
Lane change in automated driving:
an explicit coordination strategy

Alessandro Falsone, Member, IEEE , Beatrice Melani, and Maria Prandini, Fellow, IEEE

Abstract— We address a multi-vehicle automated driving
scenario, where a vehicle has to change lane and merge
in a platoon in a one-way roadway with two lanes. We
focus on the coordination phase of the lane change, where
vehicles in the platoon need to create a gap for the merging
vehicle to enter safely following a pre-computed optimal
trajectory. The goal is pre-computing also the multi-vehicle
coordination strategy, so as to limit the computational and
communication effort involved in its online implementa-
tion. This is achieved by considering the platoon as if
it was composed of an infinite number of vehicles and
solving a multi-parametric optimization program providing
the coordination strategy as an explicit function of position
and velocity of the ego vehicle, integrating a multi-class
classifier to identify the best merging position. Numerical
simulations show that the resulting performance degrada-
tion when implementing the strategy on a finite platoon is
limited to boundary effects at its head and tail.

Index Terms— Automated driving, explicit strategy, multi-
agent coordination.

I. INTRODUCTION

AUTOMATED driving is expected to provide various ben-
efits not only to a vehicle user, but also to transportation

systems operators and the whole society, as discussed in [1]. In
particular, the introduction of automated driving systems will
reduce the occurrence of accidents, cut down driving times
and, consequently, emissions and energy consumption.

Lane change is a complex maneuver that can prove to be
challenging even for a human driver since it requires particular
attention to the surroundings and the ability to assess distances
and speeds to avoid collisions, making it a frequent cause
of accidents [2]. As such, it is considered as pivotal when
addressing automated driving.

Different strategies have been devised to perform an auto-
mated lane change maneuver. The strategy can be cooperative
if vehicles have a means to communicate with each other,
otherwise vehicles have to design their own trajectory based on
exogenous information gathered from the environment. Lane
change maneuver design for connected automated vehicles
is discussed in the survey paper [3], together with enabling
technologies and control architectures. Trajectories of vehicles
are typically jointly optimized (cf. [4], [5]), possibly solving
a nonlinear optimal control problem, [6]. A distinguishing

All authors are with the Dipartimento di Elettronica,
Informazione e Bioingegneria, Politecnico di Milano, 20133
Milano, Italy. E-mail: alessandro.falsone@polimi.it,
beatrice.melani@mail.polimi.it,
maria.prandini@polimi.it

feature of [5] is that lane change on a three-lane one-way road
is studied, although cooperation between two vehicles only
is considered. Lane change problems with many cooperative
vehicles are indeed more complex and contributions in the
literature are limited (see [4] and the references therein).

A model predictive control framework is adopted in [7]
for the non-cooperative case, assuming the future behavior
of surroundings vehicles to be known. Scenarios where the
other vehicles behavior is considered unpredictable are also
explored, albeit not extensively, in [8]. The aforementioned
works makes use of different approaches (e.g., parametric
curves [5], [8], decoupling of the longitudinal motion from the
lateral one [7], a single-track kinematic model [6], optimiza-
tion of a simple double-integrator model [4]) to compute the
vehicle trajectory. In those works where a nonlinear kinematic
model is considered, the solution relies on the pure rolling
assumption on the tires, which holds at low speed, but it is
inadequate to represent faster maneuvers.

In [9], a multi-vehicle lane change maneuver is considered,
where a vehicle has to merge into a platoon moving on
the adjacent lane in a two-lane one-way roadway. To handle
complexity, the merging maneuver is split into two phases: i)
a coordination phase, where all vehicles in the platoon keep
traveling on their lane while cooperating to create (in minimum
time) a gap for the ego vehicle to enter safely, and ii) a merging
phase, where vehicles in the platoon travel at constant speed
along their lane while the ego vehicle performs a (optimal)
merging maneuver. The first phase is formulated as a convex
optimization problem, which has to be solved online m + 1
times if the platoon is composed of m vehicles, so as to find
the best merging position (platoon head/tail or between two
subsequent vehicles) for the ego vehicle. During this phase a
simple double-integrator model of their longitudinal dynamics
can be used. All vehicles have to reach a suitable relative
longitudinal position and reference speed at the end of the
first phase. This serves as a starting point for the second
phase, which is formulated as an optimal control problem
involving only the ego vehicle that can be solved offline based
on a nonlinear realistic model of its dynamics. Interestingly, a
subdivision of the cooperative merging maneuver into different
phases is adopted also in [4], addressing merging of multiple
vehicles from a ramp into the freeway. However, in [4] the
merging point is fixed and determined by the road configu-
ration, whereas in [9] it is optimized during the coordination
phase.

In this work, we consider the same set-up of [9] and
focus on the coordination phase. Indeed, despite this phase

makes use of a simple double-integrator model of the vehicle
dynamics, the computational burden scales with the number
of vehicles in the platoon since the optimal merging position
has to be identified. We thus propose to pre-compute offline an
explicit solution, so as to minimize the onboard computational
load. Unfortunately, multi-parametric programming cannot be
directly applied to the optimization problem in [9] since the
number of vehicles in the platoon is not known in advance. A
first contribution of this paper is thus to consider an infinitely
long platoon and devise a method to compute the optimal
coordination strategy – which is now independent of the
number of vehicles –, as an explicit function of the velocity of
the merging vehicle and of its relative position along the lane
with respect to the adjacent pair of vehicles in the platoon.
Since the optimal merging position may change depending on
the relative position and speed of the merging vehicle, a second
contribution is the introduction of a classifier to establish a-
priori the best merging position given the computed explicit
maps corresponding to different merging positions. This allows
to reduce the onboard memory footprint of the coordination
phase, as only portions of the explicit maps corresponding to
different merging positions has to be stored, and provides also
computational savings, as there is no need to compute and
compare (online) the cost functions of the different merging
positions to decide where to merge.

II. FORMULATION OF THE COORDINATION PROBLEM

We consider a platoon of m vehicles driving at some
constant speed vdes from left to right on the same lane of
a straight one-way two-lanes road. The ego vehicle travelling
along the same direction but in the adjacent lane needs to
change lane and enter the the platoon. Vehicles in the platoon
are numbered from 1 to m left to right, and the ego vehicle
is assigned number 0 (see Figure 1).

Fig. 1: Reference setting.

Vehicles in the platoon keep an inter-vehicle recommended
safety distance, which is assumed to be proportional to their
velocity vdes through a parameter tgap modeling some inter-
vention time in case of system failure.

Since during the coordination phase all vehicles, including
the merging one, keep traveling on a straight path along the
lane direction, their dynamics can be described by a linear
double-integrator model:

ẋi = vi, v̇i = ai, (1)

where xi is the center of mass position of vehicle i with respect
to a Cartesian absolute reference frame in which the x axis is

taken along the lane. The velocity vi and the acceleration ai

are both aligned with x.
The goal of the coordination phase is to establish the most

convenient merging position and the optimal trajectories of
all vehicles that allow the ego vehicle to enter safely when
performing the lane change. For the whole duration of the
coordination phase, a minimum safety distance vi tmin

gap , with
tmin
gap < tgap modeling a minimal intervention time, has

to be guaranteed between each pair of vehicles (i, i + 1)
in the platoon, while speed limits vi ∈ [vmin, vmax] and
also constraints on the acceleration ai ∈ [amin, amax] are
enforced for all vehicles including the ego one, so as to avoid
passengers to experience discomfort because of excessive
acceleration/deceleration.

Let j = 0, . . . ,m identify the merging scenario, with j set
equal to 0 if the ego vehicle enters the platoon at its tail, to m
if at its head, and j = i, i = 1, . . . ,m−1, if between vehicles
i and i + 1. The coordination phase ends when all vehicles
reach the vdes velocity and vehicle 0 satisfies the merging
conditions:
• the distance between vehicle 0 and vehicle i = j is no-

smaller than vj tmin
gap , if j > 0;

• the distance between vehicle 0 and vehicle i = j + 1 is
no-smaller than v0 tmin

gap , if j < m.
Performance is evaluated in terms of time for the coordination
phase to be completed. In the sequel, we shall refer to the
required final velocity and the merging conditions as target
conditions for brevity. Note that when the merging maneuver
by the ego vehicle is over, the recommended safety distance
in the platoon can be recovered via longitudinal control, [10].

Motivated by the adoption of a zero-order-hold converter for
the control law implementation, we introduce a discretization
with a sampling interval of dt seconds in which the decision
variables (the accelerations) are kept constant, i.e.,

ai(t) = aik, t ∈ [kdt, (k + 1)dt), k ∈ N. (2)

The sampled version of the dynamics (1) is then given by

xik+1 = xik + vikdt+
1

2
aikdt

2, vik+1 = vik + aikdt (3)

where vik = vi(kdt) and xik = xi(kdt) are the values of vi(t)
and xi(t) at time kdt, k ∈ N.

The minimum time coordination problem enforcing the
above mentioned constraints for a given merging scenario
j can thus be formulated as the following optimal control
problem over the finite horizon [0, N]:

min
a,h

N∑
k=0

[
k dt hk + εhh

2
k

]
+ εa

N−1∑
k=0

m∑
i=0

aik
2

(4)

s.t.: eq. (3), ∀i, k < N

vmin ≤ vik ≤ vmax, ∀i, ∀k
amin ≤ aik ≤ amax, ∀i, k < N

vik t
min
gap ≤ xi+1

k − xik, 0 < i < m, ∀k
vjk t

min
gap ≤ x0

k − x
j
k + hk, ∀k, if j > 0

v0
k t

min
gap ≤ x

j+1
k − x0

k + hk, ∀k, if j < m

|vik − vdes| ≤ hk, ∀i, ∀k

where a = [a0
0 · · · am0 · · · a0

N−1 · · · amN−1]> and h =
[h0 · · · hN]> are the decision vectors. Vector a is the collec-
tion of the accelerations of all vehicles, whereas vector h is the
collection of the auxiliary (non-negative) decision variables hk
introduced to measure at each time instant kdt, k = 1, . . . , N ,
the (maximum) violation of the last three constraints in (4),
which are associated to the target conditions. The smaller hk,
the closer the vehicles are to the target conditions. The term
k dt hk in the cost function of (4) increasingly penalizes hk as
time progresses, thus encouraging the attainment of the target
conditions in minimal time.

Remark 1: Note that vi0 = vdes and xi+1
0 − xi0 = vdestgap,

i = 1, . . . ,m, are the initial velocity and relative position of
the vehicles in the platoon, so that – for each given platoon
length m – the optimization problem (4) is parametric in the
initial velocity v0

0 and position x0
0 of vehicle 0 only.

The optimal solution (a?
j ,h

?
j) of (4) clearly depends on

j. Vehicle 0 should then solve the quadratic program (4)
for all values j = 0, . . . ,m so as to find the best merging
point j?. Note that trajectories corresponding to a?

j? can then
be computed via (3) and tracked by a mid-level controller
onboard of the automated vehicles, so as to cope with possible
uncertainty affecting their dynamics and initial conditions.

When m is large, the exploration of all values for j =
0, . . . ,m can hamper the online implementation of the coor-
dination phase also because the complexity of (4) scales with
m too. In [9], this issue is pointed out and distributed schemes
(e.g., [11], [12]) for the iterative solution of (4) are suggested,
which, however, may require excessive time to converge. We
next propose an alternative solution, which allows to move
the computation effort offline by pre-computing the optimal
merging point j? and acceleration profiles a?

j? as a function
of the initial velocity and relative position of vehicle 0 with
respect to the platoon.

III. EXPLICIT COORDINATION STRATEGY

In this section, we propose an approach to find an explicit
solution for the coordination phase that is independent of the
actual platoon length m and parametric in the initial velocity
and position of the merging vehicle (cf. Remark 1), so that it
can be easily stored on-board for direct online application. To
determine such a solution, we shall consider an infinite platoon
of vehicles and identify the position of the ego vehicle along
the x axis in term of its relative position with respect to the
two vehicles in the platoon that are closer to it along the x
lane direction. The resulting solution will be valid also in the
finite-platoon case, since it meets the target merging conditions
and satisfies all safety and actuation constraints. This comes
at the expense of performance degradation that is expected to
be limited and confined to initial positions of the ego vehicle
that are close to either the head or the tail of the actual (finite)
platoon.

As for the offline computation of the proposed solution,
the quadratic optimization problem (4) should be in principle
solved with an infinite number m of vehicles, which is not
feasible in practice. The idea is then to identify the smallest
(even, for convenience) number m◦ of vehicles such that the

optimal acceleration of the first and last vehicles of the platoon
is identically zero, for all initial positions x of the merging
vehicle between vehicles m◦

2 and m◦

2 + 1 and for all its initial
velocities. This indeed entails that the first and last vehicles of
the platoon are not affected by the maneuver and neither will
be further vehicles added to the tail and/or head. Note that for
such a finite value m◦ to exist, the minimum safety distance
must be strictly smaller than the recommended safety since
otherwise a sort of domino effect will occur, getting every
vehicle involved in the maneuver.

To identify m◦, one needs to explore increasing (even)
values of m. More precisely, for each tentative value m, the
multi-parametric programming problem (4) has to be solved to
derive the optimal cost and acceleration profiles as an explicit
function of the parameters:
• initial position along the x axis of the ego vehicle ranging

between the position of vehicles m
2 and m

2 +1, expressed
in terms of the relative position δx0:

δx0
0 = x0

0 −
x

m
2

0 + x
m
2 +1

0

2
∈
[
−vdestgap

2
,
vdestgap

2

]
,

• initial velocity v0
0 of the ego vehicle ranging within some

interval [v0
min, v

0
max] ⊆ [vmin, vmax],

for j = m
2 + p, where p denotes the merging point relative

to the pair of vehicles m
2 and m

2 + 1 and takes values in
{0,±1,±2, ...,±m

2 }. In particular, for each value of p, a
piecewise affine map on the initial parameter set

Θ =

[
−vdestgap

2
,
vdestgap

2

]
× [v0

min, v
0
max]

that provides the optimal acceleration profiles for all vehicles
along the time horizon [0, N] is obtained.

The maps constructed for different values of p must be
combined taking the minimum of the associated costs in order
to build the optimal coordinated maneuver map Am : Θ →
R(m+1)N and check if the resulting accelerations of the first
and last vehicles of the platoon are identically zero. In practice,
one can avoid to build the whole Am and just refer to a
fine grid of points within the parameter set Θ, given that the
costs are piecewise quadratic continuous as a function of the
parameters, [13]. When m◦ is identified, then, A◦ = Am◦

can be efficiently built by gridding Θ and labeling each grid
point with the corresponding optimal value of p. The so-
obtained labeled data can be used to train a multiclass Support
Vector Machine (SVM) classifier, [14], and determine suitable
separators for partitioning Θ. Each element of the partition is
then provided by the map associated with the corresponding
optimal merging point.

Consider now a platoon of length m with the ego vehicle
not necessarily positioned in the middle. We next explain how
to retrieve the accelerations of the ego and platoon vehicles
from the map A◦ computed based on the reference platoon
of length m◦ with the ego vehicle initialized between the pair
(m◦

2 , m
◦

2 + 1) of platoon vehicles.
Define ı̄ ∈ Z such that

x1
0 + (̄ı− 1)tgapvdes ≤ x0

0 < x1
0 + ı̄ tgapvdes,

which, when 1 ≤ ı̄ ≤ m − 1, means that the ego vehicle is
initialized between the pair of vehicles (̄ı, ı̄+1), corresponding
to pair (m◦

2 , m
◦

2 + 1) in the reference platoon. Then, vehicle
i, i = 1, . . . ,m, in the actual platoon has a corresponding
vehicle h = i − (̄ı − m◦

2) in the reference platoon if 1 ≤
i− (̄ı− m◦

2) ≤ m◦.
Let [ā0

0 · · · ām
◦

0 · · · ā0
N−1 · · · ām

◦

N−1]> = A◦(δx0
0, v

0
0), with

δx0
0 = x1

0 + 2ı̄−1
2 tgapvdes, be the optimal acceleration of all

vehicles in the reference platoon. Then, for k = 0, . . . , N −1,
the acceleration profiles of vehicles i = 1, 2, . . . ,m in the
actual platoon will be given by

aik =

{
ā
i−ı̄+ m◦

2

k , if 1 ≤ i− ı̄+ m◦

2 ≤ m
◦

0, otherwise,
(5)

while that of the ego vehicle will be a0
k = ā0

k.
In the next section, we compare the proposed explicit

coordination strategy with the online optimization approach
in [9] on a numerical example.

IV. COMPARATIVE PERFORMANCE ANALYSIS

We consider the case when vehicles in the platoon are
traveling at vdes = 70 km/h1, and the speed limits are vmin =
0 km/h and vmax = 90 km/h. We set the safety parameters
as tgap = 1.5 s and tmin

gap = 1 s. An absolute reference
frame centered on the initial position x1

0 of the tail vehicle is
considered when formulating problem (4). Positive values of
x are in the direction of motion. Initial positions and velocities
of the platoon vehicles are set in the absolute reference frame
as xi0 = (i − 1)tgap vdes and vi0 = vdes, respectively, for
all i = 1, . . . ,m. The sampling time is dt = 1 s and the
control horizon is T = 10 s, thus obtaining a finite horizon
of N = 10 time slots. The weights in the cost function in (4)
are set as εa = 0.1 and εh = 0.001. Comfort constraints are
amin = −3 m/s2 and amax = 2 m/s2. The parameters δx0

0 and
v0

0 identifying the initial conditions of vehicle 0 are ranging
in Θ with v0

min = 30 km/h (a reasonable value of speed
for a vehicle in an on-ramp) and v0

max = vmax = 90 km/h.
Strategies are implemented in MATLAB R2019b on a laptop
with an Intel Core i5-6267U CPU and 4 GB of RAM.

Computation of the explicit coordination strategy
The MPT3 toolbox [15] is used for solving the multi-

parametric optimization problem (4) incrementally in m ac-
cording to the procedure described in Section II to finally
obtain the value m◦ = 14 for the number of vehicles ap-
proximating an infinite platoon. Figure 2 reports the maps that
have to be combined for determining the optimal coordinated
maneuver map A◦ = Am◦ . They correspond to p = −1, 0, 1,
meaning that the ego vehicle should enter either between the
pair m◦

2 and m◦

2 + 1 of platoon vehicles (p = 0) or between
the preceding (p = −1) and consequent (p = 1) pairs, the best
merging point depending on its initial conditions.

To obtain A◦, the three maps are sampled with a uniform
grid (0.5 m along the horizontal axis and 1.8 km/h along

1All velocity values are reported in km/h for readability, but we used m/s
for the implementation.

the vertical axis). A label is associated with every point of
the grid indicating the value of the merging point p with the
lowest cost. This results in the grid in Figure 3 in which three
different regions associated to the three different labels are
easily distinguishable.

The interpretation of the combined map on the infinite
platoon is intuitive. Let (̄ı, ı̄+1) be the pair of platoon vehicles
closer to the ego vehicle at the beginning of the maneuver.
When v0

0 is lower than vdes = 70 km/h and x0
0 is close enough

to xı̄0, it is convenient to merge the platoon behind vehicle ı̄
(green zone, corresponding to p = −1). Similarly, when v0

0 is
higher than vdes = 70 km/h and x0

0 is close enough to xı̄+1
0 it

is better for the ego vehicle to merge the platoon in front of
vehicle ı̄+1 (red region, corresponding to p = 1). In all the in-
between cases, it is convenient for the merging vehicle to enter
the platoon between ı̄ and ı̄ + 1 (yellow zone, corresponding
to p = 0). Moreover, the regions are not symmetric because
the range of velocities is itself not symmetric with respect to
the value of vdes and the constraints on the acceleration are
also not symmetric. Note that in the extreme case in which the
ego vehicle is initialized beside one vehicle in the platoon, the
choice of the closest pair of platooning vehicles is not unique
and, as such, the optimal coordinating strategy corresponding
to the extreme positions in the combined map is identical.

The points of the map in Figure 3 are used to train two
binary SVM classifier, in order to find the separators between
classes p = −1 and p = 0 and classes p = 0 and p = 1. The
Classification Learner app for Matlab is used to this purpose,
using all the observations with labels 0 and −1 as entries for
the training of the first classifier and all the ones with labels 0
and 1 for the second one. In both cases, among the tested
linear, quadratic, cubic, and Gaussian SVN classifiers, the
cubic one provides the best accuracy on the training data. The
obtained cubic SVN classifiers (black lines in Figure 3) are
then tested on a grid of points with the same structure as the
previous one, but a bit shifted to have different data. The first
classifier wrongly labels 3 points over 1863, while the second
one 2 over 1584, which are both reasonably low percentages
(0.16% and 0.126%, respectively), also taking into account
the limited impact of a wrong labeling on the frontier, since
the frontier is defined taking the minimum of two (piecewise
quadratic) continuous cost functions, [13].

Explicit solution versus the online optimal one

As anticipated in Section III, the solution found using the
parametric approach is independent of the number of vehicles
in the platoon, but when applied to the finite platoon a
degradation of performance may occur.

We assess the degradation amount by considering platoons
of m ∈ {6, 8, 10, 12, 14, 16} vehicles with the initial velocity
and position of the ego vehicle set to v0

0 = 40 km/h and
x0

0(s) = x1
0 + s

4 tgapvdes, s ∈ Sm = −8,−7, . . . , 4(m + 1),
i.e., with x0

0 every quarter of tgapvdes between x1
0− 2tgapvdes

(far before the platoon tail) and xm0 + 2tgapvdes (far after the
platoon head).

In the online case, the cost is computed solving the op-
timization problem (4) for the given m and initial state

-15 -10 -5 0 5 10 15
Position [m]

30

40

50

60

70

80

90
Ve

lo
ci

ty
 [k

m
/h

]
p = -1

-15 -10 -5 0 5 10 15
Position [m]

30

40

50

60

70

80

90

Ve
lo

ci
ty

 [k
m

/h
]

p = 0

-15 -10 -5 0 5 10 15
Position [m]

30

40

50

60

70

80

90

Ve
lo

ci
ty

 [k
m

/h
]

p = 1

Fig. 2: Polyhedral partitions associated to the optimal coordinated maneuver maps for the merging scenarios with p = −1,
p = 0, p = 1, from left to right, obtained via the MPT3 toolbox. Colors are used to distinguish different polyhedra.

-15 -10 -5 0 5 10 15
Position [m]

30

40

50

60

70

80

90

Ve
lo

ci
ty

 [k
m

/h
]

Fig. 3: Grid map with labels p = −1 (green), p = 0 (yellow),
and p = 1 (red) and SVM separators (black lines)

.

(x0
0(s), v0

0) of the ego vehicle, for each s ∈ Sm, using
YALMIP ([16]) with CPLEX 12.10 as solver, as in [9].
Instead, in the explicit solution case, we first evaluate A◦
as discussed in Section III, for all s ∈ Sm, which returns
the corresponding acceleration profile aik(s), i = 0, 1, . . . ,m,
from (5). Then, for all m and s ∈ Sm, we compute the cost
as the minimum of (4), optimizing over h only, while setting
the accelerations equal to aik(s).

By comparing the obtained cost with that of the online
optimization case, it emerges that the number of cars in the
platoon does not affect the results. In fact, in all instances
where the merging vehicles is initialized within the limits of
the platoon (x1

0 ≤ x0
0 ≤ xm0), the cost is almost the same, with

a maximum increment of 0.315%. What affects the most the
degradation of the cost figure is the initialization point: when
the merging vehicle is initialized either at the tail or the head
of the platoon, the cost figure obtained using the pre-computed
acceleration profiles from the maps in Figure 2 is larger than
the one computed online. Nevertheless, the degradation is at
most 4.52% for all instances in which at least one vehicle
of the platoon is involved in the maneuver. The increment
can go up to 54.31% in those cases in which the vehicles
in the platoon are not affected by the merging of vehicle

0. However, those are the instances in which applying the
acceleration profiles from the maps is no longer meaningful,
because platooning vehicles are not affected by the ego vehicle
lane change maneuver and the optimization problem in (4) no
longer reflects the actual scenario at hand.

Figure 4 shows the trajectories and velocity profiles of a
platoon with m = 10 cars, when vehicle 0 is initialized in
x0

0 = x7
0 +0.5tgapvdes, the middle point between the positions

of vehicle i = 7 and i = 8, with merging position p = 0,
meaning that vehicle 0 joins the platoon between vehicles
i = 7 and i = 8. The reported plots for the offline solution are
identical to those of the solution computed online and, hence,
the cost is the same. As for the computing times, retrieving
the optimal acceleration profiles from the pre-computed map,
including the time to apply the binary SVN classifier twice,
requires about 0.25 seconds, while computing them online
requires about 1.98 seconds, which is comparable to the time
needed to complete the coordination maneuver (7 seconds).

Figure 5 refers to the case of a platoon of m = 8 cars
with vehicle 0 initialized in x0

0 = xm0 + 1.25tgapvdes. Given
the fact that the initialization is far after the platoon head,
the merging occurs ahead of vehicle i = 8. The time to
determine the optimal acceleration profiles is 0.14 seconds

40

50

60

70

80

Ve
lo

ci
ty

 [k
m

/h
]

Velocity for m=10 cars

0 1 2 3 4 5 6 7 8 9 10
Time [s]

-200

-100

0

100

200

300

D
is

pl
ac

em
en

t [
m

]

Position for m=10 cars

i=0
i=1
i=2
i=3

i=4
i=5
i=6
i=7

i=8
i=9
i=10

Fig. 4: Explicit solution computed offline based on an infinite
platoon (m = 10, x0

0 = x7
0 + 0.5tgapvdes).

40

50

60

70

80
Ve

lo
ci

ty
 [k

m
/h

]
Velocity for m=8 cars

0 1 2 3 4 5 6 7 8 9 10
Time [s]

-300

-200

-100

0

100

200

D
is

pl
ac

em
en

t [
m

]

Position for m=8 cars

i=0
i=1
i=2

i=3
i=4
i=5

i=6
i=7
i=8

(a) Optimal solution computed online.

40

50

60

70

80

Ve
lo

ci
ty

 [k
m

/h
]

Velocity for m=8 cars

0 1 2 3 4 5 6 7 8 9 10
Time [s]

-200

-100

0

100

200

D
is

pl
ac

em
en

t [
m

]

Position for m=8 cars

i=0
i=3
i=4

i=5
i=6
i=7

i=8

(b) Explicit solution computed offline based on an infinite platoon.

Fig. 5: Comparison of position and velocity profiles (m = 8
and x0

0 = xm+1
0 + 0.25tgapvdes). Vehicles 1 and 2 do not

appear in plot (b) since they do not take part to the maneuver
(their acceleration is set to zero according to (5)).

(explicit solution) versus 1.6 seconds (online optimization)
with a time to complete the coordination maneuver of about
5 seconds in both cases. By looking at the velocity profile of
vehicle i = 8 in the online and offline solutions in Figure 5,
we can notice that they are not the same: in fact, vehicle
i = 8 in the offline case decelerates more with respect to
the same vehicle in the online solution. At the same time,
the velocity profile of vehicle 0 is steeper in the online case.
Therefore the solutions, despite being similar, are not identical,
consistently with the fact that the cost of the offline case is
4.5% higher than the online one. This is due to the fact that,
while for the online optimization case it is possible to calculate
the solution removing the constraint prescribing a minimum
distance between the merging vehicle and vehicle j + 1 in
(4), in the offline case the same cannot be done because the
solution refers to an infinite platoon. For this reason, in the
offline case, vehicle 0 accelerates less to maintain a minimum
distance from a non-existing vehicle ahead of vehicle 8, and,
consequently, vehicle 8 needs to decelerate more to keep the
minimum distance from vehicle 0 itself.

V. CONCLUSION

We propose an explicit solution to the coordination phase of
a lane change maneuver where a vehicle has to enter a platoon
of vehicles traveling in the adjacent lane at a constant speed.
This solution can be integrated in the two-phase merging
scheme in [9] to provide an offline solution to the overall
automated lane change problem, which is valid irrespective of
the number of vehicles in the platoon.

Technological aspects related to sensors and communication
systems need to be addressed before the actual implementation
of the proposed solution on real vehicles, [3]. Also, a closed
loop explicit model predictive control solution could be de-
vised if more parameters were added, namely the position and
velocity of all the platoon vehicles, or, at least position and
velocity of those involved in the maneuver. This, however,
requires further investigation.

REFERENCES

[1] C.-Y. Chan, “Advancements, prospects, and impacts of automated driv-
ing systems,” Int. Journal of Transportation Science and Technology,
vol. 6, no. 3, pp. 208–216, 2017.

[2] G. Fitch, S. Lee, S. Klauer, J. Hankey, J. Sudweeks, and T. Dingus,
“Analysis of lane-change crashes and near-crashes,” US Department of
Transportation, National Highway Traffic Safety Administration, 2009.

[3] D. Bevly, X. Cao, M. Gordon, G. Ozbilgin, D. Kari, B. Nelson,
J. Woodruff, M. Barth, C. Murray, A. Kurt et al., “Lane change and
merge maneuvers for connected and automated vehicles: A survey,”
IEEE Trans. on Intelligent Vehicles, vol. 1, no. 1, pp. 105–120, 2016.

[4] Y. Xie, H. Zhang, N. H. Gartner, and T. Arsava, “Collaborative merging
strategy for freeway ramp operations in a connected and autonomous
vehicles environment,” Journal of Intelligent Transportation Systems,
vol. 21, no. 2, pp. 136–147, 2017.

[5] Y. Luo, G. Yang, M. Xu, Z. Qin, and K. Li, “Cooperative lane-change
maneuver for multiple automated vehicles on a highway,” Automotive
Innovation, vol. 2, no. 3, pp. 157–168, 2019.

[6] B. Li, Y. Zhang, Y. Ge, Z. Shao, and P. Li, “Optimal control-based
online motion planning for cooperative lane changes of connected and
automated vehicles,” in IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems, 2017, pp. 3689–3694.

[7] J. Nilsson, M. Brännström, E. Coelingh, and J. Fredriksson, “Longitu-
dinal and lateral control for automated lane change maneuvers,” in 2015
American Control Conference, 2015, pp. 1399–1404.

[8] D. Yang, S. Zheng, C. Wen, P. J. Jin, and B. Ran, “A dynamic lane-
changing trajectory planning model for automated vehicles,” Transp.
Research Part C: Emerging Technologies, vol. 95, pp. 228–247, 2018.

[9] A. Falsone, B. Sakcak, and M. Prandini, “Coordinated lane change
in autonomous driving: a computationally aware solution,” IFAC-
PapersOnLine, vol. 53, no. 2, pp. 15 211–15 216, 2020.

[10] V. Lesch, M. Breitbach, M. Segata, C. Becker, S. Kounev, and
C. Krupitzer, “An overview on approaches for coordination of platoons,”
IEEE Trans. on Intelligent Transp. Systems, pp. 1–17, 2021.

[11] A. Falsone, K. Margellos, S. Garatti, and M. Prandini, “Dual decomposi-
tion for multi-agent distributed optimization with coupling constraints,”
Automatica, vol. 84, pp. 149–158, 2017.

[12] A. Falsone, I. Notarnicola, G. Notarstefano, and M. Prandini, “Tracking-
ADMM for distributed constraint-coupled optimization,” Automatica,
vol. 117, 2020.

[13] V. Dua, N. A. Bozinis, and E. N. Pistikopoulos, “A multiparametric pro-
gramming approach for mixed-integer quadratic engineering problems,”
Computers & Chemical Engineering, vol. 26, pp. 715–733, 2002.

[14] C.-W. Hsu and C.-J. Lin, “A comparison of methods for multiclass
support vector machines,” IEEE Trans. on Neural Networks, vol. 13,
no. 2, pp. 415–425, 2002.

[15] M. Herceg, M. Kvasnica, C. Jones, and M. Morari, “Multi-Parametric
Toolbox 3.0,” in European Control Conf., 2013, pp. 502–510.

[16] J. Lofberg, “YALMIP: a toolbox for modeling and optimization in
MATLAB,” in IEEE Int. Conf. on Robotics and Automation, 2004, pp.
284–289.

