
75th International Astronautical Congress (IAC), Milan, Italy, 14-18 October 2024.
Copyright © 2024 by Mr. Elia Violino. All rights reserved.

IAC–24–C1,5,7

Autonomous Image-based Navigation in Cislunar Orbits via Meta-Reinforcement Learning

Elia Violinoa∗, Andrea Scorsogliob, Luca Ghilardic, Lorenzo Federicid, Francesco Topputoe,
Roberto Furfarof

a Department of Aerospace Science and Technology, Politecnico di Milano, Via La Masa 34, 2016 Milano,
Italy, elia.violino@mail.polimi.itelia.violino@mail.polimi.itelia.violino@mail.polimi.itelia.violino@mail.polimi.itelia.violino@mail.polimi.itelia.violino@mail.polimi.itelia.violino@mail.polimi.itelia.violino@mail.polimi.itelia.violino@mail.polimi.itelia.violino@mail.polimi.itelia.violino@mail.polimi.itelia.violino@mail.polimi.itelia.violino@mail.polimi.itelia.violino@mail.polimi.itelia.violino@mail.polimi.itelia.violino@mail.polimi.itelia.violino@mail.polimi.it
b Department of System and Industrial Engineering, University of Arizona, 1127 E. James E. Rogers Way, Tucson, AZ
85721, andreascorsoglio@email.arizona.eduandreascorsoglio@email.arizona.eduandreascorsoglio@email.arizona.eduandreascorsoglio@email.arizona.eduandreascorsoglio@email.arizona.eduandreascorsoglio@email.arizona.eduandreascorsoglio@email.arizona.eduandreascorsoglio@email.arizona.eduandreascorsoglio@email.arizona.eduandreascorsoglio@email.arizona.eduandreascorsoglio@email.arizona.eduandreascorsoglio@email.arizona.eduandreascorsoglio@email.arizona.eduandreascorsoglio@email.arizona.eduandreascorsoglio@email.arizona.eduandreascorsoglio@email.arizona.eduandreascorsoglio@email.arizona.edu
c Department of System and Industrial Engineering, University of Arizona, 1127 E. James E. Rogers Way, Tucson, AZ
85721, lucaghilardi@email.arizona.edulucaghilardi@email.arizona.edulucaghilardi@email.arizona.edulucaghilardi@email.arizona.edulucaghilardi@email.arizona.edulucaghilardi@email.arizona.edulucaghilardi@email.arizona.edulucaghilardi@email.arizona.edulucaghilardi@email.arizona.edulucaghilardi@email.arizona.edulucaghilardi@email.arizona.edulucaghilardi@email.arizona.edulucaghilardi@email.arizona.edulucaghilardi@email.arizona.edulucaghilardi@email.arizona.edulucaghilardi@email.arizona.edulucaghilardi@email.arizona.edu
d Department of System and Industrial Engineering, University of Arizona, 1127 E. James E. Rogers Way, Tucson, AZ
85721, lorenzof@email.arizona.edulorenzof@email.arizona.edulorenzof@email.arizona.edulorenzof@email.arizona.edulorenzof@email.arizona.edulorenzof@email.arizona.edulorenzof@email.arizona.edulorenzof@email.arizona.edulorenzof@email.arizona.edulorenzof@email.arizona.edulorenzof@email.arizona.edulorenzof@email.arizona.edulorenzof@email.arizona.edulorenzof@email.arizona.edulorenzof@email.arizona.edulorenzof@email.arizona.edulorenzof@email.arizona.edu
e Department of Aerospace Science and Technology, Politecnico di Milano, Via La Masa 34, 2016 Milano,
Italy, francesco.topputo@polimi.itfrancesco.topputo@polimi.itfrancesco.topputo@polimi.itfrancesco.topputo@polimi.itfrancesco.topputo@polimi.itfrancesco.topputo@polimi.itfrancesco.topputo@polimi.itfrancesco.topputo@polimi.itfrancesco.topputo@polimi.itfrancesco.topputo@polimi.itfrancesco.topputo@polimi.itfrancesco.topputo@polimi.itfrancesco.topputo@polimi.itfrancesco.topputo@polimi.itfrancesco.topputo@polimi.itfrancesco.topputo@polimi.itfrancesco.topputo@polimi.it
f Department of System and Industrial Engineering, University of Arizona, 1127 E. James E. Rogers Way, Tucson, AZ
85721, robertof@email.arizona.edurobertof@email.arizona.edurobertof@email.arizona.edurobertof@email.arizona.edurobertof@email.arizona.edurobertof@email.arizona.edurobertof@email.arizona.edurobertof@email.arizona.edurobertof@email.arizona.edurobertof@email.arizona.edurobertof@email.arizona.edurobertof@email.arizona.edurobertof@email.arizona.edurobertof@email.arizona.edurobertof@email.arizona.edurobertof@email.arizona.edurobertof@email.arizona.edu
* Corresponding author

Abstract
Spacecraft navigation is a vital component of any space mission. Image-based navigation is a promising solution

for autonomous real-time navigation applications in deep space exploration missions. It typically involves computer
vision techniques and mathematical models to determine the spacecraft’s position, velocity, and orientation based on
images taken by the onboard cameras. Traditional algorithms for image-based navigation include feature-based navi-
gation and structure-from-motion. However, these methods typically require high onboard computational power and
the availability of high-resolution images, which can be challenging to obtain in certain low-light or limited-visibility
conditions. In this paper, reinforcement learning (RL) is proposed as a novel methodology for autonomous image-based
spacecraft navigation by employing a convolutional neural network as a trajectory estimation policy. In the context of
image-based navigation, the convolutional network and a multi-layer perceptron can process image data from a simu-
lated lunar environment developed in computer graphic software and adjust their estimates of the current spacecraft’s
position accordingly. With RL the policy is trained via repeated interaction with a simulated environment, progres-
sively learning to adapt to changes in the environment, to deal with noise in the collected images and inaccuracies in the
dynamical model. This framework is applied to the autonomous navigation of a spacecraft along a L2 south Halo orbit
in cislunar space. The method is able to provide a good estimation of the spacecraft’s position, maintaining the error
within admissible values for an entire orbit, thus proving that RL is a powerful and effective method for image-based
autonomous navigation.

Nomenclature
α learning rate
β position angle of EMS
πθ policy
a policy’s action vector
CS

I non-dimensional transformation ma-
trix from I to S

i image
r position vector
r⊕ position vector of the EMS with re-

spect to the Sun
T thrust vector
x state vector
y observation vector

δstop position threshold
γ discount factor
ˆ estimate
A action space
B Blender reference frame
I inertial reference frame centered on

the EMB
N (µ,Σ) Gaussian distribution with mean µ

and covariance Σ
S synodic reference frame
U(a, b) uniform distribution in interval [a, b]
X state space
Y(xh) observation function
Eτ [R] expected value of R(τ) with respect
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to random variable τ
max maximum value
µ mass ratio parameter
ν true anomaly of the Moon’s orbit
σx standard deviation of Gaussian ran-

dom variable x
τ trajectory
θ neural network’s parameters
⊤ transpose operator
⋆ optimal value
Aπ advantage function
apert magnitude of the perturbation
H number of steps per episode
h value at h-th step
Isp specific impulse
J(θ) objective function
L characteristic length of the EMS
L(w) loss function for the critic
m spacecraft’s mass
R(xh,ah) reward function
rh reward at step h
t time
U non-dimensional potential
wadj reward weight related to the action
wpen reward weight related to the penalty

due to early truncation
wpos reward weight related to the position
Rb

a rotation matrix from reference frame
b to a

P (xh+1 | xh,ah) state transition distribution

1. Introduction
Space navigation is the process of determining the

state of a spacecraft in space. It is a paramount compo-
nent of every space mission and employs a combination
of onboard sensors and ground-based observations. Nowa-
days, typical current deep space navigation approaches are
based on ground-based tracking that provides radiomet-
ric observables to estimate the spacecraft’s state. Further-
more, maneuvering commands are given from a ground
station, leading to completely ground-dependent vehicles
with possibly high delays between command and actua-
tion [1, 2]. From the ground segment’s perspective, small
satellite operations pose several challenges, including the
need to track multiple spacecraft simultaneously within
limited contact windows, managing a growing number of
missions with finite tracking resources, addressing power
constraints, and dealing with the associated operational
costs, including those of flight dynamics teams.

The growing interest in deep space exploration has in-
creased the need for more autonomous missions, with re-
liance on the ground segment becoming an additional ob-

stacle. Autonomous navigation presents a promising so-
lution, enabling spacecraft to operate independently and
make decisions without human intervention. Furthermore,
the capability of autonomous navigation is essential for ad-
dressing events that occur on time scales shorter than the
communication latency between Earth and the spacecraft
[3].

Optical navigation has gained significant attention in
recent years to attain reliable and efficient space naviga-
tion. This method involves using on-board camera sen-
sors to estimate the relative position and velocity between
the spacecraft and target bodies. By leveraging knowledge
about the surrounding environment, optical navigation has
been employed to complement traditional navigation tech-
niques, particularly during missions near celestial bodies
[4, 5].

One category of optical navigation methods includes
triangulation schemes, that is, determining the observer
location as the intersection point between line-of-sight di-
rections to target locations. These methods are primarily
employed in relative line-of-sight navigation for detecting
and approaching celestial bodies [6–8], in relative navi-
gation between spacecraft [9], and in surface navigation
using target features [10]. Another class of optical nav-
igation methods relies on prospective projection, which
exploits the relation between the apparent size of an ob-
served object in the camera’s field of view and its relative
distance to it [11]. By knowing the true size of the ob-
ject, the relative distance can be estimated by comparing
the actual size to the apparent one. Additionally, horizon-
based navigation provides valuable information by using a
body’s horizon to estimate the distance to the object. The
relative position vector is then determined by identifying
the object’s location within the camera’s field of view [12,
13].

While optical autonomous navigation has significantly
enhanced spacecraft state estimation, the integration with
Artificial Intelligence (AI) introduced a transformative ele-
ment to space exploration, greatly enhancing autonomous
capabilities. Specifically, the fusion of optical naviga-
tion with AI opened up new possibilities for spacecraft
to process vast datasets, enabling intelligent and rapid
decision-making and boosting adaptability across various
environments. Neural Networks (NNs) offer the poten-
tial to drastically cut down computational time by being
trained on the ground beforehand, thereby enabling near-
instantaneous in-flight responses. Furthermore, NN gen-
eralization capabilities allow for adjustments to changing
environmental conditions, leveraging the ability to learn
from past experiences.

In space navigation, Machine Learning (ML) meth-
ods are predominantly applied in image processing via

IAC–24–C1,5,7 Page 2 of 14



75th International Astronautical Congress (IAC), Milan, Italy, 14-18 October 2024.
Copyright © 2024 by Mr. Elia Violino. All rights reserved.

Convolutional Neural Networks (CNNs), while the navi-
gation tasks themselves are typically handled by the well-
established Kalman Filter (KF) [14]. CNNs are also ef-
fectively used in space exploration for pose estimation of
non-cooperative targets, yielding valuable and effective re-
sults [15–17]. There have also been efforts to replace the
Kalman Filter with a Neural Network [18–20] and to in-
tegrate NN with KF [21], though these approaches have
not been specifically tailored for space applications. A no-
table example of space navigation using neural networks
can be found in Ref. [22], where a Convolutional Extreme
Learning Machine (CELM) is utilized for vision-based
navigation to assign a range label to each input image.

One significant advancement in AI is Reinforcement
Learning (RL), a machine learning technique that enables
an agent to learn an optimal control policy by maximiz-
ing the cumulative reward received for its actions within
an environment. RL has diverse applications, including
robotics, image processing, and control, and its versatility
has made it widely adopted also in space engineering. In
particular, RL has been used to address spacecraft guid-
ance and control problems, such as autonomous guidance
of an asteroid impactor [23], spacecraft guidance during
rendezvous missions [24], autonomous lunar landing [25,
26], or relative orbit spacecraft docking [27], obtaining
promising results.

In this paper, the objective is to apply Reinforcement
Learning (RL) to develop a neural network that maps, in
a closed-loop manner, images of the space environment
to corrections in the spacecraft’s estimated position, ul-
timately refining the knowledge available onboard about
its true position. The initial position estimate is obtained
by propagating the spacecraft’s state from the previous
time step. This presents a unique challenge for RL, which
is traditionally designed for decision-making in dynamic
systems where control policies generate actions that di-
rectly affect the environment and, consequently, the sys-
tem’s state. In this context, however, RL generates an ac-
tion that doesn’t directly modify the system state but in-
stead provides a correction to an estimated position, which
serves as input for the control system onboard. This indi-
rect approach adds an additional layer of complexity, as
the policy must adjust a proxy value rather than directly
interacting with the true system state. Precisely, we apply
this RL-based framework to perform optical navigation in
an L2 Southern Halo orbit around the Moon. To achieve
this, synthetic images of the Moon were generated using
Blender, which uses a physically-based rendering engine
to simulate realistic images as those captured by an on-
board optical camera. These images are used as input to
train a neural network, consisting of both convolutional
and fully-connected layers, which is responsible for cor-

recting the estimated spacecraft’s position. Key param-
eters about the environment, such as solar position and
initial orbital conditions of the spacecraft, are sampled at
the beginning of each simulation from stochastic distribu-
tions, allowing the agent to generalize across diverse en-
vironmental conditions. The result is a navigation system
capable of providing accurate position estimates within an
image-based feedback loop.

The structure of the paper is as follows: Section 2
outlines the machine learning framework, particularly RL,
and its implementation in our approach. Section 3 details
the implementation of the RL-based navigation algorithm,
presenting the dynamic model, the MDP formulation, and
the visual environment. Section 4 discusses the perfor-
mance of the proposed algorithm across various config-
urations. Lastly, Section 5 provides concluding remarks
and summarizes the key findings.

2. Machine Learning Framework
In the following section, the RL formulation is intro-

duced as well as the foundation for the learning procedure
based on the PPO algorithm [28] used in this work.

2.1 Reinforcement Learning
In reinforcement learning (RL), an agent learns to

perform tasks by repeatedly interacting with an environ-
ment. This interaction framework is typically modeled
as a Markov Decision Process (MDP), where the state de-
pends solely on the preceding state and the applied action
at any given time. The MDP serves as a mathematical rep-
resentation of the environment and is defined by a continu-
ous state space X , an action space A, a state transition dis-
tribution P (xh+1 | xh,ah), which defines the probabil-
ity of transitioning to the next state xh+1 given a specific
action ah applied to state xh, and a scalar reward func-
tion rh = R(xh,ah), where x ∈ X and a ∈ A. When
the state is not directly observable or the observations are
noisy, the problem is modeled as a Partially Observable
Markov Decision Process (POMDP). In a POMDP, the
state x is hidden, and observations y are provided via an
observation function Y(x). The agent uses a parameter-
ized policy πθ to operate within the environment defined
by the POMDP, generating an action ah based on the ob-
servation yh, receiving a reward rh, and transitioning to
the next observation yh+1. The objective of the RL algo-
rithm is to optimize the policy πθ to maximize the cumu-
lative rewards collected over an episode [25]

θ⋆ = argmax
θ

E
πθ(τ)

[R(τ)] [1]

with θ⋆ being the optimal parameters of the policy πθ and
R(τ) the cumulative reward over an episode, or trajectory,
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τ = {(y0,a0), . . . , (yH−1,aH−1),xH}, that is

R(τ) =

H−1∑
h=0

γhrh [2]

with γ ∈ [0, 1) a discount factor for future rewards, rh
the reward at step h, and H the total number of steps in a
single episode.

At the beginning of the training process, the agent has
no information about the environment and the policy is
randomly initialized. To allow the agent to explore the
state and action spaces and gather information about the
environment, exploration is allowed. To this aim, a diag-
onal multivariate Gaussian policy is employed to strike a
balance between exploration and exploitation during train-
ing. At each time step h, the network πθ receives the
current observation yh as input and outputs the mean ac-
tion value µh and the corresponding standard deviation
σh. Since the policy is stochastic, the notation πθ(· | yh)
is typically used in modern RL literature to represent the
probability of selecting a specific action ah, given the ob-
servation yh. For consistency with RL terminology, this
notation is also adopted in this paper, even though the pol-
icy πθ technically returns the parameters of the probabil-
ity distribution rather than the probability value itself. To
enable broad exploration of the solution space during train-
ing, the actual action is sampled according to the Gaussian
distribution

ah ∼ πθ(· | yh) ∼ N (µh,Σh) [3]

with Σh = diag(σhσ
⊤
h ) being the covariance matrix. To

ensure that the action ah always lies within its defined in-
terval, the probability that any of its components falls out-
side the action space A (i.e., the tails of the Gaussian) is
clipped to zero.

By deviating from the nominal policy, the agent can
explore various possibilities, gather valuable information,
and progressively refine its policy based on the outcomes
of these explorations. This process is essential for the
agent to discover and learn effective strategies within the
environment. As the agent learns, it identifies which ac-
tions are most favorable for a given observation based on
the reward, which reflects the effectiveness of each action.
Once training is complete, during the final policy deploy-
ment or evaluation, exploration is disabled, and the agent
returns the optimal action for each observation: ah = µh.

2.2 Proximal Policy Optimization
In this paper, we used a derivation of the A2C method

to optimize the policy, the Proximal Policy Optimization
(PPO) [28]. This is a popular algorithm in the family
of policy gradient methods and has achieved state-of-the-

art performance across various benchmark reinforcement
learning tasks. PPO is derived from the Trust Region Pol-
icy Optimization (TRPO) method [29]. The TRPO algo-
rithm formulates the policy optimization task in a way that
constrains the size of the gradient step taken in each itera-
tion using a dynamically computed constraint. The TRPO
policy update can be formulated as:

min
θ

E
p(τ)

[
πθ(ah | xh)

πθold(ah | xh)
Aπ

ϕ(xh,ah)

]
s.t. E

p(τ)
[KL (πθ(ah | xh), πθold(ah | xh))] ≤ δ

[4]

where KL represents the Kullback-Leibler divergence
[30] between the current policy and the previous policy,
and δ is a parameter that constrains the update step size.
It has been proven that if the update at each iteration is
bounded by a constant C(KL), the policy will improve
monotonically toward the optimal policy. However, such
an approach typically leads to very small updates, so the
formulation in Eq. 4 with a fixed constraint parameter is
used instead. This optimization problem is approximately
solved using the conjugate gradient method, which lin-
earizes the objective function and applies a quadratic ap-
proximation to the constraint.

The PPO method simplifies the TRPO optimization by
incorporating the constraint on policy updates directly into
the objective function through clipping. The objective can
be expressed in terms of the probability ratio ph(θ) defined
as:

ph(θ) =
πθ(ah | xh)

πθold(ah | xh)
[5]

The clipped objective function is then defined as

J(θ) = E
τ∼πθ

[
min

(
phÂh, clip(ph, 1− ϵ, 1 + ϵ)Âh

)]
[6]

The advantage function cannot be computed exactly,
thus its value is approximated as the difference between
the empirical return (i.e., the discounted reward) and a
baseline provided by the state value function. This advan-
tage function indicates how much better a particular action
is compared to the average action:

Âπ
ϕ(xh,ah) =

[
H−1∑
l=h

γl−hrl

]
− V̂ π

ϕ (xh) [7]

with γ ∈ [0, 1) being the discount factor, with values
closer to one indicating that the algorithm places more im-
portance on rewards received further into the future. The
subscript ϕ emphasizes that the advantage function is de-
pendent on the value function approximation provided by
the critic. The value function V̂ π

ϕ (xh) is learned using the
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following cost function:

L(ϕ) = E
τ∼πθ

[
V̂ π
ϕ (xh+1)−

(
H∑
l=h

γl−hrl

)]
[8]

In practice, policy gradient algorithms refine the pol-
icy by updating it using a batch of trajectories (also known
as roll-outs) obtained from interactions with the environ-
ment. Each trajectory corresponds to a single episode,
where a sample from a trajectory at step h includes the
observation xh, the action ah, and the reward rh(xh,ah).
The learning process involves performing gradient ascent
on the policy parameters θ and gradient descent on the
value function parameters ϕ. The updated equations are
as follows:

ϕ+ = ϕ− − αϕ∇ϕL(ϕ)
∣∣
ϕ=ϕ− [9]

θ+ = θ− + αθ∇θJ(θ)
∣∣
θ=θ− [10]

with αϕ and αθ representing the learning rates for the
value function V π

ϕ and the policy πθ(ah | xh), respec-
tively. Both the policy and the value function are updated
concurrently.

It’s also important to note that the parameters θ de-
pend on the architecture of the neural network used. In
this work, we employ a policy described by a Convolu-
tional Neural Network (CNN) followed by a Multilayer
Perceptron (MLP). The training process is summarized in
the pseudocode provided in Algorithm 1.

Algorithm 1 Proximal Policy Optimization (PPO).
1: initialize policies πθ, πθold

2: for iteration= 1, 2, . . . do
3: for episode= 1, 2, . . . do
4: run current policy πθ in environment and col-

lect trajectory τi
5: end for
6: calculate advantage function using Eq. 7
7: update the value function parameters using Eq. 9
8: calculate clipped objective using Eq. 6
9: update the policy parameters using Eq. 10

10: end for

3. Reinforcement Learning Navigation Algorithm Im-
plementation

3.1 Dynamic model
The spacecraft dynamic comes from the Circular Re-

stricted Three-Body Problem (CR3BP), where the Earth is
the primary body and the Moon is the secondary one. For
simplicity, the Moon is assumed to orbit on the Earth’s
equatorial plane.

The equations governing the dynamics of the CR3BP
are formulated in the non-dimensional synodic reference
frame. The behavior of the system is primarily influenced
by the mass ratio parameter µ, defined as:

µ =
m2

m1 +m2
[11]

Within this reference frame, the equations of motion
for the third body, the spacecraft, are given by:

ẍ− 2ẏ = x− 1− µ

r13
(x+ µ)− µ

r23
(x− (1− µ))

ÿ + 2ẋ = y − y

(
1− µ

r13
+

µ

r23

)
z̈ = −z

(
1− µ

r13
+

µ

r23

)
[12]

where the distances r1 and r2 are defined as:

r1 =
√

(x+ µ)2 + y2 + z2 [13]

r2 =
√

(x− (1− µ))2 + y2 + z2 [14]

By introducing the non-dimensional potential U , de-
fined as:

U =
1

2
(x2 + y2) +

1− µ

r1
+

µ

r2
[15]

the equations of motion can be rewritten as:

ẍ− 2ẏ =
∂U

∂x

ÿ + 2ẋ =
∂U

∂y

z̈ =
∂U

∂z

[16]

To maintain the spacecraft close to the target Halo or-
bit, a control force is required due to the unstable nature
of these orbits. The control thrust vector is defined as
T = [Tx, Ty, Tz]

⊤, having a maximum magnitude Tmax.
The effective exhaust velocity is given by ueq = g0Isp,
with g0 = 9.807 m/s2 representing the Earth’s gravita-
tional acceleration at sea level. The equations of motion
with control can be expressed as:

ẍ− 2ẏ =
∂U

∂x
+

Tx

m
,

ÿ + 2ẋ =
∂U

∂y
+

Ty

m
,

z̈ =
∂U

∂z
+

Tz

m
,

ṁ = −||T ||
ueq

,

[17]
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where m denotes the mass of the spacecraft.

3.2 Markov Decision Process
The problem of image-based navigation is formulated

as a Markov Decision Process (MDP). Time is discretized
into a grid ofH uniformly spaced time steps, starting from
the initial time t0 to a maximum time tmax = tH , with each
time step denoted by th.

The spacecraft’s state at each time step th is ob-
tained by numerically integrating the equation of motion
(Eq. [17]) from th−1 to th. During this interval, the thrust
is assumed to be constant in both magnitude and direction.

A Halo orbit is employed as a reference trajectory for
this navigation problem. To keep the spacecraft near the
desired orbit, a closed-loop control law is used, which
achieves an accuracy of 30 km in position and 0.3 m/s in
velocity when trained on the specific Halo orbit [31].

The control law, however, requires accurate state esti-
mates of the spacecraft. These estimates are provided by
the policy π for position and a simulated generic naviga-
tion subsystem for velocity. At each time step, the navi-
gation system takes a vector of observations yh as input,
represented by:

yh =

[
ih
βh

]
, [18]

where ih is a 128×128 image and βh is the sun’s position
angle. The system outputs a correction for the estimated
position:

ah = π(yh) = ∆rh. [19]

The corrected position is then computed as:
r̂+h = r̂−h + ah, [20]

where r̂−h is the propagated position estimate from the pre-
vious time step. Velocity estimation is obtained by adding
random noise, with a standard deviation of 0.3 m/s, to each
component of the real velocity, simulating the effect of a
navigation subsystem dedicated to velocity estimation.

The new state estimate at time step h + 1 is updated
by performing a numerical integration of Eq. 17, yield-
ing x̂−

h+1. Figure 1 illustrates the proposed predictor-
corrector steps, where rh represents the spacecraft’s true
position.

At the start of each episode, the initial condition along
the Halo orbit is randomly selected from a uniform distri-
bution over the H possible starting points:

l = U({1, . . . , H}). [21]

The spacecraft’s initial state is determined by adding
small random errors in position and velocity to the nomi-

r̂−
h

rh

r̂+
h

ah

fCR3BP

fCR3BPr̂−
h+1

r̂+
h+1

rh+1

ah+1

Fig. 1. Proposed predictor-corrector method.

nal initial condition along the Halo orbit x̄l:
x0 ∼ U (x̄l − δx0,max, x̄l + δx0,max) . [22]

An episode ends when one of the following two condi-
tions is met:

ξdist(r̂
+
h , rh) = [||r̂+h − rh|| ≥ δstop]

ξtime(th) = [th ≥ tH ],
[23]

where the first condition terminates the episode if the dis-
tance between the estimated and actual positions exceeds
the threshold δstop, and the second condition ends the
episode when th reaches the final time tH = tmax, cor-
responding to the period of the Halo orbit.

At the end of each time step h, the agent receives a re-
ward Rh that evaluates the quality of the position correc-
tion r̂−h based on the observation yh. The reward function
is defined as follows:

Rh =


−δerr if δerr > 0,

wadjwpos||ah|| if δerr = 0,

−wpenwposδstop(H − h) if ξdist is true,
[24]

where
δerr = wpos max(||r̂+h − rh|| − ϵr, 0). [25]

If the navigation error exceeds the target error ϵr, the pol-
icy receives a negative reward proportional to the error. If
the error is within the target, the reward is positive and
increases with the magnitude of the correction ah. If the
episode is terminated due to the condition ξdist, the re-
ward corresponds to the maximum distance δstop for each
remaining time step. The negative reward for exceeding
the navigation error is intended to encourage the policy to
minimize the error. The penalty for early termination dis-
courages highly inaccurate policies, while the positive re-
ward encourages larger corrections, preventing the agent
from settling into local minima with small, uncorrected
errors.

3.3 Network Architecture
In this section, the network architecture is presented.

As said before, this work employs separate actor and critic
networks. Both networks consist of a deep neural network
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βh

Vϕ,h

Vϕactor critic

µθ,h,σθ

Fig. 2. Neural Network architecture.

that includes a convolutional neural network (CNN) and
two fully connected (MLP) hidden layers (see Fig. 2). The
CNN is structured with three convolutional filters and pro-
cesses a 128× 128 tensor ih as input, which contains the
image data. The output of the CNN is then fed into the
MLP layers, which have 128 neurons each. These MLP
layers take as input the processed image data from the
CNN and the value of the sun’s position angle, β⊙. This
results in an overall input size of 129 values for the MLP
layers.

In the policy network, the output from the MLP layers
is directed into an output layer that returns the mean value
µθ,h for four output variables: the magnitude of the ad-
justment on the position and the three components of the
adjustment unit vector. The standard deviation σθ is not
dependent on the specific observation, making the total
number of outputs for the actor network no = 4.

In contrast, the critic network’s output is a single value,
representing the value function Vϕ,h. This value function
evaluates the expected return from a given state, helping
to assess the quality of the policy generated by the actor
network.

3.4 Visual Environment
The spacecraft is assumed to have an optical sensor (i.e.

a camera) that provides the policy with images taken on-
board. The optical sensor’s foresight is always pointed to
the center of the Moon. The images coming from the cam-
era are generated within a simulated environment built in
the open-source software Blender. Specifically, to recre-
ate the surface features, the Moon is modeled as a sphere
where the surface consists of a precise texture wrapped on
the sphere and a bump map to simulate the shadows.

To represent the whole navigation problem inside the

Fig. 3. Render of the Moon.

Blender environment, a new reference frame was intro-
duced. Indeed, keeping the synodic reference frame
would have led to the mean radius of the Moon being too
small, and considering that the ray tracing-based render
works better with larger numbers because of the roundoff
error, this would have led to a suboptimal choice. For this
reason, some modifications have been applied to the syn-
odic frame. First of all, the unit has been set to thousands
of kilometers (ℓ = 1000 km), which allows the creation
of the moon with a radius of 1.738 in the rendering space.
Then, the origin of the Blender reference system is posi-
tioned at the center of the Moon, allowing for the repo-
sitioning of both the satellite and the Sun relative to this
fixed point. In this setup, the Moon remains stationary,
and the Earth is never within the satellite’s view along its
orbit. This approach has been preferred and implemented
in the model. Consequently, all position vectors must be
transformed from the synodic reference frame S to the
new Blender reference frame B.

The conversion of the position vector to the Blender
reference frame B is carried out as follows:

rB =
(
rS − rmoon

S) L
ℓ

[26]

withL = 384400 km being the characteristic length of the
Earth-Moon system. Here, the position vector rS in the
synodic frame is adjusted by subtracting the Moon’s posi-
tion vector rmoon

S in the same frame, and then scaled by
the ratio L

ℓ to obtain the position vector rB in the Blender
reference frame.

The direction of the Sun in the visual environment is
used to establish the direction in which the light acts on the
Moon. The direction of the sun is calculated considering
that the EMS revolves in a circular orbit around it. Firstly,
to determine the position of the Earth-Moon system (r⊕)
relative to the Sun, it is essential to compute its parameters
in a circular orbit, specifically the radius r and the angle β
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(see Figure 4). Next, a reference epoch must be established

β

r⊕

EMS

x

y uxuθ

Fig. 4. EMS circular orbit

to synchronize the dynamics of the Halo orbit with the
Earth-Moon system’s revolution around the Sun. In this
setup, β is set to β0 at the initialization of each episode.

As time t progresses, the angle β is computed as:

β = β0 +
2πt

Tearth-sun
[27]

where t represents the elapsed time, β0 is the initial angle,
and Tearth-sun is the period of the Earth-Moon barycenter
(EMB) orbit around the Sun, approximately 365.256 days.

To derive the position vector of the Sun in the inertial
reference frame I centered on the EMB, we perform a se-
quence of two transformations using the following rotation
matrices:

Recl
rot =

 cos(β) sin(β) 0
− sin(β) cos(β) 0

0 0 1

 [28]

RI
ecl =

1 0 0
0 cos(i) sin(i)
0 − sin(i) cos(i)

 [29]

where Recl
rot represents the rotation from the ecliptic refer-

ence frame to the rotating frame, and RI
ecl is the rotation

matrix from the inertial frame to the ecliptic plane, with
i = 23.439◦ being the inclination between these planes.

The position vector of the Sun in the inertial reference
frame is then given by:

rI⊙ =
(
Recl

rotR
I
ecl
)⊤

r
(rot)
⊙ [30]

where r
(rot)
⊙ =

[
−r⊕ 0 0

]
is the position vector of the

Sun relative to the EMB in the rotating frame (Figure 4),
with r⊕ = 149.60× 106 km.

After obtaining the position in the inertial frame I,
it must be transformed into the synodic reference frame.
This is achieved using the non-dimensional transformation
matrix from the inertial frame I to the synodic frame S:

ρS = CS
I ρ

I [31]

where

CI
S =

[
CS

I
]−1 and CS

I =
1

r
CE

I [32]

with

CE
I =

 cos(ν) sin(ν) 0
− sin(ν) cos(ν) 0

0 0 1

 [33]

where ν is the true anomaly of the Moon’s orbit around
the Earth and r is the radius. The detailed derivation can
be found in [32].

For our specific case, the Sun’s position in the synodic
frame is:

rS⊙ =
1

L
CS

I r
I
⊙ [34]

from which the direction can be computed as:

dS
⊙ =

rS⊙
||rS⊙||

=
[
dx dy dz

]
[35]

Then, Eq. 26 can be applied to obtain the Sun direction in
the Blender reference frame.

4. Training and Testing Results
In this section, we present the test results for the ana-

lyzed scenario. Two distinct cases are evaluated. First, we
address the validation of both the environment and the re-
ward function formulation using state-based observations.
After this validation, we then present the results for the
image-based observation case. In both cases, the initial
conditions for the state are sampled from a uniform distri-
bution over points on the Halo orbit. These sampled con-
ditions are then perturbed by adding random noise. The
noise is drawn from a uniform distribution within ±30 km
for position and ±0.3 m/s for velocity, simulating realis-
tic deviations from the nominal orbit. The nominal initial
mass is equal to 1000 kg. One episode is associated with a
complete orbit, and it is divided into 100 steps. The CNN
in Fig. 2 is built of three filters having the characteristics
in Table 1. The rest of this section will present the two test

Table 1. CNN Architecture.

Layer Filters Kernel Size Padding Stride
1 16 8× 8 4 4
2 32 6× 6 3 3
3 128 11× 11 0 1

scenarios and the corresponding results in detail.

4.1 Case 1: State-based position correction
In this case, the NN consists of just the MLP layers

and is fed with the normalized difference between the esti-
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mated state and the real one as input instead of the image:

yh =

[
r̂−h − rh
||δr0,max||

,
v̂−
h − vh

||δv0,max||

]
[36]

with δx0,max = [δr0,max, δv0,max] being the initial random
error to the nominal initial state on the Halo. This obser-
vation was selected because it provides the network with
all the essential information required for effective learn-
ing. The input essentially mirrors the desired output, sug-
gesting that the learning process should be straightforward,
provided that the environment and reward functions are
properly formulated.

As mentioned in Sec. 3.2, the velocity v̂+
h is defined as

v̂+
h = vh + δv̂, where δv̂ represents a random error with

a magnitude of approximately 0.3 m/s for each velocity
component.

The reward hyperparameters for this case are enlisted
in Tab. 2.

δstop, [km] wcont wpos wpenalty ϵr, [km]

500 1 1 10 6

Table 2. Reward function hyperparameters.

Figure 5 shows the results obtained during the training
process. The reward starts at approximately -0.6 and con-
verges to zero rapidly and with very few oscillations. A
similar trend is observed in the episode length, where the
curve starts at around 60 and quickly reaches 100 after a
few iterations. The mean position error achieves the target
within fewer than 1,000 iterations. However, the behavior
of the mean position adjustment is particularly notewor-
thy. Initially, the adjustment drops to small values as the
system approaches the target. Once the target is reached,
the adjustment increases again, eventually stabilizing at
around 9 km. This is driven by the reward component re-
lated to correction (as per the second condition in Equa-
tion [24]), which incentivizes larger adjustments once the
target distance has been achieved.

Overall, these results—with an increasing reward,
target-level position error, and non-zero adjustment—
indicate that the training was successful.

At this point, the policy was evaluated over 100 differ-
ent trajectories, each generated with varying initial condi-
tions for position and velocity.

Figure 6 presents the navigation error in position for all
100 trajectories, along with the corresponding 3σ bounds.
The error at the first step is larger than at subsequent steps,
with a value around 20 km. This initial spike is attributed
to the perturbations applied to the initial conditions at the
start of each episode. However, despite the larger initial

error, it quickly decreases within a few steps, bringing all
three position components within the target region.

Based on these evaluation results, both the reward
function and environment formulation can be considered
well-defined and validated.

4.1.1 Kalman filter for velocity estimation
As introduced in the previous section, the training pro-

cess incorporated perturbations on the true velocity to sim-
ulate its estimation, replicating the presence of a dedicated
velocity navigation system.

A simple Extended Kalman Filter (EKF) was imple-
mented and used during evaluation to validate this. Specif-
ically, after the network outputs the correction to estimate
the spacecraft’s position, this position is provided as an ob-
servation to the EKF, which then estimates the velocity at
the same time step. This allows the entire estimated state
to be retrieved and used as input for the control network
responsible for maintaining the spacecraft’s trajectory.

The velocity navigation error results are shown in Fig-
ure 7. The navigation error for velocity is defined as
verr = ||v̂+

h − vh||, where v̂+
h is the velocity estimated

by the Kalman filter. In the first step, the velocity error is
significantly large, exceeding the target corresponding to
the δv̂ applied during training. This large initial error is
attributed to the greater navigation error in position during
the first step and the initialization bias of the Kalman filter.
However, the error rapidly decreases from the second step
onwards and remains within the target region throughout
the orbit.

The position error also behaves differently since the
Kalman filter influences the overall spacecraft dynamics.
Figure 8 shows the position error when the EKF is inte-
grated into the system. As observed previously, the ini-
tial position error is larger than in subsequent steps but
decreases rapidly within a few steps. However, in con-
trast to the earlier case (Fig. 6), the 3σ bounds show a
slightly different trend. While the y component of the
position error behaves similarly to previous cases, the x
and z components exhibit some oscillations. These fluctu-
ations can be attributed to the inclusion of the EKF within
the navigation system. Nevertheless, the position error
remains within the defined threshold for all three com-
ponents, demonstrating the system’s effectiveness in han-
dling the velocity estimation and its compatibility with
position-based correction.

4.2 Case 2: Image-based position correction
With the validation of the environment and reward for-

mulation, training with image-based inputs was initiated.
The network architecture is depicted in Figure 2.
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Fig. 5. Training variables progress.
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Fig. 7. EKF velocity error.

Following the validation obtained from the position-
based training with EKF, the velocity estimation in this
case was also simulated by adding a random error of ap-
proximately 0.3 m/s to each velocity component.

The evaluation followed the same approach as in pre-

vious cases, testing the policy across 100 different trajec-
tories, each initialized with distinct position and velocity
conditions.

Figure 9 illustrates the navigation error in position
for all the trajectories, along with the corresponding 3σ
bounds. Unlike the behavior observed in Figure 6, where
a high initial error is followed by stable, lower errors, the
trends here exhibit more chaotic variations throughout the
episode. Despite this increased variability, the data does
not show any signs of divergence, indicating the policy’s
ability to maintain the errors within acceptable bounds.

These error bounds are further detailed in Table 3. In
the table, d̄max represents the maximum distance from the
true position among the three position components, aver-
aged over the entire orbit, while d̄norm indicates the aver-
age deviation from the reference trajectory across all steps
in each episode.

The results demonstrate that the policy maintains a po-
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Fig. 9. Navigation error for each position component with associated 3σ bounds.

Table 3. Monte Carlo Simulation Results

d̄max, km d̄norm, m/s

68.3% 95.5% 99.7% 68.3% 95.5% 99.7%

37.71 73.35 104.07 57.33 112.14 153.71

sition navigation error of approximately 150 km in 99.7%
of the episodes, with a maximum error on a single com-
ponent reaching 104 km. Although this error exceeds the
originally targeted accuracy, it still represents only 0.2%
of the minimum distance between the Halo orbit and the
L2 point. Moreover, it is important to consider that these
results were achieved using lower-resolution images that
provide less detailed information, introduce more noise,
and display smaller distinguishable changes between suc-
cessive steps relative to the true position. Fig. 10 illus-
trates the 100 trajectories generated using this method,

plotted in cislunar space. As observed, all trajectories
closely follow the reference orbit, with minimal deviation,
making it challenging to distinguish individual paths from
one another. This tight clustering indicates the effective-
ness of the navigation system in maintaining proximity to
the desired orbit across different initial conditions.

These findings underscore the robustness of reinforce-
ment learning (RL) in managing suboptimal input data.
Despite the lower quality of the images, the RL model ef-
fectively extracts sufficient information to achieve stable
navigation. This highlights the adaptability and potential
of RL-based approaches in space navigation tasks. While
the system does not achieve highly precise navigation, its
ability to function with low-quality data demonstrates the
method’s resilience and suggests a promising direction for
future RL-driven navigation solutions.
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Fig. 10. MonteCarlo results.

5. Conclusions
This study aimed to explore and validate the capabil-

ity of reinforcement learning (RL) for optical navigation
in the cislunar environment. A combination of CNN and
MLP is devised to acquire an image (coming from the on-
board camera) to generate a correction of the estimated
position to perform navigation on a Cislunar Halo orbit.
The deep policy network is designed and trained on the
distribution of MDPs to enable learning under uncertain
conditions. Although this method can be effective, it re-
quires evaluation to operate within the environment distri-
bution adopted in training. Thus, the effectiveness of the
navigation policy may deteriorate when deployed outside
those bounds. The policy is trained using Proximal Pol-
icy Optimization (PPO) with an actor-critic architecture,
where both the actor and the critic policies have the same
observation. This consists of an image of the Moon mod-
eled using digital terrain models captured from a realistic
camera model ray-tracing dependent. This is achieved us-
ing a Blender-based simulator connected to the RL frame-
work through a Python Application Programming Inter-
face (API). With this method, the policy can estimate the
spacecraft’s position with an accuracy of 153 km in 99.7%
of the trajectories without presenting any divergence ten-
dency and it can work effectively with a navigation subsys-
tem devised only for velocity estimation. The navigation
error obtained corresponds to 0.2% of the closest distance
between the L2 point and the Halo orbit. However, com-
paring these results with the validation case (Case 1), it
can be seen how reducing the quality of the observation
affects directly the overall performance of the proposed
approach. Indeed, the images carry less information com-
pared to the actual state, making it more difficult for the net
to generate a precise output. A key limitation of reinforce-
ment learning (RL) in this context is its reliance on low-
quality images. However, the ability to process and extract
useful information from low-quality images can also be

viewed as a strength. Despite the limited detail in the im-
ages, the network consistently produced accurate position
corrections, yielding promising results. Nevertheless, the
method’s greatest strength lies in the near-instantaneous
generation of outputs once the policy is trained. Once
the policy weights are optimized, deploying the system is
computationally efficient, requiring only matrix multipli-
cation with the input, making it suitable for onboard real-
time applications. In summary, despite the challenges
of long training times and the use of low-resolution im-
ages, this application of RL for optical navigation in the
cislunar environment can be considered a success. The
RL model demonstrated its ability to reliably estimate the
spacecraft’s position, showcasing the robustness of the ap-
proach even with limited observational data.

5.1 Future work
The primary challenge encountered was reinforcement

learning’s difficulty in handling high-quality images, ne-
cessitating the use of low-quality ones. These lower-
resolution images lacked sufficient detail, preventing the
network from achieving the desired precision. This issue
likely arose because successive orbit steps produced im-
ages with minimal differences, resulting in similar inputs
for distinct outputs, which is difficult for the network to
process. Even with navigation errors of hundreds of kilo-
meters, the images did not exhibit significant variations,
making it hard for the policy to refine the spacecraft’s tra-
jectory. Given these challenges, it would be worthwhile
to investigate the performance of this RL-based method
in a different orbit, such as a transfer orbit between two
cislunar Halo orbits, rather than a stable closed-loop orbit.
In such a scenario, the images would show more substan-
tial changes at each step, potentially providing the network
with more distinct information to improve navigation ac-
curacy. Another possible enhancement involves using a
more complex dynamical model for the real-world envi-
ronment, such as incorporating the Four-Body Problem
or a Two-Body Problem with perturbations, while keep-
ing the Circular Restricted Three-Body Problem (CR3BP)
model onboard. This approach would better reflect the
real-world conditions, where the spacecraft’s actual mo-
tion differs from the simplified model used in the onboard
system. Additionally, to develop a fully RL-based naviga-
tion system, an interesting improvement could be the inte-
gration of a second policy to estimate velocity based solely
on position, eliminating the need for the Extended Kalman
Filter (EKF) currently used. This would streamline the sys-
tem and create a more cohesive RL-based framework for
space navigation.
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