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We generalize kinetic theory of inelastic spheres to uniaxial, non-spherical grains, by including the
orientational tensor as a state variable. The theory has one phenomenological parameter to account
for the dependency of the stresses on the orientation, which is exactly one for frictionless cylinders.
We model the competition between the alignment induced by shearing and the misalignment due
to collisions in the evolution law for the orientational tensor. The theory can predict the significant
reduction in the viscosity in response to alignment measured in discrete simulations of homogeneous
shear flows of prolate and oblate frictionless cylinders.

Kinetic theory of granular gases [14, 19] provides an ef-
fective continuum approach to study granular systems
over a wide range of densities, loading and geometries,
specifically under inhomogeneous flow conditions, where
the boundaries play an important role [16, 31]. While
this approach proved to be advantageous and accurate, it
was developed by considering binary collisions of spheres,
avoiding the additional complexity associated with the
mutual orientation of non-spherical particles. Recent
discrete numerical simulations suggest that the orienta-
tion of axisymmetric grains, which is governed by their
shape, is crucial in determining their rheological response
[5, 6, 24, 30]. In particular, at least in the case of
cylinders, while alignment does not significantly affect
the isotropic component of the stress tensor, the parti-
cle pressure, it can yield up to one order of magnitude
reduction in the shear stress.

In this letter, we generalize the kinetic theory of gran-
ular gases to uniaxial grains, by including the orienta-
tional order, described though a tensor, as an additional
state variable in the constitutive law of the stress ten-
sor. Alignment and its coupling to the stresses have
been the subject of intense research activity on molec-
ular liquid crystals, random assemblies of non-spherical
molecules that can show preferential orientation in re-
sponse to change in temperature, concentration and/or
when subjected to external fields [12, 13, 18, 25, 27].
Granular, non-spherical particles, for which Brownian
motion is irrelevant, tend to align in response to shear-
ing, while interparticle, inelastic collisions are expected
to randomize the particle alignment. Hence, the inten-
sity of the particle agitation should be explicitly included
in the evolution law of the orientation.

Uniaxial, convex particles, such as cylinders, sphero-
cylinders, or ellipsoids, can be at a minimum character-
ized by their length, l, along the axis of symmetry and
by their maximum extension, d, in the plane perpen-
dicular to the axis of symmetry. Here, we define them
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through the equivalent diameter, dv, i.e., the diameter
of a sphere of equivalent volume, and their aspect ra-
tio, rg = (l − d)/(l + d), which gives rg = 0 for l = d,
0 < rg < 1 for l > d (prolate grains), and −1 < rg < 0 for
l < d (oblate grains) – see Fig. 1(a). The orientation of
an uniaxial grain is defined by the dyad (k⊗k), where k
is the direction of the particle symmetry axis. For assem-
bly of particles, the averaged orientational tensor takes
the form

A =
1

N

N∑
i=1

(ki ⊗ ki) , (1)

where N is number of particles, and (ki ⊗ ki) is the
orientation of the i-th grain. The orientational ten-
sor is symmetric, positive semidefinite, has unit trace,
trA = 1, and two nonlinear invariants. It is conve-
nient to define the deviation from isotropic orientation
as A′ = A− I/3. Here, we define a scalar measure of the
orientation, 0 ≥ S ≥ 1, as the largest eigenvalue of the
tensor 3/2A′, and the director, u, the average direction
of the particle axis of symmetry in the case of preferen-
tial alignment, as the associate eigenvector [8]. The mea-
sure S vanishes in the absence of alignment (A′ = 0) and
equals one for perfectly aligned grains (A′ = u⊗u−I/3).

For granular materials composed of identical, hard
spheres of mass density ρp and diameter dv, the hy-
drodynamic fields of a linear kinetic theory (in which
the stresses are at first order in the spatial gradients
[15]) are the solid volume fraction, ν, the mean veloc-
ity, v and the granular temperature, T , one-third of the
mean square of the particle velocity fluctuations. The
latter represents the measure of the particle agitation.
The kinematics is determined by the quantity L = ∇v,
the velocity gradient, which is decomposed into its skew-
symmetric part, the vorticity W = (L − LT )/2, and its
symmetric part, the rate of deformation D = (L+LT )/2.
D′ = D − (trD/3)I is the deviatoric part of the rate of
deformation. Solution to the Enskog model for inelas-
tic, hard spheres at first order in the spatial gradients
(Navier-Stokes approximation) provides the following ex-
pression for the stress tensor [14]

σ = (p− λ trD) I− 2ηD′, (2)
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where: p is the hydrostatic pressure; λ and η are the
volumetric and the shear viscosities, respectively. The
expression for the shear viscosity is

η =
8Jν2g0
5π1/2

ρpdvT
1/2, (3)

where: J is a known function [2] of the coefficient of nor-
mal restitution, en (the negative of the ratio of post- to
pre-collisional, normal relative velocity between colliding
grains, here taken to be a constant), and the solid vol-
ume fraction [21]; and g0 is the radial distribution func-
tion at contact [29], which is also a known function [1]
of the solid volume fraction ν and is singular at the crit-
ical value ν = νc, at which the average interparticle dis-
tance, at least along the direction of principal compres-
sion, vanishes [7]. The critical volume fraction decreases
with increasing coefficient of sliding friction, µ, and cor-
responds to the minimum volume fraction at which rate-
independent components of the stresses develop in the
case of soft spheres [11, 28]. Expressions for the pressure
and the volumetric viscosity can also be found in [14].

For granular materials composed of identical, hard,
uniaxial, non-spherical grains, we generalize Eq. (2) to
include a linear dependency on the orientational tensor
into the deviatoric part of the stress tensor [22]

σ = (p− λ trD) I

− 2η [D′ − 3α (D′A′ + A′D′ − 2/3(D′ : A′)I)] , (4)

where α is a phenomenological parameter embedding the
dependency of the shear viscosity on the orientation.
This formulation gives rise to directional dependency of
the shear viscosity. Indeed, Eq. (4) in index notation
reads

σij = [p− λDkk] δij − 2HijklD
′
kl, (5)

where we have introduced the fourth order shear viscosity
tensor as

Hijkl = η
[
δikδjl − 3α

(
δikA

′
lj +A′ikδjl − 2/3A′klδij

)]
.

(6)
Scalar shear viscosity emerges only for A′ = 0, that is in
the absence of alignment.

The parameter α cannot take any value, given that
dissipation considerations [22] require that

σ : D ≤ 0⇒ α ≤ 1. (7)

To further understand the role of the phenomenological
parameter α, consider unidirectional, homogeneous shear
flows (Fig. 1b), in which convex grains are completely
aligned with the streamlines, which is physically admis-
sible only for grains of extreme aspect ratios, |rg| → 1.
In this configuration, the shear stress, τ , takes the simple
form

τ = ηγ̇(1− α), (8)

where γ̇ is the shear rate. If perfectly aligned in the
flow direction, the convex particles can only slide over
each other, so that the macroscopic friction, that is the
ratio of the shear stress to the pressure, must equal the
coefficient of sliding friction, µ, of the single grain,

τ/p = ηγ̇/p(1− α) = µ. (9)

Equation (9) suggests that α must depend on the friction
coefficient µ and be α = 1 for frictionless, convex grains.
For more complicated, non-convex shapes, such as poly-
mers composed of (partially overlapped) spheres [17], α
should depend also on other surface features.

Given that the orientational tensor is an additional
state variable, we need to phrase a balance equation for
A that must depend on the other hydrodynamic fields
and the particle properties. The balance proposed in
[23] explicitly included a term that induces particle align-
ment in the flow direction and a relaxation term towards
an isotropic, randomly oriented state. The authors took
the inverse shear rate as the time scale associated with
the relaxation process. If the relaxation is due to the
randomizing effect of collisions, and in the context of ki-
netic theory, a more physically-grounded time scale for
the relaxation term should be, instead, the inverse of the
collision frequency, T 1/2d−1v , so that the evolution law for
the orientational tensor reads

Å = φ [AD + DA− 2(A : D )A]− ψT 1/2d−1v A′, (10)

where Å = Ȧ −WA + AW is the objective Jaumann
derivative, and Ȧ is the material time derivative of the
orientational tensor, respectively. The two dimensionless
model parameters are φ, which represents the tendency
to align with the flow, and ψ, which is the compliance to
relaxation towards misalignment due to collisions.

For Eq. (10) to be a meaningful representation of the
physics, the phenomenological parameters should be in-
dependent of the quantities {L, T} that explicitly appear
in the equation. Moreover, φ should be a function of the
aspect ratio, φ(rg), and independent of the solid volume
fraction, since it accounts for interaction with the flow.
We emphasize that, for prolate grains, rg > 0, the orien-
tation, (k ⊗ k), is defined along their larger dimension,
while for oblate grains, rg < 0, it is defined along their
smaller dimension. The parameter φ, therefore, should
take positive and negative values for prolate and oblate
grains, respectively, reflecting the tendency of the grain
largest dimension to align with the flow. Then, we expect
φ(rg) to be approximately a monotonic and odd function,
with φ(0) ≈ 0, and the limits φ → ±1 for rg → ±1, re-
spectively, for perfect convection with the flow.

The relaxation parameter ψ, associated with the re-
sponse to collision may in general depend on the aspect
ratio, the solid volume fraction and the coefficients of
normal restitution and sliding friction ψ(rg, ν, en, µ). On
physical ground, we expect ψ ≥ 0, and be approximately
an even function of the aspect ratio, monotonically de-
creasing with |rg|, with the limit ψ → 0 for |rg| → 1.
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We also expect ψ to be a monotonically decreasing func-
tion of the solid volume fraction, reflecting the increase
in resistance to misalignment when the grains are densely
packed.

The three phenomenological parameters {α, φ, ψ} are
determined by comparison with discrete element simu-
lations. The expectations discussed above on their func-
tional forms are based on their roles in the proposed equa-
tions for the stress Eq. (4) and the orientation, Eq. (10),
and serves as validation (or invalidation) of their ability
to accurately predict the rheological response. We em-
ploy literature [5, 6] measurements of stresses, granular
temperature and alignment performed on discrete ele-
ment simulations of steady, homogeneous, shearing flows
of true, frictionless cylinders covering a large range of
aspect ratios, rg = {−0.8 to +0.8}, volume fractions,
ν = {0.2 to 0.6}, and coefficients of normal restitution
en = {0.7, 0.95}. The flow configuration is reported in
Fig. 1(b), with the associated frame of reference, where
x, y and z represents the flow, shear and vorticity di-
rections, respectively. Figure 1(b) also shows the direc-
tor u (the vector associated with preferential alignment)
and the angle θ that it forms with respect to the flow
x-direction. Given that our evolution law for the ori-
entational tensor Eq. (10) is independent of the stress
tensor, the parameters φ and ψ can be determined inde-
pendently of α.

x

y
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l

d

d

l

(b)(a)

FIG. 1. (a) Examples of prolate and oblate cylinders. (b)
Homogeneous shear flow configuration, with the associated
frame of reference and the uniform shear rate γ̇. Also shown
are the director u and its angle θ with respect to the flow
direction.

First, we use a least square fitting method to deter-
mine the parameters φ and ψ in order to reproduce the
measurements in the simulations of the largest eigenvalue
(the alignment measure S) and the associated eigenvec-
tor (in particular, its angle θ with respect to the flow
direction) of the orientational tensor A. In the balance
Eq. (10), we employ the granular temperature measured
in the discrete simulations. We repeat the procedure
for all available values of aspect ratio, volume fraction
and coefficient of restitution. Figure 2 depicts the values
of the orientational parameters φ and ψ, and the cor-
responding values of S and θ, as functions of the solid

volume fraction for various aspect ratios.

Figure 2(a) indicates that, for rg = 0, the tendency
to align with the flow vanishes, as φ ≈ 0, and the only
steady-state solution of Eq. (10) is no alignment, A′ = 0,
independently of the value of ψ. Additionally, the figure
confirms that φ(rg) is approximately an odd function of
rg, roughly independent of the solid volume fraction. The
latter statement is especially true if we disregard the re-
sults for ν ≤ 0.3, where there is no significant alignment
and the obtained values of the model parameters are less
reliable. Figure 2(b) shows that ψ is a monotonically
decreasing function of ν and |rg|, as expected. We have
checked that φ and ψ do not depend on the coefficient
of restitution. Tentative interpolating formulas for the
orientational parameters φ and ψ are reported in the
caption of Fig 2. The dependency on the aspect ratio
obtained here is similar to [23], where polymers formed
by conglomerate of spheres rather than cylinders were
considered. However, here we have additional depen-
dency on the solid volume fraction. As already noticed
[5], non-spherical granular particles exhibits a transition
from isotropic (random orientation) to nematic (prefer-
ential orientation) phase in response to change in solid
volume fraction, as demonstrated by the increase in the
alignment measure S with ν. However, in homogeneous
shearing flows, the granular temperature is not indepen-
dent of the solid volume fraction [4]: it would be inter-
esting to investigate other configurations in which T and
ν can vary independently of each other to check if the
phase transition can also be induced by suppressing the
particle agitation.

We emphasize that the orientational parameters rep-
resent the interaction of the grains with the surrounding,
and as such they should be sensitive to the shape of the
grains, not only to their aspect ratio. We therefore ex-
pect slight, quantitative, but not qualitative, differences
in the dependence of φ and ψ on the aspect ratio and
the solid volume fraction if, e.g., sphero-cylinders [24] or
polymers [23] are considered, rather than true cylinders.
The dependence of the orientational parameters on the
coefficient of sliding friction remains to be determined.

Once the orientational parameters φ and ψ are known,
Eq. (10) can be solved to determine all elements of the
orientational tensor A and, then, via Eq. (4), the stress
tensor. In the homogeneous shearing flow configuration
of Fig. 1(b), where the only non-zero elements of the
rate of deformation, D, are Dxy = Dyx = γ̇/2, the shear
stress, τ = −σxy, reads:

τ = η
[
1− 3α

(
A′xx +A′yy

)]
γ̇. (11)

In the case of frictionless cylinders, α = 1, as already
mentioned. In Eq. (11), η is evaluated with Eq. (3), using
the same coefficient of restitution en of the simulations
and the critical volume fraction νc = 0.67, as appropri-
ated for frictionless cylinders [4] (we neglect any small
dependence of the critical volume fraction on the aspect
ratio).
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FIG. 2. Fitted values (symbols) of the orientational parameters (a) φ and (b) ψ as functions of the solid volume fraction for
different aspect ratios of frictionless cylinders (only values for en = 0.95 are shown). The lines represent the interpolating

functions φ(rg) = a1 tan−1 (a2|rg|a3 + a4) and ψ(ν, rg) = b1ν
b2 (1− |rg|)b3 , where: {ai} = {0.75, 4.0, 1.4, 0.05}, for rg ≥ 0;

{ai} = {0.75,−6.8, 2.5, 0.05}, for rg ≤ 0; and {bi} = {0.2,−3.5, 2.55}. Corresponding values of (c) the alignment measure S
and (inset) the angle θ between the director and the flow as functions of the solid volume fraction measured in the discrete
simulations (symbols) and obtained by solving the balance Eq. (10) (lines) in the case of prolate cylinders.
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FIG. 3. Predicted (lines) and measured in discrete simulations
(symbols) dimensionless particle viscosity as a function of the
solid volume fraction at different values of the aspect ratio of
(a) oblate and (b) prolate frictionless cylinders (en = 0.95).
Same legend as in Fig. 2.

Figure 3 depicts the comparison between the dimen-
sionless particle viscosity, τ/

(
ρpdvT

1/2γ̇
)
, predicted by

our model (Eq. 11) and that measured in the discrete
simulations of homogeneous, shearing flows of frictionless
cylinders at en = 0.95 [5]. The significant reduction in

the shear viscosity associated with the preferential orien-
tation of the grains, signature of a phase transition from
an isotropic to a nematic phase, is indeed well captured
by simply including a linear dependency on the orienta-
tional tensor in the constitutive law for the stress tensor
(Eq. (4)). A similar satisfactory agreement, not shown
here for brevity, is obtained also for en = 0.7.

In summary, we have proposed a generalized granular
kinetic theory for uniaxial, non-spherical grains, that
includes a linear dependency on the orientational tensor
into the constitutive law for the stresses, and a balance
law for the orientational tensor itself, in which a key role
is played by the randomizing effect of collisions. The
generalized model has only three additional phenomeno-
logical parameters that have clear physical meaning,
and can, therefore, be uniquely determined from simple
experiments or discrete numerical simulations. One of
them must be equal to one in the case of frictionless,
convex grains; its value and the values of the other
parameters for frictional grains remain an open question.
We emphasize that, while the parameters have been
determined in steady, homogeneous shearing flows, the
model is general and can be potentially applied to other
flow configurations, e.g., inhomogeneous, boundary-
value problems, in which boundary conditions for the
orientational tensor must be provided [3]. In this work,
we have not addressed how the preferential alignment
of non-spherical grains affect the balance of fluctuation
energy for the particles, which determines the granular
temperature. Existing works on the subject have either
focused on non-sperical particles in the absence of
alignment [9, 10], or have included only the role of the
alignment measure S [6]. Including the full orientational
tensor in the fluctuation energy balance is a task for the
future. Finally, linear kinetic theories, such as the one
that we have generalized here, are unable to capture
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the normal stress differences typical of granular flows
[15]. Hence, it would be tantalizing to include a linear
dependency on the orientatonal tensor in a non-linear
kinetic theory [20, 26] to assess the coupled role of align-
ment and anisotropic fluctuations on the normal stresses.
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