
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/341075549

A Microprocessor Protection Architecture against Hardware Trojans in Memories

Conference Paper · April 2020

DOI: 10.1109/DTIS48698.2020.9080961

CITATIONS

17
READS

369

5 authors, including:

Alperen Bolat

TOBB University of Economics and Technology

6 PUBLICATIONS 21 CITATIONS

SEE PROFILE

Oguz Ergin

TOBB University of Economics and Technology

106 PUBLICATIONS 1,762 CITATIONS

SEE PROFILE

Marco Ottavi

University of Twente

175 PUBLICATIONS 2,319 CITATIONS

SEE PROFILE

All content following this page was uploaded by Marco Ottavi on 01 December 2020.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/341075549_A_Microprocessor_Protection_Architecture_against_Hardware_Trojans_in_Memories?enrichId=rgreq-5824d7d98d22fb527496460db6e39918-XXX&enrichSource=Y292ZXJQYWdlOzM0MTA3NTU0OTtBUzo5NjM4NTMwNjgyNzk4MTNAMTYwNjgxMTg4NzU5Nw%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/341075549_A_Microprocessor_Protection_Architecture_against_Hardware_Trojans_in_Memories?enrichId=rgreq-5824d7d98d22fb527496460db6e39918-XXX&enrichSource=Y292ZXJQYWdlOzM0MTA3NTU0OTtBUzo5NjM4NTMwNjgyNzk4MTNAMTYwNjgxMTg4NzU5Nw%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-5824d7d98d22fb527496460db6e39918-XXX&enrichSource=Y292ZXJQYWdlOzM0MTA3NTU0OTtBUzo5NjM4NTMwNjgyNzk4MTNAMTYwNjgxMTg4NzU5Nw%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alperen-Bolat-2?enrichId=rgreq-5824d7d98d22fb527496460db6e39918-XXX&enrichSource=Y292ZXJQYWdlOzM0MTA3NTU0OTtBUzo5NjM4NTMwNjgyNzk4MTNAMTYwNjgxMTg4NzU5Nw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alperen-Bolat-2?enrichId=rgreq-5824d7d98d22fb527496460db6e39918-XXX&enrichSource=Y292ZXJQYWdlOzM0MTA3NTU0OTtBUzo5NjM4NTMwNjgyNzk4MTNAMTYwNjgxMTg4NzU5Nw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/TOBB_University_of_Economics_and_Technology?enrichId=rgreq-5824d7d98d22fb527496460db6e39918-XXX&enrichSource=Y292ZXJQYWdlOzM0MTA3NTU0OTtBUzo5NjM4NTMwNjgyNzk4MTNAMTYwNjgxMTg4NzU5Nw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alperen-Bolat-2?enrichId=rgreq-5824d7d98d22fb527496460db6e39918-XXX&enrichSource=Y292ZXJQYWdlOzM0MTA3NTU0OTtBUzo5NjM4NTMwNjgyNzk4MTNAMTYwNjgxMTg4NzU5Nw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Oguz-Ergin?enrichId=rgreq-5824d7d98d22fb527496460db6e39918-XXX&enrichSource=Y292ZXJQYWdlOzM0MTA3NTU0OTtBUzo5NjM4NTMwNjgyNzk4MTNAMTYwNjgxMTg4NzU5Nw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Oguz-Ergin?enrichId=rgreq-5824d7d98d22fb527496460db6e39918-XXX&enrichSource=Y292ZXJQYWdlOzM0MTA3NTU0OTtBUzo5NjM4NTMwNjgyNzk4MTNAMTYwNjgxMTg4NzU5Nw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/TOBB_University_of_Economics_and_Technology?enrichId=rgreq-5824d7d98d22fb527496460db6e39918-XXX&enrichSource=Y292ZXJQYWdlOzM0MTA3NTU0OTtBUzo5NjM4NTMwNjgyNzk4MTNAMTYwNjgxMTg4NzU5Nw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Oguz-Ergin?enrichId=rgreq-5824d7d98d22fb527496460db6e39918-XXX&enrichSource=Y292ZXJQYWdlOzM0MTA3NTU0OTtBUzo5NjM4NTMwNjgyNzk4MTNAMTYwNjgxMTg4NzU5Nw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Marco-Ottavi?enrichId=rgreq-5824d7d98d22fb527496460db6e39918-XXX&enrichSource=Y292ZXJQYWdlOzM0MTA3NTU0OTtBUzo5NjM4NTMwNjgyNzk4MTNAMTYwNjgxMTg4NzU5Nw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Marco-Ottavi?enrichId=rgreq-5824d7d98d22fb527496460db6e39918-XXX&enrichSource=Y292ZXJQYWdlOzM0MTA3NTU0OTtBUzo5NjM4NTMwNjgyNzk4MTNAMTYwNjgxMTg4NzU5Nw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University-of-Twente?enrichId=rgreq-5824d7d98d22fb527496460db6e39918-XXX&enrichSource=Y292ZXJQYWdlOzM0MTA3NTU0OTtBUzo5NjM4NTMwNjgyNzk4MTNAMTYwNjgxMTg4NzU5Nw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Marco-Ottavi?enrichId=rgreq-5824d7d98d22fb527496460db6e39918-XXX&enrichSource=Y292ZXJQYWdlOzM0MTA3NTU0OTtBUzo5NjM4NTMwNjgyNzk4MTNAMTYwNjgxMTg4NzU5Nw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Marco-Ottavi?enrichId=rgreq-5824d7d98d22fb527496460db6e39918-XXX&enrichSource=Y292ZXJQYWdlOzM0MTA3NTU0OTtBUzo5NjM4NTMwNjgyNzk4MTNAMTYwNjgxMTg4NzU5Nw%3D%3D&el=1_x_10&_esc=publicationCoverPdf

A Microprocessor Protection Architecture
against Hardware Trojans in Memories

Alperen Bolata, Luca Cassanob, Pedro Reviriegoc, Oguz Ergina, Marco Ottavid
aTOBB University of Economics and Technology, Turkey, bPolitecnico di Milano, Italy

cUniversidad Carlos III de Madrid, Spain, dUniversity of Rome Tor Vergata, Italy
a{alperenbbolat12, oergin}@gmail.com, bluca.cassano@polimi.it, crevirieg@it.uc3m.es, dottavi@ing.uniroma2.it

Abstract—Software exploitable Hardware Trojan Horses
(HWTs) have been currently inserted in commercial CPUs and,
very recently, in memories. Such attacks may allow malicious
users to run their own software or to gain unauthorized privileges
over the system. Therefore, HWTs are nowadays considered a se-
rious threat both from academy and industry. This paper presents
a protection architecture meant to shield the communication
between the CPU and the memory in a microprocessor-based sys-
tem. The architecture aims at detecting the activation on HWTs
infesting the instruction and data memories of the system. Our
proposal relies on the use of Bloom Filters (BFs) that are included
in ad-hoc designed checkers and integrated in the protection
architecture. BFs guarantee zero false alarms and a small (and
configurable) percentage of undetected alarms. We applied the
protection architecture to a case study system based on a RISC-V
microprocessor implemented on an FPGA and running a set of
software benchmarks. Our proposal demonstrated to be able to
detect more than 99% of possible HWTs activations with zero
false alarms. We measured a lookup table overhead ranging from
0.68% up to 10.52% and a flip-flop overhead between 0.68% and
0.99%, and with no working frequency reduction.

Index Terms—Bloom Filter, Hardware Security, Hardware
Trojan Horses, Microprocessor-based System, RISC-V

I. INTRODUCTION AND RELATED WORK

The increasing complexity of integrated circuits (ICs) and
the seek for low production cost and short time-to-market, led
to the globalization of the design and fabrication process of
silicon devices [1]. More and more often the design of some
of the hardware modules is outsourced, third-party intellectual
property cores (3PIPs) are bought, and sometimes also masks
and the final chip fabrication are outsourced [2]. On the one
hand, this globalization allows for a significant reduction of
design cost and time, but it comes with a significant loss of
trust in the delivered ICs [3].

Indeed, it is very hard to ensure the trustworthiness of all
the parties involved in such a globalized supply chain. As
a consequence, the product is exposed to a huge number of
threats, among which overproduction [4], counterfeiting [5],
3PIPs licenses violation and abuse [6] and Hardware Trojan
Horses (HWTs) [7]. A HWT is a very hard-to-detect modi-
fication of a design that is meant to stay silent most of the
time, while in specific (usually rare) conditions it alters the
nominal behavior of the system or it steals information. HWTs
may be inserted by vendors in 3PIPs [8], by employees in the
developed HDL code, by CAD tools [9] and by mask providers
and silicon foundries in the final layout [10].

Given the difficulty of insertion in real-world circuits and
their limited dangerousness in the past HWTs were considered
an issue more by academy than by industry. Nevertheless, in
the last years, complex software-exploitable HWTs have been
found and inserted in real-world commercial microprocessors.
It has been demonstrated that a HWT may allow the attacker to
execute his/her own malicious software, to modify the running
software or to acquire root privileges [11]–[13]. Moreover,
in 2018, a HWT, called the Rosenbridge backdoor, has been
found in a commercial Via Technologies C3 processor [14].
This Trojan could be activated and exploited via software to
enter in supervisor mode.

Given the complexity of modern integrated circuits and
the extreme stealthy nature of HWTs it is more and more
difficult to detect HWTs before the system has been deployed.
Indeed, together with the “classical” circuit-level techniques
that aim at detecting HWTs at design time (logic testing [15],
formal property verification [16], side-channel analysis [17],
structural and behavioral analysis [18], [19]) there is a growing
interest in system-level techniques that allow to obtain a trusted
system built with untrusted components [20]–[22]. A similar
idea has been proposed in [23], [24] where the focus is on
microprocessor-based systems and the goal is to achieve a
trusted software execution with an untrusted CPU. On the
other hand, very recently also HWTs in memory chips have
been studied [25]. At the same time, as discussed in [25], there
has not yet been enough work in protecting microprocessor-
based systems from HWTs inserted in memories.

In this paper we propose a system-level architecture for pro-
tecting microprocessor-based systems against HWTs. More in
details, the proposed architecture aims at detecting the runtime
activation of HWTs infesting both the instruction and data
memories of a Harvard architecture. We aim at detecting those
software-exploitable HWTs that force the microprocessor to
run a malicious code and/or to read/write data in unauthorized
memory locations. Moreover, a subset of the possible denial-
of-service and information stealing HWTs are also addressed
by our methodology. The proposed protection architecture
relies on two checkers based on Bloom filters (BFs) that
monitor the instructions fetched from the instruction memory
and the accessed addresses in both the instruction and data
memory. It is worth mentioning that the proposed solution
is completely transparent w.r.t. the normal functioning of the
system. Indeed, the runtime monitoring is performed without

interrupting code execution.
We applied the proposed microprocessor protection archi-

tecture to a case study system based on a RISC-V processor
implemented on an FPGA device and running a set of software
benchmarks. Our proposal was always able to detect more than
99% of possible HWTs activations with zero false alarms. We
measured a lookup table overhead ranging from 0.68% up to
10.52% and a flip-flop overhead between 0.68% and 0.99%,
with no working frequency reduction.

To the best of our knowledge no system-level pro-
tection methodologies against HWTs in the memories of
microprocessor-based systems have been yet proposed. The
works that we consider as the more similar to our proposal
are the ones in [23], [24] where, like in our proposal, the
problem is tackled at the system-level (and not at the circuit-
level) and where a protection unit is inserted between the CPU
and the memory. On the other hand, unlike in our proposal, in
these works the microprocessor is assumed to be untrusted
and the memory to be trusted. In [23] the protection unit
checks whether the opcode of the executed instructions and
the associated control signals are legal or not and whether the
number of clock cycles employed to execute an instruction is
correct or not. In [24] the protection unit checks whether the
microprocessor is still alive and whether it is running in the
right privilege mode. Both solutions do not take into account
those HWTs that change the functionality of the system by
making the CPU run normal instructions. In other words,
none of these works checks whether the microprocessor is
executing an unwanted software and whether it is accessing
illegal memory locations.

The remainder of this paper is organized as follows: Sec-
tion II presents the models of HWTs that are targeted by our
proposal while Section III briefly presents background infor-
mation about Bloom filters; Section IV presents the proposed
protection architecture, the checkers on which it relies and the
design flow that we used to customize such filters; Section V
discusses results from a case study application of the proposed
architecture on a RISC-V based system; Finally, Section VI
concludes the paper.

II. THE CONSIDERED THREAT MODEL

As we previously mentioned, a HWT is a very hard-to-
detect modification of a design that stays silent most of the
time, while in specific rare conditions it alters the nominal
behavior of the system or it steals information. According to
the taxonomy presented in [7], HWTs may be classified based
on their triggering mechanism, payload and insertion phase.

A HWT may be triggered: i) internally by logical signals
(or sequences of logical signals) or by physical quantities, e.g.,
temperature or voltage, or by a counter (the so-called time
bombs); ii) externally by either received messages or physical
interactions, e.g., again temperature or voltage; and iii) always-
on, i.e., HWTs that become active as soon as the system is
turned on.

When looking at the payload, HWTs may be classified in:

• Change functionality HWTs that modify the functionality
carried out by the infected system;

• Information stealing HWTs that leak unauthorized in-
formation through either the available communication
interfaces or covert side-channels, e.g., temperature or
magnetic field; and

• Denial-of-service HWTs that halt the functioning of the
system, e.g., by introducing nop instructions, by draining
the system’s batteries, or by jamming the communication
interfaces.

Finally, HWTs may be inserted by IP providers in the
purchased 3PIPs, by malicious designers and by the employed
CAD tools possibly in every stage of the design flow and by
the foundry during chip fabrication.

In this work we consider HWTs infesting the instruction and
data memory of a microprocessor-based system. On the other
hand, the microprocessor is here considered to be trusted. The
effectiveness of the proposed methodology does not depend
on the trigger. Indeed, HWTs having any of the previously
discussed triggering mechanisms are addressed. When looking
at the payload, we are able to detect those HWTs that
change the functionality of the system by forcing the CPU
to execute an unwanted code. Moreover, we are able to detect
information stealing HWTs that read/write secret information
in unauthorized memory locations.

From the HWT insertion point of view, it is worth mention-
ing that, since the proposed detection methodology works at
runtime, it is able to detect HWTs that have been inserted by
any of the actors taking part in the design process and supply
chain of the memory chip.

Denial-of-service HWTs that halt the system by maliciously
making the CPU fetch always the same instruction (or se-
quence of instructions) could be detected by providing the
proposed architecture with an ad-hoc dimensioned watchdog
(this falls outside the scope of the paper). Further, by ex-
ploiting watchdogs that monitor the fetching activity of the
processor, the proposed methodology could detect denial-of-
service HWTs that freeze the CPU.

Information-stealing HWTs that send the stolen information
through a covert channel and denial-of-service HWTs that act
outside the microarchitectural level, e.g., drain the batteries or
jam the communication interfaces, fall outside the scope of
this proposed methodology.

III. BACKGROUND: THE BLOOM FILTERS

Bloom filters (BFs) are widely used probabilistic data
structures that store the membership information of a set of
elements. Queries can be run on BFs to check whether an
element belongs to the set or not [26], [27]. A key feature of
BFs is that, although querying may result in false positive, it is
always true that there could not be false alarms. In other words,
if a query of an element returns a positive there is a chance for
it not to be in the set (undetected alarm in our case); however
if a negative is returned, it is not possible that the element is
in the set (false alarm in our case). A BF is implemented as a
bit array where each element of the set of interest is mapped

CPU
Instruction

Memory
Data

Memory

Address

Instruction

Address

Write data

Read data

Instruction
Flow

Checker

Memory
Allocation
Checker

HWT
detected

Figure 1. The proposed microprocessor protection architecture

to one or more array locations. The address of each location
is associated with the output of an hash function calculated
on the element itself. Two operations can be performed on
a BF: load and query. Loading a BF means storing in it all
the elements of the set of interest: to do so, for each element
ei in the set and for each hash function hashj the bit array
location associated with address hashj(ei) is set to 1 (initially
all bit arrays are 0). Querying a BF means checking whether
an element is in the set of interest, and thus that the associated
location(s) of the bit array is (are) set to 1. For a given element
ei that has to be checked and for each hash function hashj

the BF raises an alarm if at least one of the bit array locations
associated with address hashj(ei) is found to be 0.

BFs guarantee zero false alarms but there can still be a
not null percentage of undetected alarms. Nevertheless, the
percentage of such undetected alarms can be calculated as a
functions of m, the size of the bit array (expressed in bits),
of n, the number of elements that have been inserted in the
BF and of k, the number of employed hash functions. The
formula to calculate the undetected alarms rate (UAR) is the
following:

uar ≈ (1− e−
n·k
m)k. (1)

therefore, as m increases, UAR decreases. The value of k that
minimizes the UAR is given by:

kopt =
m

n
· ln2. (2)

IV. THE PROPOSED MICROPROCESSOR PROTECTION
ARCHITECTURE

The proposed architecture protects the microprocessor from
HWTs inserted in the instruction and data memory. In particu-
lar, it aims at detecting the activation of anomalous behaviors
in the instruction flow and in the memory address space.
This is done by adding two checkers that monitor the fetched
instructions and the CPU accesses to the instruction and
data memories, as shown in Figure 1 for a generic Harvard
architecture, i.e. with instruction memory separated from the
data memory.

The two checkers, namely the Instruction Flow Checker and
the Memory Allocation Checker, monitor at runtime whether
the accesses to the instruction and data memory, respectively,

Hash 1

Hash k

Memory 1

Memory k

x

.

.

.

.

.

.

alarm

Figure 2. Hardware implementation of a Bloom Filter

are those expected by the program that is being executed.
Moreover, the Instruction Flow Checker monitors whether the
CPU the instructions fetched by the CPU are those expected
by the program. In case of unexpected memory accesses or
fetched instructions the checkers immediately signal an issue,
possibly leading to fast countermeasures such as pipeline flush,
interrupt generation or others (countermeasures against HWTs
fall outside the scope of this paper). To detect unexpected
behaviors the checkers should be able to store all the correct
< address, instruction > combinations of the running
program, and all the authorized data addresses. To efficiently
store these values we implemented the two checkers as Bloom
filters (like what has been done in [28] for fault detection).

A. The designed checkers

As we previously discussed, both the Instruction Flow
Checker (IFC) and the Memory Allocation Checker (MAC)
rely on BFs. A BF can be efficiently implemented in hardware
using k memories such that each hash function maps to one
of them. Then, the memories can be read in parallel and the
results are combined with an NAND gate to obtain the final
result. An alarm is raised as soon as at least one of the accessed
memory locations contains a 0. A high-level representation of
the implemented BF structure is illustrated in Figure 2 where
x is the tuple < memory address, fetched instruction >
for the IFC and it is only the memory address for the MAC.
This structure achieves an undetected alarm rate (UAR) that
is similar to the value calculated by Equation 1.

As we previously discussed, the considered HWT mod-
els cause the fetch of unexpected sequences of instructions
and/or the access to unauthorized instruction and data memory
addresses. Therefore, the BF in the IFC is loaded with all
the tuples < memory address, instruction > of the
program under analysis and the MAC is loaded with all the
possible data memory addresses accessed by the program. This
information are extracted at design time from an execution
trace obtained through simulation (see Subsection IV-B).

At runtime the instructions fetched from the memory to-
gether with their address are queried in IFC before executing
the instruction itself waiting the response of the checker
to enable the execution. Similarly, before accessing a data
memory address the MAC is queried to verify whether the
requested address is legal for the running program or not.

BF sizing

Program assembly

Hash functions

Desired UAR

BF size
decreased

?

Increase
#Hash functions

no

Simulate and
trace program

yes

Load the BF

Bloom filter

Synthesize
BF

Figure 3. The design flow for the Bloom filter

B. The checker’s design flow

We implemented the design flow depicted in Figure 3 to
determine the best configuration of the BFs, in terms of size
of the bit array and number of employed hash functions, and
to synthesize and load them before deployment. The flow
takes the assembly code of the program under analysis, a
set of hash functions and the desired maximum acceptable
undetected alarm ratio (UAR). At the end of the flow the BF
synthesized and loaded ready for deployment is generated.

The first step of the flow consists in an iterative process
meant to identify test best number of hash functions and
size of the bit array of the BF to meet the desired UAR.
Given the program’s assembly, the desired UAR and an initial
number h of hash functions, we calculate the required bit array
size by means of Equation 1. By increasing the number of
employed hash functions the required bit array size decreases
as predicted by Equation 2. Given this, and based on the
assumption (experimentally confirmed in Subsection V-C) that
the area occupation of hash functions is smaller than the one
of memories, we keep increasing the number of employed
hash functions while the bit array size decreases significantly.
When the reduction is small, we stop such iterative process
and we synthesize a BF having the identified bit array size
and number of hash functions.

Then, we load the BF for the IFC with all the pairs of ad-
dress and associated instruction. Similarly, the BF of the MAC
is loaded with the trace of all the memory addresses issued by
the CPU toward the Data memory (the memory contents are
not considered since they are variable in their nature). In order

Table I
THE CONSIDERED BENCHMARK PROGRAMS

Benchmark #Instructions
Binary Sort (BinS) 1719
Matrix Multiplication (MM) 1733
Bubble Sort (BubS) 1775
Quick Sort (QS) 1927
Sudoku Solver (SS) 3227
Motion Detection (MD) 4452

to obtain such accessed data memory addresses we simulate
in Modelsim the microprocessor under analysis to produce a
trace of all the addresses issued on the data memory address
bus.

Once the BFs of the IFC and the MAC have been loaded,
the protection architecture can be fully instantiated and the
protected microprocessor-based system can be deployed.

V. EXPERIMENTAL RESULTS

We carried out a set of experiments to assess the effective-
ness and the efficiency of the proposed protection architecture.
We here provide details about the considered hardware plat-
form and benchmark programs; we report results from the
simulation-based analysis that was carried out to drive the
implementation of the BFs; and we finally discuss the accuracy
and the efficiency of hardware-implemented checkers.

A. Experimental setup

The BF sizing step of the design flow has been implemented
as a C++ program. For synthesizing the BFs we employed
Xilinx Vivado targeting a Xilinx Artix XC7A35T device.

After defining the best parameters for the BFs, we integrated
the checkers in an FPGA-based emulation platform running
a RISC-V core which provides a Harvard architecture. We
considered the PULPINO architecture which is an ultra-low-
power processing platform mainly targeted to Internet of
Things applications. We considered the RI5CY [29] version
of PULPINO, which is a small 4-stage RISC-V core. When
synthesized on a Xilinx Artix XC7A35T RI5CY requires
14616 LUTs, 8959 FFs and 16 BRAMs, and it works at
50MHz, as reported in [30].

Finally, we considered a set of benchmark programs (re-
ported in Table I together with the number of assembly in-
structions) varying from simple sorting algorithms to the more
complex Sudoku Solver and Motion Detection.

B. Bloom filters sizing

After compiling the set of benchmark programs to obtain
the corresponding assembly code we dimensioned the BFs by
following the flow described in Subsection IV-B. In particular,
we fixed the maximum acceptable value of the undetected
alarm rate (UAR) at 1% and we calculated the minimum bit
array size to be adopted when considering several numbers
of employed hash functions. Tables II and III report about
this experiment with 3 up to 7 hash functions for the IFC
and the MAC, respectively. It can be noticed that in both

Table II
SIZE (IN BITS) OF THE BIT ARRAY OF THE IFC AT 1% UAR FOR

DIFFERENT NUMBER OF EMPLOYED HASH FUNCTIONS

Bench. #Hash Functions
3 4 5 6 7

BinS 41200 24720 17512 18320 17064
MM 42816 23232 17848 18120 17848
BubS 42544 27360 19584 19304 18128
QS 46184 30488 20544 20208 19624
SS 65296 51056 33140 31648 32432
MD 68760 53552 44080 43080 42272

Table III
SIZE (IN BITS) OF THE BIT ARRAY OF THE MAC AT 1% UAR FOR

DIFFERENT NUMBER OF EMPLOYED HASH FUNCTIONS

Bench. #Hash Functions
3 4 5 6 7

BinS 1080 1016 944 816 752
MM 1192 1072 912 976 880
BubS 1336 1048 984 808 712
QS 1368 1136 1016 824 720
SS 3712 3080 2552 2864 2576
MM 5416 4912 4664 4992 4520

experiments the bit array size significantly decreased between
3 and 4 hash functions, and again, between 4 and 5, while
further increasing the number of hash functions did not bring
any significant reduction of the bit array size. For this reason,
we implemented BFs having 5 hash functions to evaluate the
real detection accuracy and the introduced overhead.

C. Bloom filters hardware implementation and evaluation

Based on the exploration discussed in the previous subsec-
tion, we implemented the BFs on an FPGA for both the IFC
and the MAC for the considered benchmark programs with 5
hash functions and choosing a memory size which is the power
of 2 value closest to the sizes in bit calculated in Tables II
and III, respectively.

First of all we measured the real UAR achieved by the
implemented checkers. To do so, we emulated the activation
of a HWT belonging to the considered models by modifying
the data to/from the instruction and data memories to: i)
make the CPU execute an instruction that was not in the
original program; ii) make the CPU execute an instruction
that was in the original program but that was fetched from
an unexpected instruction memory address; and iii) make the
CPU read/write data from/to an unexpected data memory
address. We simulated 100000 randomly generated HWT
activation cases and we measured the numbers of alarms that
were not raised. Results from this experiment are reported in
Table IV. As expected, the measured UAR is always below
1% (in most cases much below 1%). Then, by running the
benchmark programs without any alteration we also checked
that the implemented BFs did not raise any false alarm.

Finally, we evaluated the overhead impact of the proposed
checkers in terms of used resources and working frequency
when targeting an FPGA implementation. Tables V and VI
report details for the IFC and the MAC, respectively, for the

Table IV
SIZE (IN KBIT) AND ACHIEVED UAR OF THE HARDWARE

IMPLEMENTATION OF THE BFS FOR THE IFC AND THE MAC

Bench. IFC MAC
Mem. size UAR (%) Mem. size UAR (%)

BinS 32 0.523 1 0.085
MM 32 0.520 1 0.122
BubS 32 0.572 1 0.525
QS 32 0.607 1 0.073
SD 64 0.249 4 0.134
MD 64 0.912 8 0.232

Table V
RESOURCE OCCUPATION AND WORKING FREQUENCY OF THE

IMPLEMENTED IFCS

Bench. Instruction Flow Checker
#LUTs #FFs Freq. (MHz)

BinS 880 (6.02%) 84 (0.93%) 112.19
MM 880 (6.02%) 84 (0.93%) 112.19
BubS 880 (6.02%) 84 (0.93%) 112.19
QS 880 (6.02%) 84 (0.93%) 112.19
SS 1539 (10.52%) 89 (0.99%) 106.37
MD 1539 (10.52%) 89 (0.99%) 106.37

considered benchmark programs. The resource occupation is
reported both in absolute values and in percentage w.r.t. the
resource occupation of the RI5CY core. LUT overhead ranges
from 0.68% up to 10.52% while, FF overhead ranges from
0.68% up to 0.99%. We believe that such overheads are totally
acceptable when considering that the proposed architecture
would protect the CPU from a wide range of HWT models
and with an extremely small percentage of undetected alarms.
Another interesting data related to the resource overhead is
that, the broad variation of the LUT usage accounts for the fact
that the chosen implementation used LUT also for memory
elements of the BF therefore to implement a range from 1 Kbit
to 64 Kbit arrays to optimize timing performances. Looking
at the working frequency, it can be observed that the proposed
checkers do not introduce any slowdown, since the maximum
operating frequency is much higher (2x in the worst case) than
the one of the considered RI5CY core.

D. Security analysis

The presented experimental results demonstrate that the
proposed protection architecture is able to detect much more
than the 99% of the runtime activations of HWTs that try
to force the CPU to execute malicious code with zero false
alarms. In case the designer wants to further reduce the
undetected alarm rate, it is sufficient to increase the size of
the bit array of the BF, still having zero false alarms.

More in details, any HWTs that try to make the CPU execute
instructions that are not in the legal program the CPU is
meant to execute or that are in the program but that have been
loaded from instruction memory locations out of the memory
space of the legal program are detected. Moreover, HWTs
that make the CPU read/write data from/to unauthorized data
memory addresses are always detected as well. It is worth
mentioning that the effectiveness of the proposed solution is

Table VI
RESOURCE OCCUPATION AND WORKING FREQUENCY OF THE

IMPLEMENTED MACS

Bench. Instruction Flow Checker
#LUTs #FFs Freq. (MHz)

BinS 100 (0.68%) 61 (0.68%) 181.91
MM 100 (0.68%) 61 (0.68%) 181.91
BubS 100 (0.68%) 61 (0.68%) 181.91
QS 100 (0.68%) 61 (0.68%) 181.91
SS 170 (1.16%) 71 (0.79%) 154.13
MD 275 (1.88%) 76 (0.84%) 143.67

independent of the triggering mechanism of the HWT, i.e.,
combinational/sequential triggered, externally activated, time-
bombs and always-on.

The proposed solution could be defeated by denial-of-
service HWTs that make the CPU fall into an infinite loop
of legal instructions. Providing the protection unit with a
watchdog could easily solve such vulnerability. Finally, HWTs
that steal information by sending it through covert side-channel
are still able to defeat the proposed solution.

VI. CONCLUSION

We presented a protection architecture (and the companion
design flow) for the identification of the runtime activation of
hardware Trojan horses in the memories of microprocessor-
based systems. The proposed architecture can be fine-tuned in
order to achieve a desired maximum acceptable undetected
alarm rate while having zero false alarms. We applied the
proposed microprocessor protection architecture to a case
study system based on a RISC-V processor implemented on an
FPGA device and running a set of software benchmarks. Our
proposal was always able to detect more than 99% of possible
HWTs activations with zero false alarms. We measured a
lookup table overhead ranging from 0.68% up to 10.52% and a
flip-flop overhead between 0.68% and 0.99%, with no working
frequency reduction.

REFERENCES

[1] DIGITIMES, “Trends in the global IC design service market.”
http://www.digitimes.com/news/a20120313RS400.html?chid=2.

[2] M. Rostami, F. Koushanfar, J. Rajendran, and R. Karri, “Hardware
security: Threat models and metrics,” in Proc. Int. Conf. Computer-Aided
Design, pp. 819–823, 2013.

[3] Mohammad Tehranipoor and Cliff Wang, Introduction to Hardware
Security and Trust. Springer-Verlag New York, 2012.

[4] U. Guin, Z. Zhou, and A. Singh, “A novel design-for-security (dfs)
architecture to prevent unauthorized ic overproduction,” in 2017 IEEE
35th VLSI Test Symposium (VTS), pp. 1–6, 2017.

[5] U. Guin, K. Huang, D. DiMase, J. M. Carulli, M. Tehranipoor, and
Y. Makris, “Counterfeit integrated circuits: A rising threat in the global
semiconductor supply chain,” Proc. IEEE, vol. 102, no. 8, pp. 1207–
1228, 2014.

[6] A. P. Donlin, P. Sundararajan, and B. J. New, “Method and system for
secure exchange of ip cores,” Aug. 2010. US Patent 7,788,502.

[7] M. Tehranipoor and F. Koushanfar, “A survey of hardware trojan
taxonomy and detection,” IEEE Design & Test of Computers, vol. 27,
no. 1, 2010.

[8] X. Zhang and M. Tehranipoor, “Case study: Detecting hardware Trojans
in third-party digital IP cores,” in Proc. Hardware-Oriented Security and
Trust, pp. 67–70, 2011.

[9] J. A. Roy, F. Koushanfar, and I. L. Markov, “Extended abstract: Circuit
cad tools as a security threat,” in 2008 IEEE International Workshop on
Hardware-Oriented Security and Trust, 2008.

[10] G. T. Becker, F. Regazzoni, C. Paar, and W. P. Burleson, “Stealthy
dopant-level hardware trojans,” in Cryptographic Hardware and Em-
bedded Systems, 2013.

[11] Y. Jin, M. Maniatakos, and Y. Makris, “Exposing vulnerabilities of
untrusted computing platforms,” in Proc. Int. Conf. Computer Design,
pp. 131–134, 2012.

[12] N. G. Tsoutsos and M. Maniatakos, “Fabrication attacks: Zero-overhead
malicious modifications enabling modern microprocessor privilege es-
calation,” IEEE Trans. Emerging Topics in Computing, vol. 2, no. 1,
pp. 81–93, 2014.

[13] X. Wang, T. Mal-Sarkar, A. Krishna, S. Narasimhan, and S. Bhunia,
“Software exploitable hardware trojans in embedded processor,” in 2012
IEEE International Symposium on Defect and Fault Tolerance in VLSI
and Nanotechnology Systems (DFT), pp. 55–58, IEEE, 2012.

[14] https://github.com/xoreaxeaxeax/rosenbridge.
[15] X. Chuan, Y. Yan, and Y. Zhang, “An efficient triggering method of

hardware Trojan in AES cryptographic circuit,” in Proc. Int. Conf.
Integrated Circuits and Microsystems, pp. 91–95, 2017.

[16] J. Zhang, F. Yuan, L. Wei, Y. Liu, and Q. Xu, “Veritrust: Verification
for hardware trust,” IEEE Trans. Computer-Aided Design of Integrated
Circuits and Systems, vol. 34, no. 7, pp. 1148–1161, 2015.

[17] Y. Liu, Y. Zhao, J. He, A. Liu, and R. Xin, “Scca: Side-channel
correlation analysis for detecting hardware trojan,” in Proc. Int. Conf.
Anti-counterfeiting, Security, and Identification, pp. 196–200, 2017.

[18] H. Salmani and M. Tehranipoor, “Analyzing circuit vulnerability to
hardware trojan insertion at the behavioral level,” in Proc. Int. Symp.
Defect and Fault Tolerance in VLSI and Nanotechnology Systems,
pp. 190–195, 2013.

[19] H. Salmani and M. Tehranipoor, “Layout-aware switching activity local-
ization to enhance hardware trojan detection,” IEEE Trans. Information
Forensics and Security, vol. 7, no. 1, pp. 76–87, 2012.

[20] D. Šišejković, F. Merchant, R. Leupers, G. Ascheid, and S. Kegreiss,
“Control-lock: Securing processor cores against software-controlled
hardware trojans,” in Proceedings of the 2019 on Great Lakes Sym-
posium on VLSI, GLSVLSI ’19, pp. 27–32, 2019.

[21] D. M. Shila, V. Venugopalan, and C. D. Patterson, “Fides: Enhancing
trust in reconfigurable based hardware systems,” in 2015 IEEE High
Performance Extreme Computing Conference (HPEC), pp. 1–7, 2015.

[22] A. Basak, S. Bhunia, T. Tkacik, and S. Ray, “Security assurance
for system-on-chip designs with untrusted ips,” IEEE Transactions on
Information Forensics and Security, vol. 12, no. 7, pp. 1515–1528, 2017.

[23] J. Dubeuf, D. Hly, and R. Karri, “Run-time detection of hardware
trojans: The processor protection unit,” in 2013 18th IEEE European
Test Symposium (ETS), pp. 1–6, 2013.

[24] G. Bloom, B. Narahari, and R. Simha, “Os support for detecting trojan
circuit attacks,” in 2009 IEEE International Workshop on Hardware-
Oriented Security and Trust, pp. 100–103, 2009.

[25] T. Hoque, X. Wang, A. Basak, R. Karam, and S. Bhunia, “Hardware
trojan attacks in embedded memory,” in 2018 IEEE 36th VLSI Test
Symposium (VTS), pp. 1–6, April 2018.

[26] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Communications of the ACM, vol. 13, no. 7, pp. 422–426, 1970.

[27] S. Pontarelli and M. Ottavi, “Error detection and correction in content
addressable memories by using bloom filters,” IEEE Transactions on
Computers, vol. 62, pp. 1111–1126, June 2013.

[28] M. Atamaner, O. Ergin, M. Ottavi, and P. Reviriego, “Detecting errors in
instructions with bloom filters,” in 2017 IEEE International Symposium
on Defect and Fault Tolerance in VLSI and Nanotechnology Systems
(DFT), pp. 1–4, Oct 2017.

[29] M. Gautschi, P. D. Schiavone, A. Traber, I. Loi, A. Pullini, D. Rossi,
E. Flamand, F. K. Grkaynak, and L. Benini, “Near-threshold risc-
v core with dsp extensions for scalable iot endpoint devices,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 25,
pp. 2700–2713, Oct 2017.

[30] R. Hller, D. Haselberger, D. Ballek, P. Rssler, M. Krapfenbauer, and
M. Linauer, “Open-source risc-v processor ip cores for fpgas overview
and evaluation,” in 2019 8th Mediterranean Conference on Embedded
Computing (MECO), pp. 1–6, June 2019.

View publication stats

https://www.researchgate.net/publication/341075549

