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Abstract. In progressive die stamping processes, maintenance activities caused by tool damage, and 
wear represent economic losses for companies. An effective predictive maintenance strategy can only 
be implemented if maintenance data coming from the operations are correlated to specific process-
related information. As a part of a more general data-based predictive maintenance strategy, the main 
causes of tool damage and wear in a progressive die stamping factory that produces automotive metal 
washers have been identified by means of FEA simulations. In this study, the progressive die 
stamping of a dented conical washer is simulated with Transvalor FORGE FEA software by 
implementing the process parameters used in a real case. In this study, two indicators called FEAwear 
and FEAdamage are proposed for prediction of die wear and damage for tools with high risk of failure. 
For validating the accuracy of the FEA simulations, dimension and geometry comparisons are 
performed between FEA and real washer, and then real and FEA maximum press force comparison 
is performed. In the end, FEA simulations demonstrated their accuracy in predicting the stamping 
force of the press and the final part quality, and proposed FEA damage and wear indicators accurately 
predicted the most critical tools and stations, as confirmed by the real maintenance data. Finally, the 
simulations also correctly detected potential damage zones of the tools. 

1. Introduction 
Progressive die stamping is a manufacturing solution highly employed by many industries for 

its high dimensional accuracy of final parts, high productivity, and reduced maintenance costs. In 
progressive die stamping processes, maintenance activities caused by tool damage, and wear 
represent strong economic losses for companies, because tens or hundreds of tools operate 
simultaneously, and the stroke rate can be very high (up to hundreds or even thousands of strokes per 
minutes [1]). 

While planned maintenance on tools (by replacement or sharpening) has limited effects on 
the productivity, unplanned maintenance due to an unpredicted tool failure has severe consequences 
on both quality and production costs. In fact, a progressive die stamping process is characterized by 
a series of stations; each station typically performs a specific mechanical operation on the sheet metal. 

An effective predictive maintenance strategy can only be implemented if maintenance data 
coming from the operations are correlated to specific process-related information. As a part of a more 
general data-based predictive maintenance strategy, the most relevant and frequent causes of tool 
damage and wear in a progressive die stamping factory must be first identified. Wear, and damage 
are complex phenomena that are related to many parameters such as tribology, material mechanical 
properties, geometry. However, for an efficient implementation, few and simple indicators of failure 
must be determined, and this can be done only if the study is restricted to a very specific geometry 
and material type. 

The present study is restricted to the production of automotive carbon steel washers. The 
purpose of the present study is to identify simple, compact but reliable indicators for the FEA 
prediction of both progressive wear and failure by damage accumulation, aimed at highlighting the 
high-risk tools, i.e., the tools with a high risk of sudden/unpredicted failure. The FEA-based indicators 
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can be used to select the most appropriate typology and location of tooling sensors to be used in a 
data-based predictive maintenance approach. 

Hoffman et al. simulated wear behavior both qualitatively and quantitively for deep drawing, 
using REDSY simulation tool and compared the results with experiments, discovering that they were 
in good agreement. [2] Another study also showed the accuracy of FE-model for predicting wear 
phenomenon in the open shear-cutting process by considering the different wear coefficients, 
supporting simulations results with experiments [3]. Hatanka et al. studied sheet blanking process 
using self-developed rigid-plastic FEM code that follows the node separation method for crack 
initiation and propagation simulation. The study also conducts experiments to support the validity of 
FE simulation, focusing mainly on the edge areas where crack propagation could be properly 
observed. The results of experiments agreed with the simulations [4]. Abdulla Mohammad Gous 
Shaikh Rao used the software LS-DYNA to study the design of forming tools for girder forming with 
a goal of avoiding cracks and severe wrinkling and they achieved a stable, damage-free forming 
process without cracks or severe wrinkling using the software. LS-DYNA allowed them to predict 
and solve failures and weak-points during design or manufacturing phases [5]. The ductile tearing 
behavior of a 0.8 mm thick ultra-thin martensitic stainless steel was probed in a blanking process by 
Wang et al. As a result of experiments and simulations, the authors concluded that micro-voids did 
not develop sufficiently before fracture, signifying that growth and evolution micro-voids were not 
the primary cause for fracture. The shear damage was found to be the main factor for material the 
failure and it was discovered that fracture first appeared at punch edge on the symmetrical surface. 
Crack propagation occurred after this towards free surface along the largest damage path [6]. 
Subramonian et al. presented a methodology to obtain high strain and strain rate based on the material 
flow stress data by using experiments and FE modelling. FE study showed that, at high strains, to 
model high speed blanking, temperature and strain rate dependent material model was needed. FE 
also showed that blanking alone was capable testing material flow stress data generation at high 
strains and strain rates [7]. As it can be seen in the literature, FEA can be a great asset for analysis, 
prediction, optimization and modelling of manufacturing processes, especially when supported by 
data.  

2. Case Study  
In this study, a dented conical washer made of C60 steel (Fig.1) is produced from a 1.8 mm 

thickness blank with a mechanical press running at 500 rpm. 

 
Figure 1: Conical dented washer geometry and dimensions 

The whole progressive die stamping process of punching, chamfering, coining, and blanking 
(Fig.2) is simulated using Transvalor FORGE, a non-linear solver with implicit time integration 
scheme. Then, FEA simulation accuracy is validated by comparison of washer geometry, and 
dimensions.  

The simulations have been conducted twice, both considering the elastic deformation of the 
tools and considering the tools fully rigid. Only half of the stations are simulated by considering a 
symmetry plane to reduce simulation time without a loss of result accuracy. The tool materials and 
properties are given in Table 1. 
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Figure 2: Layout of the punches in the upper die holder plate 

Table 1: Die material properties 
 

 Tool material Coating 

 Material Young’s 
modulus [MPa] 

Yield Stress 
[MPa] 

HV 
hardness  

Residual Stress 
[MPa] 

Punching Punch G4 520000 2545 3200 3000 
Punching Die G4 520000 2545 3200 3000 
Chamfering Punch 1.3343 226500 2185 3000 3000 
Chamfering Die G4 520000 2545 3200 3000 
Coining Punch 1.3343 226500 2185 3000 3000 
Coining Die 1.3343 226500 2185 3000 3000 
Blanking Punch G4 520000 2545 3200 3000 
Blanking Die G4 520000 2545 3200 3000 

 

 
Figure 3: Stress-strain curve of C60 sheet material 

Sheet metal material is isotropic C60 steel, with the hardening curve shown in Fig. 3 modeled 
with the Hansel-Spittel equation with no strain rate or temperature effects. The C60 properties have 
been assessed by tensile tests. The blank (sheet) is given a self-contact option to prevent it passing 
through itself in case of folds. The friction between sheet and tools is oil lubrication, modeled through 
a Tresca-limited Coulomb friction, with Coulomb coefficient µ assumed at 0.1 (which is a typical 
value) and Tresca friction factor 𝑚𝑚�  assumed at 0.2. The heat exchange between the tools and sheet is 
assumed at 2000 W/m2K (as suggested by the software default value for weak exchange). All tools 
and sheet are at room temperature (20 °C). 
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Meshing is performed with automatic remeshing for sheet and tools. In the deformation or 
shearing zones a fine tetrahedron mesh of 0.24 mm is used by creating meshing boxes. Remeshing 
on deformation was activated with a trigger size value of 0.4 mm. A sample mesh can be seen in 
Figure 4. 

For punching, and blanking stations, Latham & Cockcroft Normalized (LCn) damage model 
was activated to view shearing via element deletion method with threshold value of LCn 0.4 with 
high smoothing option active for achieving the most accurate smooth cut surface. LCn method was 
also active for plastic deformation operations of other stations, and this parameter was used to support 
the proposed damage indicator, FEAdamage, and to support prediction of risky damage zones by FEA. 

 

 
Figure 4: Fine meshing zones, and coarse meshing in punching station 

3. Definition of FEA Damage and Wear Indicators 
In this section we proposed two new risk indicators for progressive wear, and failure by 

fracture. 
In the literature, it is possible to find different abrasion wear models. Archard’s model is a 

common and simple wear model that is both used for two-body abrasion wear, three-body abrasion 
wear and sliding wear [2]. In this model, the wear volume W [mm3] is described as dependent on a 
wear coefficient K, normal force, tool hardness and sliding distance. Determination of K requires 
experimentation with specified conditions. When the experimentation is not feasible or available, the 
assumption of wear coefficient K for wear calculation by using Archard model or any of its 
modifications might cause inaccuracies due to its unpredictable nature and dependence on many 
parameters such as material combination, relative humidity, load, speed, location, temperature, 
geometry, lubrication. [8]. For this reason, in this study a FEA parameter, FEAwear, is proposed to 
predict wear risk (see equation 1). 

 
𝐹𝐹𝐹𝐹𝐹𝐹𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = 𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚

𝐻𝐻𝐻𝐻𝑐𝑐𝑐𝑐𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
 (1) 

where τmax [MPa] is the highest shear stress acting on the tool surface during stamping process, and 
HVcoating [MPa] is the Vickers hardness value of the die coating (Table 1). When two surfaces slide 
across each other, shear stress is exerted on their surface, and shear stress also considers the friction 
and contact pressure. For these reasons, and after trials with other result parameters as well, division 
of maximum shear stress value with the Vickers hardness value of the dies gave accurate results, 
based on the corrective maintenance data of wear in the real case.  
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Figure 5: Maximum shear stress values on the tools for each station 

 
Based on Table 1 and Figure 5, FEAwear values are as follows.  
 

 
Figure 6: FEAwear values per station 

 
A common method used to study damage in FEA is the Latham & Cockcroft Normalized 

(L&C) indicator (see equation 2). L&C normalized parameter was also implemented in FORGE and, 
as the present study confirms, works very well in predicting the risk of tool failure. This indicator 
considers first principal stress (σ1), Von Mises stress (σVM), and strain rate 𝜀𝜀.̅  

 
𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝐿𝐿&𝐶𝐶 𝐷𝐷𝑁𝑁𝑚𝑚𝑁𝑁𝐷𝐷𝑁𝑁 = ∫ 𝜎𝜎1

𝜎𝜎𝑉𝑉𝑉𝑉
𝑁𝑁𝜀𝜀 ̅ (2) 

 
In this study, the use of L&C normalized is complemented by a newly developed indicator, 

FEAdamage, which helps highlighting the tools with the highest risk. The proposed FEAdanage indicator 
for predicting risky tools considers maximum Von Mises stress detected on the tools (σVM,max), 
coating residual stress (σres,coating), and the yield stress of the die (σo,die). For this indicator, σVM,max is 
an FEA parameter. σres,coating is a real case value and it is calculated by converting compressive residual 
stress (σIII = -3 GPa) introduced by the coating to a scalar value by using Von Mises stress equation 
where σI and σII were assumed to be zero. Yield stresses and residual coating stress values of the tools 
can be viewed in Table 1. σVM,max considers all principal stresses. If the σVM value of a point exceeds 
σo,die, it is in the plastic region and repeated loading would eventually lead to a crack initiation. 
However, coating induced compressive residual stress also plays a role for resistance against damage. 
Therefore, a method for calculation of damage indicator is proposed. According to FEAdamage, if σVM 
value on a die exceeds σres,coating, that would mean there is a risk of undergoing failure, otherwise there 
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is no risk. In case of existence of failure risk, its likelihood is expressed by considering also the die 
yield stress, by dividing (σVM,max- σres,coating) by σo,die. This is expressed in equation (3). 
 
𝐹𝐹𝐹𝐹𝐹𝐹𝑑𝑑𝑤𝑤𝑑𝑑𝑤𝑤𝑑𝑑𝑤𝑤 = 𝜎𝜎𝑉𝑉𝑉𝑉,𝑚𝑚𝑚𝑚𝑚𝑚−𝜎𝜎𝑟𝑟𝑟𝑟𝑟𝑟,𝑐𝑐𝑐𝑐𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝜎𝜎0,𝑑𝑑𝑐𝑐𝑟𝑟
    if σVM,max ≥ σres.coating  (3) 

𝐹𝐹𝐹𝐹𝐹𝐹𝑑𝑑𝑤𝑤𝑑𝑑𝑤𝑤𝑑𝑑𝑤𝑤 = 0      if σVM,max < σres.coating 

Table 2: σVM,max values of tools 
 

 Punching 
Punch 

Punching 
Die 

Chamfering 
Punch 

Chamfering 
Die 

Coining 
Punch 

Coining 
Die 

Blanking 
Punch 

Blanking 
Die 

Max. Von 
Mises Value 
[MPa] 

1772 1591 598 1243 1457 3912 2017 3381 

 

 
Figure 7: FEAdamage indicator of tools 

 

 
Figure 8: FEA high Von Mises stress areas on coining die 

4. Results and Comparisons 
The accuracy of the FEA simulations is supported by comparisons between real washer and FEA 

washer based on geometry, dimensions, and total press force. The comparisons below show that 
simulations were indeed successful in producing an accurate part, with press force in range between 
real maximum and average value. 
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Figure 9: Geometry comparison between FEA washer and real washer 
Table 3: Dimension comparison between FEA washer and real washer 

 

  
External 
Diameter(mm) 

Internal 
Diameter(mm) Thickness(mm) Height(mm) 

Real Washer Max 27.4 12.8 1.85 3.1 
Real Washer Min 26.6 12.4 1.75 2.6 
FEA Washer 26.6 12.5 1.8 3.0 

 

 
Figure 10: Press force comparison between real case and FEA 

 
Maintenance data from a real industrial press in operation were collected during a period of 4 years 
(2016-2020) and 50 maintenance reports, corresponding to the production of 88513000 washers. 
Comparisons between FEAwear and the maintenance data due to wear (Figure 11) showed that, 
proposed FEA wear indicator successfully predicted the most critical die (that is more likely to be 
worn) as the coining die. The maintenance data shows only corrective maintenance, we were 
informed that out-of-production hours preventive maintenance for the other stations such as tool 
sharpening was also performed, which explained why there were not many maintenance interventions 
for the other stations during production hours. Preventive maintenance was not possible for coining 
die since it has a complex shape and teeth height is small, around 0.12 mm, therefore they cannot be 
sharpened. As it was mentioned before, Archard wear model is commonly used for wear studies, and 
this parameter was also implemented in FORGE. However, this parameter is not used in this study 
due to lack of information about K coefficient, and because it was only possible to enter one hardness 
value for all tools and sheet whereas this is not the real case.  

FEAdamage indicator successfully predicted the tool at highest risk of damage as “coining die” 
as was the case in the maintenance data (Figure 12). L&C normalized values of the tools (Figure 12) 
also indicated the coining die as the tool with the highest risk of fracture. A combination of both 
parameters can well predict the real industrial maintenance requirement. In fact, while the L&C 
indicator is well correlated with the maintenance requirements of the coining and blanking dies, it 
overestimates the requirements on the punching and chamfering tools. Although, it must be stated 
again that punching, chamfering, and blanking tools are subjected to preventive maintenance 
regularly and data corresponds only to corrective maintenance. 
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Figure 11: FEAwear values per station, and comparison between FEAwear indicators and corrective 

maintenance data 
 

 

 
Figure 12: Comparison between FEAdamage, L&C Normalized, and corrective maintenance data for 

damage 
 

On the contrary, the FEAdamage indicator correctly estimates the negligible maintenance efforts 
required by the punching and chamfering tools, correctly estimates the requirements of the coining 
die, but it underestimates the requirements of the blanking tools. A possible reason for this is that in 
the real process horizontal misalignment of the sheet (swording) caused blanking pilot to contact the 
blank, thus making it worn or damaged in time whereas in simulations the tools and the blank were 
perfectly aligned, and pilot does not contact the sheet. A sensitivity analysis conducted with FORGE 
by misaligning tools and sheet, supported this reasoning as can be seen in Figure 13. 
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Figure 13: Misalignment (swording) effect on the blanking pilot 

 
Similar analyses, here not reported in the paper for brevity, have been conducted with two more 

case studies, i.e., two more steel washers (pictures given in Fig. 14). Both of them are similar, i.e., 
they are washers. The proposed wear and damage indicators were well correlated to the real 
maintenance data of these two components as well. 

 

 
Figure 14: Additional case studies 

5. Conclusions  
In cases where experiments would prove too costly and long, and when real-case data is available 

such as maintenance data, FEA simulations can be a good alternative solution as long as simulation 
parameters are inserted accurately. This study showed that: 

• FEA simulations conducted by Transvalor FORGE based on process parameters of the real 
progressive die stamping, successfully produced conical dented washer as validated by 
geometry, dimension, and press force comparisons. 

• Proposed FEAwear indicator predicted the riskiest tool for wear as “coining die” which was 
confirmed by corrective maintenance data. Therefore, FEAwear indicator was accurate for 
prediction of dies with high wear risk provided that maximum shear stress on the tools, and 
Vickers hardness values are known. 

• Proposed FEAdamage indicator predicted the riskiest tool for damage as “coining die” which 
was confirmed by maintenance data and L&C normalized values of tools. Therefore, 
FEAdamage indicator was accurate at predicting riskiest dies in terms of damage. Moreover, it 
was shown that combination of FEAdamage and L&C normalized indicators can help prediction 
of risky tools to help planning maintenance priorities. 

• FEA simulations showed high Von Mises stress concentrations on teeth base in “coining die”, 
and that is where “tooth breakage” occurred in the real case during production. Therefore, 
FEA is also a useful tool to have an opinion about risky damage zones. 

 
The proposed indicators are simple but can be effectively used for the specific production of the 

presented case study. They represent a little step of a broader and more ambitious framework which 
aims at implementing an “Industry 4.0” monitoring and predictive maintenance strategy, which will 
combine: force and pressure and other sensors signals coming from the presses, maintenance data 
coming from the “tooling” department, statistical process control (SPC) data coming from the 
“quality” department. 
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