disturbance, demonstrating their possible
application to low-Earth close-proximity scenarios. Unlike the 3D ther-
mal finite volume model used for the thermal characterization of the
artificial target [9,12], the infrared properties of the Earth and its at-
mosphere are modelled according to the satellite-based measurements
collected in the CERES database [13].

The main contributions proposed by this work can be summarized
s:

• Definition of an analytical thermal camera model to replicate the
instrument response to an external radiating source, including the
modelling of the main noise sources.

• Introduction of the Earth into the generated synthetic images,
as additional disturbance for the image processing algorithms,
where the thermal properties of the Earth and its atmosphere are
modelled according to the satellite-based measurements collected
in the CERES database [13].

• Evaluation of the performance of state-of-the-art image processing
techniques with the purpose of ROI detection tasks when only
monocular thermal images are available.

The remainder of the paper is organized as follows: Section 2
provides an overview of the applications of TIR imaging for space pur-
poses, including a brief overview of the methodologies used to generate
synthetic thermal images, the datasets already publicly available, and
a review of the literature regarding object detection in space. The im-
plemented camera model is presented in Section 3, which includes the
modelling of main disturbance sources and the infrared representation
of the Earth. Section 4 presents the results achieved by state-of-the-art
computer vision methodologies when applied to a simplified spacecraft
geometry, while Section 5 extends the discussion to the applicative case
of Tango satellite [14]. Finally, Section 6 summarizes the conclusions
nd main outcomes of this work, while also suggesting possible future
evelopments.

2. Related works

Thermal cameras are widely used for remote sensing activities,
uch as investigating the physico-chemical composition of planetary

surfaces and assessing the landing site for a safe descent trajectory. In
recent years, TIR sensors have also been exploited for GNC purposes,
as demonstrated by the Japanese Hayabusa2 mission [15], which em-
ployed artificial markers on the Ryugu asteroid surface for autonomous
landing. More recently, thermal sensors have been flight-tested during
non-cooperative rendezvous as part of the LIRIS demonstrator onboard
he ATV5 Mission [16], as well as in tracking activities as part of the

Raven ISS Hosted Payload [17]. The potential of the TIR cameras in the
612 
context of relative navigation has been investigated by [7], demonstrat-
ing the potential of using SLAM-based approach with thermal images,
yet highlighting the necessity of more realistic TIR space imagery to
further evaluate these methods.

In the context of navigation tasks, it is important to pre-process
the input images to enhance the image quality and extract the ROI
corresponding to the target under analysis, which is crucial when deal-
ing with complex backgrounds [3,18]. A feature-based approach called
weak gradient elimination (WGE) has been developed and introduced
by [4] as part of the Sharma-Ventura-D’Amico (SVD) architecture for
monocular vision-based navigation. It is specifically design to distin-
guish between the target and the background in visible (VIS) images
y leveraging the assumption that the Earth, or the generic background

disturbance, has a lower gradient compared to the foreground elements,
hich typically have sharp edges, thus higher gradients. Despite the
igh performance, this method faces challenges when the target over-

laps the Earth terminator or when there is a limited contrast between
the foreground and background of the image [4]. An alternative for-

ulation to the WGE has been proposed by [19], where the choice of
ROI extraction algorithms depends on the particular scenario presented
in the image. If the Earth is within the FOV of the camera, WGE is
applied to discriminate the target against the complex background; in
scenarios with a deep space background, the simpler and computa-
tionally inexpensive Otsu thresholding is applied. While this approach
appears to be more robust that using WGE alone, it does not directly
address the limitations identified for the WGE. More recently, CNN-
based approaches have been used to extract the ROI with different
backgrounds, demonstrating improved performance with respect to
classical methods. [20] employed a novel CNN architecture to detect
the target in images with various backgrounds, introducing also a novel
training approach to improve the robustness of the architecture when
rained only on synthetic images. While the literature provides a large
cale of applicative studies of ROI extraction process in the field of
IS imaging in space scenarios, few examples can be found regarding

hermal images due to the limited availability of representations. The
iltering-like technique presented by [4] has been tested on a small
ataset of both TIR and VIS-TIR fused images in [21], but the presented

work lacks detailed ROI detection performance analysis. As alternative,
n enhanced gradient descent method to extract the foreground target
rom complex backgrounds has been proposed by [22], where thermal

images of the ISS are used as a test case. This approach combines the
detection capabilities of difference of gaussian (DoG) filter technique
with graph manifold ranking based on foreground saliency genera-
tion, reaching performance comparable with traditional state-of-the
art methodologies. Additionally, CNN-based architectures have been
reliminary tested on TIR imaging, as presented in [23]. Although

this work hinges on developing a pose-estimation pipeline for VIS
imaging, the network has been trained on MINIMA images [6] and
tested on a small set of TIR and VIS-TIR fused images, demonstrating
the adaptability of the pipeline in accurately extract the ROI also from
images captured in the thermal spectrum.

The lack of in-flight thermal images has driven the need to create
nd leverage synthetic TIR images that reflect space scenarios. [24]

propose a pipeline for generating a set of infrared images acquired
in a laboratory facility using a thermal mock-up, highlighting the
challenges of the acquisition process, particularly in replicating the
thermal characteristics of the target and incorporating the Earth as
background disturbance. An alternative approach to generate thermal
images involves the use of rendering software. A VIS-TIR images col-
lection is proposed in [25], where synthetic images of ENVISAT with
deep space background are created using the ASTOS Camera Simulator.
However, these representations are not publicly available, and the solid
background of the presented images poses little challenges to the detec-
tion algorithms. Another dataset is proposed by [26], featuring open-
source multispectral images of space debris generated using Vega Prime
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Software and MODIS atmospheric tool to accurately define hourly-
dependent temperature distributions across different spectral bands. As
hese images are representative also of low-Earth dynamical environ-

ments, the background includes portions of the Earth, characterized
sing images from the Himawari-8 weather satellite [27]. Despite their

potential for testing the performance of object detection algorithms, the
presented datasets highlight several drawbacks, including unavailabil-
ty, lack of realistic representations, and absence of annotations useful
or navigation purposes. These limitations, combined with the need for
 flexible tool to simulate various of mission scenarios and potentially
mplement GNC algorithms based on TIR images, justify the effort to
evelop a dedicated synthetic image simulator.

3. Thermal image modelling

To improve the fidelity of the generated images and replicate the
digital output of the sensor, the analytical model of a thermal camera
is introduced in the rendering pipeline. The following sections detail
he analytical formulation implemented to model the behaviour of
 TIR imager, along with its primary noise sources and their effect
n the final representations. Furthermore, to include an additional
evel of disturbance to the rendered images, the Earth is included in
he background. Hence, this section also provides the reader with an
ntroduction to the modelling of the infrared behaviour of the Earth.
astly, a brief overview of the rendering sequence used to generate the
inal synthetic TIR images is provided.

3.1. Thermal camera model

In literature, infrared sensors are commonly classified into two
main families: photon detectors and thermal detectors [28]. The former
category absorbs the incident photons leading to a change in the con-
entration of free charge carriers, hence modifying the overall electrical
nergy. Instead, thermal detectors are transducers in which the incident
adiation is first converted into thermal energy, and then the electrical

output is generated from a change in a physical property of the detector
material. For a detailed comparative analysis, the reader can refer
to [28,29]. Despite their limited measurement precision, in the past few
ears thermal detectors have proved interesting for space applications,

as robust, lightweight and inexpensive thermal cameras. Within this
category, uncooled microbolometers have already been widely tested
in missions around Earth and towards inner Solar System planets, such
as Rosetta [30], Bepi-Colombo [31] and Hayabusa2 [15]. Since the
electric signal generated by the sensor is proportional to the radiation
f the observed object, the first step in modelling the instrument

involves the characterization of the radiative properties of the object
under analysis. Leveraging the fundamental radiometric principles, the
intensity of emitted radiation can be expressed in W m−2 sr−1 as shown
in Eq. (1) [32]:

𝑖 = ∫

∞

0
𝜀(𝜆)𝐵(𝜆, 𝑇 )𝑑 𝜆 (1)

Where 𝜆 is the wavelength, 𝐵(𝜆, 𝑇 ) is the monochromatic radiation
expressed by the Planck’s law, and 𝜀(𝜆) and 𝑇 are the monochromatic
diffuse emissivity and the temperature of the observed object, respec-
tively. Assuming the observed target is a Lambertian emitter, i.e., it
radiates uniformly in all directions, the radiant flux emitted towards
the camera is quantified by introducing the view factor between the
sensor and the object. Following the procedure proposed in [9,10],
the heat flux per unit area from the object face to the sensor lens
is expressed by Eq. (2), where �̂�𝑓 is the normal vector to the mesh
element, �̂�𝑠 is the normal vector to the sensor lens, 𝐫𝑓 𝑠 is the distance
vector from the mesh element to the sensor plane, and 𝛥𝐴𝑐 is the sensor
area intercepting the radiation.

𝑞𝑓 𝑠 = 𝑖
(�̂�𝑓 ⋅ 𝐫𝑓 𝑠)(�̂�𝑠 ⋅ 𝐫𝑠𝑓 )

4
𝛥𝐴𝑐 (2)
|𝐫𝑓 𝑠|
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In general applications, the sensor performance is influenced by the
resence of atmosphere and the surrounding environment, resulting in

the attenuation of the received signal. However, in space applications,
he absence of a stable atmosphere and the near-zero temperature

of deep space lead to the assumption that the heat flux per unit
area reaching the sensor lens coincides with the flux emitted by the
bject towards the camera. Hence, no environmental attenuations are
onsidered in the model.

Before reaching the detector of the instrument, where the radiation
s converted into electrical input, the thermal signal passes through

a series of lenses and filters, designed to enhance the sensitivity of
the sensor [28]. The presence of these optical components may in-
roduce non-trivial drawbacks, including the absorption and reflection

of a fraction of the incoming radiation, thereby reducing the overall
signal transmission. This effect is crucial for accurately representing the
behaviour of the thermal sensor, and is therefore encompassed into the
model through the camera response function defined in Eq. (3) [33,34].
This spectral curve depends on the camera detection efficiency 𝜂, lens
ransparency 𝑅(𝜆) and transmittance of the band-pass filter 𝑅 (𝜆),

respectively.

𝑅(𝜆) = 𝜂 𝑅(𝜆)𝑅 (𝜆) (3)

The analytical expression of 𝑅(𝜆), derived from the analyses of the
ayabusa2 data presented in [33], is described through skewed bell-

shaped curves, and a visual comparison with the original data is
resented in Fig. 1.

Finally, to compute the actual heat flux emitted from the object
and intercepted by the sensing element of the camera, Eq. (3) is
incorporated in Eq. (2) and the resulting expression is integrated over
the entire frequency spectrum:

𝑞𝑓 𝑐 = ∫

∞

0
𝜀(𝜆)𝐵(𝜆, 𝑇 )𝑅(𝜆)𝑑 𝜆 (�̂�𝑓 ⋅ 𝐫𝑓 𝑠)(�̂�𝑠 ⋅ 𝐫𝑠𝑓 )

|𝐫𝑓 𝑠|4
𝛥𝐴𝑐 (4)

Once the radiation is recorded by the pixel array, an output voltage
s generated, which is then amplified and converted into a digital

bit string by an analog to digital (A/D) converter. Depending on the
mission objectives, the microbolometer output may be expressed as
function of either the radiant power emitted by the observed object
or the heat flux intercepted by the detector.

Radiometry mode. For missions requiring a thermal characterization of
the target, the digital output of the sensor in analog to digital unit
(ADU) is defined as the linear dependency expressed by Eq. (5) [34,35]:

𝐷 𝑁 = 𝑎 ⋅ 𝐹 (𝑇 ) + 𝑏 (5)

Where 𝑎 and 𝑏 are the system response parameter, camera gain and
camera offset respectively, recovered through radiometric calibration,
nd 𝐹 (𝑇 ) is the emissive power described by [34]:

𝐹 (𝑇 ) = 𝜋 ∫

∞

0
𝜀(𝜆)𝐵(𝜆, 𝑇 )𝑅(𝜆)𝑑 𝜆 (6)

From the knowledge of the heat flux reaching the sensing element, 𝐹 (𝑇 )
can be rewritten as function of the detected radiation by introducing a
distance compensation factor , which depends on the mean distance
between the camera and the geometrical center of the object.

𝐹 (𝑇 ) =  𝑞𝑓 𝑐 =
𝜋|𝐫𝑓 𝑠|2
𝛥𝐴𝑐

𝑞𝑓 𝑐 (7)

Once the digital response of the sensor is known, Eq. (5) is used to
reconstruct the radiant temperature field of the observed object:

𝑇𝑟𝑎𝑑 =
(𝐷 𝑁 − 𝑏

𝑎𝜎

)1∕4
(8)

Note that the actual temperature distribution can be recovered by
accounting for the emission spectrum of the object.

Detection mode. Under the assumption that the primary objective of
the chaser spacecraft is exclusively to detect the presence of the object
without acquiring any radiometric measurement, the introduction of
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Fig. 1. Camera response function: comparison of the derived model (left) with the Hayabusa2 data (rigth) [33].
the compensation parameter becomes unnecessary. In detection mode,
the fundamental requirement is the presence of sufficient contrast
between the observed object and the scene background, enabling a
clear discrimination of the former with respect to the latter. In this
context, the sensor output response in ADU can be defined as function
of the detected radiation:

𝐷 𝑁 = 𝑎 ⋅ 𝑞𝑓 𝑐 (𝑇 ) + 𝑏 (9)

Note that in relative navigation scenarios, due to the absence of apriori
knowledge of the camera-target distance, the camera must be operated
in detection mode.

3.2. Earth thermal model

The majority of artificial objects orbit around the Earth, leading
to the necessity of analysing the performance of object detection al-
gorithms when this body falls within the background of the images.
One of the simplest approach to incorporate the Earth into these
representations involves the use of TIR images captured by real orbiting
satellite systems [27]; however, the use of such representations is
limited by the availability and lack of radiometric information in-
cluded into the image. Indeed, an actual radiance scale of the Earth
radiation budget is necessary to establish a correlation between the
foreground and background layers of the image, thus knowledge of
the Earth’s thermal dynamics is pivotal. Rather than implementing a
novel analytical framework to describe the radiation of the Earth and
its atmosphere, satellite-based measurements collected in the CERES
database [13] are exploited. The choice of such tool not only avoids the
resource-intensive demands associated with thermal simulations, both
in terms of development time and computational cost, but could also
aids in improving the accuracy and precision of the outputs compared
to those produced by the analytical model [36]. The following sections
provide a brief introduction to the database and the steps implemented
to transition from the original library data to the final radiometric
information required for the image generation. Please note that the
proposed methodology has been tailored for applications involving the
614 
Earth, but it can also be extended to other celestial body, provided that
radiometric data are available, which may be sourced from a dedicated
dataset or obtained through detailed thermal simulations.

3.2.1. CERES database
The CERES project has been designed to deliver satellite-based

observations of the Earth’s radiation budget, enabling the monitoring
of the radiance variations on a temporal basis that spans monthly,
weekly, daily or even hourly intervals. These data, collected via a suite
of instruments aboard Earth observation satellites encompass incoming
and out-coming solar radiation, as well as radiation emitted by the
Earth surface, covering both the shortwave infrared and longwave
infrared bands. The CERES scientific measurements are categorized into
four primary classes: energy balanced and filled dataset, synoptic TOA
and surface fluxes and clouds (SYN) library, single scanner footprint
dataset, and fast longwave and shortwave flux library. For the purpose
of this work, the SYN1deg collection is selected, which presents daily
average all-sky fluxes with a 1◦ spatial resolution along both geograph-
ical coordinates. This product offers interpolated TOA fluxes achieved
through cross calibration between geostationary imagers and MODIS
imager measurements, alongside corresponding cloud properties. To
include an extensive characterization of the atmospheric gas properties,
these measurements are paired with specific fluxes derived through the
implementation of the Fu-Liou radiative transfer model [37].

3.2.2. Temperature field computation
As discussed in more detail in Section 3.1, to accurately model the

characteristics of the thermal instrument, the temperature field of the
observed scene needs to be computed using Eq. (4). Assuming the Earth
behaves as a blackbody, the equivalent temperature profile for each
gridded location is computed using the Stefan Boltzmann’s law [28]:

𝑇 =
(

𝐹𝐸
𝜎

)1∕4
(10)

Where 𝜎 is the Stefan–Boltzmann constant and 𝐹𝐸 represents the TOA
radiant flux reported in the CERES library. The resulting 2D temper-
ature distribution is illustrated in Fig. 2 as function of the spherical
coordinates, considering the original data resolution.
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Fig. 2. TOA temperature map.
Fig. 3. Temperature field of the Earth for different mesh resolutions captured with auto-span radiance scale.
Given the actual Earth’s dimensions, a coarse mesh of 1◦ resolution
would result in an extremely low resolution image, as observed in
Fig. 3(a). Hence, a mesh refinement at 0.1◦ resolution is considered
along both latitude and longitude, as illustrated in Fig. 3(b), at the
expense of increased computational time. Since the computed temper-
atures are defined for a smaller number of gridded locations compared
to the newly defined mesh, an interpolation procedure is required
to characterize the temperature associated to each of the new grid
element. Fig. 3 provides a visual comparison of the temperature maps
before and after the refinement process, demonstrating that the results
obtained with a finer mesh lead to a more realistic output.

To generate a final dataset covering a wide range of illumination
conditions, eclipse scenarios are also included. After the analysis of
the hourly data collected over a 24-hour interval, the daily average
variation in TOA fluxes is used as a scaling factor to uniformly reduce
the original radiation distribution defined under sunlight conditions.
The resulting scaled radiance distribution is used to compute the cor-
responding eclipse temperature field according to Eq. (10), which is
finally exploited to reconstruct the detected radiation, following the
procedure presented in Section 3.1.

3.3. Camera noise characterization

In practical scenarios, several noise sources affect the signal de-
tected by the thermal sensor, reducing the image quality and the
accuracy of the measured parameters. As outlined in [38], uncooled
615 
microbolometer arrays are influenced by fundamental disturbances
including Johnson noise, Flicker noise, and temperature fluctuation
noise.

Johnson noise. Johnson noise, commonly known as thermal noise,
originates from the random fluctuation of charge carriers in the resistor.
The RMS voltage over the noise effective bandwidth 𝛥𝑓𝐽 is reported in
Eq. (11) [38], where 𝑘𝐵 is the Boltzmann’s constant, 𝑇𝐵 is the detector
temperature, and 𝑅𝐵 is its resistance. For microbolometer using a
continuous bias, the noise effective bandwidth can be determined as
function of the response time constant as 𝛥𝑓𝐽 = (2𝜏)−1.
𝑣𝑅𝑀 𝑆
𝐽 =

√

4𝑘𝐵𝑇𝐵𝑅𝐵𝛥𝑓𝐽 (11)

Flicker noise. Flicker noise, or pink noise, is another disturbance that
characterizes electric circuits. It arises from the stochastic motion of
photons within the detector area, resulting in fluctuations in either
current or voltage. The RMS voltage decays as 1∕𝑓 , making the pink
noise dominant at low frequencies. This parameter is described by
Eq. (12) [38], where 𝑣𝑏𝑖𝑎𝑠 is the operating bias voltage of the detector,
and  is the material constant associated with the resistor and the
electrical circuit geometry, which can be estimated according to the
Hooge empirical formula reported in [39].

𝑣𝑅𝑀 𝑆
1∕𝑓 = 𝑣𝑏𝑖𝑎𝑠

√


𝑓

(12)

Given a specific working frequency with low-frequency noise 𝑓𝐿 and
high-frequency noise 𝑓 , Eq. (12) can be rewritten as Eq. (13) [38],
𝐻
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Table 1
Parameters and coefficients of the microbolometer [41,42].

Parameter Symbol Units Value

Bolometer temperature 𝑇𝐵 K 300
Bolometer resistance 𝑅𝐵 k Ω 20
Detector heat conductance 𝐺𝑡ℎ μW K−1 20
Thermal coefficient of resistance 𝛽 K−1 0.023
Time constant 𝜏 ms 12
Integration time 𝑡𝑖𝑛𝑡 μs 6
Bias voltage 𝑣𝑏𝑖𝑎𝑠 V 5
Lower frequency at frame rate 𝑓𝐿 Hz 1
Material constant  – 10−13

Table 2
RMS voltages of the three primary noise sources.
𝑣𝑅𝑀 𝑆
𝐽 𝑣𝑅𝑀 𝑆

1∕𝑓 𝑣𝑅𝑀 𝑆
𝑡ℎ

5.394 × 10−6 5.322 × 10−6 2.617 × 10−6

where the high frequency bound can be computed as function of the
integration time as 𝑓𝐻 = (2𝑡𝑖𝑛𝑡)−1, and 𝑓𝐿 is a specification of the
selected microbolometer.

𝑣𝑅𝑀 𝑆
1∕𝑓 = 𝑣𝑏𝑖𝑎𝑠

√

 𝑙 𝑛
(

𝑓𝐻
𝑓𝐿

)

(13)

Temperature fluctuation noise. The heat exchange between the detector
and its surrounding environment results in temperature fluctuation of
statistical nature. The RMS voltage of this random process can be effec-
ively described by Eq. (14) [40], where 𝐺𝑡ℎ is the heat conductance of
he detector, 𝛽 is the thermal coefficient of resistance, and 𝛥𝑓𝑡ℎ = (4𝜏)−1
s the effective frequency bandwidth [38].

𝑣𝑅𝑀 𝑆
𝑡ℎ =

√

4𝑘𝐵𝑇 2
𝐵

𝐺𝑡ℎ
𝑣𝑏𝑖𝑎𝑠𝛽2𝛥𝑓𝑡ℎ (14)

As the heat losses from the microbolometer are primarily caused by
adiant heat exchange, the fluctuation disturbance coincides with the
ackground noise.

3.3.1. Numerical implementation
The parameters used to characterize the noise sources of the mi-

robolometer are reported in Table 1, while the resulting RMS voltages
are summarized in Table 2.

Among the different sources impacting the instrument performance,
ohnson noise predominantly influences the sensor behaviour. This
oise source is directly related to the temperature of the sensing
aterial, hence, since no additional cooling is applied, the elevated

emperature of the detector impacts its ability and precision in detect-
ng weak signals. In contrast, temperature fluctuation noise, arising
rom the thermal fluctuations within the sensing element, typically
xhibits a comparatively lower magnitude when compared to Johnson
oise. This behaviour is also reflected in the spectral distribution of the

NVD, which highlights the amount of noise affecting the circuit over a
frequency band. Since the noise sources are uncorrelated, the NVD is
analytically described by Eq. (15) [43]:

𝑁 𝑉 𝐷 =
𝑣𝑅𝑀 𝑆
𝑡𝑜𝑡
𝛥𝑓

=

√

(𝑣𝑅𝑀 𝑆
𝐽 )2 + (𝑣𝑅𝑀 𝑆

1∕𝑓 )2 + (𝑣𝑅𝑀 𝑆
𝑡ℎ )2

𝛥𝑓
(15)

By varying the frequency bandwidth, the NVD can be described
through the spectral function reported in Fig. 4, where the red curve
represents the mean of oscillations. At lower frequencies, the spectrum
exhibits a distinct inclined slope, decreasing as ∝ 1∕𝑓 , which reflects
the frequency-dependent behaviour of Flicker noise. However, as the
operational frequency increases, the coloured noise is progressively
overcome by the other two noise sources and the spectrum converges to
a steady value in the order of 10−8 V Hz−0.5. It is worth mentioning that
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Fig. 4. NVD spectral distribution.

the noise distribution obtained with the presented analytical modelling
conforms to the numerical solution outlined in literature [44,45].

To preserve a certain degree of flexibility in the rendering pipeline,
the noise disturbances are added to the image during post-processing
operations. Consequently, the numerical values presented in Table 2
are used to construct a two-dimensional cumulative noise distribution.
Based on their inherent nature, Johnson and temperature fluctuation
disturbances are modelled as white Gaussian noises with zero-mean
nd standard deviation equal to 𝑣𝑅𝑀 𝑆

𝐽 and 𝑣𝑅𝑀 𝑆
𝑡ℎ respectively. In con-

trast, Flicker noise is modelled by low-pass filtering a white Gaussian
oise with standard deviation 𝑣𝑅𝑀 𝑆

1∕𝑓 , following the formulation outlined
n [11]. These separate noise maps are summed, and the resulting ma-

trix is converted into digital units using a suitable A/D gain, established
s 𝐺𝐴∕𝐷 =2470 ADU V−1 [46]. The final noise map in ADU for a given

image is analytically described by Eq. (16).

𝑁 𝑜𝑖𝑠𝑒𝐴𝐷 𝑈 = 𝐺𝐴∕𝐷 ⋅
(

𝑁 𝑜𝑖𝑠𝑒𝐽 +𝑁 𝑜𝑖𝑠𝑒1∕𝑓 +𝑁 𝑜𝑖𝑠𝑒𝑡ℎ
)

(16)

An illustrative example is reported in Fig. 5, showcasing the individual
noise sources with a sample image to accentuate their disturbance. As
expected, Johnson noise emerges as the most pronounced disturbance,
clearly discernible in the noisy image due to its grainy texture resulting
from the random variations in pixel value.

3.4. Rendering sequence

The complete rendering pipeline developed for the generation of
synthetic TIR images is schematically outlined in Fig. 6, where Blender
s selected as rendering software due to its high flexibility and out-

put quality. In the context of infrared scenes, given the paramount
mportance of the material properties characterization, Visualization
oolKit (VTK) nodes are used to effectively read, transform, and dis-
lay radiometric data obtained from thermal simulations performed
sing OpenFOAM. To reduce the computational effort and enhance the
orkflow flexibility, the thermal representations of Earth and artificial

arget are developed separately and subsequently merged together.
hile the infrared behaviour of the Earth is modelled following to

he procedure presented in Section 3.2, the artificial target undergoes
a thermal characterization via a 3D finite volume thermal simulation
to extract the corresponding temperature distribution, as presented
in [9,12]. To ensure a coherent final representation, the foreground and
background levels are rendered according to a unified radiance scale,
tailored based on the selected camera mode. In radiometry mode, the
lower and upper bounds of the final rendering scale are determined as
function of the radiant power:

𝐷 𝑁𝑚𝑖𝑛 = 0 → 𝐹𝑚𝑖𝑛 = min{𝐹𝑡𝑎𝑟𝑔 𝑒𝑡𝑚𝑖𝑛 , 𝐹𝐸 𝑎𝑟𝑡ℎ𝑚𝑖𝑛}
𝑏𝑖𝑡 (17)
𝐷 𝑁𝑚𝑎𝑥 = 2 − 1 → 𝐹𝑚𝑎𝑥 = max{𝐹𝑡𝑎𝑟𝑔 𝑒𝑡𝑚𝑎𝑥 , 𝐹𝐸 𝑎𝑟𝑡ℎ𝑚𝑎𝑥}
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Fig. 5. Noise disturbance effects on zoomed portion of images.
Fig. 6. Rendering sequence.
Where 𝐹𝑡𝑎𝑟𝑔 𝑒𝑡 and 𝐹𝐸 𝑎𝑟𝑡ℎ are the emissive power of target and Earth,
respectively. In detection mode, the digital output of the sensor, and the
dynamic range of the image, are directly proportional to the radiation
field intercepted by the sensor optics. Analysis of the data reveals that
the detected radiation fields associated with the target and the Earth
cover different orders of magnitude thus different upper bounds, as
illustrated in Fig. 7.

As a consequence, the bounds of the rendering scale cannot be
automatically adapted to the boundary values of the detected radia-
tion; instead, they are set as fixed values regardless of the observed
scene. This approach is necessary to maintain a sufficient contrast
between the foreground and the background elements of the scene.
Subsequently, the two images are generated and the fused 𝐷 𝑁 map
associated with the rendered image is rescaled to match the instrument
response defined in Section 3.1. The final digital output of the TIR
sensor, irrespectively of the camera mode selected, can be computed
in ADU as reported in Eq. (18), where 𝐷 𝑁 is the noiseless output
described by Eqs. (5) and (9).

𝐷 𝑁𝑐 𝑎𝑚𝑒𝑟𝑎 = 𝐷 𝑁 +𝑁 𝑜𝑖𝑠𝑒𝐴𝐷 𝑈 (18)

Please note that due to the absence of coupling between raw images
captured by real payloads in orbit and sensor data, the developed ren-
dering tool has not been fully validated. However, the main sub-blocks
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have been compared with data found in literature, demonstrating the
accuracy and coherence of the implemented models.

4. Results and analysis

4.1. Dataset generation

To focus the attention on the performance evaluation rather than
on the geometrical complexity of the observed scene, a simplified
geometry for the artificial target is chosen, including a cube and a cylin-
der. This specific selection of prisms, comprising sharp edges, plane
faces and curved shapes, serves to rigorously challenge the algorithms
and accentuate the visual effect caused by variations in view factor.
Additionally, to capture a broader spectrum of thermal scenarios, the
target is defined as a multi-material entity, with radiative properties
varying throughout the simulations. Table 3 provides details of the
thermal conditions imposed for the generation of the dataset.

To guarantee a correct image fusion between Earth and target
representations, the spacecraft image is generated with a transparent
background. Furthermore, considering the stringent on-board power re-
quirements typical of real-world applications, the images are rendered
using a monochromatic black and white colourmap, where darker
shades are associated to cooler areas, and lighter regions indicate
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Fig. 7. Measured radiance fluxes when detection mode is selected.
Table 3
Target thermal properties.

Thermal case 𝜀𝑐 𝑢𝑏𝑒 𝜀𝑐 𝑦𝑙
Mono-material 0.86 0.86
Multi-material 1 0.90 0.10
Multi-material 2 0.10 0.90

Table 4
Camera parameters used for the image generation [33].

Parameter Units Value

FOV ◦ 16 × 12
Focal length mm 42.2
Effective pixels px 328 × 248
Pixel size μm 37

higher radiance values. The camera parameters used in the image
generation are sourced from the Hayabusa2 payload, and listed in
Table 4.

The generated TIR dataset includes 12000 noisy images repre-
senting a wide range of scenarios dependent on the operative mode,
illumination condition, material properties, and approach range. Con-
cerning this latter category, both close range and far range cases are
considered, with camera-spacecraft distance ranging from 15 m to 50 m,
and from 340 m to 440 m respectively. The far-range interval is selected
to ensure a minimum FOV coverage of 9 pixels, with the upper bound
computed based on the knowledge of the IFOV and the pixel dimension
and lower bound chosen to simulate an initial approach scenario. On
the contrary, the camera-Earth distance is considered constant and
equal to 10 871 k m, corresponding to a distance from the surface of
4500 k m. This specific choice results from a trade-off between the FOV
coverage and the Earth mesh appearance.

Radiometry. In the radiometry branch of the dataset, since the final
radiance scale is adjusted to the boundary values recorded within the
scene, the images are characterized by a uniform contrast distribution,
showing details associated to both the spacecraft and the Earth, as
illustrated in Fig. 8. In scenarios where the target is diffused and gray,
resulting in uniform emissivity across the entire body, the emissive
power is sufficiently homogeneous, facilitating the discrimination of
the majority of details, as reported in Fig. 8. On the contrary, in
multi-material cases, concerns arise regarding the identification of the
satellite under specific Earth-target-camera relative positions. Portions
of the spacecraft characterized by exceedingly low emissivity (e.g. pol-
ished metal components) appear as extremely dark areas, leading to
potential loss of details during target passages over the cooler areas
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Table 5
Radiance scale limits.

Case 𝑞𝑓 𝑐𝑚𝑖𝑛 [W m−2] 𝑞𝑓 𝑐𝑚𝑎𝑥 [W m−2]

Scale 1 0 𝑞𝐸 𝑎𝑟𝑡ℎ𝑓 𝑐𝑚𝑎𝑥 = 3 ⋅ 10−17
Scale 2 0 2 ⋅ 𝑞𝐸 𝑎𝑟𝑡ℎ𝑓 𝑐𝑚𝑎𝑥 = 6 ⋅ 10−17
Scale 3 0 10 ⋅ 𝑞𝐸 𝑎𝑟𝑡ℎ𝑓 𝑐𝑚𝑎𝑥 = 3 ⋅ 10−16

of the background scene, corresponding to deep space or regions with
minimal Earth radiation.

Detection. To assess the limitations of image processing algorithm un-
der different radiance scale choices, the images are rendered while
altering the upper bound of the rendering scale, according to the values
reported in Table 5. Please note that 𝑞𝑓 𝑐𝑚𝑖𝑛 indicates the minimum
radiance flux emitted by the scene and recorded by the camera, cor-
responding to the lower bound of the scale; on the contrary, 𝑞𝑓 𝑐𝑚𝑎𝑥
indicates the sensor maximum measurable radiance flux, corresponding
to the upper bound of the rendering scale. This latter parameter is
varied as function of the maximum radiant flux emitted by the Earth
and received by the camera, denoted as 𝑞𝐸 𝑎𝑟𝑡ℎ𝑓 𝑐𝑚𝑎𝑥 . To ensure an equal
comparison, for each camera pose three images are generated according
to the defined scales.

Fig. 9 illustrates some examples of noisy images captured under
different scale choices. Since the measured radiation associated to the
target exceeds the saturation limit of the identified scales, the space-
craft always appears as a white binary map, with only its external edges
distinguishable. Consequently, only the mono-material case is consid-
ered in this context. Depending on the radiance scale selected during
the rendering procedure, the visibility of the Earth in the background
varies. Reducing the upper bound of the scale decreases the contrast
between the target and the Earth, being the latter characterized by
radiance fluxes that span the entire radiance spectrum. On the contrary,
by increasing the dynamic range of the image, the texture of the Earth
gradually fades, eventually resulting in almost null DN values when
the upper scale largely exceeds the maximum radiance emitted by the
Earth. However, even with the spacecraft as the only distinguishable
element in the scene, the Earth still represents an additional source of
disturbance within the image for image processing algorithms.

4.2. ROI detection performance

In the context of optical navigation, image processing techniques
play a crucial role in extracting effective scene information. As a con-
sequence, the generated dataset is leveraged to assess the performance
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Fig. 8. TIR images generated under radiometry mode.
Fig. 9. TIR images generated under detection mode.
of state-of-the-art object identification algorithms, focusing on ROI
detection within monocular thermal images. Since ROI detection serves
as a pre-processing step to be executed onboard the spacecraft prior
to the application of pose estimation algorithms for relative naviga-
tion, the selected ROI approaches must satisfy constraints in terms of
memory allocation and computational time. Consequently, this work
evaluates traditional methodologies, including thresholding techniques
and gradient-based methodologies. The first approach is Otsu thresh-
olding [47], which automatically selects the optimal global threshold
to discriminate the foreground elements from the background by max-
imizing the between-class variance. A similar technique implemented
is adaptive thresholding [48], where, unlike global thresholding, it
computes the threshold locally for each image region, whose dimension
is selected based on the trade-off between performance and computa-
tional time. A third method tested is WGE [4], which aims to isolate
619 
regions of the image characterized by stronger gradient distribution
compared to weak gradient regions potentially corresponding to the
background area. Lastly, DoG blob detector [49] is evaluated, whose
operating principle is based on detecting the blob-like structure in
the image at a specific scale depending on local maxima of the filter
response. After a quick assessment of the performance of the different
blob detectors, DoG is chosen as baseline as it represents the balanced
trade-off between computational time and accuracy of the results. It is
acknowledged that AI-based methods could also be adopted to estimate
the ROI with state-of-the-art performance, as demonstrated in [3,5,
50]; hence, these approaches will be further investigated in future
developments. After fine-tuning the hyper-parameters to improve the
performance of the individual techniques, the algorithms are evaluated
based on two different metrics. Firstly, the computational time on
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Table 6
Algorithms performance with radiometry data-set.

Method Material Mean Median Mean
IoU IoU time [ms]

Otsu
Mono-material 0.063 0.051 0.844
Multi-material 1 0.045 0.025 1.616
Multi-material 2 0.028 0.022 1.274

Adaptive
Mono-material 0.806 0.916 0.754
Multi-material 1 0.602 0.666 0.966
Multi-material 2 0.729 0.777 0.882

WGE
Mono-material 0.822 0.897 3.940
Multi-material 1 0.721 0.759 5.468
Multi-material 2 0.638 0.703 5.216

Blob - DoG
Mono-material 0.150 0.150 57.436
Multi-material 1 0.104 0.070 69.391
Multi-material 2 0.045 0.058 60.963
a
d
d
t

f

e
p

CPU is assessed, and since it is measured through a Python-based
lgorithm implementation, it is expected that the run time will be
igher compared to a C/C++ implementation scheme. Notably, testing
f running time on in-flight hardware has not yet been performed at
his stage of the study, but it remains a focus for future developments.
he second metric is IoU [51], which quantifies the degree of overlap

between the predicted bounding box and the corresponding ground
truth, allowing for the discrimination between true positive detections
and false positive ones.

Due to the significantly reduced performance observed under far-
range scenarios owing to the limited target size, this study exclusively
resents the outcomes pertaining to close-proximity conditions (from
5 m to 50 m).

Radiometry. The analysis of the average results reported in Table 6
reveals that Otsu thresholding and DoG detector consistently under-
erform compared to the other tested methodologies, regardless of the

material distribution. This phenomenon can be attributed to the highly
extured background, which challenges the fundamental assumption of
hese methods. Both of them rely on a global thresholding procedure,

which requires the image intensity histogram to exhibit two separate
classes of pixel intensity, each corresponding to a specific image level,
o achieve a successful detection. However, given that both the Earth
nd target cover the same radiance spectrum, these findings confirm
hat the use of a global threshold is ineffective in scenarios charac-
erized by limited contrast between the foreground and background
f the image. Significant improvements in the results are observed

with the introduction of a dynamic threshold, capable of adapting to
local variations in image intensity. Adaptive thresholding consistently
demonstrates superior performance of both IoU and computational
time, as the more precise image segmentation process enables the
preservation of edges and small-scale features. Similar results can also
be reached with WGE, which leverages gradient-based discrimination.

espite the inherent flaws of TIR imaging, gradient-based solutions
till offer accurate results, albeit with increased computational time,
s the computed gradient exhibits similar characteristics to that of a
IS image.

The general trend presented above remains consistent even for vary-
ing camera-target distances, as illustrated in Fig. 10. As the detection
range extends up to 50 m, the performance of the four methods shows a
elatively stable trend, highlighting a clear difference in the outcomes

achieved by Otsu and DoG compared to those of adaptive thresholding
and WGE techniques.

The precision of object detection algorithms is significantly influ-
nced by the contrast between foreground and background of the im-
ge, hence multi-material study cases pose notable challenges for all ap-
roaches, as demonstrated in Fig. 11. In the first scenario (Fig. 11(a)),

although both adaptive thresholding and WGE fail in including the
upper portion of the spacecraft within the ROI, they effectively detect
the base of the satellite as its appearance is enhanced by the dark
620 
Table 7
Algorithms performance with detection data-set.

Method Material Mean Median Mean
IoU IoU time [ms]

Otsu
Scale 1 0.124 0.031 1.002
Scale 2 0.576 0.867 0.337
Scale 3 0.904 0.900 0.328

Adaptive
Scale 1 0.677 0.832 1.564
Scale 2 0.715 0.837 0.406
Scale 3 0.714 0.838 0.373

WGE
Scale 1 0.767 0.804 4.444
Scale 2 0.837 0.881 4.003
Scale 3 0.838 0.882 3.970

Blob - DoG
Scale 1 0.802 0.697 15.28
Scale 2 0.862 0.698 13.546
Scale 3 0.860 0.714 13.766

background, thus providing the target position estimation with an
cceptable degree of accuracy. On the contrary, DoG and Otsu methods
emonstrate ineffectiveness to properly identify the spacecraft, as it
oes not correspond to the brightest portion of the image. An analogous
rend is observed in the second case (Fig. 11(b)), where the most

radiative portion of the artificial object blends into the background,
causing the algorithms to focus either on the brightest part of the
rame, or on the dark portion of the spacecraft, which stands out

against the Earth. A different outcome is observed in Fig. 11(c), where
target and Earth cover sufficiently different radiance spectrum. In such
cases, adaptive thresholding and WGE methods accurately detect the
ntire satellite, while DoG and Otsu approaches still confirm their lower
erformance.

Detection. With reference to Table 7, it is observed that the use of Scale
1 images consistently yields sub-optimal results irrespective of method-
ology selected. Despite the target being represented as a white and
well-defined area, the presence of saturated regions on the Earth sur-
face notably influences the final detection outcomes, especially when
highly textured backgrounds are considered. Increasing the dynamic
range of the captured scene significantly enhances the average per-
formance, as the improved contrast achieved in the images enables
more effective discrimination of the target against the background. The
largest improvement in detection capabilities involves methodologies
based on global thresholding, with Otsu approach showing an IoU
increment of 360% with halved computational time. Improvements
in the runtime are recorded also for adaptive thresholding and DoG,
while WGE exhibits a constant trend irrespective of the scale. The
most favourable outcomes are observed with the widest dynamic range
(Scale 3), where the Earth is marginally visible and its disturbance is
minimized. In this scenario, the image intensity histogram is split into
two separate regions, each associated with a specific image level, as
illustrated in Fig. 12, greatly improving the performance of both Otsu
and DoG approaches in the ROI extraction process.
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Fig. 10. IoU performance as function of the camera-target distance for different material combinations.
Fig. 11. ROI prediction with multi-material target.
Fig. 12. Scale 3 intensity histogram.
By observing Fig. 13, it is possible to verify the data reported in
Table 7, where the ROI predicted by each methodology are compared
under different radiance scales. It is clearly visible how the detection
capabilities of global thresholding improves with reduced Earth visibil-
ity, reaching an accuracy comparable to that of adaptive thresholding
and WGE.

Analogously to the analyses performed for the radiometry branch of
the dataset, the algorithms performance is evaluated as function of the
camera-target distance, as shown in Fig. 14. While Scale 3 frames show
minimal variation in IoU scores with increasing distance, substantial
peaks are observed with Scale 1 and Scale 2 representations, as the
lowest contrast of the image can yield the misclassification of the Earth
621 
as part of the background. Furthermore, it is here highlighted how the
performance of Otsu thresholding further improves with increased dy-
namic range, granting the highest scores when Scale 3 representations
are considered.

5. Case study: Tango spacecraft

Due to the satisfactory outcomes provided by state-of-the-art ap-
proaches in accurately detect a simplified spacecraft geometry, the
following section is dedicated to assessing the performance of the most
performant methodologies, namely adaptive thresholding and WGE
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Fig. 13. ROI prediction with different radiance scale choices.
Fig. 14. IoU performance as function of the camera-target distance for different scale choices.
algorithms, to verify their robustness with a more complex satellites,
both in terms of geometry and thermal properties.

The selected satellite for the case study is Tango, the target space-
craft in the Swedish-led PRISMA mission [14]. Given the lack of pub-
licly available thermal images for the selected spacecraft, a custom
dataset of 1000 noisy images of Tango is generated in radiometric
mode by exploiting the rendering pipeline presented in this paper.
The unavailability of an official CAD model of the satellite necessi-
tates the development of a simplified yet representative one based on
the dimensions of its main components reported in [4]. The thermal
properties are derived from the implementation of a multi-material
thermal simulation, where each system component is assigned the
corresponding radiative and thermophysical properties. However, the
assumption of graybody Lambertian emitter still applies.

Examples of synthetic images of Tango rendered under close-range
scenarios are shown in Fig. 15. While the rendering technique is the
same used to generate the simplified dataset illustrated in Section 4,
the geometrical and thermal properties of the Tango are significantly
more complex compared to the prism used to evaluate the performance
of traditional ROI detection algorithms. As a consequence, the result-
ing images show a different contrast distribution between Earth and
satellite, representing a more realistic scenario.

5.1. ROI detection performance

The analysis of the radiative heat flux emitted by Tango and in-
tercepted by the camera reveals that the radiation spectrum covered
is broader compared to that of the Earth. Under camera detection
mode, this results in images characterized by a uniform white region
representative of Tango against a background of variable intensity,
622 
Table 8
Algorithms performance with radiometry data-set of Tango spacecraft.

Method Mean IoU Median IoU Mean time [ms]

Adaptive 0.625 0.705 1.217
WGE 0.393 0.161 6.123

similarly to the representations reported in Fig. 9. As a consequence,
it is expected that the results presented in Table 7 will hold true also
for a more complex geometry, and the following ROI detection analysis
only relies on the radiometry dataset of Tango spacecraft.

Table 8 reports the median IoU score and the mean computa-
tional time achieved by adaptive thresholding and WGE algorithms.
The general trend of adaptive thresholding mirrors the one presented
in Table 6 for the simplified multi-material target, demonstrating its
robustness when faced with complex geometries and different material
distributions. By observing the images reported in Fig. 16 it can be
noticed how the intrinsic nature of adaptive thresholding allows it to
adjust to the unique characteristics of each image, enabling an accurate
detection with different backgrounds. On the contrary, WGE encounters
significant challenges during the detection process, reaching an average
score of just 0.2. Due to the heterogeneous thermal properties of Tango,
its gradient distribution can be hardly distinguished from the Earth
contribution, as reported in Fig. 17, and since the algorithm employs
a fixed threshold for gradient discrimination rather than a variable
one, it struggles in identifying the target. By focusing the attention on
Fig. 16(a) and its corresponding gradient distribution (Fig. 17(a)), it can
be observed that there is not a clear distinction between the gradient
of the Earth and the one associated to the target, thus misleading
the detection process and including part of the background into the
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Fig. 15. Tango TIR images generated following the presented methodology under radiometry mode.
Fig. 16. ROI detection with Tango.
bounding box. A different scenario is observed in Fig. 16(b) and the
corresponding gradient in Fig. 17(b). Here the gradient associated to
the front face of Tango is characterized by a higher contribution with
respect to the background, aiding the algorithm in the identification
of the target. Yet, the use of a fixed gradient threshold leads to the
erroneous detection of the highly-textured portion of the Earth, which
is characterized by a higher contrast distribution. Better results are
visible in Fig. 16(c), where the satellite emits a radiative flux higher
with respect to that of the Earth, yielding a more pronounced gradient
distribution. In this case, WGE is able to accurately detect the target
with an accuracy of IoU=0.80, comparable to the 0.83 score reached
by adaptive thresholding.

Tables 6 and 8 highlight the significant difference in performance of
the WGE algorithm when applied to the simplified multi-material target
and the Tango spacecraft. In the simplified case, the target consists of
only two materials, and despite one of them having a low emissivity,
hence appearing as a dark blob and blending with the background, the
higher emissivity of the remainder of the spacecraft allows the algo-
rithm to detect the target, as it appears brighter compared to the rest of
the scene. However, this is not the case of the Tango spacecraft, whose
heterogeneous thermal properties and a more complex geometry make
accurate detection more challenging. As a consequence, the simplified
test case presented in the previous sections is based on overly stringent
assumptions, necessitating a refinement of the model.

In the final analysis, the robustness of WGE algorithm is compro-
mised when confronted with a wide spectrum of material combina-
tions and highly textured backgrounds, whereas adaptive thresholding,
thanks to its flexibility, proves better suited for applications to diverse
scenarios as the one included in the generated dataset.
623 
6. Conclusions and future works

The work presented in this article highlighted the necessity of
investigating the potential of monocular thermal imaging for naviga-
tion purposes. Prior to the direct application of navigation algorithms,
a pre-processing step is implemented, evaluating the performance of
state-of-the-art computer vision methodologies with the focus on object
detection when a low-Earth environment is encountered. This issue
is firstly addressed by generating a dataset of spaceborne scenarios
through the implementation of a rendering pipeline that accounts for
the properties of the thermal camera and its main noise sources, and
for the physical interpretation of the radiative heat exchange between
the sensor and the observed scene. The background of the generated
images includes the Earth, whose model is based on satellite-based mea-
surements collected in the CERES database, which allow to model its
infrared behaviour while reducing the computational burden required
for the rendering process. The resulting synthetic images have been
leveraged to evaluate the performance of ROI detection algorithms. The
analysis of both thresholding techniques and gradient-based method-
ologies highlighted the influence of camera mode, material combina-
tions, dynamic range, and presence of the textured backgrounds on the
detection accuracy. Despite the simplified target geometry, the analyses
performed for the radiometry mode show that adaptive thresholding
and WGE demonstrate promising results in mitigating the influence of
the Earth in the ROI extraction process, reaching mean scores up to
0.91 and 0.89, respectively, while maintaining computational times in
the order of few milliseconds. The inclusion of multi-material targets
revealed how low emissivity portions of the spacecraft can affect the de-
tection capabilities, especially in correspondence of cooler background
regions, leading to decrements in the performance of 22% for WGE.
The analyses performed on the detection dataset confirm the superior
performance of adaptive thresholding and WGE, while concurrently
revealing a large performance increment for DoG detector, reaching IoU



L. Bianchi et al. Acta Astronautica 226 (2025) 611–625 
Fig. 17. Gradient distribution of the Tango images reported in Fig. 16.
values of 0.6. The enlargement of the dynamic range of the image scale
results in extremely high-contrast images, yielding higher scores for all
the evaluated methodologies. Yet, adaptive thresholding and WGE still
prove the most suited algorithms irrespectively of the selected scale. As
a consequence, these two algorithms have also been tested on a set of
TIR images representative of the test case of Tango spacecraft under
radiometry scenarios. The increased geometrical complexity entails
a decrement in performance compared to the simplified spacecraft
scenario, showing a big shift in performance of the WGE. On the
contrary, adaptive thresholding still reaches an average IoU of 0.705,
thus providing satisfactory detection accuracy. The results derived from
the proposed analyses confirm the possibility of exploiting monocular
thermal imaging for autonomous close-proximity operations, yet an
intensive algorithm testing campaign shall be performed on a more
comprehensive dataset of images.

6.1. Future developments

The future developments may focus on the improvement of the geo-
metrical model of the target, along with the validation of the rendering
pipeline developed. Conducting a validation campaign with a flight
hardware is fundamental to verify the accuracy of the implemented
model and enhance the fidelity of the generated outcomes. However,
this implies the development of an adequate facility representative of
the space environment, which poses significant challenges particularly
regarding the thermal control of the scene. It could be also interesting
to evaluate the performance of machine learning algorithms. Leverag-
ing the promising results already demonstrated in the VIS spectrum,
AI-based techniques could aid in identifying and learning distinctive
target features and surface thermal properties, refining the detection
area and yielding a more robust architecture. To enhance the adapt-
ability of the process and develop an algorithm that perform well
regardless of the selected spectral band, the network can be trained and
tested on a mixed dataset including VIS, TIR and VIS-TIR fused images.
This approach would also optimize the computational resources and
simplify the pipeline for processing multi-spectral images. Additionally,
hardware-in-the-loop activities can be performed to integrate the devel-
oped algorithms with in-flight hardware components and optimize the
selected procedures to meet memory requirements.
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