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Vision-based Air-to-Air Autonomous Landing of
underactuated VTOL UAVs

Gabriele Roggi1, Giovanni Gozzini1, Davide Invernizzi1, Member, IEEE, Marco Lovera1, Member, IEEE

Abstract—This paper addresses the problem of Air-to-Air
Autonomous Landing (AAAL) of a small underactuated Un-
manned Aerial Vehicle (UAV) on a larger one (Carrier) in
a non-cooperative manner using vision-based state estimation.
A Kalman-filter based state estimator reconstructs the state
of the Carrier relying on a camera mounted on the small
UAV (Follower). Then, a three-layer hierarchical architecture is
proposed. A hybrid automaton based on a quasi-time optimal
approach is used at the position layer to ensure a safe and fast
landing. An adaptive observer is developed at the velocity layer
to track robustly the reference velocity coming from the position
layer and to compensate for the lack of information about
the Carrier acceleration. An attitude planner and a geometric
stabilizer are used at the innermost layer. The proposed control
architecture outperforms the one developed in a previous work by
reducing the time to land up to 59% and increasing the accuracy
up to 47%. Experimental tests have been performed to assess
the performance of the proposed algorithm in representative
scenarios.

Index Terms—UAVs, Autonomous landing, Adaptive control,
Computer vision.

I. INTRODUCTION

IN order to extend small UAVs mission duration, a possible
solution regards the use of a Carrier UAV with smaller

UAVs that can take-off from and land on it. This problem
is not only technologically complex but it is also risky and
dangerous and therefore requires a careful design. The Air-
to-Air Autonomous Landing (AAAL) problem poses several
design challenges: tracking and landing on a fast-moving Car-
rier; handling the aerodynamic interplay between the Carrier
and the Follower; counteracting external disturbances, such as
wind gusts, during the landing phase; using a non-cooperative
Carrier, to name the most relevant ones. In this paper, the
design of a procedure enabling AAAL of underactuated VTOL
UAVs in a non-cooperative scenario is investigated.

In the literature many examples of tracking and landing
of VTOL UAVs on moving platforms exist, especially onto
ground vehicles, e.g., [1]–[13]. One of the first examples is
shown in [1]. In this work, an autonomous landing has been ac-
complished through Image-Based Visual Servoing (IBVS), i.e.,
using controller acting directly in the image space. Position-
Based Visual Servoing (PBVS) has been instead employed
with the same purpose in [11]. However, visual servoing
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represents a valid option only to some extent because it
requires the landing platform to be visible throughout the
entire duration of the task [4].

In order to deal with missing visual information, model-
based approaches have been proposed to predict the motion
of the landing target [2], [3]. Within this framework, we dis-
tinguish between cooperative and non-cooperative approaches.
Among the non-cooperative approaches, [4] proposed using
an Extended Kalman Filter (EKF) to deal with missing visual
detections and to estimate the full state of the platform, while
[6] used an Unscented Kalman Filter (UKF).

To the best of the Authors’ knowledge, the work presented
in this paper represents one of the few examples of a multirotor
UAV landing on a flying platform. Exceptions regard [14],
[15], although in these works the target platform is assumed
in near hover conditions. A different application with respect
to landing is explored in [16], where the interaction of two
flying vehicles is considered: the target speed is limited to
1m/s during tracking and the experimental results show that
the interception occurs with the target in hovering conditions.

While in our previous work [17] we solved the AAAL
with a moving Carrier cooperatively, using a motion capture
system to provide the Carrier state to the Follower, in this
paper we address the more challenging non-cooperative case
in which the Carrier state must be reconstructed onboard the
Follower by using a dedicated vision-based relative navigation
system. Following a widely adopted paradigm in autonomous
systems, navigation and control tasks are kept separate. A
Kalman Filter (KF) is designed to estimate the Carrier state
using information coming from a visual sensor mounted on
the Follower. Leveraging the cascade structure of the UAV
dynamics, a three-layer architecture is employed to simplify
the design of the autonomous landing strategy and of the
control law itself. The hierarchical approach allows us to
use the hybrid Quasi Time-Optimal (QTO) design presented
in [17] as the outer loop controller, which proved effective
in solving the landing problem when considering only the
UAV kinematics and in the cooperative scenario. At the linear
velocity loop level, an adaptive observer-based control law,
that outperforms the solution proposed in [17], is employed
to compensate for unmodeled dynamics and for the lack of
information about the Carrier acceleration, which is required to
achieve perfect tracking. An attitude planner and a geometric
stabilizer [18], [19] are used at the innermost level to handle
the underactuated nature of vectored-thrust UAVs, such as
multirotors, which can deliver the control force only along
the positive direction orthogonal to the plane of the rotors.
The stability of the overall system is then proven using recent
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input-to-state stability arguments [20].
The proposed AAAL solution is designed for constant speed

trajectories of the Carrier, which can be exactly tracked based
on the properties of the control law and of the navigation
filter. However, the proposed design has also been tested and
proven to handle cases with non-null acceleration, such as
circular trajectories. Performance improvement when consid-
ering non-trivial trajectories of the Carrier could be achieved
by embedding more complex motion models in the navigation
filter. Our design can also handle and counteract disturbances
through the adaptive part of the control law. In cases of
significant disturbances (e.g., wind gusts), the landing logic
is such that synchronization mode engages, and the Follower
autonomously attempts landing once the disturbance subsides.
The only scenario not addressed in this work is when the
Follower camera loses sight of the Carrier for an extended
period, affecting the prediction model in the Kalman Filter.
Finally, an experimental campaign has been carried out using
two multirotor UAVs to validate the proposed landing pro-
cedure in representative scenarios: a landing with the Carrier
following first a straight line (design condition) and then a
circular trajectory.

Notation. The canonical basis in Rn is denoted as
ei := [0 ... 0 1 0 ... 0 ]⊤ (1 in the i-th entry, 0 elsewhere)
for i ∈ {1, ..., n} and the identity matrix in Rn×n is de-
noted as In := [e1 · · ·ei · · ·en]. Given x = [x1 · · · xn]

⊤ ∈ Rn,
∥x∥ :=

√
x2

1 + . . .+ x2
n is the Euclidean norm while ∥x∥∞ :=

max1≤i≤n(|xi|) is the infinity norm. The set SO(3) := {R ∈
R3×3 : RT R = I3,det(R) = 1} denotes the third-order Special
Orthogonal group. The normalized distance with respect to
I3, induced by the Frobenius norm, is denoted as ∥R∥SO(3) :=
1
8∥R− I3∥F =

√
1
4 tr(I3 −R) ∈ [0,1]. Given ω ∈ R3, the map

S(·) : R3 → so(3) := {Ω ∈ R3×3 : Ω = −ΩT} is such that
S(ω)y = ω ×y ∀y ∈R3, where × represents the cross product
in R3. The inverse of the S(·) map is the vee map, de-
noted as S(·)−1 : so(3)→ R3. Given a differentiable function
f (x) : Rn 7→ Rm, the Jacobian is denoted by Dx f . We use
standard definitions of class-K,K∞,KL comparison functions
from [21].

II. PROBLEM DESCRIPTION AND AUTONOMOUS SYSTEM
ARCHITECTURE

The automatic landing problem considered in this work in-
volves a Follower UAV, equipped with a camera, and a Carrier
UAV, carrying a visual fiducial marker.

Several reference frames are introduced to describe the
geometry of the problem (Fig. 1): I = (OI ,{i1, i2, i3}) is the
inertial frame, B = (OB,{b1,b2,b3}) is the Follower body-
fixed frame, C = (OC,{c1,c2,c3}) is the camera frame and
T = (OT ,{t1, t2, t3}) is the visual marker fixed frame.

Following [22], we make the assumption that the angular
velocity dynamics is controlled at a sufficiently fast rate. We
then consider the simplified dynamics

Ṙ f = R f S(ωc) (1)
ẋ f = v f (2)

mv̇ f =−mge3 + tcR f e3 + fe, (3)
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Fig. 1. Reference systems definition.

and focus on the design of a suitable control thrust tc ∈ R>0
and angular velocity ωc ∈R3 to solve the autonomous landing
problem. The state of the Follower has been identified in (1)-
(3) with the tuple (x f ,R f ,v f ), where x f ∈ R3 is the position
of the center of mass with respect to the inertial frame I,
R f ∈ SO(3) is the rotation matrix describing the attitude of
the body-fixed frame B with respect to I, while v f ∈ R3 ∈
R3 is the translational velocity, resolved in I. Finally, fe is
a force (expressed in I) accounting for possible exogenous
disturbances, such as aerodynamic drag and wind gusts.

The Carrier UAV is considered as a moving disk described
by the following time-varying set (see Fig. 1)

Ωt(t) =
{

y ∈ R3 : e⊤3 (y− xt(t)) = 0, ∥y− xt(t)∥ ≤ rt ,
}
, (4)

t ≥ 0, where xt ∈R3 is the position of the disk center, resolved
in I, rt ∈ R>0 is the disk radius, while y ∈ R3 is a vector
describing the position of a generic point inside the moving
disk. The above definition also implies the attitude of the
Carrier be constantly aligned with the gravity direction, which
is the most desirable condition to land. However, the landing
strategy proposed in this work will be robust to small attitude
motion of the Carrier.

Before stating the autonomous landing problem addressed
in this work, we make the following assumptions.

Assumption 1: 1) Images coming from the camera mounted
on the Follower provide information about the position of the
visual marker frame T attached to Carrier in the camera frame
C, resolved in C; 2) at the initial time, the Follower is above
the Carrier and during all the landing operations the visual
marker is in the Field of View (FoV) of the camera sensor;
3) the state of the Follower (x f ,v f ,R f ) is known at all times;
4) the velocity vt := ẋt(t), acceleration at(t) = v̇t(t) and jerk
ȧt(t) profiles of the Carrier are uniformly bounded.

Note that in Assumption 1 the camera is required to always
see the visual marker on the Carrier. In practice, such assump-
tion can be relaxed: by predicting the Carrier motion using a
suitably designed navigation filter, missing visual information
can be handled for a reasonable amount of time. Based on
the second point, we are considering the final phase of the
landing, when the Follower is sufficiently close to the Carrier.

Remark 1: No knowledge about the trajectory of the
Carrier will be required for the proposed control design to
work: the Carrier motion can be any arbitrary trajectory that
has uniformly bounded derivatives, as formally required in
Assumption 1. Hence, the controller of the Carrier must be
capable of stabilizing the UAV about its predefined trajectory,



3

Image detection

Carrier State
Estimator

Follower State
Estimator

Position layer controller
Hybrid Logic

Velocity layer controller
Adaptive

Attitude layer controller
Geometric

Follower drone

R f , x f

x f

v f

R f

vtxt

uv

ua

tcωc

C
O
N
T
R
O
L

NAVIGATION

Fig. 2. Block diagram of the autonomous system for the landing problem.

even when the aerodynamic interaction with the Follower
becomes significant during the landing phase. Such basic
assumption is verified in practice since, by design, the Carrier
UAV is a much larger platform than the Follower UAV and
the disturbances created during landing can be considered as
perturbations within the rejection capabilities of the Carrier
control system. These perturbations are taken into account by
tuning robustly the Carrier controller. ⌟

The considered air-to-air landing problem can be formalized
as follows.

Problem 1: Consider the model of the Follower UAV in
(2)-(3) with the (unknown) Carrier motion described by (4).
Under Assumption 1, find a control law for (tc,ωc) such that
the state of the Follower (x f ,v f ) converges safely to (Ωt ,vt),
with Ωt defined in (4), in finite time.

The adverb "safely" in Problem 1 encodes the requirement
that the Follower has to land from above the Carrier and in a
sufficiently slow manner, which allows minimizing perturba-
tion effects between the two UAVs.

The landing problem formalized above is addressed in this
work by considering separately navigation and control tasks,
as customary in autonomous systems [23] (see Fig. 2).

A navigation function, described in details in Section IV,
has been developed to compute state estimates of the Carrier
and of the Follower. The proposed navigation function pro-
vides estimates of the state of the Carrier using a KF that
combines the estimates of the state of the Follower, coming
from the onboard state estimator, and the measurement of the
relative position of the Carrier with respect to the Follower,
coming from an onboard dedicated vision-based algorithm that
elaborates the image taken by the camera mounted on the
Follower.

Using the Follower and Carrier state estimates provided by
the navigation function, a controller has been designed, as
described in Section III, to ensure that the Follower tracks
the Carrier safely and eventually lands on it. The proposed

controller is based on a hierarchical architecture that exploits
the cascade structure of the Follower dynamics (1)-(3) to split
the control design challenges at different dynamical levels
when attemping to solve Problem 1.

III. CONTROL LAW DESIGN

We present in this section the solution to the control task,
for which we assume that state estimates of the Carrier
and Follower UAVs coming from the navigation function are
available at all times. The following three-layer architecture is
proposed:

• at the outer-loop level, the velocity is considered as a
virtual input to make the position of the Follower track
the position of the Carrier;

• the virtual velocity is used as a reference signal for the
inner-loop position controller, which assigns the control
force;

• a planner computes a virtual attitude that has the third
axis aligned with the desired control force;

• the attitude controller computes the angular velocity
required to track the planned attitude.

After presenting the structure of the hierarchical archi-
tecture, we develop the control laws within each layer. In
presenting the high-level control law (corresponding to the
position kinematics), we just recall the main steps of the design
since the hybrid QTO logic proposed in [17] is exploited with
minor adjustments.

A. Hierarchical control design for underactuated UAVs

As the landing problem requires tracking of the Carrier
trajectory, we first introduce the tracking error

ep := x f − xt (5)

the dynamics of which is given by

ėp = ẋ f − ẋt = v f − vt . (6)

Defining uv as a virtual control input for (6) and ev := v f −uv
as the corresponding velocity error, we can rewrite (6) as

ėp = v f − vt ±uv = uv − vt + ev. (7)

The time-derivative of the velocity error as defined above
reads:

ėv = v̇ f − u̇v =−ge3 +acR f e3 +ae − u̇v (8)

where ac := tc
m is the control acceleration and ae := fe

m is the
acceleration associated with exogenous disturbances. Note that
at this dynamical level, the input ac ∈ R>0 appears explicitly
but cannot be used directly to control the velocity error
dynamics because it does not span R3. Hence, we first sum
and subtract a virtual input ua ∈ R3 in (8)

ėv =−(ge3 + u̇v)+acR f e3 +ae ±ua. (9)
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Then, following consolidated hierarchical approaches for un-
deractuated VTOL UAVs, we define a planned attitude Rp =
[ p1 p2 p3 ] ∈ SO(3) such that p3 := ua

|ua| at all times as1:

Rp :=
[

p3×hd
|p3×hd | ×p3

p3×hd
|p3×hd | p3

]
, (10)

where hd ∈ R3 is a unit vector, with h⊤d e3 = 0, specifying a
desired heading direction, which defines a secondary control
objective with respect to the problem at hand. Setting ac = |ua|
and then summing and subtracting |ua|Rpe3 in (3), we obtain
the perturbed velocity dynamics

ėv =−(ge3 + u̇v)+ua +ae +∆a(Rp,Re,ua), (11)

where ∆a := (RpReR⊤
p − I3)ua represents the mismatch be-

tween the delivered and the virtual acceleration and which
depends upon the attitude error Re := R⊤

p R f . Using (1), the
dynamics of Re is given by

Ṙe = ReS(ωc −R⊤
e ωp), (12)

with ωp = S−1(R⊤
p Ṙp) being the planned angular velocity

that can be computed analytically by time-differentiation of
(10), given a sufficiently smooth virtual input ua and Carrier
trajectory as per Assumption 1 (we assume constant heading
direction set-point hd in this work, given that it does not affect
the landing procedure).

The following sections discuss in details the derivation of
the inputs (uv,ua, tc,ωc) to ensure that Problem 1 is solved.

B. Position layer design: Quasi-Time Optimal stabilizer and
hybrid logic (design of uv)

At the highest level, the control design developed in [17]
is employed. In deriving the control law for uv, the position
tracking error dynamics with ev ≡ 0 is considered, namely:

ėp = uv − vt . (13)

For reasons related to the landing logic, ep is split in a planar
and in a vertical component, denoted as e⊥p := [ ep1 ep2 ]

⊤ and
ep3 , respectively. The following control law taken from [17]
is considered:

uv =−γq(ep)+ vt , (14)

where γ0(ep) :=
[

σ⊥
vs (k⊥e⊥p )

σ vs
vs (k3(ep3−hs))

]
, γ1(ep) :=

[
σ⊥

vs (k⊥e⊥p )
σvs

va (k3ep3 )

]
and

σ⊥
vs (k⊥e⊥p ) :=

vs tanh
(

k⊥
vs
∥e⊥p ∥

)[ ep1
∥e⊥p ∥
ep2
∥e⊥p ∥

]
if e⊤p ̸= 0

0 else
(15)

σ vs
va (k3ep3) :=

vs exp
(

k3
va+vs
vavs

ep3

)
− vs

exp
(

k3
va+vs
vavs

ep3

)
+ vs/va

(16)

1The operating conditions considered for the landing are far away from the
singularity arising when ua = 0 (p3 undefined), which corresponds to free fall
flight, and do not impact our (local) results (Theorem 2). A discussion on
possible remedies for this issue can be found in [22].

Fig. 3. Landing logic and commanded velocity of the Follower (uv). The
coloured regions represent the different domains of the hybrid automaton
which give for each mode the set where the continuous state evolves:
synchronization mode in red, approach mode in blue and land mode in green.
The overlapping between synchronization and approach modes (violet) is due
to the hysteresis mechanism implemented to avoid chattering. The red dashed
lines identify the values at which the Follower switch from a saturated velocity
regime to the unsaturated one and vice versa. For further details about this
figure we address the reader to [17].

are smooth saturation functions2 with saturation levels va, vs ∈
R>0, and k⊥, k3 are scalar positive gains. As shown in [17], the
control law (14) ensures Global Asymptotic Stability (GAS)
of the equilibrium point ep = 0 for the system (13).

The landing logic can be described by a hybrid automaton,
in which three different modes are defined using a logic state
q ∈ Q := {0,1,2} (see Fig. 3):

• During the Synchronize Mode (q = 0), the Follower has
to get close to a position at a certain height above the
Carrier in a sufficiently fast way. The control law

uv =

[
−σ⊥

vs (k⊥e⊥p )+ vt⊥
−σ vs

vs (k3(ep3 −hs))+ vt3

]
(17)

is implemented to ensure tracking of a point at a height
R>0 ∋ hs ≫ ha above the Carrier, namely, xs := xt +
[0 0 hs ]

⊤ which represents a safe point to start the landing.
Remark 2: The scalar hs is a control variable that
specifies the relative altitude above the Carrier that the
Follower must reach during the synchronization phase.
When the Follower is in the approach mode and exits for
any reason the landing domain (blue-violet area in Fig.
3), the hybrid logic activates the synchronization mode
and the Follower is commanded to increase its relative
altitude to get back to the safety point with relative
vertical distance equal to hs. To reduce the landing time,
a slightly modified strategy has been implemented in the
experiments: hs is used as an additional state of the logic
which is updated by setting it equal to the relative vertical
distance that has been achieved right before exiting the
approach domain. ⌟
The mode is active outside a cylinder of radius rm < rt
about the vertical axis passing through xt (red+violet area
in Fig. 3).

2The two functions correspond to sigmoid approximations of sat⊥vs (k⊥e⊥p ) =
min

(
k⊥,vs/∥e⊥p ∥

)
e⊥p and satvs

va (k3ep3 ) = min(max(k3ep3 ,−va),vs). Using
smooth saturation functions is required here because the inner loop controller
presented in Section III-C requires the time derivative of uv.
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• In the Approach Mode (q = 1), the Follower starts a suf-
ficiently slow and controlled descent towards the Carrier.
Specifically, the control law

uv =

[
−σ⊥

vs (k⊥e⊥p )+ vt⊥
−σ vs

va (k3ep3)+ vt3

]
(18)

is implemented to ensure tracking of the Carrier point
xt , with the approaching vertical speed bounded by va.
The mode is active inside a cylinder of radius rt about
the vertical axis passing through xt (blue+violet area in
Fig. 3).

• The Land Mode (q = 2) is triggered when the Follower
is inside the approach cylinder below height ha above the
Carrier landing surface (green area in Fig. 3). When the
landing command is activated, the UAV is disarmed.

The violet area where the approach and synchronization
modes are active simultaneously introduces a hysteresis mech-
anism that avoids chattering. The reader is referred to [17] for
the specific definition of the elements of the hybrid automaton
(edges, guard conditions, reset maps, etc.) and the proof
that the proposed logic solves the landing problem when
considering the kinematic model alone.

C. Velocity layer design: adaptive controller (design of ua, tc)

The velocity controller is in charge of tracking the virtual
velocity uv commanded by the position controller layer using
the virtual acceleration input ua. In deriving the control law,
we assume ∆a ≡ 0 and substitute the expression of uv in (14)
inside (11):

ėv =−ge3 +ua +ae +Depγq(ep)ėp − v̇t

=−ge3 +ua +ae +Depγq(ep)(ev − γq(ep))− v̇t
(19)

where ua := u
m is the control acceleration and ae was defined

in (8). As already mentioned, the Carrier acceleration v̇t is
not in general available (the navigation function provides only
position and velocity estimates) and therefore is treated here as
an exogenous term. The velocity error dynamics thus becomes:

ėv =−ge3 +Depγq(ep)(ev − γq(ep))+ua +ad (20)

where ad := ae − v̇t is a disturbance acceleration. To ensure
stabilization of ev = 0 in the presence of the disturbances, we
propose the following observer-based adaptive control law

˙̂ev =−γv(ev)+L(ev − êv) (21)
˙̂ad = proj(âd ,−Γd(êv −2ev)) (22)
ua = ge3 −Depγq(ep)(ev − γq(ep))+ γv(ev)− âd , (23)

where (êv, âd)∈R3×R3 is the state of the controller, γv(ev) :=
σM(Kvev) is a saturated velocity stabilizer, L ∈ R3×3, Γd ∈
R3×3, Kv ∈ R3×3 are diagonal positive definite matrices, and
M ∈ R>0 are saturation levels for each axis. Finally, given
y ∈ R, the projection operator is defined as:

proj(θ ,y) :={
y− f (θ)∇ f (θ)(∇ f (θ))⊤

∥∇ f (θ)∥2 y, if [ f (θ)> 0∧ y∇ f (θ)> 0]

y, otherwise
(24)

where θ ∈ R is the parameter estimate and f (θ) := ∥θ∥2−θ 2
M

2εθ 2
M+ε2 ,

with ε > 0 a tunable parameter and θM the maximum absolute
value of θ . When applied to a vector, the operator is assumed
to act component-wise and to keep the corresponding estimate
bounded in the interval ±θM (see [24, Chapter 11] for more
information about the projection operator).

Remark 3: The observer dynamics (21) is obtained by
replicating the velocity error dynamics (20) with the estimate
âd in place of the unknown term ad , namely,

˙̂ev =−ge3 +Depγq(ep)(ev − γq(ep))+ua + âd (25)

and then by adding an output injection term L(ev − êv) to
improve convergence speed and smoothen the oscillations
in the estimated parameter signal. Choosing L close to Γd
guarantees a good trade-off between speed of convergence and
oscillations of the estimate. When substituting the control law
(23) into (25), one obtains the observer dynamics reported in
(21). ⌟

By defining the error ẽv := êv − ev, the closed-loop dynam-
ics obtained combining (8) with the controller (21)-(23) is
described by the following perturbed nonlinear system:

ėv =−γv(ev)− ãd (26)
˙̃ev =−Lẽv + ãd (27)
˙̂ad = proj(âd ,−Γd(ẽv − ev)), (28)

where ãd := âd −ad is the parameter estimation error.
The following theorem, the proof of which is reported in

the Appendix, establishes the stability properties guaranteed
by the inner-loop controller.

Proposition 1: Consider the closed-loop dynamics given in
(26)-(28). When ȧd = 0, the equilibrium point (ev, ẽv, âd) =
(0,0,ad) is Globally Asymptotically Stable (GAS). For any
bounded ȧd , the closed-loop solutions of the system are Uni-
formly Ultimately Bounded (UUB) for any initial condition in
the set Rv :=

{
(ev, ẽv, âd) ∈ R9 : ∥âd∥ ≤ aM

}
, where aM is the

upper bound on the disturbance acceleration.
Remark 4: The adaptive controller (21)-(23) allows to

effectively counteract disturbances and to mitigate the lack
of acceleration information from the navigation function by
collapsing their effect in the disturbance acceleration ad . Based
on Proposition 1, constant wind gusts are exactly rejected,
ensuring a safer landing. ⌟

D. Attitude layer design: geometric controller

Given that the attitude error kinematics (12) is fully actuated
by ωc, the following rotation-matrix based law is employed:

ωc :=−γR(Re)+R⊤
e ωp, (29)

where γR(Re) := 1
2 S−1(KRRe−R⊤

e KR) and KR is a gain matrix.
By substituting (29) into (12), the error attitude kinematics is
described by the autonomous system

Ṙe =−ReS(γR(Re)). (30)

Proposition 2: Consider the closed-loop attitude kinematics
in (30). For any symmetric matrix KR ∈ R3×3 such that
tr(KR)I3 −KR is positive definite, then the equilibrium point
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Re = I3 is almost globally asymptotically stable. Moreover,
given any 0 < ℓ < ℓR := λm(tr(KR)I3 − KR), for any initial
condition in the set SR :=

{
R ∈ SO(3) : 1

2 tr(KR(I3 −R))≤ ℓ
}

,

the solution satisfies ∥Re(t)∥SO(3) ≤
√

ℓ
ℓR

∀t ≥ t0 and
limt→∞ ∥Re(t)∥SO(3) = 0.

The proof of Proposition 2 is omitted as it follows from
existing results in the literature [18], [19]. For the special
case of KR = krI3, the basin of attraction can be as large as
∥Re∥SO(3) < 1, which corresponds to all but 180deg rotations.
The proposed stabilizer possesses also robustness properties
with respect to angular velocity perturbations [19].

E. Stability analysis of the hierarchical controller

The stability of the overall control system will be assessed
within each operating mode. We first establish a stability
result which is valid for the case of fully actuated UAVs (for
which attitude and position can be controlled independently),
characterized by the following error dynamics:

ėp =−γq(ep)+ ev (31)
ėv =−γv(ev)− ãd (32)
˙̃ev =−Lẽv + ãd (33)
˙̂ad = proj(âd ,−Γd(ẽv − ev)), (34)

which is in the form of a cascade system, wherein (31) is
the lower subsystem, while (32)-(34) is the upper subsystem,
which is perturbed by ȧd . The stabilizing properties of the
proposed control design are stated in the following theorem,
the proof of which can be found in the Appendix.

Theorem 1: Consider the closed-loop dynamics (31)-(34).
If ȧd = 0, the equilibrium point (ep,ev, ẽv, âd) = (0,0,0,ad) is
GAS. If ȧd ̸= 0, then there exist control parameters such that
the closed-loop solutions starting from R3 ×Rv are UUB.

For underactuated UAVs, the following error dynamics must
be instead considered:

Ṙe =−ReS(γR(Re)) (35)
ėp =−γq(ep)+ ev (36)
ėv =−γv(ev)− ãd +∆a(Rp,Re,ua) (37)
˙̃ev =−Lẽv + ãd −∆a(Rp,Re,ua) (38)
˙̂ad = proj(âd ,−Γd(ẽv − ev)), (39)

In this case, the following result holds, as proven in the
Appendix.

Theorem 2: Consider the closed-loop dynamics (35)-(39). If
ȧd = 0, the equilibrium point (Re,ep,ev, ẽv, âd)= (I3,0,0,0,ad)
is locally asymptotically stable. If ȧd ̸= 0, then there exist
control parameters such that the closed-loop solutions are
UUB.

Remark 5: To understand how the landing logic, designed
on the kinematic model, works when applied to the dynamic
model, let us point out that while the above stability analysis
has been carried out on the three dimensional (3D) model,
for the sake of compactness, the choice of the feedback
errors in Section III-B allows decoupling the kinematics in
a planar 2D and a vertical 1D motion. The stabilizer of planar
motion (17)-(18) is the same in both the synchronization and

approach mode. Therefore, the planar error dynamics only
flows as long as the land mode is not activated and one can
conclude that ∥e⊥p ∥< rm after a finite time, provided that the
ultimate bound of the solutions is strictly less than rm. As such,
after possibly multiple switches between the synchronize and
approach mode, the Follower will then stay in the approach
mode until landing. ⌟

IV. VISION-BASED CARRIER STATE ESTIMATION

Vision is used to estimate the position and velocity of
the Carrier in an inertial frame. In order to simplify the
detection task, an ArUco marker has been attached to the
Carrier and employed as visual marker. The approach can be
generalized to different tags and detection algorithms. ArUco
marker detection and pose reconstruction is carried out on the
images coming from the camera equipped on the Follower,
exploiting the OpenCV library [25].

The position xt and the velocity vt of the Carrier in
the inertial frame are estimated through a discrete-time KF.
The vision-based state estimation algorithm is presented in
discrete-time, consistently with the reference literature on
the topic. Let the state vector be defined as x = [ xt vt ]⊤. A
kinematic model is used for the Carrier motion, corresponding
to the following discrete-time model:

xk = Fxk−1 +wk−1 (40)

with F =
[

I3 I3∆t
03 I3

]
, where ∆t is the sampling period of the

filter. The process noise wk is assumed to be a zero-mean
Gaussian white noise with covariance matrix Q.

The correction phase is performed each time a measurement,
i.e., the 3D position of the moving Carrier, is provided by
the ArUco detection and pose reconstruction algorithms. Note
that, even using a monocular camera, we are able to solve the
ambiguity of scale by knowing the ArUco marker size.

The measurement model can be written as:

y = Rc(R⊤
f (xt − x f ))+ pc, (41)

where pc and Rc are the known fixed translation and rotation
of the camera frame C relative to the Follower body frame B.

As can be seen from equation (41), the position x f and
attitude R f of the Follower in the inertial frame are needed
(Assumption 1). They are directly retrieved from the Follower
state estimator. Being the measurement model linear in the
state, we can evaluate it at instant k as:

yk = Hkxk + vk, (42)

where the measurement noise vk is a Gaussian random vector
with zero mean and covariance R, uncorrelated with the
process noise wk, and Hk =

∂y
∂x

∣∣∣
k

is the measurement model
Jacobian evaluated at instant k.

Remark 6: The prediction model (40) is capable of handling
exactly constant speed motions for the Carrier (that is a
typical design condition for landing). The algorithm provides
satisfactory results also in case of trajectories with time-
varying speed (see the circle trajectory case study) through
a proper tuning. Nonetheless, it could also be possible to
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substitute the model with a more detailed one, if additional
information about the motion of the Carrier were available. ⌟

The filter prediction step is written as:

x̂−k = Fx̂+k−1 (43)

P−
k = FP+

k−1F⊤+Q (44)

where P− and P+ are the a priori and a posteriori state
estimation error covariance matrices respectively, and x̂− and
x̂+ are the a priori and a posteriori estimates of the state.

The filter correction step can be summarized with the
following equations:

x̂+k = x̂−k +Kkzk (45)
P+

k = (I6 −KkHk)P−
k . (46)

where zk = yk−Hkx̂−k , Zk =HkP−
k H⊤

k +R and Kk =P−
k H⊤

k Z−1
k .

Note that after the computation of zk and of its covariance Zk,
in order to be robust to possible measurement outliers, we
perform a χ2-test based on the Mahalanobis distance of the
innovation, as shown in [26]. Inliers are validated by checking
the Normalized Estimation Error Squared (NEES), namely:

z⊤Z−1z ≤ χ2
th, (47)

with χ2
th equal to the 0.95 probability quantile of the χ2

distribution. If the measurement passes the test, we proceed
by computing the Kalman gain K and by updating the filter
state and covariance.

Remark 7: Formally studying the stability properties of
the complete closed-loop system (navigation and control) is
out of the scope of this work. Indeed, establishing stability
properties of vision-based state estimators is a challenging
task on its own [27]. We rely here on a separation principle
assumption, which is commonly accepted when dealing with
complex autonomous systems. Of note, the running frequency
of the state estimator is high such that the filter output can
be considered as continuous when addressing the stability
analysis of the closed-loop system, that is designed to have
a much slower dynamics. Assuming that the errors associated
with navigation estimates are bounded and sufficiently small,
the complete system will remain stable, given that the control
systems is able to tolerate small perturbations, as established in
Theorem 1 and 2. Note that the estimation errors can actually
be significant in practice, especially in case of dynamic
trajectories with time-varying speed profiles (see Fig. 5 in the
experiment section). Nonetheless, the proposed control law is
capable of handling them well, ensuring a safe landing. ⌟

V. EXPERIMENTAL RESULTS

A. Experimental setup

Flight tests are carried out inside the Flying Arena for Rotor-
craft Technologies (FlyART) of Politecnico di Milano which is
an indoor facility equipped with an Optitrack Motion Capture
system (Mo-Cap). The UAV used as Follower, codename
ANT-X, is a quadcopter, while the Carrier one, codename
CARRIER-1, is an octocopter with a flat landing surface with
an ArUco marker attached (Fig. 4). In all experiments and
simulations presented next we considered initial conditions

Fig. 4. CARRIER-1 (Carrier) and ANT-X (Follower) UAVs.

in which the marker on the Carrier surface is always in
the camera FoV; this can be considered the end goal of an
exploration phase (see [12]). The Mo-Cap system, composed
by 12 cameras, detects reflectors mounted on the UAVs and
provides both ground truth data and position and yaw measure-
ments for the Follower state estimation filters. The Follower
carries a monocular camera to detect the ArUco marker and
estimates the state of the Carrier using on-board computational
capabilities. The companion computer is a small open source
ARM board (NanoPi NEO Air3). On this board, the virtual
velocity input is also computed according to the outer-loop
control law and communicated to the PX4 autopilot using the
Robotic Operating System (ROS) as middleware. The inner-
loop control law has been integrated in the PX4 firmware
using the ANT-X rapid prototyping system for multirotor
control [28].

Before performing experiments, simulations have been con-
ducted using the Software-in-the-Loop (SITL) PX4 autopilot
firmware environment, which employs the Gazebo simulator
and ROS. A video of the simulation is available online4.

B. Preliminary test results

Before performing vision-based landing experiments, pre-
liminary tests have been conducted focusing on the quality of
the estimation with different values of camera parameters. In
particular with the Carrier still on the ground and the Follower
moving slowly above it5, we have tried to quantify the mean
µ and the standard deviation σ of the error between the true
and the estimated position of the Carrier at different values of
camera resolution (QQVGA, QVGA, VGA)6. The obtained
results are shown in Table I. Given the trade-off between
accuracy and CPU load, the QVGA resolution has been chosen
for all the tests.

Another test has been performed with the Follower in
synchronization mode at an altitude of 2.5m and estimating
the Carrier that is moving along a circular trajectory with 1m
radius and angular frequency 0.2rad/s at a constant altitude of
1m. While the error in the position estimate is small, the main
difference is in the velocity estimate, which has a significant
delay (almost 1 s), as can be seen in Fig. 5.

3https://wiki.friendlyarm.com/wiki/index.php/NanoPi_NEO_Air
4Visit https://www.youtube.com/watch?v=LsINkVjS6R0 or the ASCL web-

site http://ascl.daer.polimi.it.
5With the marker always in the camera FoV.
6Higher resolutions have not been considered because of the CPU load.
7Rate of the algorithm that detects the ArUco marker.
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TABLE I
MEAN AND STANDARD DEVIATION OF THE ERROR BETWEEN THE TRUE

AND THE ESTIMATED POSITION OF THE CARRIER.

QQVGA QVGA VGA
Image rate [Hz] 50 30 15

ArUco rate7 [Hz] 6 4 4
µx [m] 0.071 0.042 0.053
σx [m] 0.035 0.042 0.039
µy [m] 0.043 0.014 0.019
σy [m] 0.039 0.035 0.042
µz [m] -0.042 0.045 0.097
σz [m] 0.041 0.077 0.063

CPU load 78% 85% 88%

40 45 50 55 60 65 70
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Fig. 5. True velocity of the Carrier and estimate obtained from the KF
described in Section IV using the vision measurement.

C. Comparison with our previous design [17]

An experimental campaign has been conducted to compare
the adaptive controller (“New”) and the one proposed in [17]
(“Old”). The latter was a simple QTO controller for the
position layer, tuned properly to obtain a safe and fast landing
as described precisely in [17], together with a PID controller
on the velocity layer tuned with structured H∞. In particular,
the AAAL problem has been performed exploiting the external
Mo-Cap system to obtain the state (position and velocity)
estimates of both the two UAVs instead of using the monocular
camera onboard the Follower. This has been done to eliminate
the delay in the estimate of the velocity in order to be able
to compare the two controllers in the same conditions with a
repeatable experiment. The experiment has been conducted
with the Carrier moving along a circular trajectory of 1m
radius centered in [0 0 1 ]⊤ m with respect to the ENU (East-
North-Up) inertial frame of the flying arena and the Follower
starting at [0 0.75 2.5 ]⊤ m. The test has been repeated five times
for each of the two different values of velocity of the Carrier
and has shown that the adaptive controller outperforms the
one in [17] as can be seen in Table II where the mean values
of the five tests of the time to land (TTL), the final in-plane
position error ∥e⊥p (t f )∥, the in-plane position error mean ∥e⊥p ∥
and standard deviation σp⊥ from the beginning of the landing
algorithm are reported. In Fig. 6 the in-plane relative position
time history of one of the experiments can be seen using
the two controllers with an angular frequency for the Carrier
trajectory of 0.4rad/s.

D. Vision-based landing results

The landing has been performed in two conditions: with
the Carrier moving along a circular trajectory of 1m radius

TABLE II
TIME TO LAND (TTL), FINAL IN-PLANE POSITION ERROR ∥e⊥p (t f )∥,

IN-PLANE POSITION ERROR MEAN ∥e⊥p ∥ AND STANDARD DEVIATION σp⊥
FROM THE BEGINNING OF THE LANDING ALGORITHM.

ω = 0.25rad/s ω = 0.4rad/s
Old New Old New

TTL [s] 7.66 5.82 14.75 6.05
∥e⊥p (t f )∥ [m] 0.0725 0.0548 0.0926 0.0126

∥e⊥p ∥ [m] 0.0812 0.0724 0.1030 0.0544
σp⊥ [m] 0.0480 0.0546 0.0500 0.0559

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.05

0.1

0.15

0.2

0.25

0.3

0

1

2

0 1 2 3 4 5 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0

1

2

Fig. 6. In-plane relative position ∥e⊥p ∥ time history from the beginning of
the Carrier trajectory to 0.5 seconds after landing for the new and the old
controller during the experiment with angular frequency 0.4rad/s.

and angular frequency 0.25rad/s and with the Carrier mov-
ing along a linear trajectory with velocity up to 0.4m/s.
The controller gains used in the experiments are: k⊥ = 1.4,
k3 = 1, Kv = 3 I3, va = 0.3m/s, vs = 1m/s, M = 4.9m/s2,
KR = diag(2.8,2.8,17.2), hs(0) = 1.5m, Γd = 15 I3 and L =

10 I3. The parameters used in the KF are Q =
[

03 03
03 qv

]
with

qv = 10−4I3m2, and R = 10−2I3m2, selected trading-off noise
in the estimate and phase shift with offline simulations of the
KF that uses experimental data of the relative pose provided by
ArUco detection algorithm recorded during a synchronization
test.

For the circular trajectory case, the Follower starts at
[0 0.75 2.5 ]⊤ m while the circular trajectory is centered in
[0 0 1 ]⊤ m with respect to the inertial frame (with ENU con-
vention) of the flying arena. In Fig. 7, the in-plane position
trajectories of the two UAVs are shown together with the
Carrier desired trajectory. Markers are used to identify the
switches of the logic variable q. In correspondence of circle
markers and cross markers, the synchronization mode (q = 0)
and the approach mode (q = 1) are activated, respectively.
Instead, the star marker indicates when the disarm command
is sent to the Follower (q = 2). As can be observed, at the
beginning the synchronization mode is active and the Follower
tracks the Carrier keeping the vertical distance constant. When
the in-plane error p⊥ is less then 0.01 = rm < rt = 0.015m,
the logic variable switches to 1 and the Follower starts the
approach phase. Right after entering, the Follower exits the
approach mode because of the delay in the estimate of the
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Fig. 7. In-plane position of the Follower (red), desired (green), estimated
(cyan) and real (blue) Carrier position from the beginning of the Carrier
trajectory to 3 seconds after landing. Comparing the desired Carrier trajectory
(green) with the actual Carrier position (blue), it can be appreciated how
well the Carrier is able to follow the desired circular trajectory even during
the approach phase. This has been achieved by tuning robustly the Carrier
controller in order to better reject disturbances.

velocity of the Carrier and therefore the logic state is switched
back to the synchronization mode again. When the in-plane
distance is again lower than rm, q jumps to 1. Finally it keeps
in the C1 domain until the landing mode is activated (q = 2) at
height ha = 0.15m. In Fig. 8 and Fig. 9, the true and estimated
relative in-plane and vertical distances are shown together with
the time evolution of the logic variable.

Remark 8: The relative distance obtained from the vision
system underestimates the true one. This could lead to dan-
gerous situations, e.g., landing outside the Carrier surface. For
this reason, we have chosen conservative bounds rm and rt
with respect to the ones in [17] considering the values for the
mean of the error reported in Table I. In this way, even if at the
end of the approach phase the true in-plane relative distance
is slightly outside the boundary of the domain, landing can be
considered safe. ⌟

Remark 9: During the final part of the descent, at a certain
height above the Carrier, the tag can no longer be seen by
the camera. This height depends on the marker size and on
the camera FoV. Thus, a proper selection of these parameters
is needed. It is worth noting that the proposed approach can
cope with missing visual information for an amount of time
dependent on the accuracy of the motion model of the Carrier.

⌟
The performance of the proposed design is clearly limited

by the delay of the estimated Carrier velocity (Fig. 5), that is
prominently related to the model used for the prediction step,
which is kept simple (constant velocity), being a reasonable
design condition for the landing. As can be seen in Fig.
10 when a linear trajectory with velocity vt = 0.4m/s is
considered for the Carrier, the results improve in terms of
estimation performance because the real motion of the Carrier
and the model used in the estimator match. In this experiment
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Fig. 8. True and estimated in-plane relative position ∥e⊥p ∥ time history from
the beginning of the Carrier trajectory to 0.5 seconds after landing. The initial
peak in the difference between estimated and real relative positions can be
explained considering that aggressive rotational and translational movements
of the Follower can cause degradation in the quality of images, and, thus, of
measurements.
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Fig. 9. True and estimated relative vertical position |ep3| time history from
the beginning of the Carrier trajectory to 0.5 seconds after landing.
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Fig. 10. True and estimated in-plane relative position ∥e⊥p ∥ time history during
Carrier linear trajectory.

the bounds for the in-plane error were further reduced to
0.0075 = rm < rt = 0.0125m. A video of the experiments is
available online.8

VI. CONCLUSION

In this paper we tackled the problem of vision-based AAAL
of UAVs. A KF state estimation approach has been used to
determine the position and velocity of the Carrier UAV in a
non-cooperative manner. The availability of this information
has been exploited to perform a safe landing combining a
hybrid QTO approach and an observer-based adaptive law that
outperforms the performance of the controller presented in
our previous work. Finally, the proposed strategy has been
validated through simulations and an experimental campaign
involving two multirotor UAVs.

8Visit https://www.youtube.com/watch?v=aPF_--zHy2w or the ASCL web-
site http://ascl.daer.polimi.it.
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APPENDIX

Proof of Theorem 1. In case ȧd = 0, then system (26), (27)
becomes an autonomous one. Define xv := (ev, ẽv, âd), then
the singleton Av := {xv ∈Rv : xv = (0,0,ad)} is the unique
equilibrium point. Consider the Lyapunov function

V (ev, ẽv, âd) := 1
2∥ev∥2 + 1

2∥ẽv∥2 + 1
2 ã⊤d Γ

−1
d ãd , (48)

which satisfies α(|xv|Av) ≤ V (xv) ≤ α(|xv|Av) ∀xv ∈ R9,
where α(|xv|Av) := min

(
1,λ−1

M (Γd)
)
|xv|2Av

and α(|xv|Av) :=
max

(
1,λ−1

m (Γd)
)
|xv|2Av

are (quadratic) class−K∞ functions
and |xv|Av := ∥(ev, ẽv, ãd)∥. Since the projection operator sat-
isfies (âd −ad)

⊤(proj(âd ,−y)+ y) ≤ 0 ∀∥ad∥ ≤ aM, ∀y ∈ R3,
the Lie derivative of V along (26)-(28) reads

V̇ = e⊤v (−γv(ev)− ãd)+ ẽ⊤v (−Lẽv + ãd)

+ ã⊤d Γ
−1
d proj(âd ,−Γd(ẽv − ev))≤−e⊤v γv(ev)− ẽ⊤v Lẽv (49)

∀xv ∈ Rv. Given that V̇ ≤ 0 ∀xv ∈ R9, one can conclude
(global) stability of xv = 0 by [21, Theorem 4.2]. As V̇
is only negative semi-definite and we are dealing with an
autonomous system, we can prove global attractivity of xv = 0
(and therefore GAS) by relying on standard arguments based
on LaSalle’s invariance principle.

We then prove the UUB property in case ȧd ̸= 0. Consider
again the quadratic Lyapunov candidate (48). For ȧd ̸= 0, the
Lie derivative of V along (26)-(28) reads V̇ = −e⊤v γv(ev)−
ẽ⊤v Lẽv + ã⊤d Γ

−1
d (Γd(ẽv − ev) + proj(âd ,−Γd(ẽv − ev)) − ȧd).

Thanks to the properties of the projection operator, which
guarantees that ∥âd(t)∥ ≤ aM + ε ∀âd(t0)≤ aM + ε , V̇ can be
bounded as V̇ ≤−e⊤v γv(ev)− ẽ⊤v Lẽv+ ã⊤d Γ

−1
d ȧd ≤−α(∥x̄v∥)+

δ1, where x̄v := [ e⊤v ẽ⊤v ]
⊤, α(·) is a class-K∞ function and

δ1 := āM
λm(Γd)

ȧM , āM := 2aM + ε . Then, V̇ ≤−(1−λ )α(∥x̄v∥)
∀∥x̄v∥ ≥ α−1

(
δ1
λ

)
=: δ2 for any λ ∈ (0,1). Picking δ :=√

ā2
M +δ 2

2 , the sublevel set Ωδ := {xv ∈Rv : V (xv)≤ ᾱ(δ )}
is uniformly attractive from Rv, proving UUB of solutions:
there exists a time interval ∆t ≥ 0, independent of t0, such

that ∥xv(t)∥ ≤ α−1 (ᾱ (δ )) =
√

max(1,λ−1
m (Γd))

min(1,λ−1
M (Γd))

δ ∀t ≥ t0 + ∆t

for some λ ∈ (0,1).
Proof of Theorem 1. The proof makes use of the results of
[20], [29]: we show that the lower subsystem is strongly iISS
with respect to ev and then use the main result of [20] to
conclude AS of the cascade connection.

Lemma 1: System (31), with γq(ep) defined as below
(14), is strongly iISS with respect to ev, i.e., there exists
rp > 0, a class-KL∞ function βp(·, ·) and class-K∞ functions
µ1(·), µ2(·), µp(·) such that ∀t0 ≥ 0, ∀t ≥ t0

∥ev∥∞ < rp =⇒ ∥ep(t)∥ ≤ βp(∥ep(t0)∥, t − t0)+µp(∥ev∥)

∥ep(t)∥ ≤ βp(∥ep(t0)∥, t − t0)+µ1(
∫ t

t0
µ2(∥ev(s)∥)ds). (50)

Proof of Lemma 1. Consider the Lyapunov function

Vp(ep) :=
∫ ∥e⊥p ∥

0
vs tanh

(
k⊥
vs

s
)

ds+
∫ ep3

0
γq,3(s)ds. (51)

The Lie derivative of Vp along (31) is V̇p(ep) =
−γq(ep)

⊤γq(ep)+ γq(ep)
⊤ev

= −∥γq(ep)∥2 + ∥γq(ep)∥∥ev∥ ≤ −αp(∥ep∥) + bp∥ev∥,
∀e⊥p ̸= 0, where α(·) is a class-K function
with α(∞) = liminf∥ep∥→∞ ∥γq(ep)∥2 = v2

a, while
bp := supep∈R3(∥γq(ep)∥) =

√
2vs < ∞ (assuming va < vs).

Then, leveraging [29, Theorem 1], the claim of the Lemma
is proven with input threshold rp =

v2
a√
2vs

. □

Combining strong iISS of the lower subsystem proved in
Lemma 1 and GAS of the perturbing subsystem proved in
Theorem 1, then the origin of the complete system is GAS,
thanks to [20, Corollary 2].

In case the perturbing subsystem is only UUB, the cascade
will be at most UUB, provided that the ultimate bound of the
upper subsystem solutions is below a given value. The proof
can be done by following the ideas in [20]. Specifically, given
any xv(t0) ∈ Rv and bounded ad(t) with bounded derivative,
the solution xv(t;xv(t0), t0) to (32)-(34) is UUB, in particu-

lar, we have ∥ev(t)∥ ≤
√

2max
(
1,λ−1

m (Γd)
)
α−1

(
δ
λ

)
=: bv

∀t ≥ t0 +∆t =: t1. By iISS of (31), the solution ep(t;ep(t0), t0)
will exist forward in time. Picking saturation levels va,vs such
that rp > bv, where rp is the input threshold in (50), we
have ∥ep(t)∥≤ βp(∥ep(t1)∥, t−t1)+µp(∥xv∥[t1,∞)) ∀t ≥ t1 by
small input ISS, which proves UUB of the overall cascade
solutions.
Proof of Theorem 2. The proof of AS for ȧd = 0 follows from
[30, Theorem 84] using cascade arguments, given that Re = I3
is LAS for the upper subsystem (35) and (ep,ev, ẽv, âd) =
(0,0,0,0,ad) is LAS for the lower subsystem (36)-(39). In case
ȧd ̸= 0, we could rely on local ISS arguments coming again
from local AS properties of the unforced systems. Nonetheless,
we quantitatively characterize this result by computing the
input restriction and ultimate bound of solutions of (36)-(39)
then use Proposition 2 to conclude UUB of the cascade. To
this aim, we refer again to the Lyapunov function (48) and
compute its Lie derivative along (35)-(39):

V̇ =−e⊤v γv(ev)− ẽ⊤v Lẽv + ã⊤d Γ
−1
d (Γd(ẽv − ev) (52)

+proj(âd ,−Γd(ẽv − ev))− ȧd)+(ev − ẽv)
⊤

∆a(Rp,Re,ua).

Since ∥ua∥ ≤ c1 + c2∥ev∥, V̇ ≤ −e⊤v γv(ev) −
ẽ⊤v Lẽv + δ1 + ∥x̄v∥∥Re∥SO(3)∥ua∥ ≤ −α(∥x̄v∥) + δ1 +

2
√

2(c1∥x̄v∥ + c2∥x̄v∥2)∥Re∥SO(3). In a bounded
domain ∥x̄v∥ < s, ∥âd∥ ≤ aM the above bound can
be written as V̇ ≤ −α(∥x̄v∥) + λs(∥Re∥SO(3)), where
λs(∥Re∥SO(3)) := δ1 + 2

√
2(c1s + c2s2)∥Re∥SO(3). Hence,

we have V̇ ≤ −(1 − λ )α(∥x̄v∥) ∀∥x̄v∥ ≥ ρ(∥Re∥SO(3)) :=

α−1
(λs(∥Re∥SO(3))

λ

)
, where ρ(·) is strictly increasing with

ρ(0) = δ1, and λ ∈ (0,1). Then, there exist a large enough s
and a small enough attitude error supt0≤τ≤t ∥Re(τ)∥SO(3) < ra

such that
√

ρ(supt0≤τ≤t ∥Re(τ)∥SO(3))∥)2 + ā2
M < α−1(α(s)).

Therefore, the solutions starting from ∥xv(t0)∥ ≤√
min(1,λ−1

M (Γd))
max(1,λ−1

m (Γd))
s are UUB with ultimate bound

∥xv(t)∥ ≤
√

max(1,λ−1
m (Γd))

min(1,λ−1
M (Γd))

α−1
(

ρ(supt0≤τ≤t ∥Re(τ)∥SO(3))
λ

)
,

supt0≤τ≤t ∥Re(τ)∥SO(3) < ra. Using the results of Proposition 2,
the proof is concluded.
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