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A B S T R A C T

The purpose of advanced Brain–Computer Interfaces (BCIs) is to connect the human brain with an external
device without using the muscular system. To do this, they must effectively process mental activity and infer
information on the users’ intentions and directives. This work proposes a novel and explainable BCI system
capable of recognizing P300 deflection in single-trial EEGs with higher accuracy compared to the literature gold
standard. Moreover, the proposed deep-learning approach allows us to go beyond the mere P300 detection,
which is, to our best knowledge, the current state of the art. Indeed, we first identify the P300-related signal in
the single-trial EEG signal, and then, we further discriminate the ERPs associated to the detected P300 between
visual and auditory stimuli-related. To do this, we employ a CNN–LSTM neural network, which manages a 3D
data representation of the acquired EEG signals. The performance of the approach is tested on experiments
carried out on 22 subjects, revealing a 82.4% F1-score in P300 identification and 82.4% discriminating between
visual and auditory stimuli. The employed algorithmic procedure also reports the most relevant each EEG
channels in determining the predictions, adding interpretability to the proposed AI-based tools. These results
pave the way for more sophisticated BCIs, capable of extending the set of available actions for the patients.
The project was pre-approved by the Research Assessment Committee of the Department of Psychology (CRIP)
for minimal risk projects, under the aegis of the Ethical Committee of University of Milano-Bicocca, on May
27th, 2019, protocol number RM-2019-193.
. Introduction and background

Brain–Computer interfaces (BCIs) address systems that directly
ridge the human brain with external devices without requiring periph-
ral muscular activity (Wolpaw, Birbaumer, McFarland, Pfurtscheller,

Vaughan, 2002). BCIs were first introduced for medical purposes.
ndeed, they were employed as visual or auditory spellers to allow
atients affected by severe muscular diseases, such as locked-in syn-
rome and amyotrophic lateral sclerosis, to communicate with the
xternal world. Recently, the widespread of this technology paved
he way also for non-medical applications (Müller et al., 2008). As
esult, to date, BCIs are vastly employed, as mental state control
Blankertz et al., 2010), drunkness recognition (Malar, Gauthaam, &
hakravarthy, 2011), autonomous vehicles control (Waibel, 2011),
aming (Royer, Doud, Rose, & He, 2010), and authentication (Nakan-
shi, Baba, Ozaki, & Li, 2013).
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Regardless of the specific application, a BCI aims to identify specific
patterns in a patient’s cognitive processes and translate them accord-
ingly to provide the corresponding machine commands. Although sev-
eral methods can be leveraged to measure brain processes, over 80%
of BCI publications rely on the electroencephalogram (EEG) (Mason,
Bashashati, Fatourechi, Navarro, & Birch, 2007). In detail, it describes
the cognitive processes reporting the average activity of the dendritic
currents measured over time by electrodes placed on the scalp accord-
ing to standardized configurations. Therefore, it is an economical, non-
invasive, and high temporal resolution technique compared to alter-
native approaches such as functional near-infrared spectroscopy, func-
tional magnetic resonance imaging, and electrocorticogram (De Venuto
& Mezzina, 2021).

It follows that by leveraging an ad-hoc defined experimental setup,
it is possible to elicit specific patterns in the subject’s brain that can
be detected by the BCI system from the EEG analysis. The procedure
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of the experimental setup depends on the target application; however,
three are main elicited patterns that are effective in BCI applications:
motor imagery (MI), steady-state visual evoked potential (SSVEP), and
P300 (Chan, Quiroz, Dascalu, & Harris, 2015).

MI deals with the mental rehearsal of physical movement tasks, such
as raising a hand. Motion planning induces a synchronous increase or
decrease of the neuronal population, affecting the energy content of
EEG frequency bands depending on the moved limb. The BCI can detect
these phenomena, called event-related synchronization (ERS) or desyn-
chronization (ERD), recognizing the specific motion and performing the
associated action. Usually, this action consists of moving a real or a
virtual object according to the users’ direction of motion. It follows
that the primary applications of MI-based elicitation schema include
wheelchair (Huang et al., 2012) and screen cursor control (Huang, Lin,
Fei, Chen, & Bai, 2009).

SSVEPs, instead, are elicited by triggering a subject with a visual
stimulus, e.g. flashing light, repeated at a specific frequency. They
induce an increase of EEG energy at the corresponding frequency.
According to this paradigm, several visual stimuli are presented to the
subject, flickering with different frequencies. A priori is established
a mapping between the set of available actions and the flickering
frequencies. The user must focus on the visual stimulus whose fre-
quency corresponds to the intended action. As a result, the EEG energy
increases accordingly; the BCI recognizes the SSVEPs-induced peak,
gets the corresponding frequency, and performs the associated action
(Zhu, Bieger, Garcia Molina, & Aarts, 2010).

Finally, P300 represents one of the most significant event-related
brain potentials (ERP) components, consisting of time-locked responses
to a specific class of stimuli. Since it is easy to trigger and measure
compared to other ERP components, P300 is the target of most ERP-
based BCIs (Allison, Kübler, & Jin, 2020). Also, although the overall
ERP trend depends on the specific stimulus that elicited it, the P300
component shape is deterministic. In detail, P300 consists of a pos-
itive deflection occurring 300 ms after the recognition of a target
stimulus (Polich, 2012). According to psychophysiological literature,
as Polich (2020) and Proverbio and Zani (2003), the P300 component
would reflect context updating processes (Fonken, Kam, & Knight,
2020), elicited by stimulus-driven attention, if anterior, and voluntary
attention allocation, if posterior (Polich, 2007). Moreover, recent ev-
idence suggest that P300 responses directly reflect context updating
and learning (Polich, 2020). Again, the P300 component would also
reflect working memory processes (Linden, 2005), categorization’s cer-
tainty (Polich, 2007), conscious processing, stimulus recognition and
coding (Dehaene & Changeux, 2011), stimulus arousal, and valence
(Proverbio, Camporeale, & Brusa, 2020), stimulus familiarity (Herron,
Quayle, & Rugg, 2003). In other words, the greater the P300 amplitude
evoked by a stimulus, the more distinctive and consciously vivid would
be its mental representation, as well as its subsequent memory. It is
evident why the P300 component of ERPs represents a precious tool for
BCI technology, as it directly reflects the brain activation supporting
the conscious mental representations of a stimulus. Also, it is highly
effective as a plethora of experimental paradigms can elicit it.

SSVEP and P300 are often employed in spellers, i.e., BCIs allowing
the user to communicate letter after letter. However, SSVEP range of
different stimuli is limited, as the characteristic frequencies must be
non-harmonic and compliant with the monitor refresh rate (Volosyak,
Cecotti, & Graser, 2009). On the other hand, P300-based spellers are
robust to this issue and also compliant with different stimuli. Indeed,
despite most of them relying on visual stimuli (Farwell & Donchin,
1988), auditory spellers are proposed to allow communication also for
patients incapable of controlling eye muscles (Schreuder, Blankertz, &
Tangermann, 2010). Therefore, considering BCI-based communication
systems, P300 represents the most effective pattern elicited in the
subject’s brain.

However, regardless of the stimulation, P300 is characterized by a

low signal-to-noise ratio (SNR) (Schomer & Da Silva, 2012). Therefore,
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BCIs usually rely on P300 obtained from grandaveraged ERPs. Indeed,
synchronously averaging the multiple EEG signals concerning the same
stimulus allows for improving SNR, as the background brain activity,
which acts as a zero-mean Gaussian noise, is attenuated downstream of
the process. Even if grandaverage improves BCIs robustness, it adds a
temporal overhead in the elicited pattern recognition process. It follows
that it may not be compliant with real-time applications requirements,
burdening the end-user’s communication process.

Therefore, approaches are needed to allow a BCI to identify not av-
eraged P300 from a single stimulus repetition accurately. This achieve-
ment is essential in designing an effective system that enables real-time
communication.

Moreover, the literature approaches aims at detecting the ERPs
evoked by a specific stimulus, performing the so-called target vs. non-
target binary classification. Accordingly, the pool of actions available
for the patients is reduced. To overcome this limitation, expanding
BCIs functionalities, more stimuli can be leveraged, in order to train
the classifiers to detect the ERP and also the eliciting stimulus, e.g.,
distinguishing it by visual or auditory based on its temporal trend. This
allows for expanding the dictionary of possible actions available to the
subject, paving the way for more sophisticated and effective BCIs.

1.1. Related works

The literature presents several approaches to detect the P300 in the
EEG signal. Considering those based on single-trial experiments, inde-
pendent component analysis (ICA) was initially set as one of the most
promising techniques, reducing the processing time and improving the
information transfer rate. Based on this method, Li et al. designed a
BCI system capable of detecting the P300 with a 76.67% accuracy (Li,
Sankar, Arbel, & Donchin, 2009).

However, considering the unfavorable SNR, the EEG non-
stationarity over time, and the inter- and intra-subject variations, the
advent of machine-learning provides algorithms that soon overcame
traditional approaches, given their computational efficiency and the
capabilities of data-driven modeling of complex phenomena (Müller
et al., 2008). It follows that recent literature approaches mainly rely
on machine learning-based approaches. The most widely used includes
linear classifiers, linear discriminant analysis (LDA), and support vector
machines-based (SVM) approaches, which still are, the most popular
choice in real-time EEG based-BCIs (Lotte et al., 2018). Considering
visual speller, Shrinkage LDA achieves remarkable performances, as-
sessing an online accuracy of about 70% (Blankertz, Lemm, Treder,
Haufe, & Müller, 2011). Regarding auditory spellers, instead, the state-
of-the-art performances were reported by Lelievre, who achieved 71.4%
accuracy using SVM. (Lelievre, Washizawa, & Rutkowski, 2013). De-
spite the linear classifiers’ undisputed effectiveness, their classification
capabilities are limited when the data is not linearly separable. Ac-
cordingly, non-linear approaches such as the discriminative canonical
pattern matching are proved to outperform LDA results, assessed as a
promising algorithm for BCI systems based on P300 (Xiao, Xu, Wang,
Jung, & Ming, 2019).

However, the development of artificial neural networks (ANN) soon
revealed their compliance with BCI applications, being nowadays the
most adopted choice. The first attempt was presented by Cecotti and
Graser (2010) who, leveraging convolutional neural networks (CNN),
outperformed the BCI competition winners, considering the same P300-
speller dataset. Also, Kshirsagar et al. in a recent work, proposed a
weighted ensemble of CNNs to detect P300 from online single-trial BCI,
assessing 92.64% accuracy (Kshirsagar & Londhe, 2020). From then,
several networks architectures were proposed, like recurrent neural
networks (RNN) (Tal & Friedman, 2019), and long–short term memory
networks (LSTM) (Joshi, Goel, Sur, & Murthy, 2018), despite CNN
proves to represent the most effective solution (Vareka, 2021). Indeed,
although great performance is achieved by RNN-based approaches
(Fedjaev, 2017), they fail in taking advantage of EEG spatial char-

acteristics, leveraging only temporal dependencies information. CNNs
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are suitable for the EEG data since they can account for their spatio-
temporal structure. Also, CNN achieves outstanding performances in
features extraction, preventing from selecting them in a manual, hand-
crafted process (Lotte et al., 2018). The first CNN-based approaches,
such as Cecotti’s, leverage a 2D matrix representation of the EEG data
since these networks are designed to handle image-like structures. Each
row corresponds to a time instant and each column to a channel.
In 2017 a novel 3D data representation was presented, allowing to
represent more effectively the EEG information to the CNN (Carabez,
Sugi, Nambu, & Wada, 2017). Each matrix encodes the EEG channels’
spatial distribution according to the proposed data structure, while
the third dimension represents time. Therefore, the EEG signal can
be represented as a series of 2D matrices representing the electrodes
configuration on the patient scalp, tracing from time to time the voltage
measured by each channel in the respective matrix cell. CNN is also
used in recent work by De Venuto and Mezzina (2021), which leverages
an autoencoder-(1D)CNN to extract the features of the signals acquired
by a 6-channels EEG and detect the presence of the P300, achieving
a 70.0% F1-Score. Leveraging this effective EEG data representation
allows for achieving high performances in P300 detection, especially
considering hybrid networks architectures, such as the so-called Con-
vLSTM network (Joshi et al., 2018). This configuration proves to be
suitable for EEG-based BCI, requiring minimal channels pre-processing,
and efficiently processing spatial and temporal information, combining
the advantages of the two standard networks architectures.

However, poor interpretability often affects ANN-based approaches,
representing the main barrier in adopting these systems (Molnar, 2020).
Indeed, linear classifiers are easy to be interpreted, allowing for in-
vestigating their decision-making process and promoting a better un-
derstanding of the monitored processes (Du, Liu, & Hu, 2019). There-
fore, to provide insight into the neural networks decision-making pro-
cess, techniques have been proposed, such as the permutation impor-
tance (Altmann, Toloşi, Sander, & Lengauer, 2010). Such metrics can
rank the provided features based on their importance in determining
predictions.

In addition, the P300-based BCI systems presented so far address
binary classification problems, aiming to recognize the presence or
absence of the target response in the single-trial EEG signal. Although
the produced spellers improve locked-in patients’ life quality, bridging
them to the outside world and extending the pool of recognized stimuli
would further increase BCI capabilities, providing them with a more
comprehensive set of possible actions. Recent studies, such as the one
proposed by Wirth, Toth, and Arvaneh (2020), demonstrate that, as
ERPs are lock-in stimulus-specific responses, it is possible to classify
the induced response based on the eliciting stimulus. In detail, they
distinguish two different types of error-related potential, i.e., a partic-
ular ERP elicited when the subject perceives a mistake in executing a
task, with 68% accuracy.

Therefore, the literature overview concerning machine learning-
based BCI systems reveals that these techniques effectively detect the
P300, despite the unfavorable SNR, which paves the way for further
distinguishing the eliciting stimulus, extending the pool of BCI provided
actions. However, new approaches are required to increase these sys-
tems’ explainability and accuracy, especially concerning classifying the
domain of belonging for the eliciting stimuli.

1.2. Problem statement

In this work, we propose an accurate and explainable deep-learning-
based BCI system able to detect not averaged P300 in single-trial EEG
and further distinguish them respect to the sensorial domain of belong-
ing, i.e., visual or auditory. In detail, three innovative contributions are
provided:

1. A hierarchical classifier capable of recognizing the sensorial

domain of the eliciting stimulus related to the detected P300;
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2. An experimental methodology to collect a single-trial EEG
dataset referred to P300 elicited by more than one kind of
stimulus;

3. A procedure to explain the classifier decision-making process.

Concerning the first innovative contribution, starting from state-of-the-
art solutions, we produce a BCI able to go beyond the traditional P300
detection for the very first time. To this extent, we design a hierarchical
classifier combining two CNN–LSTM networks. The first one aims to
identify, in the single-trial EEG, samples referred to a P300, similar to
the literature approaches. But then, a second neural network further
distinguishes the detected ERP associated with the P300 concerning
the eliciting stimulus, which can be visual or auditory. To the best
of the authors’ knowledge, this is the first time a BCI system can
manage more than one stimulus and recognize the sensorial domain of
belonging. Indeed, state-of-the-art approaches rely on a single stimulus
and identify the elicited P300 in the EEG signal. Therefore, we also
designed a novel experimental procedure to collect a dataset referred
to P300 elicited by stimuli belonging to different sensorial domains.
This was kay to produce a dataset on which resorting to evaluate
the performances of our BCI system. Accordingly, we collected data
considering 22 volunteers triggered by visual and auditory stimuli and
leveraged it to assess our BCI system’s performance. In this process,
two indicators were considered: the F1-Score in detecting the P300 and
recognizing the ERP’s sensorial domain and the interpretability of the
classifier’ decision-making process, which was measured according to
the so-called permutation importance (Altmann et al., 2010). Moreover,
the proposed BCI is evaluated according to a subject-specific and an
intra-subject procedure, investigating if providing training data con-
cerning multiple subjects may improve the learning process. The last
innovative contribution concerns the interpretability of the classifier’s
decision-making process provided by the combination of the hierarchi-
cal classifier structure with the leveraged 3D data structure, inspired by
that proposed by Carabez et al. (2017). Leveraging a hierarchical struc-
ture allows dividing the classification task in two steps: P300 detection
and eliciting stimulus’ sensorial domain recognition. The permutation
importance method was applied to the two CNN–LSTM networks sep-
arately; therefore, for each one a features ranking is provided, based
on their relevance in the respective neural network predictive process.
The 3D data structure was key to provide interpretability, as let the
features be the EEG channels. Accordingly, the ranking returned by the
permutation importance provides information about the importance of
each EEG channel in determining the predictions, providing insights
into the brain regions most involved in the ERPs recognition process.

This study paves the way for more sophisticated BCIs, both for
medical and non-medical applications, allowing to extend the pool of
recognized stimuli, i.e., the set of actions available for the users.

2. Method

This section details the methodology proposed to design a BCI
capable of detecting P300 in single-trial EEG, further distinguishing the
belonging ERP based on the sensorial domain of the eliciting stimu-
lus. First, we describe the pre-processing phase, aimed at discharging
negligible EEG channels and improving SNR. Then, we present the 3D
EEG data representation. Finally, we detail the architecture of the novel
hierarchical classifier produced to further classify the sensorial domain
of the eliciting stimulus.

2.1. Acquisition experimental setup

The main novelty of the proposed approach was to further distin-
guish the detected P300 components of ERPs based on the sensorial
domain of their eliciting stimulus (i.e., visual vs. auditory).

Indeed, as reported in Section 1, literature approaches only perform
target vs. non-target binary classification. It follows that the public

EEG dataset repositories, e.g., OpenBCI (2022), concern experiments in
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which a single stimulus is repeatedly provided to a subject. Therefore,
as we need an ad-hoc dataset to evaluate our system performances,
we designed an experimental setup including both visual and auditory
stimulation. The produced dataset collected data referred to 22 healthy
subjects, 11 men and 11 women, aged between 19 and 30 years. All of
them proved to be right-handed, according to the proposed Oldfield
Inventory test (Oldfield, 1971). To take part in the experiment, volun-
teers gave their written and informed consent under the Declaration of
Helsinki (BMJ 1991; 302: 1194), and with the approval of the Ethics
Committee of the University of Milan-Bicocca (prot. N◦. RM-2019-193).

During the experiment, each subject sat comfortably in an acousti-
cally shielded and faradized cubicle, wearing an elastic cap equipped
with 126 electrodes, arranged according to the international stan-
dard defined by the Oostenveld 10-5 system (Oostenveld & Praamstra,
2001). Participants were asked to fixate a red dot located at the center
of a screen, placed 114 cm from their eyes. To each volunteer, 11
different experimental runs were administered randomly mixed. 8 of
them, provided a visual stimulation and lasted 2 min and 5 s each,
while 3 of them provided an auditory stimulation and lasted 1 min and
50 s each. The whole stimulus set comprised 360 images belonging
to 9 categories (40 images per category) and 120 auditory stimuli
belonging to 3 categories (40 sound files per category). Each stimu-
lus was presented for 1500 ms while the inter-stimulus interval (ISI)
randomly varied between 500±100 ms. In detail, visual stimuli con-
sisted of static pictures presented at the center of a white background.
They might belong to 9 different categories, based on their depicted
content, namely: faces of adults, infants, and animals, dressed bodies,
tools, everyday objects, letters, words, and checkerboards. Landscape
images were used as visual target stimuli. Auditory stimuli consisted in
short fragments belonging to 3 sub-categories: emotional vocalizations,
words, and piano music. Natural sounds were used as auditory target
stimuli. Each audio clip lasted 1500 ms. Audio stimuli were normalized
and leveled in intensity. Volunteers were required to press a response
key as accurately and quickly as possible whenever an infrequent target
related to nature was detected (e.g., pictures of natural landscapes
or sea waves sounds, depending on the sensorial domain involved).
Responses were provided by pressing a response key with the index
finger of either the left or right hands. Hand order was alternated
throughout the recording session. The hand order and task conditions
were counterbalanced across subjects. For each experimental run, the
target number varied pseudo-randomly between 3–5. Fictitious, rare
targets were used to avoid contaminating the evoked potentials of
interest (non-targets) with the motor potential artifacts linked to the
motor response (Proverbio, Adorni, & D’Aniello, 2011; Proverbio et al.,
2020). Therefore, the rare targets acted as fictious fillers for keeping the
subjects’ attention on the stimulation.

2.2. EEG pre-processing

EEG signals were acquired and analyzed via EEProbe recording
software (ANT Neuro system, Enschede, The Netherlands). Stimuli
presentation and triggering was performed using EEvoke Software for
audiovisual presentation (ANT Neuro system, Enschede, The Nether-
lands). Digital amplifiers Synamps were used. The EEG was contin-
uously recorded from 126 scalp sites at a sampling rate of 512 Hz.
Horizontal and vertical eye movements were also recorded. Averaged
ears served as the reference lead. The EEG and electro-oculogram
(EOG) were amplified with a half-amplitude band pass of 0.016–70 Hz.
Electrode impedance was kept below 5 kΩ,. Signals coming from hEOG,
vEOG, M1, and M2 electrodes were discarded in that not relevant for
classification purposes. Baseline correction was applied to each EEG
channel. This procedure consists of subtracting from each channel the
average voltage recorded in the 200 ms preceding the stimulation.
Since P300 is a low-frequency component, an offline band-pass filter
was then applied, between 0.1 Hz and 20 Hz. In addition, artifacts
rejection was performed, thresholding channels amplitude to ±50 μV,
according to standard guidelines (Luck, 2014; Zani & Proverbio, 2003).
4

2.3. 3D EEG data representation

Given the outstanding performances achieved allowing a neural
network to automatically extract features, compared to handcrafted
processes (Lotte et al., 2018), in the proposed BCI an ANN performs this
task. Nevertheless, data representation affects ANN performances in
extracting features. As mentioned in Section 1, 3D data representation
outperforms the 2D one, accounting for both spatial and temporal
EEG dependencies. Therefore, we encode data in a series of 21 × 21
matrices, as reported in Fig. 1. In detail, each matrix represents the
2D projection of the electrodes cap. Accordingly, the pixel correspond-
ing to an electrode collects the measured voltage in the instant the
matrix is referred; pixels that do not correspond to an electrode are
zero-padded. It follows that considering an ordered series of matrices
allows for accounting also for EEG temporal evolution. As introduced in
Section 1, resorting to this data structure was key to provide classifier’s
decision-making process interpretability. Indeed, according to it, each
feature consists of an EEG channel. Also, it effectively represents the
spatio-temporal information characterizing the single-trial EEG datum.
Indeed, EEG temporal information determines the signal morphology,
which the neuroscientist primarily considers associating an ERP to the
corresponding eliciting stimulus. Considering the spatial information, it
provides insights into the activity of the respective brain area, which is
fundamental to inferring the sensorial domain of the eliciting stimulus.

2.4. Hierarchical classifier

The main contribution provided in our work consists of designing
an explainable BCI able to distinguish further its ERPs referred to
the detected P300, basing on the sensorial domain of the eliciting
stimulus. Therefore, a two-step hierarchical classification architecture
was designed; a first classifier is trained to detect single repetitions of
P300. Then, a second classifier further distinguishes the ERPs referred
to the detected P300, as elicited by a visual or an auditory stimulus. To
the best of the authors’ knowledge, this is the first time a hierarchical
architecture has been leveraged in the P300 detection process. It was
key to overcome the literature approaches, further distinguishing the
sensorial domain of belonging for the stimuli that elicited the detected
ERPs. Moreover, it provides modularity to our system. Indeed, provided
that a consistent dataset is collected, additional binary splits can be
included, further discriminating the eliciting stimuli. The hierarchical
classifier architecture is reported in Fig. 2.

Both spatial and temporal dependencies characterize EEG data. De-
spite producing an effective 3D representation to enhance its structure,
leveraging ad-hoc classifiers is also key. As reported in Section 1,
CNN achieves optimal performances in features extraction and P300
classification, given their effectiveness in capturing spatial informa-
tion. Also, LSTM proves to recognize P300, despite being capable of
focusing on temporal information. Therefore, we decide to combine
the two architectures, producing a CNN–LSTM network. In detail, the
produced hierarchical classifier comprises two instances of CNN–LSTM
networks, each corresponding to a split node. This is the first time that
the combination of these two networks’ structure has been used for
P300 detection; however, it has been diffusely used in motor imagery
recognition task achieving outstanding performances (Garcia-Moreno,
Bermudez-Edo, Rodríguez-Fórtiz, & Garrido, 2020; Li, Ding, Zhang,
& Xiu, 2022), given its capability in resorting both on spatial and
temporal EEG dependencies. Accordingly, this network structure allows
mimicking the neuroscientists procedure in detecting and recognizing
the deflection caused by eliciting stimuli belonging to a different senso-
rial domain, enhancing the a posteriori interpretation of the classifier’s
decision-making process.

An instance of the employed CNN–LSTM network is reported in
Fig. 4. In both CNN and LSTM structures, several layers were explicitly
introduced to improve network performances. Max pooling 2D and
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Fig. 1. EEG 3D Data Representation. This Figure represents the 3D data representation employed in this work. Accordingly, EEG can be considered as a sequence of frames
referred to the brain activity. Each frame reports pixels indicating the voltage measured by the respective electrode on the scalp. Therefore, mapping the 2D scalp representation
in a pixels grid allows to represent also the spatial information contained in EEG data.
A
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dropout layers are used to reduce data dimensionality, preventing over-
fitting (Srivastava, Hinton, Krizhevsky, Sutskever, & Salakhutdinov,
2014). Also, ReLU (Ide & Kurita, 2017; Krizhevsky, Sutskever, & Hin-
ton, 2012), and batch normalization (Ioffe & Szegedy, 2015; Liu et al.,
2018) layers are leveraged, given their assessed capabilities in speeding
up the learning convergence and in reducing the sensitivity to initializa-
tion settings. The CNN portion structure is composed of an input layer,
which passes input matrices to the convolutional layer, composed of 8
filters of size 3 × 3. Then, batch normalization and ReLU layers are
applied. Each batch size is set to 64 samples. The activations produced
by the following max pooling 2D layer are proposed as inputs to the
LSTM structure, which learns the temporal data dependencies. This
part of the network comprises a sequence input layer, which passes the
instances to the following LSTM layer, composed of 512 units. Then
a dropout of 0.5 is applied, and instances undergo another LSTM layer
of 256 units. Finally, the classification is performed, leveraging a linear
fully connected layer that weights the input coefficients and adds a bias
vector; then, a non-linear softmax layer produces the actual predictions.
 a

5

During the training procedure, the learning rate was set to 1𝑒−4, and
dam’s method was used as the optimizer. Accordingly, the two CNN–
STM networks composing the hierarchical classifier were trained. The
irst network aims at detecting P300 in the proposed data; the second
ne distinguishes ERPs-related instances between elicited by a visual or
n auditory stimulus. Resorting to a hierarchical structure was key to
ivide the classification task in two steps: P300 detection and ERP’s
ensorial domain recognition. This was essential for enhancing the
ecision-making process interpretability, allowing for inspecting the
wo processes separately. To provide the reader a better understanding
f the proposed BCI functioning, a scheme is reported in Fig. 3. Accord-
ngly, the subject is required to focus, among the available stimuli, on
he one corresponding to the intended action. Therefore, the associated
RP is elicited in the brain. The P300 is detected at the first level of
he hierarchical classifier. Then, the second one recognizes the sensorial
omain of the stimulus. This allows the BCI actuator to perform the
ction intended by the subject.
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Fig. 2. Hierarchical Classifier Architecture. This Figure shows the hierarchical classifier
designed in this work. It allows detecting the P300 in single-trial EEG data and
recognizing the sensorial domain of the eliciting stimulus.

3. Results

This Section first defines the metrics employed to evaluate the pro-
posed BCI in terms of accuracy and interpretability. Then, the obtained
results are presented and discussed. In detail, evaluation is performed
considering two scenarios; in the first one, the system is trained and
tested for each volunteer. Therefore, 22 hierarchical classifiers were
trained and evaluated according to 10-fold cross-validation procedure.
Instead, the second scenario involves training the hierarchical classifier
on a dataset extracted according to a volunteers-based stratified proce-
dure. Therefore, the data of all the participants are both in training
and the test set. Both scenarios are key to investigate the proposed BCI
performances. Indeed, the first one provides insights about the classifier
efficacy in learning patterns to predict new data of the same user.
On the other hand, the second scenario allows understanding whether
merging data from multiple subjects enhance the classifier’s predictive
capabilities.

3.1. Evaluation metrics

Each CNN–LSTM network and the overall hierarchical classifier
performances are evaluated according to 10-fold cross-validation with
respect to accuracy, precision, recall and F1-Score. Let true positives
(TP) be the number of instances belonging to the positive class correctly
predicted, and false positives (FP) the number of incorrectly predicted
ones. Accordingly, true negative (TN) and false negative (FN) can be
defined for the negative class. Accuracy can be computed as:

𝐴𝑐𝑐 = 𝑇𝑃 + 𝑇𝑁 , (1)

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

6

representing the percentage of correct predictions. Precision is instead
defined as the accuracy on the positive class:

𝑃𝑟𝑒 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

, (2)

while recall represents the percentage of instances belonging to the
positive class which are correctly detected:

𝑅𝑒𝑐 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

. (3)

Also, F1-score is computed as the harmonic mean of precision and
recall:

𝐹1 = 2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

. (4)

We decide to consider both F1-score and accuracy, as the first high-
lights, the results respect to false negatives and false positives, while the
latter concerns mostly true positives and true negatives. Also, F1-Score
proves to be a more robust metric when considering an unbalanced
dataset.

As mentioned in Section 1, the complex network architecture com-
plicates understanding their decision-making processes. Nevertheless,
interpretability is becoming mandatory, favoring trust in machine-
learning applications (Molnar, 2020), and providing additional knowl-
edge about the investigated problem (Du et al., 2019). In the ensemble
classifiers, insights into the decision-making process are provided by
reconstructing a ranking of the employed features based on the impact
assumed in determining the predictions. As reported in Section 1,
the most employed metric is permutation importance. According to
its definition, feature importance can be estimated considering the
decrease in performance caused by randomly shuffling its values. The
underlying rationale is that a random permutation of a feature’s values
mimics its removal from the model. So, the higher the performances
drop, the more the classifier relies on the considered feature values in
its decision-making process. Considering EEG channels, values shuffling
also causes the loss of signal temporal dependencies, forcing the signal
to be meaningless. Permutation importance is computed for each CNN–
LSTM network in the produced hierarchical classifier. In detail, at each
split node, this metric is computed considering the CNN–LSTM network
fitted on the non-shuffled features in the training set. Iteratively, a
specific EEG-channel is shuffled in all the validation set instances, while
the others are left unchanged.

The produced set is provided to the CNN–LSTM network, which
predicts the output classes. The performances drop is estimated using
the loss rather than the accuracy, being more robust. The loss is
calculated using binary categorical cross-entropy, as each CNN–LSTM
network splits the data in two classes:

𝐿𝑜𝑠𝑠𝑖 = −
∑𝑁

𝑘=1 𝑦𝑘𝑙𝑜𝑔𝑦𝑘 + (1 − 𝑦𝑘)𝑙𝑜𝑔(1 − 𝑦𝑘)
𝑁

(5)

where 𝑖 = 1,… , 𝑛𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠, 𝑌 collects the actual labels, 𝑌 the predictions,
and 𝑁 is the validation set size. Thanks to the employed 3D data
structure, detailed in Section 2, each feature corresponds to an EEG
channel. Therefore permutation importance provides an EEG channel
ranking for each network, providing in-depth information about which
Fig. 3. Presented BCI Working Pipeline. This Figure illustrates the functioning of the proposed BCI system.
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Fig. 4. CNN–LSTM Network Architecture. This Figure depicts the structure of a single CNN–LSTM network. The hierarchical classifier employs two networks, one in each split
note. It is composed of a series of convolutional layers, i.e., convolutional, composed of 8 3 × 3 filters, batch normalization (BN), and max pooling 2D (MP2D), with 2 as the
pool size. Then, two LSTM layers follow, of 512 and 256 units, interspersed by a dropout one. Finally, the prediction is computed through a fully connected (FC) layer and a
soft-max (SM) activation function. CNN network part accounts for electrodes spatial dependencies, while LSTM for temporal ones.
Table 1
CNN–LSTM subject-specific evaluation. This table reports the performance, in terms of accuracy F1-score, recall, and precision, at each level of the hierarchical classifier with
respect to 10-fold cross-validation. Training and testing were conducted according to the subject-specific scenario.

ID Gender 1st level 2nd level

Acc F1 Pre Rec Acc F1 Pre Rec

1 F 82.0 81.5 73.0 92.2 95.6 95.4 96.8 94.0
2 F 81.7 81.4 75.9 87.7 89.0 82.5 99.9 70.2
3 M 78.9 78.7 81.0 76.5 78.0 75.5 75.9 75.1
4 F 85.0 84.4 82.3 86.7 97.0 96.8 94.5 99.3
5 F 92.7 91.4 84.3 99.8 98.5 97.3 95.4 99.3
6 F 84.9 84.9 81.6 87.3 95.6 95.4 96.8 94.0
7 M 72.1 68.6 87.0 56.6 99.8 98.0 97.0 99.1
8 F 86.1 85.7 77.5 95.8 87.0 85.5 81.6 89.9
9 F 89.7 89.3 86.3 92.5 95.1 95.1 96.7 93.6
10 M 77.1 76.0 76.3 75.8 83.1 92.4 89.9 95.0
11 M 92.7 92.2 86.6 98.6 98.2 97.9 97.2 98.6
12 F 89.3 87.1 78.8 97.3 96.1 92.2 98.4 86.7
13 M 77.1 77.1 80.4 74.1 89.3 86.8 84.4 89.4
14 M 82.0 80.1 79.8 80.5 94.2 93.6 88.6 99.3
15 M 75.0 74.7 71.2 78.5 99.9 99.9 99.9 99.9
16 M 79.9 79.8 71.9 89.6 98.9 98.3 98.9 97.8
17 M 87.9 83.1 73.5 95.5 96.2 91.0 86.2 96.4
18 F 95.0 92.3 87.1 98.1 98.9 98.7 99.3 98.2
19 F 89.0 84.4 80.8 88.4 99.8 99.2 98.9 99.6
20 F 84.5 81.1 75.2 87.9 88.0 87.9 85.2 90.8
21 M 76.0 75.1 71.8 78.7 83.2 82.7 82.6 82.9
22 M 89.3 85.0 79.2 91.7 99.8 99.3 99.8 98.9

Males 80.7 ± 6.6 78.1 ± 5.7 81.5 ± 11.9 79.1 ± 6.2 92.8 ± 8.0 90.9 ± 8.2 93.9 ± 8.1 92.3 ± 8.0
Females 87.3 ± 4.3 80.3 ± 4.7 92.15 ± 4.9 85.8 ± 3.9 94.6 ± 4.5 94.9 ± 6.0 92.3 ± 8.5 94.6 ± 4.5
electrodes are most informative in detecting the P300 and recognizing
the sensorial domain of the associated eliciting stimuli. This informa-
tion is key to interpreting the hierarchical classifier decision-making
process regarding the most involved brain regions.

3.2. Subject-specific evaluation

This evaluation scenario, involves training and testing a hierarchical
classifier for each volunteer. Table 1 reports the produced results. This
evaluation procedure aimed to investigate, considering our restricted
sample, the effects of the BCI illiteracy. This well-known phenomenon is
one of the BCIs open problems, and deals with their inapplicability for
a non-negligible users segment, due to the low performances reported
(Blankertz et al., 2009).

The reported results show that, on average, the hierarchical clas-
sifier achieves 76.6% F1-Score. In detail, 82.4% is assessed in P300
detection and 82.4% in distinguishing the sensorial domain of the
eliciting stimulus. Also, the overall F1-Score is higher than 70.0%
for 18 of the considered subjects, which is the minimum threshold
required to effectively control a BCI system (Yu, Aziz, Sadiq, Fan, &
7

Xiao, 2021). As reported in Section 1, these results can be compared
to the literature only concerning the first classification level, i.e., target
vs. non-target. Indeed, the second classification level, i.e., auditory vs.
visual ERP, represents one of the innovative contributions provided by
our approach, which, to the best of the authors’ knowledge, has never
been addressed before. Therefore, considering the target vs. non-target
classification, our approach achieves performances comparable with
most of the literature approaches.

Considering labels representation and available instances for each
subject, it turns out that there is a strong unbalance for subjects 3,
7, 13 and 21. Indeed, even though all the volunteers undergo the
same experimental protocol, the artifacts rejection phase may discard
a different amount of data for each. Accordingly, we can attribute
the performance drop to the smaller number of available instances
that has not allowed the classifier to learn effective patterns. Also,
although the average metrics assessed by the female participants are
slightly higher than male ones, no statistical evidence is deducible, as
the confidence boundaries overlap. So, we can conclude that our BCI
system performances on a single subject mostly depend on the amount
of training data provided.
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Table 2
CNN–LSTM intra-subjects evaluation. This table reports the performance, in terms of accuracy F1-score, recall, and precision, at each level of the hierarchical classifier with respect
to 10-fold cross-validation. Training and testing were conducted according to the intra-subjects scenario.

ID Gender 1st level 2nd level

Acc F1 Pre Rec Acc F1 Pre Rec

1 F 84.1 82.7 75.0 92.2 95.6 95.2 93.1 97.3
2 F 81.5 80.5 75.9 85.6 92.0 91.9 85.1 99.8
3 M 79.8 78.9 81.5 76.5 83.0 82.7 76.3 90.2
4 F 80.1 84.8 83.0 86.7 97.0 97.0 95.8 98.2
5 F 92.7 91.4 84.3 99.8 97.7 97.5 98.1 97.0
6 F 84.9 84.4 81.6 87.3 93.9 93.8 94.7 92.9
7 M 79.1 88.0 86.8 89.2 98.8 98.4 97.9 98.9
8 F 86.3 85.8 77.7 95.8 89.1 87.4 83.5 91.6
9 F 90.7 90.5 86.3 95.2 95.1 94.9 94.5 95.4
10 M 77.2 76.5 77.0 76.0 93.2 93.1 87.8 99.1
11 M 92.9 92.3 86.6 98.6 95.7 95.4 92.2 98.9
12 F 88.2 87.7 79.9 97.3 93.4 92.2 91.2 93.2
13 M 79.3 78.1 81.4 75.1 89.7 89.4 84.9 94.5
14 M 82.0 80.1 79.8 80.5 93.9 93.2 91.8 94.6
15 M 75.9 75.3 72.3 78.5 99.9 99.9 99.9 99.9
16 M 79.9 79.8 71.9 89.6 97.8 97.8 97.5 98.2
17 M 85.6 83.6 74.4 95.5 92.5 91.0 93.3 88.3
18 F 93.0 92.6 87.6 98.1 97.9 97.4 96.8 98.1
19 F 89.0 84.4 80.8 88.4 98.9 98.9 98.7 99.1
20 F 84.5 81.1 75.2 87.9 85.2 84.9 82.8 97.1
21 M 76.2 75.5 71.5 79.9 82.1 81.9 79.0 85.0
22 M 86.3 84.5 78.4 91.7 99.1 99.0 99.0 98.1

Males 84.0 ± 5.3 83.6 ± 5.3 79.5 ± 5.0 88.4 ± 8.4 93.7 ± 5.1 92.8 ± 5.9 90.8 ± 7.7 95.1 ± 5.0
Females 86.7 ± 4.2 86.0 ± 4.1 80.7 ± 4.4 92.2 ± 5.2 94.2 ± 4.1 94.1 ± 3.6 92.2 ± 5.8 96.3 ± 2.7
3.3. Intra-subjects evaluation

In the second evaluation scenario, the hierarchical classifier is
trained on a sub dataset extracted according to a subject-based strati-
fied procedure, and its performances are estimated according to 10-fold
cross-validation. Therefore, a single hierarchical classifier is trained,
considering 70% data from each volunteer, but is tested on the re-
maining 30% data of a single subject per time. The obtained results
are reported in Table 2.

Considering the overall performances, the hierarchical classifier
assesses 78.1% F1-Score, 83.6% in detecting the P300, and 93.5% in
distinguishing the sensorial domain of the eliciting stimulus. Consider-
ing gender-based results, the performances slightly increase compared
to the subject-specific scenario. Also, 20 out of 22 subjects achieves
an F1-Score greater than 70.0%. Therefore, we can deduce that con-
sidering data collected on multiple subjects but according to the same
experimental setup increases classifier learning capabilities.

Further consideration can be presented regarding the high perfor-
mances achieved in recognizing the stimulus’ sensorial domain once
the P300 is detected. This outcome is consistent with our a priori
knowledge, i.e., visual and auditory ERPs have a characteristic trend
that significantly differentiates them. Indeed, the differences between
visual and auditory ERPs refer to the most active brain areas and
their temporal evolution. While early sensorial potentials tend to be
larger over occipital sites in response to visual stimuli, and to central
sites in response to auditory stimuli (Regan, 1989) the topographical
distribution changes over time. At P300 latency range brain dynam-
ics moves over anterior brain regions supporting working memory,
(e.g., Brunoni and Vanderhasselt (2014)), and brain potentials tend to
be more negative to auditory stimuli and more positive to visual stimuli
(Falkenstein, Koshlykova, Kiroj, Hoormann, & Hohnsbein, 1995). It is
worth noting that an expert ERP investigation analyzing the effects
of stimulus category on the amplitude of electrical potentials, based
on the same set of stimuli, found that the sensorial modality (visual
vs. auditory) was best assessed at midline fronto/central sites (Fz and
Cz) at P300 latency level (Proverbio & Tacchini, 2022). The CNN–
LSTM network was ad-hoc designed for learning patterns effective in
predicting, as CNN enhances spatial features and LSTM focuses on

temporal patterns.
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3.4. BCI interpretability

As reported in Section 1, providing in-depth knowledge of a BCI
system decision-making process is as important as the predictions
themselves. Therefore, we evaluate our system also considering its
interpretability, according to permutation importance. Accordingly, for
each CNN–LSTM classifier, a ranking is produced based on each elec-
trode’s significance in determining the predictions. To provide reliable
results, regardless of the considered subject, we compute this metric
considering the hierarchical classifier trained according to the second
evaluation scenario. The achieved results are reported in Fig. 5.

Considering the CNN–LSTM classifier aimed at detecting P300, the
three most important channels are FFC3h, C2, and FC3; the three less
relevant are Oz, OI2h, AFF5h. The channels mainly considered are
located in the dorsolateral prefrontal region of the brain, while those
neglected in the occipital area. The classifier that distinguishes the
ERPs elicited by visual or auditory stimuli considers as the three most
important channels F2, FCC1h, and AFp3h, which suggest the relevance
of the fronto-central electrodes in revealing the sensorial modality of
stimulation, at P300 sensorial stage and with these types of stimuli. In a
recent BCI study involving purely visual, purely auditory or audiovisual
stimulation, the best accuracy for P300 classification was instead found
at Pz site, but no frontal electrode was used in that study, so that it
cannot be excluded a more anterior distribution for the P300 potential.
Again, in an auditory-tactile BCI study it was found that the best site
for detecting P300 was indeed Fz electrode (Brouwer & Van Erp, 2010).

The most crucial electrodes are located in the frontal anterior and
dorsolateral prefrontal area. In the dorsolateral prefrontal zone, few of
the available channels are considered. This proves the CNN dimension-
ality reduction capabilities, as it discharges redundant channels. Also,
it can be noticed that channels importance is more diffuse in the P300
detection classifier, while a smaller number of channels is considered in
distinguishing the ERPs eliciting stimuli sensorial domain. This result
further supports the conclusion that it is easier to classify the ERPs than
to detect them, given the distinctive trend that characterizes responses
elicited by stimuli belonging to different sensorial domains. Instead, to
discriminate the sensorial domain of the stimulus, a reduced number
of channels is considered, as the classifier needs to recognize only the

characteristic spatio-temporal patterns of the observed ERPs.
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4. Conclusion

In this work, a novel BCI is presented. In addition to detect P300
in a single-trial EEG, our system can also recognize the sensorial
domain of the stimulus eliciting the considered ERP. The predictions
are achieved leveraging a two-step hierarchical classifier specifically
designed. A CNN–LSTM network performs the predictions at each split
node, accounting for both EEG spatial and temporal dependencies. Net-
works’ capabilities are also enhanced by leveraging a suitable 3D data
representation. The proposed system is validated on real data, acquired
according to an ad-hoc defined experimental setup. The optimal results
obtained in terms of accuracy and interpretability pave the way for
more sophisticated BCI, capable of providing more actions to their
users. Of course, future works deal with online testing our method
performances in terms of accuracy and information transfer rate. Also,
we aim at performing a sensitivity analysis on the number of EEG
channels to identify the best trade-off between user comfort and BCI
system accuracy.
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