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ANALYTICAL OPTIMIZATION OF POST MISSION DISPOSAL
MANEUVERS TOWARDS AN EARTH RE-ENTRY WITH

AVERAGED DYNAMICS MODELS

Xiaodong Lu*, and Camilla Colombo†

This paper develops a triply-averaged dynamics model for an Earth satellite
under the perturbation of Earth’s oblateness and gravitational attraction from the
Moon and the Sun. The dynamics is averaged over one orbital period of a satellite,
one orbital period of a third body, and lastly one variation period of right ascen-
sion of the ascending node (RAAN) of a satellite, the so-called elimination of the
node. The developed model is validated by comparing with a high-fidelity model
and then it is integrated in the Hamiltonian formulation of the dynamics. The sim-
plified model is used in developing a post mission disposal design technique for
Earth satellites targeting an Earth re-entry. Exploiting the averaged-model signif-
icantly facilitates the maneuver optimization procedure and saves much computa-
tional time. The proposed technique is applied to a Highly Elliptical Orbit (HEO)
satellite and the obtained results are validated through a high-fidelity model.

INTRODUCTION

The space debris problem due to increasing man-made space objects has been of interest by
the space community for decades. Several national or international organizations published space
mitigation guidelines, such as the Federal Communications Commission (FCC),1 the Inter-Agency
Space Debris Coordination Committee (IADC),2 and the United Nations (UN),3 preventing pro-
longed stay in geostationary orbit (GEO) and limiting passage in low Earth orbit (LEO). Among
all the mitigation measures for space debris, post mission disposal is of importance due to its effec-
tiveness in de-orbiting satellites at the end of their mission and large contributions to mitigation of
space debris.

Traditionally, disposal maneuvers are computed by global optimization involving numerical orbit
propagation,4–8 which is computationally expensive as propagation of orbits for decades need to be
carried out many times during optimization. The heavy computational burden discourages operators
to design and implement post mission disposal for their spacecrafts because the required ground
resources increase as number of spacecrafts increases. Therefore, it is desired to develop analytical
methods for optimizing disposal maneuvers to reduce computation time and even to enable onboard
autonomous disposal maneuvers design.

This research focuses on design of post mission disposal of an Earth satellite in HEO through an
Earth re-entry. Natural perturbations could be enhanced by impulsive maneuvers, which moves a
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spacecraft to a trajectory naturally evolving towards an Earth re-entry. The remainder of this paper
are organized as follows. Section II presents the semianalytical model for orbital perturbations used
in the following sections. Section III discusses the process of the elimination of the node. Section
IV develops the design technique of post mission disposal. The last section gives the conclusion
and remarks on future work.

SIMPLIFIED DYNAMICS MODELS OF SATELLITE ORBITS

Perturbed two-body problem

The dynamics of an orbit of an Earth satellite is generally modeled as a perturbed two-body
problem, and the equations of motion are given by

r̈ = − µ

r3
r+ f (1)

where r is the radial vector of a satellite with respect to the Earth center whose magnitude is r, µ is
the gravitational parameter of the Earth, and f is total acceleration caused by forces other than the
central gravitational attraction of the Earth.

The equations of motion Eq. (1) are straightforward to establish but suffer from flaws in numerical
computation since all three Cartesian coordinates experience large changing as a satellite evolve
around the Earth. One could transform Eq. (1) to another set of equations, the well-known Lagrange
planetary equations,9 by exploiting the method of variation of parameters,
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where a, e, i,Ω, ω,M are classical Keplerian elements, n =
√
µ/a3, and R is a disturbing function

depending on the perturbations of interest.

The orbit of a satellite in HEO, which is of interest in this research, is mainly affected by pertur-
bations due to the Earth’s oblateness, and the gravitational attraction by the Moon and the Sun. The
disturbing function of perturbation due to the Earth’s oblateness is given by10

RJ2 = −µ

r
J2

(
R⊕
r

)2 1

2

[
3 sin2(ω + f) sin2 i− 1

]
(3)

where J2 is the second zonal harmonics, R⊕ is the equatorial radius of the Earth, and r is given by

r =
a(1− e2)

1 + e cos f
, (4)
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where f is true anomaly of an orbit.

The disturbing function of perturbation by a third-body gravitational attraction is given by11, 12

R3b =
µ3

r3

∞∑
l=2

(
r

r3

)l

Pl(cosS), (5)

where µ3, r3 are the gravitational parameter of the third body and the radial distance between the
third body and the Earth, respectively, Pl(·) is the l-th order Legendre polynomial, reported in
Table 1, and S is the angle between the position vectors of a satellite and a third body as viewed
from the Earth, which is given by

cosS = r̂ · r̂3 = (p̂ cos f + q̂ sin f) · r̂3 = A cos f +B sin f (6)

where r̂, r̂3 represent the directions of a satellite and a third body, respectively, p̂ is the unit vector
pointing the perigee of a satellite’s orbit and q̂ is orthogonal to p̂ in the orbital plane.

Table 1. Legendre polynomials up to 4th order

l Pl(x)

0 1
1 x
2 1

2 (3x
2 − 1)

3 1
2 (5x

3 − 3x)

4 1
8 (35x

4 − 30x2 + 3)

The formulation of r̂3, p̂, and q̂ are reported as follows,

r̂3 =

cos(ω3 + f3) cosΩ3 − cos i3 sin(ω3 + f3) sinΩ3

cos(ω3 + f3) sinΩ3 + cos i3 sin(ω3 + f3) cosΩ3

sin i3 sin(ω3 + f3)

 , (7)

p̂ =

cosω cosΩ− cos i sinω sinΩ
cosω sinΩ + cos i sinω cosΩ

sin i sinω

 , (8)

q̂ =

− sinω cosΩ− cos i cosω sinΩ
− sinω sinΩ + cos i cosω cosΩ

sin i cosω

 . (9)

Partial derivatives of a disturbing function with respect to Keplerian elements can be computed
and evolution of a satellite orbit is obtained by numerically integrating Eq. (2). However, numerical
integration leads to slow computation, especially when the dynamics is included in the loop of
maneuver optimization. On the other hand, short periodic variations of Keplerian elements are of
no interest for many applications, for instance in this research, post mission disposal design.

Averaging techniques and averaged models

While numerical methods are witnessed ever-increasing popularity in solving Eq. (1) as com-
puters become faster and faster nowadays, analytical and semi-analytical methods are in no way
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obsolete. The semianalytical models based on averaging techniques can simplify the dynamics a
lot. The core idea is to average the disturbing function over fast angles, to eliminate the short peri-
odic terms in the disturbing function. A disturbing function is averaged over one orbital period of a
satellite, as demonstrated in Eq. (10),

R =
1

T

∫ t0+T
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R dt =
1
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∫ 2π

0
R dM (10)

since
M =

2π

T
(t− t0). (11)

All elements except mean anomaly are considered constant within one orbital period. Depending
upon the formulation of a disturbing function, the variable of integration is changed from mean
anomaly M to true anomaly f or eccentric anomaly E for computational convenience through the
following relations,
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The resulting single-averaged disturbing potential from Eq. (10) is averaged again over one orbital
period of a third body in case of third-body perturbation,
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The disturbing function of the J2 perturbation is averaged over one orbital period of a satellite,

RJ2 =
µJ2R

2
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)
, (14)

where η =
√
1− e2 is defined for computational convenience. In the same manner, the disturbing

function of third-body perturbation is averaged as
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in which second to fourth order of Fl are as follows,
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As mentioned before, the single-averaged disturbing function is averaged again over one orbital
period of the perturbation body,
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where αA, βA, αB, βB are defined as

αA = p̂ · p̂3, βA = p̂ · q̂3, αB = q̂ · p̂3, αB = q̂ · q̂3, (18)

in which p̂3, q̂3 are defined in the same manner as p̂, q̂. The second to fourth order of Fl in Eq. (17)
are as follows,
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The total single- and double-averaged disturbing functions are following,

R = RJ2 +RSun +RMoon,

R = RJ2 +RSun +RMoon.
(20)

Validation of the Model

The averaging technique allows one to eliminate fast angles in the disturbing function, hence
separating long-periodic, and secular effects from short-periodic ones. The procedure is of impor-
tance since it simplifies the maneuver optimization. The simplified model is validated against the
high-fidelity model described by Gauss’ variational equations. The models are propagated for 30
years with the initial Keplerian elements on 22/03/2013 in Table 2. The results are showed in Fig-
ure 1, which shows that the single- and double-averaged models coincide well with the high-fidelity
model.

Table 2. Keplerian elements of a HEO satellite

a (km) e (−) i (deg) Ω (deg) ω (deg) M (deg)

87720 0.8766 61.8081 266.4100 253.1972 237.9140

5



0 10 20 30

Years

8.76

8.77

8.78

8.79

a
[k

m
]

#104

0 10 20 30

Years

0.8

0.85

0.9

e
[!

]

0 10 20 30

Years

40

60

80

100

i
[d

eg
]

0 10 20 30

Years

-400

-200

0

200

+
[d

eg
]

0 10 20 30

Years

240

260

280

300
!

[d
eg

]

0 10 20 30

Years

0

5000

10000

15000

h
p
[k

m
]

SA
DA
Gauss

Figure 1. Validation of the averaged models, SA: Single-averaged, DA: Double-
averaged, Gauss: High-fidelity

ELIMINATION OF THE NODE

To further simplify the dynamics model, one can average the third body disturbing function over
period of variation of Ω, also known as elimination of the node, by

R3b =
1

2π

∫ 2π

0
R3b dΩ =

µ3

a3
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l=2

(
a

a3
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where the node of the third body’s orbit Ω3 is also eliminated since it is coupled with node of a
satellite orbit.

DESIGN OF POST MISSION DISPOSAL

The averaged model described in previous sections is now applied to post mission disposal ma-
neuver computation targeting an Earth re-entry. The condition for re-entry is formulated by

hp,min = minhp(t) < hp,target (22)

where
hp = a(1− e)−R⊕ (23)

is perigee height of a satellite orbit, hp,min is the minimal value of perigee height, and hp,target is
the target perigee height that we set before the optimization.

Since J2 and lunisolar perturbation do not affect the value of semimajor axis in long-term, the
re-entry condition formulated in Eq. (22) is transformed to

emax > ecrit (24)

where emax is the maximal value of eccentricity and ecrit is the critical eccentricity defined by

ecrit = 1− hp,target +R⊕
a

(25)

6



since
hp,min = a(1− emax)−R⊕. (26)

The impulsive maneuver is modeled in the common (T,N,H) reference frame as

∆v =

∆vT
∆vN
∆vH

 = ∆v

cosα cosβ
sinα cosβ
sin beta

 , (27)

where T is the axis tangential to the orbit and pointing to the velocity direction, N axis is normal
to T in the orbital plane, and H axis is normal to the orbital plane, ∆v, α, β are the magnitude,
in-plane, and out-of-plane angle of the maneuver, respectively.

The Keplerian elements right after the maneuver keppost is computed by adding the Keplerian
elements before the maneuver and the variations, as follows,

keppost = keppre +∆kep, (28)

where ∆kep is the combination of variations of Keplerian elements computed by Gauss’ variational
equations,13, 14
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where fm is the true anomaly where the maneuver is applied, Em is the corresponding eccentric
anomaly given by

tan
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2
=

√
1− e

1 + e
tan

fm
2
, (30)

and um = ω + fm.

The cost function of optimisation is defined by a weighted sum of the terminal error and magni-
tude of the maneuver,

J = max

(
hp,min − hp,target

hp,target
, 0

)
+ w∆v (31)

where w is weight based on mission scenarios.
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CONCLUSION

The paper proposed a post mission disposal manoeuvre design technique for Earth satellites in
HEO targeting an Earth re-entry based on semi-analytical models of orbital perturbations, in which
disturbing functions and hence the Hamiltonian are averaged three times over one orbital period
of a satellite orbit, one orbital period of a third body, and one period of the RAAN variation. The
triple averaged model simplifies the maneuver optimization process and considerably reduces the
computational burden of maneuver optimization process.

Although the model has relatively less accuracy, the results obtained from the triple averaged
model could still be used as a preliminary investigation and first guess for optimisation using the
more accurate double averaged model or high-fidelity models to refine the solution.
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