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Cooperative Deep-Learning Positioning in mmWave
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Abstract— In application verticals that rely on mission-critical
control, such as cooperative intelligent transport systems (C-ITS),
5G-Advanced networks must be able to provide dynamic posi-
tioning with accuracy down to the centimeter level. To achieve
this level of precision, technology enablers, such as mas-
sive multiple-input multiple-output (mMIMO), millimeter waves
(mmWave), machine learning and cooperation are of paramount
importance. In this paper, we propose a cooperative deep learning
(DL)-based positioning methodology that combines these key
technologies into a new promising solution for precise 5G
positioning. Sparse channel impulse response (CIR) data are used
by the positioning infrastructure to extract position-dependent
features. We model the problem as a joint task composed of non-
line-of-sight (NLOS) identification and position estimation which
permits to suitably handle geometrical location measurements
and channel fingerprints. The network of base stations (BSs)
automatically steers between egocentric (in case of NLOS) and
cooperative (for LOS) positioning mode. We perform extensive
standard-compliant simulations in a 5G urban micro (UMi)
vehicular scenario obtained by ray-tracing and simulation of
urban mobility (SUMO) software. Results show that the proposed
cooperative DL architecture is able to outperform conventional
geometrical positioning algorithms operating in LOS by 47%,
achieving a median error of 71 cm on unseen trajectories.

Index Terms— Cooperative positioning, deep learning, 5G,
channel impulse response, cooperative intelligent transport
systems.

I. INTRODUCTION

THE currently deployed release of 5th generation (5G)
cellular networks, 3rd generation partnership project

(3GPP) Release 16, lays the foundations for future location
awareness systems that are foreseen to extend the location
services (LCS) beyond regulatory use cases (i.e., emergency
and lawful interception) to include roaming and commercial
capabilities [1], [2], [3], [4]. These systems are made
possible by the use of higher frequencies, i.e., millimeter
waves (mmWave), with enlarged bandwidth, and massive
multiple-input multiple-output (mMIMO) technologies [5],
which enhance radio access technology (RAT)-dependent
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measurements in accordance with 3GPP standards [6], [7].
However, future releases of 5G and beyond, such as 5G-
Advanced from Release 18, will face challenges in achieving
the centimeter-level absolute accuracy required by the most
demanding 5G use cases due to higher path loss and frequent
blockages [8], [9].

Legacy solutions such as least squares (LS) multi-
lateration/angulation may struggle to effectively handle sit-
uations with low signal-to-noise ratio (SNR), multipath
ambiguities, and particularly non-line-of-sight (NLOS) con-
ditions [10], [11]. A potential solution is already foreseen by
a novel paradigm called integrated sensing and communication
(ISAC) [12], [13], [14]. Specifically, 5G base stations (BSs)
(also known as gNodeBs) can natively support ISAC through
the use of a joint signal processing framework, allowing
for a more efficient utilization of spectrum resources. The
integration of communication and sensing features on the
same hardware platform is, at present time, not yet been
commercialized. Nevertheless, synthetic datasets are emerg-
ing [15], [16], [17] with the clear objective of permitting
the design of novel artificial intelligence (AI) and machine
learning (ML) algorithms which will play a fundamental role
in next-generation networks [18], [19], [20], [21], [22].

In the context of cooperative intelligent transport systems
(C-ITS), connected automated vehicles (CAV) rely on ML,
and more specifically deep learning (DL), for various func-
tions, including identifying and segmenting objects within
images, controlling the vehicle and avoiding collisions, and
determining the most efficient route [23], [24]. Because of the
high complexity of such tasks (including precise positioning),
urban areas may install computing units, namely roadside
units (RSUs), on busy roads that CAV will be able to use
to offload part of the computing activities [25], [26]. Cooper-
ation between nearby RSUs, here referred to as BSs, is of
paramount importance for enabling network-based precise
localization [27], [28]. A key aspect is that, in 5G industrial
applications such as automated driving, BSs often have access
to a large amount of historical channel state information
(CSI) data that is continuously received from geolocalized
vehicles [29], [30].

While having a perfect knowledge of the overall CSI is
unfeasible, e.g., accurate delays, angle of arrivals (AoAs)
and power gains, the usage of estimates of the channel
impulse response (CIR) can be adopted by ML approaches
to learn relevant information about the environment and its
propagation characteristics [31]. It is important to observe
that not only LOS but also NLOS CIRs embed significant
location information, though embedded in distinct peculiar
distributions. Therefore, CIRs can be exploited in both cases
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for positioning goals. Distinguishing between LOS/NLOS con-
ditions is extremely important since the derived measurements
are fundamentally different. In case of LOS condition, the
extracted features can be combined by a cooperative set
of BSs as in conventional geometric methods in order to
enhance satellite positioning. On the contrary, NLOS features
represent a real challenge for the system since they are related
to a specific environment, acting as area-specific fingerprints.
A complete solution for both situations has yet to be found.
Therefore, in this paper, we propose a cooperative DL solution
for the joint problem of NLOS identification and 3D position
estimation that takes as input the high-dimensional sparse
CIRs. We model the problem of NLOS position estimation
as an egocentric system at each BS, while a cooperative
architecture is proposed for LOS conditions.

Table I and II list the main abbreviations and notations used
throughout the paper, respectively.

A. Paper Organization

The remainder of this article is structured as follows. Sec. II
presents an overview of the state of the art on wireless
localization with ML and DL. Sec. III describes the system
model, the MIMO-orthogonal frequency division multiplex-
ing (OFDM) channel and related angle-delay channel power
matrix (ADCPM) adopted as input for ML-based positioning.
In Sec. IV, we discuss the proposed supervised ML setting
and the DL model stored in each BS for the joint NLOS
detection-positioning task prediction. Sec. V extends the
model to be compliant with a cooperative architecture based on
a set of collaborative BSs for positioning purposes. Section VI
provides information on the simulated 5G scenario and com-
pares the proposed method with conventional positioning
algorithms. Finally, in Section VII, we draw the conclusions.

II. RELATED WORKS AND CONTRIBUTIONS

A. Early Works on NLOS Detection and Positionong
First works on NLOS identification and localization with

ML were applied to ultra wide-band (UWB) systems. They
typically used hand-crafted features of the channel, such as
energy, maximum power, rise time, mean excess delay, root-
mean-square delay spread, and kurtosis, as inputs [32], [33],
[34], [35], [36]. The most commonly used ML models in
these studies were Gaussian processess (GPs), support vector
machines (SVMs), and relevance vector machines (RVMs).
While achieving good results, these methods could not fully
exploit the ML potential as they heavily relied on a pre-defined
and limited set of features that could not express the whole
location information enclosed in the CSI.

Other methods, mainly based on received signal strength
(RSS) fingerprinting, were proposed for precise position-
ing using Wi-Fi technology [37], [38]. With the advent of
MIMO-OFDM systems in IEEE 802.11a/n protocol, allowing
for the extraction of CSI from commercial Wi-Fi devices, there
has been significant research on wireless positioning, behav-
ioral awareness, and target tracking using CSI. The access
to channel information over multiple carriers and antennas
gave the possibility to extract detailed information about the
propagation of the radio signal, and to learn not only the

position of the user [39], [40], [41] but also information
about the environment that shaped such propagation [42].
DL approaches were employed to directly learn the optimal
non-linear combination of features and produce the desired
NLOS classification or position estimation as output. Studies
in this field can be found in [43], [44], [45], and [46], adopting
convolutional neural networks (CNN) for feature extraction.

B. DL for High-Precision Positioning

In outdoor conditions, DL-based positioning is a relatively
new concept, but with a great potential of achieving high
levels of accuracy. Authors in [16] achieve a mean positioning
error of 1.5 m by using a cell-specific neural network (NN)
in 5G Rel. 15 networks, but considering LOS environments
only. NLOS prediction is handled through statistical tests [47]
or directly included into the model’s prediction [48], [49].
A recent study [50] adopted a variational autoencoder (VAE)
to extract features and impose a Gaussian distribution on
the latent features for the purpose of binary classification of
samples as LOS or NLOS. While the use of an autoencoder
(AE) to obtain a compact representation of the channel can
yield good results, the reliance on sampling-based methods
for prediction makes this approach not suitable for real-time
applications.

The employment of full CIR data, especially stacked into
image-shapes, has emerged recently as a promising approach.
Authors in [51] adopted both CIR (i.e., path power gain, phase
and time of flight (ToF)) as well as geographical information
(i.e., AoA and angle of departure (AoD)) to predict the user
equipment (UE) location. However, they assumed perfect CIR
knowledge by ray-tracing, which is hard to achieve under
practical conditions. Authors in [52] employed as input the
channel frequency response (CFR) matrix computed by prac-
tical channel estimation and augmented with additive noise at
training time. Despite achieving good results, the CFR matrix
does not explicitly express AoA nor ToF of each path and
thus may add complexity in feature extraction. A recent work
[53] adopted a 3D CNN with inception modules to directly
predict the position of a UE from an ADCPM. This approach,
however, highly relies on the fingerprint sampling-distance
and it is not able to distinguish between LOS and NLOS
conditions, treating each position as equal. In other words,
there are no distinctions between geometrical features, useful
in LOS environments, and merely NLOS position-dependent
fingerprints. Furthermore, no works are available in the litera-
ture on DL-based location estimation using data collected by
multiple cells, i.e., by the cooperation of BS’s. Works mainly
rely on centralized processing [54] or vehicle-to-vehicle (V2V)
communications [55], [56].

C. Contributions
In this paper, we address the problem of precise cooperative

positioning in urban environments covered by 5G mm-wave
networks and we propose a new DL-based approach that
allows to exploit the full potential of wideband space-time
CIR for localization. The main contributions are as follows.
• We propose a new method for the extraction of

location-related features from the CIR of 5G mmWave
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TABLE I
LIST OF ABBREVIATIONS

OFDM MIMO links. The channel is parameterized in
terms of ADCPM matrices, typically sparse, that can
be treated as images and used to capture the location-
dependent features. The sparse ADCPM directly includes
the AoAs and ToFs and is fully compliant with the
3GPP Release 16 standard, providing CSI data that is
representative of real 5G communication.

• We model the problem of NLOS identification and posi-
tion estimation as a joint task, proposing a novel loss
function to simultaneously learn a compact representation
of the channel, i.e., latent features, and maximize the
log-likelihood of the joint task.

• We develop a DL model for network-based localiza-
tion that automatically steers between ego-positioning
in NLOS environments and cooperative-positioning in
LOS situations, exploiting neighbors BSs predictions to
enhance the location accuracy.

• We simulate a realistic C-ITS scenario in an urban
environment. The simulated network is fully compliant
with the 5G standard [57] and provides realistic outdoor
conditions through the use of Matlab ray-tracing software.
We simulate multiple trajectories of vehicles, i.e., UEs,
created with simulation of urban mobility (SUMO) soft-
ware [58]. Simulations are used to assess the performance
of the DL-based method, showing significant gains over
conventional techniques.

Notation

We denote with j =
√
−1 the imaginary unit. Columns

vectors and matrices are denoted by lower- and upper-case
characters, respectively. Matrix conjugation, transposition and
conjugate transposition are indicated as AH , AT and A∗,

TABLE II
LIST OF NOTATIONS

respectively. We indicate the Hadamard and Kronecker product
between two matrices with ⊙ and ⊗, respectively. The symbol
E[·] is used for expectation of random variable, whereas C
and R are the set of complex and real numbers, respectively.
We denote with N (x; µ, σ2) the distribution of a Gaussian
random variable x with mean µ and standard deviation σ.
δ(·) and δ[·] indicate the Dirac delta and Kronecker func-
tions, respectively, while ⌊x⌋ represents the largest integer not
greater than x.

III. SYSTEM MODEL

In this section, we define the channel model and the
location-related channel fingerprints that will be used by the
proposed DL positioning algorithms in Sec. IV. For simplicity
of notation, we here report the multi-user single-BS case,
leaving the extension to a set of cooperative BSs in Sec. V.

A. Channel Model

Let us consider a wide-bandwidth multi-user MIMO-OFDM
system operating at carrier wavelength λc where K UEs com-
municate with a BS in uplink direction. The UE is equipped
with an omni-directional antennas, whereas a uniform planar
array (UPA) with N × M isotropic antenna elements (i.e.,
N and M elements in the vertical and horizontal directions,
respectively) is installed in the cell panel of the BS. The
antenna elements are separated by a distance d(h) and d(v) in
the horizontal and vertical direction, respectively. A multipath
channel with Nk paths is present between the BS and the
UE k. The overall scenario is represented in Fig. 1, where the
generic p-th path of the k-th UE channel is represented, jointly
with the direction of arrivals (DoAs) of the signal impinging
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Fig. 1. BS receiving the uplink signal from the k-th UE through an UPA. The
DoA of the p-th path is composed by the zenith angle θk,p and the azimuth
angle ϕk,p.

the antenna panel, composed by a zenith angle 0 ≤ θk,p ≤ π
and an azimuth angle 0 ≤ ϕk,p ≤ π.

We consider an OFDM modulation with sampling interval
Ts, Nc sub-carriers and symbol duration Tc = NcTs. The ℓ-
th sub-carrier has frequency fℓ = ℓ

Tc
, ℓ = 0, . . . , Nc − 1 and

we assume that the cyclic-prefix duration Tg = NgTs is greater
than the maximum channel delay among all UEs, τMAX , while
Ng is the number of sampling interval that composes a guard
interval. The temporally resolvable propagation delay related
to the p-th path and k-th UE is indicated with rk,p = ⌊ τk,p

Ts
⌋.

According to this notation, we model the baseband CIR of
user k as [59]:

qk(τ)=
Nk∑
p=1

ak,p e−j2π(
dk,p

λc
−νk,pτk,p) e(θk,p, ϕk,p)δ(τ−τk,p),

(1)

where αk,p = ak,pe
−j2π(

dk,p
λc

−νk,pτk,p) is the complex gain
of p-th path which also includes the frequency shift due to
Doppler νk,p and has average power σ2

k,p = E[|ak,p|2], dk,p =
cτk,p is the traveled distance (with c being the speed of light in
air), δ(τ−τk,p) is the delta Dirac function and e(θk,p, ϕk,p) ∈
CMN the array response vector [60]. We assume that over the
time interval τMAX , the rotation due to the Doppler is almost
constant.

Considering sampling time with rate 1/Ts and assuming
each different path independent and wide sense stationary [59],
we can write the CFR at the ℓ-th sub-carrier as [61]:

hk,ℓ =
Nk∑
p=1

ᾱk,pe(θk,p, ϕk,p), (2)

where ᾱk,p = αk,pe
−j2πτk,pfl are the equivalent channel gains

in the frequency domain. Concatenating the different CFRs
at each sub-carrier, we obtain the space-frequency channel
response matrix (SFCRM):

Hk = [hk,0 hk,1 . . . hk,Nc−1] ∈ CMN×Nc , (3)

which will be used in the next section for ADCPM extraction.

B. ADCPM Location Fingerprints

For location estimation, it is convenient to convert the
channel response to the angle-delay domain, where the iden-
tification of the LOS component (if present) and secondary
NLOS macro-paths is facilitated. In fact, in LOS condi-
tion, AoA and ToF can be effectively used to localize a
UE thanks to their geometric relationship with the location.
At the same time, in NLOS circumstances, different surround-
ing environments hold different channel parameters, acting
as location-dependent features (or fingerprints). Therefore,
we transform the SFCRM in (3) into an angle-delay channel
response matrix (ADCRM) by introducing the phase-shifted
discrete Fourier transform (DFT) matrices VM ∈ CM×M

and VN ∈ CN×N , where [VM ]i,j = 1√
M

e−j2π
i(j−M

2 )
M and

[VN ]i,j = 1√
N

e−j2π
i(j−N

2 )
N . We denote with F ∈ CNc×Ng the

matrix formed by the first Ng columns of Nc dimensional
unitary DFT matrix where [F]i,j = 1√

Nc
e−j2π ij

Nc . Finally,
we compute the ADCRM as [53]:

Gk =
1√

MNNc
(VH

M ⊗VH
N )HkF∗ ∈ CMN×Ng , (4)

where F∗ and (VH
M ⊗VH

N ) project the SFCRM into the delay
and angle domain, respectively.

For positioning purposes, we propose to use power-angle-
delay profile, represented by the ADCPM:

Pk = E[Gk ⊙G∗
k] ∈ CMN×Ng , (5)

where [Pk]i,j = E[|[Gk]i,j |2]. It can be shown indeed that
for N , M and Ng →∞, the ADCPM approximates a sparse
matrix with elements [Pk]i,j matching the i-th AoA and the
j-th ToF [53]:

lim
M,N,Ng→∞

[Pk]i,j =
Nk∑
p=1

σ2
k,pδ[i−mk,pN − nk,p]δ[j − rk,p],

(6)

where rk,p indicates the index of the j-th ToF and mk,pN +
nk,p refers to the index of the i-th AoA. Therefore, the
statistical information of the ADCPM enables the learning
by the DL model of the location-dependent characteristics,
delivering steady and trustworthy fingerprints for positioning.

C. DL Model Input

We propose to employ the ADCPM as a set of measure-
ments for location estimation. This sparse matrix provides
indeed a visual image of the multipath configuration in the
power-angle-delay domain from which a DL model such
as CNN can extract the most representative location-related
features. Additionally, since the first layers of CNN are often
sparse and collect the highly discriminating features, the CNN
eases features extraction from the ADCPM sparse channel
matrix [62]. Moreover, the ADCPM embodies all the relevant
information (i.e., ToF, AoA and RSS for every path) with
small storage and low complexity characteristics thanks to the
channel sparsity. To highlight this aspect, in Fig. 2 we show
an example of ADCPM Pk composed by Ng = 352 delay
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Fig. 2. Example of sparse channel power-delay-angle profile encoding the
UE location, represented by an ADCPM with Ng = 352 temporal samples
and NM = 64 spatial samples (resulting from N = M = 8 antennas)
(a) and in the transformed angle-delay domain (b).

samples and MN = 64 angle directions. The actual model
input can be seen in Fig. 2a, while the polar representation of
the ADCPM with physical AoAs and ToFs is in Fig. 2b. Even
in the absence of a large number of antennas or a high sample
resolution, the matrix sparsity is clearly visible. Therefore,
we propose to use the ADCPM as input to the model and
we denote the i-th sample with xi = Pi, dropping the index
k for ease of notation.

IV. METHODOLOGY: SINGLE-BS LOCALIZATION

In this section, we first tackle the localization problem in
a supervised setting in which a single BS has to locate the
UE. We propose a DL model (Sec. IV-A) and a loss function
for the joint task of position estimation and LOS identification
(Sec. IV-B). The approach will then be extended to the multi-
BS, i.e., cooperative, case in Sec. V.

A. Deep Learning Model

We assume a supervised ML setting in which both a
regression and a classification problem have to be solved by a
single BS. The regression problem refers to the estimation of
the UE’s position, while the classification problem concerns
the LOS/NLOS identification. We define the training dataset
as S train = {(xi,ui, si)}Ntrain

i=1 , where xi = Pi denotes the i-th
input sample (i.e., ADCPM channel response), ui represents
the 3D position and si ∈ {0, 1} is the Boolean identifier of the
sight condition. To validate the performances, we also hold a
similar test dataset S test composed of Ntest samples.

We note that the regression and classification tasks are
two interrelated problems that must be addressed accordingly.
In fact, if the UE lies in a LOS condition, its position can be
directly computed from the geometrical features of the direct
path (i.e., ToF, AoA and mean power), while NLOS typically
requires a finer training based on more complex multipath
fingerprints.

To extract such key features from the ADCPM samples
xi, we propose to employ an AE, with structure represented
in Fig. 3. The encoder E(·) is used to produce the hidden
(or latent) features zi (including the location-related infor-
mation embedded in the channel), while the decoder D(·)
tries to reconstruct the input samples obtaining x̂i. The AE
is designed so as to minimize a metric of the reconstruction
error ∥xi − x̂i∥22 [63], making the model able to reconstruct
the input xi from the low-dimensional data zi. This guarantees
that zi contains all the necessary and sufficient information to
accomplish the specific task.

The tasks herein considered are position regression and
LOS identification. Therefore, in principle, two NNs with zi

as input, should be sufficient. However, due to the major
difference between position estimation in LOS and NLOS
conditions, we propose to use three separate NNs: one for LOS
identification, one for position regression in LOS conditions
and one for position regression in NLOS conditions. Given the
overall model with parameters defined as W, the output of the
NNs is respectively: p̂s,i ∈ [0, 1], ûLOS,i ∈ R3 and ûNLOS,i ∈
R3. Specifically, p̂s,i = p(si) predicts the probability that the
sample xi relates to a UE in LOS condition, while ûLOS,i and
ûNLOS,i predict the 3D position of the UE in LOS and NLOS
settings, respectively. The overall position estimate, indicated
with ûi, is obtained by applying a threshold Γ to p̂s,i and
considering only ûLOS,i or ûNLOS,i according to the result:

ûi = Γ(p̂s,i)ûLOS,i + Γ(1− p̂s,i)ûNLOS,i. (7)

The position estimates in LOS and NLOS are then adopted in
the loss function for the model training, described in the next
section.

B. Loss Function for Joint Sight Detection and Localization

In order to train the model, we have to define a loss
function whose objective is to enable learning the correct
representation of the latent features and, at the same time,
jointly estimating the sight condition and the location. To this
aim, we first treat separately the classification and regression
tasks and then we combine them with an overall objective
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Fig. 3. Overview of the proposed model composed by an autoencoder (AE) for feature extraction, and 3 neural networks (NNs) for NLOS classification and
position estimation in both LOS and NLOS conditions.

function. For the classification task, we propose a discrimina-
tive probabilistic approach, namely the maximum likelihood
[64], where we directly define the posterior conditional prob-
ability p(si|xi) using a parametric model W, i.e., p(si|xi) =
p(si|xi,W). Subsequently, we maximize the likelihood of
the model p(si|xi,W), by optimizing the parameters W
over the training set. For the specific binary classification
problem, the likelihood function is:

p(si|xi,W) = p̂s,iδ[si − 1] + (1− p̂s,i)δ[si]. (8)

For the regression task, we reiterate the discriminative
approach with the constraint of belonging to a specific condi-
tion, either LOS or NLOS. Again, this is done considering that
the two circumstances hold different statistics. We assume that
in the LOS case, the target variable ui (i.e., the location) is
Gaussian distributed with a deterministic mean ûLOS,i(xi,W):

ui = ûLOS,i(xi,W) + ϵϵϵLOS, (9)

where ϵϵϵLOS is a zero-mean random Gaussian variable with
covariance CLOS = I3σ

2
LOS, and I3 denoting the 3×3 identity

matrix. The likelihood function is thus given by:

p(ui|si = 1,xi,W,CLOS)
=NNN (ui; ûLOS,i(xi,W),CLOS). (10)

Similarly, the likelihood function of the regression problem in
NLOS conditions can be written as:

p(ui|si = 0,xi,W,CNLOS)
=NNN (ui; ûNLOS,i(xi,W),CNLOS). (11)

Note that the requirement on the mono-modality of ui, both
in LOS and NLOS, can be easily disregarded by applying for
example a mixture of experts model [65].

Combining (8), (10) and (11), we define the joint likelihood
for the variables (ui, si) as:

p(ui, si|xi,W,CLOS,CNLOS)
= p̂s,iδ[si − 1]NNN (ui; ûLOS,i(xi,W),CLOS)

+ (1− p̂s,i)δ[si]NNN (ui; ûNLOS,i(xi,W),CNLOS). (12)

A representation of the distribution can be found in Fig. 4.
In order to maximize the likelihood, we insert the negative
log-likelihood in the loss function. It can be shown that the
the negative log-likelihood of a batch of independent samples
can be written as (see Appendix A):

Ltask ⋍ −log
Nb∏
i=1

p(ui, si|xi,W,CLOS,CNLOS)

=
Nb∑
i=1

{
si ·

[
−log(p̂s,i) +

∥ui − ûLOS,i∥22
2σ2

LOS

]

+ (1− si) ·
[
−log(1− p̂s,i) +

∥ui − ûNLOS,i∥22
2σ2

NLOS

]}
,

(13)

where Nb is the batch size. Whenever the LOS condition
occurs, the second right-hand side of (13) does not contribute
to the likelihood, whereas if NLOS holds, only the first right
hand side is considered.
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Fig. 4. Joint likelihood distribution of (ui, si). Here, for sake of simplicity,
the multi-dimensional Gaussian distributions are represented as uni-variate.

Finally, the complete adopted loss function is:

Ltot =
wrec

Nb

Nb∑
i=1

∥xi − x̂i∥22

+
1

Nb

Nb∑
i=1

{
wssi ·

[
−log(p̂s,i) + wu∥ui − ûLOS,i∥22

]
+ (1− si) ·

[
−log(1− p̂s,i) + wu∥ui − ûNLOS,i∥22

]}
(14)

where wrec regulates the sample reconstruction, ws compen-
sates the unbalances between LOS and NLOS samples and wu
controls the uncertainty of the model on the position estimation
and includes both σ2

LOS and σ2
NLOS.

V. METHODOLOGY: COOPERATIVE LOCALIZATION

In this section, we extend the approach for UE positioning
to a multi-BS scenario. We present at first the proposed
cooperative AE architecture and then the cooperative training
procedure that can be used in practice to deploy the set of BSs
composing the localization infrastructure.

A. Cooperative Architecture

We propose a cooperative architecture where each BS
adopts a cell-specific DL model. The main assumptions behind
the proposed architecture are the following. First, each BS is
able to evaluate whether a UE is in LOS or NLOS condition
based on the observed ADCPM and the procedure described
in Section IV. Second, in case of NLOS, a position estimate is
obtained by the BS by means of a previous fingerprint training
procedure. Third, the latent geometrical features adopted by
the LOS position estimation are combined in order to get
a more accurate inference. This is somehow intuitive if we
consider the latent features as a sort of non-linear combination
of ToF and AoA measurements that each BS can share with
the neighbors’ cells.

Let us denote by SBS,i = {1, . . . , SBS,i} the set of BSs
which detect a UE at timestep i, and gather a batch of
samples Xi = {x(j)

i }
SBS,i

j=1 . Note that the number of detected
BSs can vary at every timestep, without being constrained to
detect a minimum number of BSs, as opposed to classical
geometrical approaches. As illustrated in the pseudo-code in

Algorithm 1 Cooperative Position Inference

Input: sample x(j)
i , neighbors’ BS N (j)

i ▷ Run on BS j at
timestep i

Output: estimated position û(j)
i

1: Encode sample x(j)
i through encoder E : z(j)

i ← E(x(j)
i )

2: Initialize the latent features
z(j)

s,i ← z(j)
i , z(j)

LOS,i ← z(j)
i , z(j)

NLOS,i ← z(j)
i

3: Predict probability of LOS condition p̂
(j)
s,i from z(j)

s,i

4: for j′ = 1, 2, . . . ,N (j)
i do

5: Send {p̂
(j)
s,i , z(j)

LOS,i} to j′

6: Receive {p̂
(j′)
s,i , z(j′)

LOS,i} from j′

7: end for
8: Assign ẑ(j)

PLOS,i ←
1∑SBS,i

j′=1
p̂
(j′)
s,i

∑SBS,i

j′=1 p̂
(j′)
s,i z(j′)

LOS,i

9: Predict LOS position û(j)
LOS,i from ẑ(j)

PLOS,i

10: Predict NLOS position û(j)
NLOS,i from z(j)

NLOS,i

11: Estimate position û(j)
i ← Γ(p̂(j)

s,i )û
(j)
LOS,i+

Γ(1− p̂
(j)
s,i )û

(j)
NLOS,i

Algorithm 1, the main idea is that, for position inference, each
BS j computes its latent features z(j)

i . At this stage, there is
no difference between z(j)

i , z(j)
s,i , z(j)

LOS,i, and z(j)
NLOS,i and the

inference proceeds as in the single-BS method. Then, if the
BS predicts a NLOS condition, the latent features extracted
by that BS are not combined with other cells (e.g., as a
multi-lateration) and position estimation continues according
to the û(j)

NLOS,i prediction. On the contrary, if we are in LOS
condition, then the latent LOS features z(j)

s,i are exchanged
with the neighbors’ cells, defined with N (j)

i = SBS,i\{j}.
After averaging the latent LOS features z(j)

s,i , the position is
estimated with û(j)

LOS,i.
As an example of cooperative inference, we refer to the

scenario shown in Fig. 5 where three BSs detect a UE, here
represented by a vehicle. NLOS and LOS links are indicated
with red and green dashed arrows, respectively. Since BS j
and j′′ are in LOS condition with respect to the vehicle, the
contribution of z(j)

s,i and z(j′′)
s,i to the position estimation will be

higher than z(j′)
s,i . The negligible contribution of NLOS BSs

is highlighted with red solid arrows while significant latent
features are colored in green. This is due to the fact that the
probability of LOS condition of BS j′ will be low, i.e., p̂

(j′)
s,i <

p̂
(j)
s,i and p̂

(j′)
s,i < p̂

(j′′)
s,i . The outcome is an increased accuracy

on the position estimation which is not or little affected by
NLOS BSs.

B. Cooperative Training

For the training of the cooperative set of BSs we propose
the following procedure. During the data gathering phase, a
UE (e.g., a vehicle) moves along specified trajectories (a-
priori divided into LOS and NLOS segments) sending uplink
signals, i.e., sounding reference signal (SRS), to every BS in its
range. The time instant of the transmission, the coarse position
obtained from global navigation satellite systems (GNSS) and
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Fig. 5. Cooperative inference scenario composed of three BSs.

the LOS identification are either sent to the BSs as auxiliary
data through the communication link, or stored inside the UE
for the post-processing. As for the inference, the BSs evaluate
the ADCPM samples and store the data. In order to perform
back-propagation at BS j, the loss function is computed as:

L(j)
tot =

wrec

Nb

Nb∑
i=1

∥∥∥x(j)
i − x̂(j)

i

∥∥∥2

2

+
1

Nb

Nb∑
i=1

{
wss

(j)
i

[
wu

∥∥∥u(j)
i − û(j)

LOS,i(z̄
(j)
LOS,i)

∥∥∥2

2
− log(p̂(j)

s,i )
]

+(1− s
(j)
i )

[
wu

∥∥∥u(j)
i −û(j)

NLOS,i(z
(j)
NLOS,i)

∥∥∥2

2
− log(1−p̂

(j)
s,i )

]}
,

(15)

where z̄(j)
LOS,i =

∑SBS,i

j′=1 s
(j′)
i z(j′)

LOS,i/
∑SBS,i

j′=1 s
(j′)
i . Note that,

to speed up the training phase, a centralized loss computation
can be performed in a batch-manner, i.e., in parallel way, using
SBS,i as batch size. The rational behind this approach is that
while the models for NLOS position estimation are trained to
be BS-specific, the LOS networks can be shared as they have
consistent parameters among all the BSs.

VI. PERFORMANCE ASSESSMENT IN A 5G NETWORK

To assess the performance of the proposed cooperative DL
positioning system, we employ a data generator based on the
5G new radio (NR) clustered delay line (CDL) channel model
[66], which is defined over a bandwidth of 2 GHz in the
frequency range from 0.5 GHz to 100 GHz. The radio wave
propagation is simulated using a ray-tracing method [67], [68],
[69] from the Matlab package, which plots the propagation
paths from the UE to the BSs based on the surface geometry
from a map file. The ray-tracing method employs the shooting
and bouncing rays (SBR) method with up to 10 path reflections
[70]. The channel model is then generated by combining all
the paths and taking into account the small-scale fading caused
by multipath and UE’s movement. With this method, adjacent
positions will have similar channel characteristics due to the
similar scattering environment, ensuring spatial consistency.

TABLE III
EXPERIMENT PARAMETERS

A. Simulated Scenario

For the experiments, we simulate a 3GPP urban micro
(UMi) scenario in a 1000 × 1000 m area, near the Leonardo’s
campus of Politecnico di Milano, in Milano, Italy, using
the parameters described in [57]. The specific values are
summarized in Table III. As shown in Fig. 6, the scenario
consists of 19 sites with an inter-site distance (ISD) of 200 m,
placed in an hexagonal layout, each equipped with 3 cells and
separated by 120 deg in azimuth. Each cell antenna uses an
UPA configuration with N = M = 8 elements and a downtilt
of 15 deg. A macro image of the antenna array pattern can
be found in Fig. 7. Each antenna element was defined using
specifications in [71], providing a front-to-back ratio of about
30 dB and a maximum gain of 8 dBi.

The UEs move around the region following various routes
generated by the SUMO simulator that reproduces the vehic-
ular traffic flow over the considered road network. The
simulation runs for 170 seconds and generates up to 50 trajec-
tories, which are sampled every second. Each UE uses a carrier
frequency of fc = 30 GHz and a transmission bandwidth of
B = 400 MHz to transmit 5G standard compliant SRSs to
all nearby BSs. Finally, each BS demodulates the signals and
obtains a channel estimation, i.e., SFCRM, via the received
pilot signals through a LS estimator. The ADCPM is then
obtained according to (4) and (5).

B. Positioning Tests

We divided the experiments into offline and online phases.
In the offline (training) phase, the UE moves along the
trajectories and each BS gathers both LOS and NLOS
channel realizations according to the specific UE’s position.
We considered the training positions as perfectly known (i.e.,
no error was introduced to the ground truth positions) as
we aimed at assessing the lower bound performances of the
method. In total, we gathered about 5.9 · 104 samples in
1659 positions only for the training phase. In the online (test)
phase, the NLOS position capabilities were verified in the
same trajectories but in random positions not adopted in the
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Fig. 6. UMi scenario simulated for performing analysis composed of 19 sites
in the area of Politecnico di Milano, Leonardo campus, Milano, Italy.

Fig. 7. Antenna array patterns of 3 cells (1-3) forming a site.

training. Specifically, we adopted about 2.5 · 104 samples
in 711 positions for NLOS testing. In this way, we assess
whether or not, each BS can learn the environment, i.e., the
channel characteristics, around it. On the other hand, for LOS
positioning, we validated completed different trajectories to
analyze the capabilities of estimating the position from learned
geometrical features. Here, the total number of LOS tested
positions was 867. A representation of the adopted trajectories
can be found in Fig. 8. Note that in the training trajectories,
i.e., red markers, the number of detected BSs can vary signif-
icantly: we measured from 1 up to 13 BSs in the collected
samples. The test samples for LOS evaluation, highlighted
with purple placeholders, are located in the top-left corner
of the map. To avoid biases and improve model convergence,
before model training, we standardized with zero mean and
unitary standard deviation all the samples, and we shuffled
the dataset at each epoch.

The toolbox Antenna Toolbox of MATLAB 2022b is
used to generate the channel fingerprints for the data points,
while the model for training and testing is implemented using
Pytorch [72] (v1.12 with Python 3.7.11). The simulations are
run on a workstation with an Intel(R) Xeon(R) Silver 4210R
CPU @ 2.40 GHz, 96 GB of RAM, and a Quadro RTX 6000
24 GB GPU. The training and testing times refer only to the
runtime on Pytorch 1.12. Unless otherwise noted, the model is
trained for a total E = 60 epochs with a batch size Nb = 64.
The Adam optimization algorithm [73] is used with an initial
learning rate lr = 10−4 and momentum values β1 = 0.9,
β2 = 0.999.

For what concerns the hyper-parameters choice of wrec, ws

and wu, we clarify that their values depend on the specific
dataset at hand and thereby tuning has been performed as
follows. Starting from ws, since this parameters regulates how
much weight is given to the LOS samples class in order
to compensate the class unbalances, it is computed as in
weighted cross-entropy loss: ws = NLOS/NNLOS, where NLOS
and NNLOS are the number of LOS and NLOS samples in the
training batch, respectively. On the contrary, wrec and wu have
been chosen empirically using a grid-approach in [0.1, 1] with
step size 0.1 and assigned as: wrec = 0.1, wu = 0.9. This can
be intuitively explained by two reasons. First, the AE model
is much more complex than the MLPs for positioning, leading
to a fast drop of the reconstruction error. Second, the number
of features in xi is larger than the dimension of ui, which
automatically increases the weight of the reconstruction error
with respect to the positioning error. In order to balance these
two quantities, we suggest values that satisfy wrec < wu.

C. DL Model Design

The adopted DL model architecture is as follows. The AE
is the most critical component as a good feature extraction is
essential to enable precise positioning. Driven by the necessity
of handling sparse data, i.e., ADCPM input, we select the Seg-
net architecture [74] where the upsampling layers employ the
encoder pool indices to create ad-hoc sparse feature mapping.
At testing time, we can completely discard the decoder part as
the input reconstruction is only adopted in the training phase
to learn the latent features representation.

The choice of the NNs for NLOS classification and position
estimation is dictated by the specific task to accomplish. A BS
must be able to localize a UE regardless of whether it is in ego
mode, i.e., only a single BS detects the UE, or in cooperative
mode, i.e., the UE is detected by multiple BSs. In the former
case, the latent features should be a non-linear composition of
ToF and AoA for each of the multipaths. On the other hand,
in the latter case, multiple ToF must be exploited to localize the
UE. To assess these concepts, we experiment different multi-
layer perceptrons (MLPs) architectures trying to localize a UE
with only a ToF and AoA or 3 or more ToF as inputs.

In Fig. 9, we show the test results of the MLP described
in Table IV which was trained on a synthetic dataset using as
input either ToF and AoA only (Fig. 9a), or 3 measurements
of ToFs (Fig. 9b) or 10 ToFs (Fig. 9c). This was done in
order to verify the positioning capabilities of the models, i.e.,
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Fig. 8. Scenario comprising training trajectories, i.e., red placeholders, and
LOS testing trajectories, i.e., purple placeholders.

to assess the bias of the MLPs for LOS and NLOS position
estimation. Since the testing positions (red circles) are never
seen in the training phase, we can conclude that the model is
able to learn the geometrical meaning of the input features and
perform multi-angulation and circular lateration. It is worth
noticing that, in the case of cooperative architecture, the BSs’
positions (black squares) are never used as input features but
they are automatically learned by the training. This can be an
advantage in case the coordinates of the BSs are not known
or partially known.

Given these results, we employed the MLP in Table IV
for the LOS and NLOS position prediction NNs, while the
MLP in Table V is adopted for NLOS detection NN. The key
difference between these two types of NNs is the size and
layer composition. First, we assumed that single supervised
NLOS classification is a simpler task if compared with 3D
position regression, thus resulting in a different number of
layers and neurons. Second, we employed Tanh (instead of
ReLu or GeLu) activation functions in the NLOS detection NN
since blockage detection should be performed in the fastest
and most efficient way possible, as the whole cooperative
prediction highly depends on it. On the contrary, GeLu is
more computationally expensive but can capture more complex
patterns (as needed for regression) due to its smooth and
differentiable nature [75]. Finally, both adopt dropout to avoid
overfitting.

D. Baselines

For performance assessment, we compare the proposed
method with the following algorithms/models:
• Ego DL model: the proposed DL model (Fig. 3) trained

with the loss (14) for single-BS positioning. The model
does not communicate with any other BS and has to rely
only on its prediction.

• Cooperative DL model: the proposed DL-based coopera-
tive architecture described in Sec. V.

• Single-BS ToF-AoA: conventional positioning obtained
by a single BS using the ToF estimate obtained from
the cross-correlation with the SRS according to 5G NR
Rel. 16 and the AoA estimated through multiple signal
classification (MUSIC) algorithm [76].

• Multi-BS time difference of flight (TDoF): conventional
hyperbolic-multilateration obtained using TDoFs esti-
mated by all the BSs receiving SRS.

E. Simulation Results

1) Training Convergence: This first assessment has the aim
of verifying the training convergence of the proposed ego
DL model, i.e., the correct behavior of the loss function and
of the root mean square error (RMSE) performance metric.
In Fig. 10, we report the testing results separately for LOS
and NLOS samples in the test set, for varying number of
training epochs. We notice that the loss function decreases
quite rapidly in just 60 epochs and does not show signs of
overfitting. This may be due to the fact that the dataset is very
large (about 50 GB) and thus it is difficult to memorize every
sample. Furthermore, the model regularization, i.e., dropout,
helps with this aspect.

Referring to the performance metric, we can see that the
NLOS case holds much higher oscillations with respect to the
LOS one. While learning geometrical patterns and associated
positions is a more standard task, associating NLOS samples
with the UE location is much more difficult. The DL model
has not only to understand how the environment is configured
but also how it could change between the training positions.
Finally, we note that the LOS RMSE is slightly worse that the
NLOS. This is due to the LOS performance bounds imposed
by the physical layer parameters, i.e., the resolution of the ToF
(limited by the signal bandwidth) and AoA (by the number
of antennas). On the other hand, the NLOS RMSE highly
depends on the training position resolution, i.e., the training
spatial sampling, as the denser the training points, the better
the performances.

2) Blockage Detection: This experiment has the objective
of assessing the steering model capabilities in discerning LOS
and NLOS conditions. The steering is taken into account in
both the smart weighting of the geometrical latent features
and in the final position estimate, i.e., lines 8 and 11 of
Algorithm 1, respectively. To this aim, in Fig. 11 we show
the testing accuracy, precision and recall for varying number
of training epochs. The numerical results show that the model
reaches an accuracy of approximately 85%, validating the
capability of the proposed approach of learning the multi-task
problem within such a realistic environment. In terms of the
parameter Γ, we implemented a conservative yet effective
approach, as detailed subsequently. We selected Γ = 0.6 not
with the aim of matching the values of precision and recall,
but rather to adjust it towards a lower number of false positives
compared to false negatives. This approach is driven by the
rationale that if the model is uncertain about the visibility
condition, it slightly leans towards the NLOS case. As a result,
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Fig. 9. Testing positioning results of an MLP with input (a) AoA and ToF, (b) 3 ToFs (c) 10 ToFs. The BSs are located in the black squares.

TABLE IV
LOS AND NLOS POSITIONING NETWORK

TABLE V
NLOS CLASSIFICATION NETWORK

substantial geometric errors are circumvented, and only the
fingerprint technique is employed.

3) Online Computational Complexity: In this section,
we analyze the computational complexity of the proposed
localization method by assessing the number of floating
point operations per second (FLOPS) and the inference time
required for performing positioning. Starting from the com-
putational complexity, we can divide the computational load
into measurement extraction and position estimation. For
measurement extraction, assuming to have Ng signal samples
and MN antenna elements, the ADCPM can be efficiently
computed adopting a 2D-inverse fast Fourier transform (IFFT),
with a complexity of O(MNNg · (log(NgMN))). On the
other hand, time-based measurements obtained with cross-
correlation, hold a complexity in the order of O(N2

g ) (or
O(Ng · (log(Ng))) with efficient methods as FFT). Finally,
angle-based measurements obtained by the MUSIC algorithm
using N and M scanning directions in the azimuth and
zenith domain, respectively, involve an overall complexity of
O((MN)3) [77], considering the eigenvalue decomposition

(EVD) on the signal covariance matrix as predominant on
the scanning search for source directions. In order to have a
reference measure of time required by our system (described
in Sec. VI-B) to compute the measurements, we clarify
that on average, the ADCPM, ToF and AoA computations
took about 0.4, 0.3 and 0.4 ms, respectively. As expected,
the complexity of the ADCPM results higher than single
time-based or angle-based measurements, as it embodies all
the location-related information provided by the propagation
channel, i.e., including the ToFs, AoAs and received power of
all multipaths.

For what concerns the algorithms for position estimation,
we compare non-linear least square (NLS) methods, adopted
in Single-BS ToF-AoA and Multi-BS TDoF, and the proposed
DL model. Denoting with Nu the unknown location coor-
dinates to be estimated, Nmeas the number of measurements
and Niter the number iterations for NLS convergence, for
Gauss-Newton method we hold an overall complexity of
O(Niter(Nmeas · Nu + Nmeas · N2

u + N3
u )) (assuming that the

cost of computing the Jacobian is roughly proportional to
O(Nmeas · Nu), the cost of Jacobian matrix multiplication
to O(Nmeas · N2

u ), and the matrix inversion to O(N3
u )).

However, estimating the complexity of the DL models is
not straightforward as it would involve a detailed break-
down of the operations performed. To this aim, in Fig. 12,
we empirically assess the inference times using the system
hardware described in Sec. VI-B and we compare it with
NLS solutions, for varying number of measurements. For NLS
method, we empirically choose Niter = 50 and Nu = 3 (3D
position). Results show that the proposed DL model is able
to perform the position inference in about 1.5-2 ms which
corresponds to a NLS with about 10 measurements. We point
out that these results highly depend on the specific hardware
and implementation of both the DL and NLS algorithms.
Nevertheless, the overall conclusion is that, despite being
slightly more complex, the proposed method has the main
advantages of having greater accuracy with respect to classical
geometrical algorithms and retaining the ability to localize in
NLOS conditions (as described in Sec. VI-E.4), while being
at the same time compliant with the strict requirements given
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Fig. 10. Testing results, i.e., loss on top and RMSE on bottom, of LOS and
NLOS samples varying the number of epochs in the training.

by cooperative, connected, and automated mobility (CCAM)
of 5 ms [78].

4) Positioning Accuracy: In this assessment we test the
positioning accuracy of the methods described in Sec. VI-D.
To this aim, in Fig. 13 and 14, we show the cumulative
density functions (CDFs) of the location error in the LOS
and complete test trajectory, respectively. For the cooperative
methods, we consider a position LOS if all the BSs detecting
the UE are in LOS. To better compare the results, in both the
figures, we report both the 2D and 3D error for each method.

Starting from the position methods with single BS in the
LOS positions, we notice a huge improvement between the
Single-BS ToF-AoA and the ego DL model, passing from
a mean error of 26.38 m to 5.99 m in 3 dimensions. With
the 2D error metric, the performances are slightly better,

Fig. 11. Testing results of classification accuracy, precision and recall varying
the number of epochs in the training.

Fig. 12. Boxplot of the distribution of the inference time per sample [ms].

obtaining 24.76 m and 5.35 m, respectively. The ego DL model
automatically extracts a compact non-linear representation of
the overall multipath profile (i.e., ToF, AoA and power of
all paths in LOS conditions), which is much more infor-
mative than the direct path information, thus outperforming
the traditional single-BS based positioning. Moreover, in 3D
positioning, it outperforms even the Multi-BS TDoF. This is
due to the fact that, in classical TDoF approaches, the vertical
geometrical dilution of precision (GDoP) is very limited due to
the poor geometrical arrangement of the BSs over the vertical
dimension, as BSs are usually located at similar heights.
On the contrary, the ML approach is able to learn the usual
altitude of the user and exploit this information a-priori in the
position’s computation.

Moving to the cooperative methods in the LOS testing
trajectory, we observe that the proposed cooperative DL model
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outperforms the Multi-BS TDoF even in the 2D positioning
case, i.e., holding 66% of the points with an error of less than
0.81 m and 90% with an error of less than 1.3 m. The mean
error decreases from 3.21 m with Multi-BS TDoF, to 1.68 m
with the cooperative DL solution, with an improvement of
above 47%. The cooperative DL model, in fact, holds a
common-sense of where the UE could be, i.e., discarding or
not considering possible unfeasible solutions that could be
obtained by geometrical algorithms.

This is confirmed by the results on the complete testing
trajectory in Fig. 14, composed by both LOS and NLOS
positions. Whenever one or more BSs are in NLOS, we suffer
a severe degradation of performances. In these conditions, the
ego DL model reaches a median 2D error of 3.01 m with
respect to an error of 3.74 m in case of Multi-BS TDoF.
Comparing the cooperative and ego DL models, we notice an
approaching of the two CDFs, mainly due to the higher NLOS
performances in case of ego-positioning. This is because,
even when LOS positions are inaccurately classified, the
positioning is corrected through fingerprint training without
being impacted by errors in geometrical features. Essen-
tially, the position estimation solely relies on either the LOS
MLP or the NLOS MLP, but never a combination of the
two. On the other hand, the cooperative DL model suffers
slightly higher errors since in NLOS positions the BSs cannot
cooperate.

In case the achieved performances do not satisfy the target
accuracy for the specific location-sensitive service, several
strategies can be implemented in order to improve the pro-
posed method without changing the structure of the model.
First, starting from the physical layer, increasing the band-
width and number of antennas at the BSs would permit to
enhance the space-time system resolution, and thereby the
ability of the model to resolve the multipath and extract
location information from the ADCPM. Second, from a design
point of view, we can increase the DL model dimension
(especially the AE part), which reduces the model bias, and
simultaneously increase the number of collected data, thus
reducing the variance. However, we need to keep in mind
that this comes at the price of higher training and inference
times, as well as higher costs of dataset creation, resulting in
a performance-complexity trade-off.

5) Tracking Performance: This experiment compares the
performances of the positioning methods in the testing tra-
jectory where a UE, i.e., a CAV, moves along a road at
variable speed. In Fig. 15, we can see in pink the covered
ground-truth trajectory both in 3D (a) and in 2D (b). The
CAV moves faster in the north part of the trajectory and
then slows down in the southern part of the road. Since the
objective is to assess the point-position estimation of each
method, we do not implement any tracking filter and we
rely exclusively on the channel realization at specific samples
of the trajectory. Moreover, passing from the 3D to the 2D
representation, we discard unlikely estimated positions just for
easy-visualization purposes of the 2D trajectory. The Single-
BS ToF-AoA and the ego DL model results are obtained from
the BS number 48, while the cooperative methods consider
only the positions where the CAV detect the BS number 48.

Fig. 13. Positioning performances in terms of CDF of the distance error
in the LOS testing trajectory. The solid and dotted lines are the 2D and 3D
errors, respectively.

Fig. 14. Positioning performances in terms of CDF of the location error
over the whole testing trajectory. The solid and dotted lines are the 2D and
3D errors, respectively.

Observing Fig. 15a, we notice that the Single-BS ToF-
AoA method has the worst performances since it locates
the CAV outside the road for most of the trajectory. This
is mainly due to AoA estimations, which become worst
the higher the distance from the BS, and ToF estimations.
In LOS positions, i.e., north part of the trajectory, the ToF
error is only due to the autocorrelation of SRSs and peak
estimation. On the contrary, in NLOS positions, i.e., south
part of the trajectory, the major source of error is represented
by reflections. The ego DL model improves this aspect by
halving the error (see Fig. 15b) especially in NLOS sections.
The Multi-BS TDoF struggles in high-speed conditions, i.e.,
east part of LOS trajectory, and in NLOS positions where the
number of cooperative BSs is limited or the range-biases are
severe, i.e., top-right corner of Fig. 15a. Finally, the proposed
cooperative DL model (green markers) achieves the higher
positioning accuracy in almost all conditions, combining



3812 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 41, NO. 12, DECEMBER 2023

Fig. 15. Positioning performance in a 5G urban scenario: (a) 3D testing trajectory and related estimate obtained by the positioning methods (represented by
different colors), with location errors represented as solid lines. (b) Bird-eye view of the testing and estimated trajectories.

cooperative LOS measurements with egocentric NLOS
predictions.

VII. CONCLUSION AND FUTURE WORKS

Given the paramount importance of providing enhanced
solutions for high-precision positioning in next 3GPP
Releases, in this paper, we propose a cooperative positioning
network architecture based on DL. Each BS composing the
localization infrastructure has the same proposed DL model
which solves the joint task of NLOS identification and posi-
tion estimation. Depending on the condition, LOS or NLOS,
the task is solved in cooperative or egocentric (ego) mode,
respectively. In order to cooperate, the architecture internally
exchanges only the compact latent feature representation of
the channel obtained with an AE structure, permitting to
combine the complete non-linear measurements and enhance
positioning accuracy.

The proposed cooperative architecture is suitable and
fully-compliant with 5G massive-MIMO OFDM systems,
where sparse space-time channel responses, i.e., ADCPM,
are adopted as input-images to the DL model. The ADCPM
embodies position-dependent features, such as ToF, AoA and
RSS of each propagation path, which can be automatically
extracted by the proposed DL model. With the use of Matlab
ray-tracing and SUMO software, we simulate a complex and
realistic C-ITS scenario where some CAVs create multiple
trajectories and communicate with a set of BSs, i.e., 3GPP
UMi scenario. Results show that the proposed cooperative
architecture is able to improve upon classical geometrical algo-
rithms, e.g., TDoF multi-lateration, both in LOS and NLOS
conditions, by increasing the accuracy of 47%. Moreover, the
cooperation overcomes the limitations of single-BS prediction
based on DL by automatically switching between egocentric
and cooperative mode.

ML, and more especially DL techniques, are foreseen to
have a huge impact on next-generation cellular networks.
This work is thereby a first attempt to implement a coopera-
tive high-precision positioning system towards that direction.
Further developments could be the integration of different

DL models into the architecture or the tracking of many
simultaneous targets with automatic data-association.

APPENDIX A
JOINT LOG-LIKELIHOOD

To prove (13), we start by rewriting the likelihood distribu-
tion (12) as:

p(ui, si|xi,W,CLOS,CNLOS) =
[p̂s,iNNN (ui; ûLOS,i(xi,W),CLOS)]si×
[(1− p̂s,i)NNN (ui; ûNLOS,i(xi,W),CNLOS)](1−si). (16)

For simplicity of notation, we drop the dependencies on xi

and W. The negative log-likelihood of the overall batch of
samples, using (16) is:

Ltask = −
Nb∑
i=1

log
{

[p̂s,iNNN (ui; ûLOS,i,CLOS)]si

× [(1− p̂s,i)NNN (ui; ûNLOS,i,CNLOS)](1−si)
}

(17)

=
Nb∑
i=1

{
si

[
−log(p̂s,i)− log(NNN (ui; ûLOS,i,CLOS))

]
+(1−si)

[
−log(1−p̂s,i)−log(NNN (ui;ûNLOS,i,CNLOS))

]}
.

(18)

Now we can explicitly compute the logarithm of the
multi-variate Gaussian distribution and obtain:

Ltask =
Nb∑
i=1

{
si ·

[
−log(p̂s,i) +

log(2π|CLOS|)
2

+
∥ui − ûLOS,i∥22

2σ2
LOS

]
+ (1− si) ·

[
−log(1− p̂s,i) +

log(2π|CNLOS|)
2

+
∥ui − ûNLOS,i∥22

2σ2
NLOS

]}
. (19)
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By discarding the terms that do not depend on ui or si,
we obtain:

Ltask ⋍
Nb∑
i=1

{
si ·

[
−log(p̂s,i) +

∥ui − ûLOS,i∥22
2σ2

LOS

]
+ (1− si) ·

[
−log(1− p̂s,i) +

∥ui − ûNLOS,i∥22
2σ2

NLOS

]}
,

(20)

concluding the derivation.
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