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Abstract: Semi-active suspensions are seen as a promising technology to improve ride 

quality in high-speed railway vehicles as they provide substantial benefits not achievable 

through an optimisation of the passive suspension while avoiding some drawbacks of full-

active control. Previous works showed that semi-active primary suspensions (SAPS) offer 

significant improvement of ride quality. However, published implementations of this 

concept did not consider the coupling effects between car-body and bogie vibrations, which 

play a decisive role in the success of control strategies for SAPS. This paper provides a 

comprehensive analysis of SAPS to improve vehicle ride comfort, with special attention to 

the mitigation of car-body bending vibration. A vehicle model considering the coupling of 

car-body bending and bogie pitch is proposed and used for the synthesis of an LQG 

controller. The performance of the semi-active suspension and controller is assessed using 

a detailed flexible multibody system of a high-speed vehicle. The proposed control scheme 

is shown to be highly effective in reducing car-body vibration in the entire frequency range 

of interest from 1Hz to20Hz. A remarkable ride comfort improvement is found in the entire 

speed range from 150 km/h to 350 km/h. 

Keywords: Semi-active primary suspension, car-body bending, LQG control, vertical ride 

comfort  

 

1 Introduction 

Among different transportation systems, railways are widely recognised as particularly 

suited to address present environmental challenges in terms of energy savings and reduction 

of the carbon footprint. One present trend of research, aimed to further increase the 

environmental friendliness of railways, is to reduce the weight of vehicles through the 

adoption of new lightweight materials and the structural optimisation of subsystems such 

as bogies and car-bodies. One undesired effect of having leaner and lighter bodies in 

railways is that higher levels of structural vibration can be expected, which may affect ride 

quality and the durability of components. This issue is particularly serious in regard to the 
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design of car-bodies for high-speed (HS) vehicles. With the decrease of their mass, car-

bodies become more flexible and their lowest natural frequencies fall in a frequency range 

below 20 Hz, in which the human body is highly sensitive to structural vibration [1]. 

Resonant effects caused by special wavelengths in track irregularities and by the spacing 

of the axles in the vehicle may take place at relatively high running speeds and are known 

to affect seriously ride quality [2,3]. These effects can be hardly mitigated through a proper 

design of passive secondary suspensions, because these are mostly intended to isolate the 

rigid motion of the car-body from the bogies, and thus secondary suspensions, especially 

when consisting of air springs, cannot provide the pass-band required to affect the structural 

resonances of the car-body. Therefore, an interesting alternative is represented by the use 

of semi-active suspensions which can be highly effective and, at the same time, are 

significantly less complex and less expensive compared to full-active suspensions.  

Past research addressing the mitigation of car-body structural vibration by means of passive 

solution or mechatronic suspensions is summarized below. Dumitriu proposed to use 

passive anti-bending bars rigidly fixed onto the car-body frame to increase the car-body 

bending frequency out of the most interested frequency range, and her numerical analysis 

showed improved vertical ride indexes [4]. You et al. proposed the use of multiple passive 

dynamic vibration absorbers (DVA) to reduce the level of vibration of car-body floor in 

HS vehicles [5]. Goodall investigated full-active and semi-active secondary vertical 

suspensions to mitigate car-body rigid vibration, showing reduced root mean square of car-

body acceleration in numerical simulation [6]. The KTH railway group together with 

Bombardier performed online tests for full-active secondary suspension on Regina 250, and 

succeeded in suppressing both rigid and flexible vibration of the car-body using a simple 

Skyhook control strategy [7]. Foo introduced an actively-controlled mass-spring-damper 

structure attached to the car-body which proves effective to suppress the bending vibration 

[8]. Similarly, Huang proposed to improve car-body bending vibration by optimizing the 

passive suspension for the electric converter suspended under the car-body [9], and then 

Wang used semi-active suspension to replace the passive components for the suspended 

system[10]. In the two latter studies, the car-body diamond mode was found to resonate at 

a frequency close to that of bogie hunting motion, leading to degraded ride comfort [11,12]. 

The DVA attached to the bogie is designed to move the frequency of hunting motion away 

from the frequency of car-body diamond mode, and thus to improve the ride comfort [11]. 

Another attempt by Gong focuses on the optimization of design parameters associated with 

the vehicle’s hunting motion including wheel rail contact geometry, yaw dampers and 

primary suspension in lateral and longitudinal directions, showing that these measures also 



provide mitigation of car-body flexible vibration [12].  

This paper focusses on an alternative approach, named semi-active primary suspension 

(SAPS), with the passive primary vertical dampers being replaced by semi-active dampers. 

This solution was firstly investigated by Sugahara [13–15] and then by the authors of this 

paper [16,17], showing significant benefits on ride quality, despite one would expect semi-

active secondary suspensions to be better suited to address ride comfort issues. The control 

strategies proposed for SAPS range from Skyhook [13,17] to model-based techniques, 

particularly LQG and H∞ [14,16]. Model-based control strategies proposed so far are all 

defined considering a simple model of the vehicle having 7 degrees of freedom (DOF) [13, 

16] which is not considering the coupling of bogie pitch to car-body bending. This model 

can be considered sufficiently realistic for railway vehicles designed for conventional 

service but can be highly inadequate to represent HS vehicles equipped with stiff yaw 

dampers and traction links, as these components provide a strong coupling of car-body 

bending to bogie pitch. It can be concluded that a comprehensive understanding of control 

strategies for SAPS is still lacking, especially for HS vehicles, and it is the aim of this paper 

to provide a contribution in this direction, showing that satisfactory performance of LQG 

control for SAPS can be achieved using a better suited model of the vehicle in the design 

of the controller and for state observation. 

To this aim, the following new contributions are provided: (i) A comprehensive description 

of the working mechanism of SAPS is provided, considering the coupling between car-

body bending and different components of bogie motion. (ii) A new simplified vehicle 

model is built which can better represent the vibrational behaviour of the vehicle compared 

to the one found in the literature while being sufficiently simple to allow the development 

of model-based controllers in a real application. (iii) The LQG controller synthesised using 

the new vehicle model scheme is capable of mitigating vehicle vibration not only in relation 

to the first car-body bending mode (like in [14,16]), but also in relation to the rigid modes 

of the car-body, showing an excellent capability to improve ride quality in the entire 

frequency range of interest. (iv) The design of the improved controller is validated using a 

flexible multibody system (FMBS) of the vehicle, considering in detail car-body flexibility 

effects.  

This paper considers a trailer car in a high-speed trainset, with maximum service speed 

350km/h, running on a high-speed line with slab track. From simulations performed using 

the FMBS model, significant car-body vibration is found especially when the vehicle runs 

at 230km/h which corresponds to a bending resonance of the car-body at 11.8 Hz. Therefore, 



the controller is designed initially to improve the ride quality at 230 km/h, and then the 

analysis is extended to consider the effect of vehicle speed in the whole speed range 150-

350 km/h. 

The paper is organised as follows: Section 2 explains the mechanism of the structural 

coupling between car-body bending and bogie vibrations. Section 3 presents two 

mathematical models of the railway vehicle considering the above mentioned coupling 

effect: a simplified 7-DOF model and a detailed FMBS model defined in SIMPACK. 

Section 4 presents the model-based LQG controller synthesised based on the 7-DOF 

Coupling model. The effect of SAPS on mitigating car body is analysed in Section 5 by 

means of simulations performed using the FMBS model.  

2 Structural coupling of car-body bending and bogie vibrations  

This section provides an overview of the coupling effects between car-body bending modes 

and bogie vibration, as these effects play a fundamental role in the vibrational behaviour of 

the vehicle and shall be carefully considered in the design of the controller for the semi-

active primary suspension. 

The classic 7-DOF vehicle vertical model used in previous studies e.g. [3,14,16] is shown 

in Fig. 1. The model considers car-body bounce (𝑍𝑐) , pitch (𝜃𝑐) and first bending mode 

(𝑞), together with bounce (𝑍𝑡1, 𝑍𝑡2) and pitch (𝜃𝑡1, 𝜃𝑡2) for the two bogies.  

 
Fig. 1 Classic 7-DOF vehicle vertical model  

The model considers the coupling between the first bending mode of the car-body and bogie 

bounce motion. However, the pitch motion of the bogies has no effect on the deformation 

of the secondary suspension and hence this model misses all effects related to the coupling 

of bogie pitch to car-body vibration, whilst these effects can be important especially for HS 

vehicles [17,18].  

As shown in Fig. 2, car-body bending causes a longitudinal displacement 𝛿𝑥 at the positions 



where traction links and yaw dampers are connected to the car-body. As a result, the 

longitudinal forces generated in the traction links and yaw dampers by bogie pitch and 

longitudinal motion affect the bending vibration of the car-body.  

Assuming small bending displacements of the car-body and according to Euler-Bernoulli 

beam theory, the expression of 𝛿𝑥 is:  

𝛿𝑥 = 𝑑𝑠
𝜕𝑤(𝑥,𝑡)

𝜕𝑥 
                                                            (1) 

with 𝑤(𝑥, 𝑡)  the bending displacement of the car-body and 𝑑𝑠  the distance from the 

bending neutral layer to the mount point of the yaw dampers or tractions links. The equation 

governing the bending displacement 𝑤(𝑥, 𝑡) is introduced in Section 3.2.2. 

 

Fig. 2 Coupling effect between car-body bending and bogie pitch, longitudinal motions 

It should be noted that the secondary pneumatic suspension, which is the other component 

connecting the car-body to the bogies has negligible effect on the coupling between car-

body bending and bogie pitch and longitudinal motion, because the horizontal stiffness of 

the air springs is approximately two orders of magnitude lower than the stiffness of the 

traction links and of the yaw dampers. The coupling between car-body bending and 

different components of bogie motion is further illustrated using results from the FMBS 

vehicle model, see Section 3.1.1. These coupling effects need to be properly taken into 

account in the design of the controller, hence an enhanced 7-DOF model is introduced in 

Section 3.2.1 and is then used in the synthesis of the controller and for state estimation to 

implement LQG control. 

 

3 Mathematical models of the railway vehicle 

Two mathematical models of the railway vehicle under study are developed:  

i.) a flexible multi-body systems (FMBS) model representing in detail the dynamic 

behaviour of the vehicle in a frequency range up to 30 Hz, including effects of car-



body flexibility, based on a modal synthesis of a 3D finite element model of the 

car-body. This model is used to assess car-body vibration and ride quality indexes 

for the passive vehicle and the vehicle equipped with SAPS. The FMBS model is 

developed in SIMPACK and described in detail in Section 3.1; 

ii.) a simplified 7-DOF model which is used in the synthesis of the LQR regulator and 

also for state estimation using a Kalman filter in the implementation of LQG control. 

Two different versions of the simplified 7-DOF model are considered: one 

corresponding to the classic 7-DOF model (see Fig. 1) as a reference, and the newly 

developed one called 7-DOF-Coupling model (see Fig. 5) which considers the 

additional coupling effects between the car-body and bogie vibration described in 

Section 2. The simplified model is developed in MATLAB and described in detail 

in Section 3.2. 

3.1 FMBS vehicle model 

The FMBS vehicle model, defined in software SIMPACK, considers one trailed vehicle 

with one car-body, two bogie frames, four wheelsets, a converter box elastically suspended 

under the car-body and other smaller bodies being part of the suspensions such as axle-

boxes, traction arms (connecting the bogies to the axle-boxes) and traction links 

(connecting the bogies to the car-body). All bodies are modelled as rigid with 90 DOFs, 

except the car-body for which flexibility effects are considered through a modal synthesis 

of a finite element model of the car-body. The cut-off frequency of the finite element model 

is set to 30 Hz approximately, so that the dynamics of the system can be considered in the 

whole frequency range relevant to the evaluation of ride quality. Elastic and dissipative 

effects in suspension components are modelled using non-linear stiffness and damping 

elements defined based on piecewise linear force vs. deformation or force vs. velocity 

curves.  

A non-linear description of wheel/rail contact is included in the model, considering S1002 

wheel profiles and UIC60 rail profiles. Dynamic excitation caused by track irregularities is 

considered using measured spatial profiles of irregularity from a line equipped with a slab 

track. These profiles show a distinctive wavelength of longitudinal level irregularity at 

5.45 m, corresponding to the spacing of the slabs. 

3.1.1 Coupling of car-body bending and bogie vibration in the FMBS model 

A modal analysis of the FMBS model was performed in SIMPACK, to determine the 

natural frequencies and related mode shapes mostly affected by car-body bending and their 

coupling with the motion of the bogies, as this coupling plays a fundamental role in 



determining passengers’ comfort. The results are shown in Fig. 3: four modes associated 

with car-body bending are found with natural frequencies 8.0Hz, 8.8Hz, 10.9Hz and 

11.8Hz. The first one show mainly a coupling to bogie bounce motion and the other three 

modes show a coupling between car-body bending and bogie pitch motion, with phase 

difference between these two motion components and the converter vibration. 

Considering the dominant wavelength in longitudinal level irregularity at 5.45m due to the 

slab track, four resonance speeds are obtained at 157 km/h, 173 km/h, 212 km/h and 230 

km/h. Fig. 4 shows the power spectral density (PSD) of car-body acceleration over the front 

bogie and at body centre obtained processing the results of simulations performed at these 

speeds. In each PSD curve, a marked peak confirms the expected resonance condition. The 

magnitude of the PSD in resonance, at most speeds, is larger at car-body centre, due to the 

shape of the first car-body bending mode. This analysis shows that the vehicle is 

particularly sensitive to longitudinal level irregularities when travelling at speeds close to 

230km/h. For this reason, the design of the LQG controller is initially focussed on this 

speed, while the effect of vehicle speed in the range 150-350 km/h is analysed later.  

The analysis also shows that bogie bounce is not the only component of bogie motion 

having an impact on car-body bending vibration and instead the effect of bogie pitch on 

car-body bending is at least equally important and shall be considered in the design of the 

control strategy. As mentioned above, this is due to the strong coupling effect caused by 

the traction links and yaw dampers.  

 
(a) Car-body bending coupled with bogie bounce at 8.0 Hz 

 
(b) Car-body bending coupled with bogie pitch and longitudinal motions at 8.8 Hz 

 
(c) Car-body bending coupled with bogie pitch motion at 10.9 Hz 



 
(d)Car-body bending coupled with bogie pitch motion (opposite direction) at 11.8 Hz   

Fig. 3 Coupled mode shape between car-body bending and bogie vibrations 

     

  

Fig. 4 PSDs of car-body vertical acceleration for the passive vehicle from the FMBS model, Left: 

car-body front, Right: car-body centre 

 

3.1.2 Model of the semi-active dampers  

To consider the case of a vehicle equipped with SAPS, semi-active dampers are considered 

in the FMBS model through co-simulation between SIMPACK and Simulink. The semi-

active dampers are modelled as linear viscous dampers having a viscous damping 

coefficient that can be adjusted in a range from a minimum value 𝑑𝑚𝑖𝑛 to a maximum value 

𝑑𝑚𝑎𝑥. Additionally, the dynamics of the dampers is considered in the form of a 1-st order 

system causing a delay between the reference command and the force in the damper. 

Given a reference control force 𝑢𝑟𝑒𝑓,𝑗 defined by the LQG controller (see Section 4) for the 

𝑗th semi-active damper, the ideal (i.e. with no delay) damping force 𝑢𝑑,𝑗 in the same damper 

is defined based on the elongation speed of the damper 𝑣𝑃,𝑗 as: 

𝑢𝑑,𝑗 = {
𝑑𝑚𝑖𝑛𝑣𝑃,𝑗                                                                                              (𝑢𝑟𝑒𝑓,𝑗 ∙ 𝑣𝑃,𝑗 < 0)

𝑠𝑖𝑔𝑛(𝑣𝑃,𝑗) ∙ 𝑚𝑎𝑥 [𝑚𝑖𝑛(|𝑑𝑚𝑎𝑥𝑣𝑃,𝑗|, |𝑢𝑟𝑒𝑓,𝑗|), |𝑑𝑚𝑖𝑛𝑣𝑃,𝑗|]      (𝑢𝑟𝑒𝑓,𝑗 ∙ 𝑣𝑃,𝑗 ≥ 0)
     (2) 

In this work the minimum and maximum damping values are assumed to be 5kNs/m and 

100kNs/m respectively, based on some laboratory tests performed at Politecnico di Milano 

on a prototype damper and also on the values reported in [19].  

The actual force 𝑢𝑎,𝑗 produced by the semi-active damper is then defined considering the 



response time of the damper through a first-order low-pass filter: 

�̇�𝑎,𝑗 = −
𝑢𝑎,𝑗

𝑇𝑟
+
𝑢𝑑,𝑗

𝑇𝑟
                                                            (3) 

MR Dampers are among the best suited damper technologies for SAPS, thanks to their 

short response time which makes them capable of satisfactory vibration control at 

frequencies above 10Hz [20,21]. 

The Magnetorheological fluid can react to the change of magnetic field in only a few 

milliseconds, so the response time of MR dampers is in the range 20ms to 30ms [22,23]. 

Therefore, the time constant 𝑇𝑟 is set to 10 ms, corresponding to 30ms response time 

(3𝑇𝑟). The LQG controller and the model of the semi-active dampers are defined in 

Simulink, and the actual damping forces 𝑢𝑎,𝑗 from all semi-active dampers are fed to the 

FMBS SIMPACK model through co-simulation.  

 

3.2 Simplified 7-DOF vehicle model  

3.2.1 Introduction of 7-DOF-Coupling model 

The analysis of car-body-to-bogie coupling in Sections 2 and 3.1.1 shows that the classic 

simplified 7-DOF model in Fig. 1 is not fully suited for the design of a control strategy for 

car-body vibration, as it misses the coupling between car-body bending and bogie pitch 

motions, which is a crucial feature for a real HS vehicle. A first attempt to define a more 

suitable simplified model is presented in reference [17], where a 12-DOF model is proposed. 

This 12-DOF model shows a good matching to the more detailed FMBS models, but it is 

somehow too complex for the design of a model-based controller, which should be kept as 

simple as possible to ensure a fast calculation in real-time. In this paper, a new simplified 

model named 7-DOF-Coupling vehicle model is established, which is simpler than the 12-

DOF model, but retains the capability to describe properly the coupling between car-body 

bending and bogie motion. s 



 
Fig. 5. 7-DOF-Coupling vehicle model  

The 7-DOF-Coupling model is shown in Fig. 5: the arrangement of the vertical suspension 

is displayed on the left bogie and the arrangement of the longitudinal suspension is shown 

on the right bogie. The proposed model has the same DOFs as the classic 7-DOF model, 

i.e. car-body bounce (𝑍𝑐), pitch (𝜃𝑐) and first bending (𝑞) mode, and bogie bounce (𝑍𝑡1, 𝑍𝑡2) 

and pitch (𝜃𝑡1, 𝜃𝑡2). The mass of the converter is incorporated in the inertia of the car-body. 

The model of the vertical secondary suspension considers a linear spring and viscous 

dashpot in vertical direction, like the classic model, but additionally includes longitudinal 

springs and dashpots connecting the car-body to the bodies, to model the effect of the 

traction links and yaw dampers. Yaw dampers are often modelled according to a Maxwell 

model (dashpot 𝐶𝑑  with serial stiffness 𝐾𝑑 ), which is here replaced by an equivalent 

Kelvin–Voigt model (spring and dashpot in parallel) to avoid the need to introduce the 

internal states required by the Maxwell model. The parameters of the Kelvin-Voigt model, 

𝐶𝑒𝑑 and 𝐾𝑒𝑑 , are derived from those of the Maxwell model using the relationships in Eq. (4), 

where f is frequency [24], . This equation shows that the equivalent stiffness and damping 

of the Kelvin–Voigt are frequency-dependent, however with the aim of simplifying the 

model, constant values are set for these parameters, setting frequency f to the value 

corresponding to the resonance of the modes in Fig. 3 involving the coupling of car-body 

bending and bogie pitch.  

{
𝐶𝑒𝑑 =

𝐶𝑑𝐾𝑑
2

𝐾𝑑
2+𝐶𝑑

2𝑓2

𝐾𝑒𝑑 =
𝐾𝑑𝐶𝑑

2𝑓2

𝐾𝑑
2+𝐶𝑑

2𝑓2

                                                         (4) 

Traction links are modelled using a linear spring with stiffness 𝐾𝑡. The bogie longitudinal 

motions are not considered, since the coupling between car-body bending and bogie pitch 



is sufficient to reproduce the modes of the FMBS model found in the frequency range of 

interest. The parameters of the 7-DOF-Coupling model are summarized in Table A.1. 

3.2.2 Simplified model of the flexible car-body  

The car-body first bending vibration is represented using an Euler beam model, see Eq. (5).  

𝑤(𝑥, 𝑡) = 𝑌(𝑥)𝑞(𝑡)                                                 (5) 

where, 𝑤(𝑥, 𝑡)  expresses the displacement of the beam at position x, time t;  𝑌(𝑥)  

describes the shape of the first bending mode, unchanging with time, see Eq. (6), 

𝑌(𝑥) = (𝑐𝑜𝑠 𝛽1𝑥 + 𝑐𝑜𝑠ℎ 𝛽1𝑥) −
𝑐𝑜𝑠 𝛽1𝐿𝑐−𝑐𝑜𝑠ℎ𝛽1𝐿𝑐

𝑠𝑖𝑛 𝛽1𝐿𝑐−𝑠𝑖𝑛ℎ𝛽1𝐿𝑐
(𝑠𝑖𝑛 𝛽1𝑥 + 𝑠𝑖𝑛ℎ 𝛽1𝑥)       (6) 

where 𝛽1𝐿𝑐 = 4.7300 [25]. 

In Eq. (5), 𝑞(𝑡) describes a time-dependent scaling coefficient applied to the shape 𝑌(𝑥) 

of the bending mode. The dynamics of this modal coordinate is governed by Eq. (7): 

�̈� + 2𝜉1𝜔1�̇� + 𝜔1
2𝑞 =

1

𝑀𝑐
{∑ [𝐹𝑠𝑧,𝑖𝑌(𝐿𝑖) + 𝐹𝑠𝑥𝑡,𝑖𝑑𝑐𝑏𝑡𝑌

′(𝐿𝑡𝑖) + 𝐹𝑠𝑥𝑦,𝑖𝑑𝑐𝑏𝑦𝑌
′(𝐿𝑡𝑖)]𝑖=1,2 }  (7) 

where, 𝜔1 = 2𝜋𝑓 expresses the natural angular frequency of the bending mode; ξ1 is the 

non-dimensional damping ratio. 𝐹𝑠𝑧,𝑖, 𝐹𝑠𝑥𝑡,𝑖, and 𝐹𝑠𝑥𝑦,𝑖 (i=1,2) respectively refer to vertical 

force from air springs, and two longitudinal forces from the traction links and yaw dampers. 

𝑑𝑐𝑏𝑡 and 𝑑𝑐𝑏𝑦 are distances from the height of the car-body bending neutral axis (𝐻𝑐𝑏) to 

the height of the traction links (𝐻𝑡 ) and yaw dampers (𝐻𝑦 ), i.e.𝑑𝑐𝑏𝑡 = 𝐻𝑐𝑏 − 𝐻𝑡 ;  

𝑑𝑐𝑏𝑦=𝐻𝑐𝑏 − 𝐻𝑦. 

Although the use of the Euler beam model to consider the effect of car-body bending 

flexibility is common in the literature, see [3,9,14,16], there is a significant deviation 

between the actual shape of the first bending mode and the one provided by the simplified 

beam model, because the real car-body behaves structurally as a shell with variable 

properties along the longitudinal axle, and this complex structural behaviour is only partly 

captured by the Euler beam model. To improve the correspondence of the simplified model 

to the actual behaviour of the car-body, a calibration of the beam model is performed with 

the reference to the FE car-body model. 

In the calibration, the six DOFs related to the rigid motion of the car-body in the FMBS 

model are constrained, obtaining a model that only considers car-body first bending 

vibration based on the modal synthesis in SIMPACK. Two equal, in-phase vertical forces 

are applied at the positions where the car-body sits over the air-springs, shown by the 

yellow arrows in Fig. 6 (a) and two longitudinal forces, having the same amplitude but 



opposite phase are applied at the yaw dampers mount points, see the red arrows. Both 

vertical and longitudinal forces are generated as white noise, then processed by a low-pass 

filter with cut-off frequency 20 Hz. The time histories of applied force are shown in Fig. 6 

(b). 

 
(a) FE car-body model in load condition                                

 
 (b)  Time history of applied forces 

Fig. 6 The calibration of the beam model 

The car-body vertical acceleration measured at the centre and two positions above the bogie 

centres are used as the indicators to calibrate the damping ratio and, from the comparison 

of the two models, the value ξ1 = 3% is found to provide the best match. As an example, 

Fig. 7(a) compares the vertical acceleration at car-body centre for the SIMPACK flexible 

model and for the simplified Euler beam model, showing satisfactory agreement.  

The height of the beam’s neutral axis 𝐻𝑐𝑏 is the other parameter which is identified from 

the comparison of the two sets of results, considering in this case as the indicators the 

longitudinal acceleration at the mount points of these components, based on Eq. (1). The 

value 𝐻𝑐𝑏 = 1.6𝑚 is found, from which the vertical distances from the neutral axis to the 

yaw damper and traction link mounts 𝑑𝑐𝑏𝑦 and 𝑑𝑐𝑏𝑡 are obtained. Fig. 7(b) compares the 

longitudinal acceleration of the yaw damper mount point for the two models, after the 

calibration of the simplified one.  

Despite the calibrated beam model still involves significant approximation in describing 

the flexible motion of the car-body, it provides a sufficiently good estimate of the car-body 

vertical acceleration at the three positions considered by the LQG controller (see Section 4)  

in regard to the vertical ride comfort evaluation, and a good estimate for the longitudinal 

motion at the damper and traction link mounts, so as to reproduce correctly the coupling 



between car-body bending and bogie pitch due to the traction links and yaw dampers, which 

is pivotal to the development of the model-based controller.   

 
(a) Car-body vertical acceleration at bogie centre 

 
(b) Car-body longitudinal acceleration where yaw damper is installed 

Fig. 7 Comparison of car-body acceleration of the FE model and of the simplified beam model after 

beam model calibration  

3.2.3 Equations of motion of the 7-DOF model 

The set of equations of motion for the 7-DOF coupling model are summarised in Eq. (8). 

The expressions of the vertical forces in the secondary suspension, 𝐹𝑠𝑧,𝑖 (1=1,2) and in the 

primary suspensions, 𝐹𝑝𝑧,𝑖 (i=1,…,4) are provided by Eq. (9), where 𝑑𝑏𝑦 and 𝑑𝑏𝑡 refer to 

the distances from the height of bogie centre of gravity to the height of yaw dampers and 

traction links; and similarly, 𝑑𝑐𝑔𝑦 and 𝑑𝑐𝑔𝑡 are distances from the height of car-body centre 

of gravity to yaw dampers and traction links. 

{
 
 
 
 

 
 
 
 
McZc̈ = Fsz,1 + Fsz,2

𝐽𝑐𝜃�̈� = 𝐿𝑡𝐹𝑠𝑧,1 − 𝐿𝑡𝐹𝑠𝑧,2 + 𝐷𝑐𝑔𝑦(𝐹𝑠𝑥𝑦,1 + 𝐹𝑠𝑥𝑦,2)+ 𝐷𝑐𝑔𝑡(𝐹𝑠𝑥𝑡,1 + 𝐹𝑠𝑥𝑡,2)

𝑀𝑡�̈�𝑡1 = −𝐹𝑠𝑧,1 + 𝐹𝑝𝑧,1 + 𝐹𝑝𝑧,2

𝐽𝑡�̈�𝑡1 = 𝐿𝑤(𝐹𝑝𝑧,1 − 𝐹𝑝𝑧,2) − 𝑑𝑏𝑦𝐹𝑠𝑥𝑦,1 − 𝑑𝑏𝑡𝐹𝑠𝑥𝑡,1

𝑀𝑡�̈�𝑡2 = −𝐹𝑠𝑧,2 + 𝐹𝑝𝑧,3 + 𝐹𝑝𝑧,4

𝐽𝑡�̈�𝑡2 = 𝐿𝑤(𝐹𝑝𝑧,3 − 𝐹𝑝𝑧,4) − 𝑑𝑏𝑦𝐹𝑠𝑥𝑦,2 − 𝑑𝑏𝑡𝐹𝑠𝑥𝑡,2

�̈� + 2𝜉
1
𝜔1�̇� + 𝜔1

2𝑞 =
1

𝑀𝑐
{∑ [𝐹𝑠𝑧,𝑖𝑌(𝐿𝑖)+ 𝐹𝑠𝑥𝑡,𝑖𝑑𝑐𝑏𝑡𝑌

′(𝐿𝑡𝑖) + 𝐹𝑠𝑥𝑦,𝑖𝑑𝑐𝑏𝑦𝑌
′(𝐿𝑡𝑖)]𝑖=1,2 }

            (8) 

 



  

{
 
 
 
 
 
 

 
 
 
 
 
 
𝐹𝑠𝑧,1 =  𝐶𝑠𝑧[�̇�𝑡1 − (�̇�𝑐 + 𝐿𝑡𝜃�̇� + 𝑌(𝐿1)�̇�] + 𝐾𝑠𝑧[𝑍𝑡1 − (𝑍𝑐 + 𝐿𝑡𝜃𝑐 + 𝑌(𝐿1)𝑞)]

𝐹𝑠𝑧,2 =  𝐶𝑠𝑧[�̇�𝑡2 − (�̇�𝑐 − 𝐿𝑡𝜃�̇� + 𝑌(𝐿2)�̇�)] + 𝐾𝑠𝑧[𝑍𝑡1 − (𝑍𝑐 − 𝐿𝑡𝜃𝑐 + 𝑌(𝐿2)𝑞)]

𝐹𝑠𝑥t,1 = 𝐾𝑠𝑥[𝜃𝑡1𝑑𝑏𝑡 − (𝜃𝑐𝑑𝑐𝑔𝑡 + 𝑌
′(𝐿𝑡1)𝑞𝑑𝑐𝑏𝑡)]

𝐹𝑠𝑥t,2 = 𝐾𝑠𝑥[𝜃𝑡2𝑑𝑏𝑡 − (𝜃𝑐𝑑𝑐𝑔𝑡 + 𝑌
′(𝐿𝑡2)𝑞𝑑𝑐𝑏𝑡)]

𝐹𝑠𝑥𝑦,1 = 𝐶𝑒𝑑 [�̇�𝑡1𝑑𝑏𝑦 − (𝜃�̇�𝑑𝑐𝑔𝑦 + 𝑌
′(𝐿𝑦1)�̇�𝑑𝑐𝑏𝑦)] + 𝐾𝑒𝑑 [𝜃𝑡1𝑑𝑏𝑦 − (𝜃𝑐𝑑𝑐𝑔𝑦 + 𝑌

′(𝐿𝑦1)𝑞𝑑𝑐𝑏𝑦)]

𝐹𝑠𝑥𝑦,2 = 𝐶𝑒𝑑 [�̇�𝑡2𝑑𝑏𝑦 − (𝜃�̇�𝑑𝑐𝑔𝑦 + 𝑌
′(𝐿𝑦2)�̇�𝑑𝑐𝑏𝑦)] + 𝐾𝑒𝑑 [𝜃𝑡2𝑑𝑏𝑦 − (𝜃𝑐𝑑𝑐𝑔𝑦 + 𝑌

′(𝐿𝑦2)𝑞𝑑𝑐𝑏𝑦)]

𝐹𝑝𝑧,1 =  𝐶𝑝𝑧[�̇�𝑤1 − (�̇�𝑡1 + 𝐿𝑤�̇�𝑡1)] + 𝐾𝑝𝑧[𝑍𝑤1 − (𝑍𝑡1 + 𝐿𝑤𝜃𝑡1)]  +   𝑢𝑎1
𝐹𝑝𝑧,2 =  𝐶𝑝𝑧[�̇�𝑤2 − (�̇�𝑡1 − 𝐿𝑤�̇�𝑡1)] + 𝐾𝑝𝑧[𝑍𝑤2 − (𝑍𝑡1 − 𝐿𝑤𝜃𝑡1)]  +   𝑢𝑎2

𝐹𝑝𝑧,3 =  𝐶𝑝𝑧[�̇�𝑤3 − (�̇�𝑡2 + 𝐿𝑤�̇�𝑡2)] + 𝐾𝑝𝑧[𝑍𝑤3 − (𝑍𝑡2 + 𝐿𝑤𝜃𝑡2)]  +   𝑢𝑎3

𝐹𝑝𝑧,4 =  𝐶𝑝𝑧[�̇�𝑤4 − (�̇�𝑡2 − 𝐿𝑤�̇�𝑡2)] + 𝐾𝑝𝑧[𝑍𝑤4 − (𝑍𝑡2 − 𝐿𝑤𝜃𝑡2)]  +   𝑢𝑎4

  (9) 

The wheelset vertical displacements and velocities 𝑍𝑤i and �̇�𝑤𝑖 (i=1, …,4) are derived from 

a measured profile of track irregularity, in the form of a spatial profile which is then 

translated in a time series based on the speed and distance between axles. The vehicle in 

passive mode has no control force and thus the components 𝑢𝑎𝑖 for primary vertical forces 

𝐹𝑝𝑧,𝑖 (i=1,…,4) is zero. When SAPS is equipped in the vehicle, the damping 𝐶𝑝𝑧 becomes 

zero and the control forces 𝑢𝑎𝑖  are adopted. To get the applied control force 𝑢𝑎𝑖 , the 

reference control force 𝑢𝑟𝑒𝑓 is firstly computed from the LQR controller (see Eq. (16) in 

Section 4) and then it is processed using Eq. (2) and (3) to consider the dynamics of the 

semi-active damper.  

It is worth mentioning that the equations of the classic 7-DOF model shown in Fig. 1 can 

be easily derived from Eq. (8) and (9), just nulling the stiffness and damping parameters of 

the yaw dampers and traction links.  

Fig. 8 compares the results obtained using the FMBS model and the two simplified models 

in terms of the PSDs of car-body accelerations at front and centre positions, for the passive 

vehicle running at 230 km/h. A good agreement among the three models can be found in 

the frequency range below 8Hz, both at car-body front and at centre positions. However, a 

remarkable difference is found at higher frequencies and, in particular, the classic 7-DOF 

model misses completely to reproduce the large peak of the PSD at 11.8 Hz. The 7-DOF-

Coupling model instead shows satisfactory agreement to the FMBS model in the entire 

frequency range up to 20 Hz, particularly in terms of the peak at 11.8 Hz which has a main 

effect on ride quality.  



 
Fig. 8 PSD of car-body acceleration for the passive vehicle: comparison of the FMBS and 7-DOF-

Coupling models, Left: car-body front, Right: car-body centre 

4 Design of the LQG controller for the SAPS 

The Linear Quadratic Gaussian (LQG) is a classic model-based controller, consisting of a 

Linear Quadratic Regulator (LQR) to calculate the feedback control force, and a Kalman 

filter (KF) for state estimation. It provides optimal control for the system through full-state 

feedback. The gain matrix defining state feedback is obtained through the minimisation of 

a cost function 𝐽, in which the control targets are defined in the linear-quadratic form. A 

detailed explanation for the working principle of LQG can be found in [26].  

For the development of the LQG controller for the SAPS, the differential equations for the 

7-DOF-Coupling model, defined in Section 3 are expressed as state-space equations, as 

shown below: 

�̇� = 𝐴𝑋 + 𝐵𝑈 + 𝐺𝑊                                                       (10) 

where 𝑋 represents the state variables considered in the vehicle model, see Eq. (11); 𝐴, 𝐵 

and 𝐺 are constant-valued matrices allowing to represent the set of differential equations 

(8) and (9) in state-space form. 

𝑋 = [𝑍𝑐 �̇�𝐶 𝜃𝑐 �̇�𝑐 𝑍𝑡1 �̇�𝑡1 𝜃𝑡1 �̇�𝑡1 𝑍𝑡2 �̇�𝑡2 𝜃𝑡2 �̇�𝑡2 𝑞 �̇�]   (11) 

𝑈 contains the controllable damping force, see Eq. (12) 

𝑈 = [𝑢𝑎1, 𝑢𝑎2, 𝑢𝑎3, 𝑢𝑎4]
𝑇                                                     (12)                          

𝑊 refers to the excitation from wheelsets due to the track irregularity, see Eq. (13) 

  𝑊 = [�̇�𝑤1, �̇�𝑤2, �̇�𝑤3, �̇�𝑤4, 𝑍𝑤1, 𝑍𝑤2, 𝑍𝑤3, 𝑍𝑤4]
𝑇                                    (13) 

A 7-sensor measuring scheme is adopted, which was also considered in [14,16], see Fig. 9. 

The blue circles with labels “Sj” (j=1, … ,7) illustrate the positions of accelerometers, three 

on the car-body floor and four mounted at the front and rear positions of the bogie.  



 

Fig. 9. 7-Location of sensors for LQG control. 

The seven measured accelerations are collected in the observation vector 𝑌𝑠 , defined 

according to Eq. (14), where 𝐶𝑠 , 𝐷𝑠  and 𝐻𝑠  can be derived according to seven 

accelerations as superpositions of different vibration modes, and 𝑉  represents the 

measuring noise. 

𝑌𝑠 = 𝐶𝑠𝑋 + 𝐷𝑠𝑈 + 𝐻𝑠𝑊+ 𝑉                                                   (14) 

The measured seven accelerations are fed to the Kalman filter, where the information of 

the vehicle model and measurements will be synthesized to estimate the full state variables 

�̂� . In the design of the Kalman filter, the covariance of system disturbance 𝑊  and 

measuring noise 𝑉 are configured, based on the extent to which the model and the measured 

quantities can be trusted. Then, the observer gain matrix 𝐾𝑓 can be obtained by solving an 

optimization problem to minimize the errors between the real 𝑋 and estimated �̂�. Once the 

𝐾𝑓 is obtained, the estimated variables are computed according to Eq. (15).  

X̂̇ = (𝐴 − 𝐾𝑓𝐶𝑠)X̂ + (𝐵 − 𝐾𝑓𝐷𝑠)𝑈 + 𝐾𝑓𝑌𝑠                              (15) 

Afterwards, the estimated full-state variables are multiplied by a feedback control gain 

matrix 𝐾𝐿𝑄𝑅 to get the reference control force 𝑈𝑟𝑒𝑓, see Eq. (16).  

𝑈𝑟𝑒𝑓 = −𝐾𝐿𝑄𝑅�̂�                                                           (16) 

It should be noted that the simplified model is two-dimensional, with no consideration of 

the lateral dimension. Thus, the four scalar components of vector 𝑈𝑟𝑒𝑓 represent the sum 

of the two forces applied by the two semi-active dampers mounted at the two sides of a 

same wheelset. The reference force for each damper is therefore obtained considering an 

equal share of the control force on the two sides. 

The control gain 𝐾𝐿𝑄𝑅 in Eq. (16) is obtained by solving a Riccati equation to minimize the 

cost function 𝐽𝐿𝑄𝑅 , defined in Eq. (17), 

𝐽𝐿𝑄𝑅 = 𝑙𝑖𝑚
𝑡→∞

1

𝑡
∫ (𝑌𝑡

𝑇𝑄𝑌𝑡  + 𝑈
𝑇𝑅𝑈)

𝑡

0
𝑑𝑡                                   (17) 



where the vectors 𝑈  and 𝑌𝑡  contain the control forces and vibration quantities to be 

minimized.  

In order to control each vehicle vibration mode separately, 𝑌𝑡 is defined consisting of car-

body bounce, pitch and bending accelerations, and bogie bounce and pitch velocities, see 

Eq. (18) 

𝑌𝑡 = [Zc̈, 𝐿𝑡�̈�𝑐, �̈�1, �̇�𝑡1, �̇�𝑡2, 𝐿𝑤�̇�𝑡1, 𝐿𝑤�̇�𝑡1]
𝑇                                     (18) 

The 𝑄  and 𝑅  are diagonal matrixes defining the weights between vibration modes and 

control forces, see Eq. (19) 

{
𝑄 = 𝐷𝑖𝑎𝑔(𝑊𝑐𝑧,𝑊𝑐𝜃,𝑊𝑞 ,𝑊𝑡𝑧,𝑊𝑡𝑧,𝑊𝑡𝜃,𝑊𝑡𝜃)

𝑅 = 𝐷𝑖𝑎𝑔(𝑊𝑓,𝑊𝑓,𝑊𝑓,𝑊𝑓)           
                                  (19) 

Since all dampers in the vehicle have the same characteristics, the same value 𝑊𝑓 is used 

in all rows of the matrix 𝑅 defining the weight of the control force. In matrix 𝑄, instead, 

different scalar weights are introduced in each row, to reflect the fact that each mode of 

vibration affects in a different way the dynamics of the vehicle, and also to consider that 

the observed variables in vector 𝑌𝑡 are not dimensionally homogeneous. 

To derive suitable values of the weights in matrices 𝑄, several simulations are performed 

starting with one-at-time control of each observed variable. In this way, starting values are 

found for weights 𝑊𝑐𝑧,𝑊𝑐𝜃,𝑊𝑞 ,𝑊𝑡𝑧,𝑊𝑡𝑧,𝑊𝑡𝜃,𝑊𝑡𝜃  which are then used to define two 

different multi-mode versions of the LQG controller, see Section 5 for more details. It is 

worth noting that the value of the single gain coefficient 𝑊𝑓 defining matrix R only affects 

the scaling of the terms in matrix Q. Hence, a fixed value of matrix R is maintained for all 

versions of the LQG controller. In Section 5, we apply a fixed value for 𝑅 and different 

settings for 𝑄 to realise the tuning between control effect and suitable control force with 

different control targets. 

Considering the two simplified models introduced in Section 3.2. The LQG controller can 

be built based on the classic 7-DOF model, or the new 7-DOF-Coupling model. The 

comparison of the two model-based LQG controllers is analysed in Section 5.3. 

5 Performance of the SAPS with LQG controller 

The performance of the SAPS system is assessed by means of numerical simulations 

performed using the SIMPACK FMBS model of the vehicle introduced in section 3.1 in 

co-simulation with a model of the controller and of the semi-active dampers implemented 

in Simulink. The analysis is firstly focussed on the speed of 230 km/h which, as discussed 

above, is particularly meaningful. Then, the analysis is extended to the entire range of speed 



150-350 km/h and finally, the impact of using the modified 7-DOF model instead of the 

classic one in the design of the LQG controller is assessed. 

5.1 Performance of SAPS at speed 230km/h   

A first assessment of the performance of the semi-active suspensions focusses on the 

resonance speed 230 km/h, which is the most critical speed in terms of ride quality, based 

on the analysis reported in Section 3.1.1. 

Different versions of the LQG controller are considered. In a first stage, the different 

components of vehicle motion represented by the scalar elements in vector 𝑌𝑡 are controlled 

one-at-a-time by setting a non-zero weight in just one term of the diagonal matrix 𝑄, see 

Eq. 19. Different values of the non-zero term in matrix 𝑄 are considered, but for the sake 

of brevity only the one providing sufficiently good result in terms of reducing car-body 

vibration is considered below. The 𝑅 weight matrix defining the effect of control forces on 

the cost function is set to 𝑅 = Diag(10−4, 10−4, 10−4, 10−4). This value of the 𝑅 matrix is 

kept unchanged in all analyses reported below.  

Fig. 10 compares the PSD curves of acceleration at car-body front and centre positions for 

the passive vehicle and for the vehicle with SAPS, considering one-at-a-time LQG 

configuration. Controlling only car-body bounce with 𝑊𝑐𝑧= 1 × 107 , (i.e. defining 𝑄 =

𝐷𝑖𝑎𝑔(1 × 107, 0,0,0,0,0,0)) results in reduced vibration at car-body centre in the low 

frequency range, but causes an increase of vibration at higher frequencies, see the blue dash 

line in Fig. 10(a). Similarly, controlling only car-body pitch with 𝑊𝑐𝜃=1 × 106 provides a 

small benefit for rigid vibration at car-body front, but again leads to larger vibration at 

higher frequencies, as shown the green dash-dot line in Fig. 10(a). Different from the two 

car-body rigid modes control, the one-at-a-time control of car-body bending, represented 

using red dot line, provides a significant reduction of vibration at 11.8Hz, corresponding to 

the resonance of the car-body excited by track irregularities when the vehicle runs at 230 

km/h, despite a slight increase of vibration is observed in the low frequency range. It is 

important to underline that the use of the 7-DOF Coupling model is essential to the success 

of the LQG controller in this case, and that using the classic 7-DOF model instead would 

result in decreased ride quality compared to the passive vehicle, as will be shown in Section 

5.3. 



 

(a) three car-body mode controls, Left: car-body front, Right: car-body centre 

 
(b) two bogie mode controls, Left: car-body front, Right: car-body centre 

Fig. 10 PSD of car-body acc. with one-at-time configurations of the LQG controller 

In Fig. 10 (b), the one-at-a-time control of bogie bounce provides results similar to those 

obtained for car-body bounce and car-body pitch control, i.e. a slight benefit in the low-

frequency range which comes at the expense of significant increase of vibration at higher 

frequencies. Finally, the one-at-a-time control of bogie pitch provides a very significant 

benefit in the high-frequency range, and a reduction of car-body vibration is comparable to 

the control of car-body bending. This last result may seem contradictory, as a large benefit 

is obtained in the high-frequency range by controlling a rigid mode of the vehicle, but can 

be explained in the light of the strong coupling between car-body bending and bogie pitch. 

This also shows that a control strategy aimed at mitigating bogie pitch can be highly 

effective in improving ride quality, suggesting that simpler control strategies such as modal 

sky-hook damping applied to bogie pitch could be successfully applied.  

Both controllers on car-body bending and bogie pitch effectively mitigate car-body bending 

vibration, but controlling the bending is less effective with mitigating car-body vibration at 

frequencies beyond 15 Hz, which is probably due to the effect of modelling errors in the 



simplified model of car-body flexibility.  

To quantify the separate control effects for rigid and flexible vibrations under the above-

mentioned control configurations, the root mean square (RMS) value of car-body 

acceleration evaluated in the centre and over the two bogies, are analysed using two band-

pass filters with passband 1-8Hz and 8-16Hz respectively, given the specific resonances of 

the considered HS vehicle.  

Table 1 reports the variation of the band-limited RMS values, using the passive vehicle as 

a reference. For rigid vibration ranging from 1Hz to 8Hz, the two car-body rigid mode 

controls (𝑊𝑐𝑧 𝑎𝑛𝑑 𝑊𝑐𝜃) are less effective than the bogie bounce control (𝑊𝑡𝑧) at all the 

considered measuring locations, and the car-body pitch leads to slightly increased RMS at 

car centre because the control benefits from car-body rigid modes at a frequency are 

cancelled out by the degradation at other frequencies. In the frequency range 8-16Hz, the 

band-limited RMS of structural vibration is remarkably reduced by 71% and by 72% at car-

body centre, respectively using car-body bending and bogie pitch control configurations, 

which confirms the above analysis based on the PSD curves.  

Table 1. Variation of the band-limited RMS of car-body acceleration using SAPS with LQG control 

(speed 230km/h) 

 RMS of rigid vibrations (1-8Hz) RMS of flexible mode vibrations (8-16Hz) 

 One-at-a-time Multimode One-at-a-time Multimode 

 𝑊𝑐𝑧 𝑊𝑐𝜃 𝑊𝑞 𝑊𝑡𝑧  𝑊𝑡𝜃 𝑄1 𝑄2 𝑊𝑐𝑧 𝑊𝑐𝜃 𝑊𝑞 𝑊𝑡𝑧 𝑊𝑡𝜃 𝑄1 𝑄2 

Car front 1% -25% 18% -16% 19% -29% -36% 30% 61% -65% 92% -71% -74% -82% 

Car centre -71% 32% 13% -32% 7% -65% -59% 39% 43% -71% 86% -72% -78% -80% 

Car rear 0% -24% 13% -17% 19% -35% -38% 24% 35% -37% 79% -69% -72% -79% 

 

To fully exploit multi-mode control of vibration, two other configurations of the LQG 

controller are also considered, with weights of the 𝑄 matrix defined by Eq. (20).  

{
𝑄1 = 𝐷𝑖𝑎𝑔(1 × 10

7, 1 × 106, 2 × 105, 0,0,0,0)

𝑄2 = 𝐷𝑖𝑎𝑔(1 × 10
7, 1 × 106, 2 × 105, 1 × 107, 1 × 107, 1 × 107, 1 × 107)

     (20) 

Configuration 𝑄
1

 aims at controlling all three car-body modes using suitable weight 

numbers suggested by the previous one-at-a-time analyses. Configuration 𝑄2 makes use of 

the same weights as configuration 𝑄
1
 for car-body modes and additionally includes non-

zero weights for bogie modes. The results for these two configurations in terms of reduction 

of the banded RMS are also included in Table 1, and the PSD curves of acceleration at car-

body front and centre are shown in Fig. 11. Both configurations can remarkably reduce the 



vibration with respect to the passive vehicle in the entire 1-20 Hz frequency range, so that 

a further improvement with respect to the one-at-time control strategies can be obtained. 

The configuration 𝑄2 provides a slightly larger vibration reduction than 𝑄1 in the 8-16Hz 

frequency range. Figure 12 also presents the comparison of car-body acceleration measured 

at centre position in time domain, clearly exhibiting the reduction of acceleration magnitude 

by a factor more than 2 when the proposed LQG controllers are applied. Accelerations are 

shown over a short time window to improve the readability of the plot. Anyway, both 𝑄1 

and 𝑄2 configurations provide fully satisfactory results, showing a reduction of the vertical 

ride index 𝑁𝑚𝑣𝑧  [27] by 68% and 75% at car front and 74% and 76% at car centre, 

compared to the passive vehicle.  

Besides vehicle vibration, the damping force of the MR damper is also examined, as shown 

in Figure 13. The maximum amplitude of the damping force for the two configurations of 

the LQG controller is under 5kN, which is easily achievable for a normal MR damper. The 

frequency analysis of the damping force shows that the dominating working frequency of 

the damper is in line with the most critical resonance vibration at nearly 12Hz.   

 

Fig. 11 PSD of car-body acc. with multi-mode configurations of the LQG controller. Left: car-body 

front, Right: car-body centre  

 

Fig. 12 Time histories of car-body acceleration at car centre for the passive vehicle and for the 



active vehicle considering two configurations of the LQG controller 

 

Fig. 13 Time histories of damping force for two configurations of the LQG controller 

5.2 Performance of SAPS at different speed levels.      

The simulations in Section 5.1 are performed at speed 230km/h where the passive vehicle 

is known to have the worst situation of ride comfort due to the resonance of car-body 

bending vibration. However, the analysis of the passive vehicle provided in Section 3.1.1 

shows that there are other resonance speeds that may affect negatively ride quality. Thus, 

it is necessary to extend the analysis to confirm if the LQG controller is able to mitigate 

effectively car-body vibration in the entire range of speed of interest. Particularly 

interesting in this regard is the behaviour of the controller at speed 157 km/h, because this 

speed corresponds to a resonance of the mode at 8.0 Hz in which car-body bending is 

coupled to bogie bounce instead of bogie pitch.  

Fig. 14 compares the PSD curves of car-body acceleration (front and centre) for two one-

at-time configurations, addressing bogie bounce and bogie pitch. At the resonance speed 

157 km/h, bogie bounce control provides significant reduction of car-body bending 

vibration in the 8-12Hz range. By contrast, bogie pitch control is clearly less effective to 

attenuate flexible vibration than at speed 230km/h. It is concluded that the control effects 

of bogie bounce and pitch control are affected by the specific coupling taking place between 

car-body and bogie motion for the mode excited in resonance.  



 

Fig. 14 PSD of car-body acceleration with selected one-at-a-time configurations of the LQG 

controller, Left: car-body front, right: car-body centre  

Finally, the two multi-mode LQG configurations are applied at different speeds ranging 

from 150 km/h to 350 km/h, and the vertical ride index 𝑁𝑚𝑣𝑧  is used to evaluate the 

improvement of ride comfort with SAPS. The ride indexes obtained at front and centre are 

normalized respectively using the maximum value at 230km/h as the reference. As shown 

in Fig. 15, the ride index does not increase monotonically with the speed and is instead 

strongly affected by different resonance effects involving car-body and bogie vibration. 

The implementation of SAPS, either using multi-mode 𝑄2 or 𝑄1 not only improves the ride 

comfort at the four particular speeds corresponding to the resonance as shown in Fig. 3 and 

Fig.4, but also at all other speeds. The performance of LQG in configuration 𝑄2 is more 

steadily effective than 𝑄1 at all speed levels, especially for those scenarios where a larger 

deviation between the simplified model and the FMBS model is expected.  

 

 
(a) Car front 



 
(b) car centre  

Fig. 15 Values of the Nmvz ride quality index at different speed levels for the two multi-mode 

configurations of the LQG controller 

The advantage of involving bogie motion together with car-body vibration in the design of 

the controller, as done with the 𝑄2 configuration, can be understood from the viewpoint of 

control robustness. It is recalled that the parameters of the simplified model are derived for 

the FMBS vehicle model featured at speed 230km/h, and these parameters may not be 

equally suited for the vehicle at other speed levels. For instance, the equivalent damping 

𝐶𝑒𝑑 and stiffness 𝐾𝑒𝑑 for the Maxwell damper model are frequency-dependent (see Eq. 4), 

but this is not considered in the design of the controller. Therefore, a larger deviation 

between the simplified and the FMBS models is expected at other speeds. However, this 

error has a limited influence on the estimation of bogie motion components, whilst it is 

more significant for car body motion. This explains the superiority of configuration 𝑄2 over 

𝑄1.  

It is worth noting, in these simulations, the gain matrixes of the controller, i.e. the 𝑄 and 𝑅 

are kept fixed to a set of single value not depending on vehicle speed. Applying a gain 

scheduling approach through the design of specific LQG controllers at different speeds 

would further improve ride quality, but a speed-dependent controller would also increase 

the complexity of the system, which is beyond the research scope of this work.  

 

5.3 Effect of the vehicle model used for the synthesis of the controller  

As shown previously, capturing the coupling effects between car-body bending and bogie 

pitch is essential to a correct design of the controller for SAPS. The discussion of the results 

is therefore concluded providing a short comparison of the results obtained using the 

controller designed based on the 7-DOF coupling model and the one designed based on the 



7-DOF classic model. 

As an example, Fig. 16 compares the performance of the two controllers in multi-mode 

configuration 𝑄1 at speed 230 km/h and 157 km/h. At 230 km/h (left) the dominant peak 

in the PSD of car-body acceleration is caused by the resonance at 11.8Hz which is strongly 

affected by the coupling of car-body bending and bogie pitch. Since this coupling 

mechanism is not captured by the 7-DOF classic model, the controller designed using this 

model fails to mitigate car-body vibration at the resonance frequency and actually causes 

increased vibration compared to the passive vehicle. On the other hand, at speed 157 km/h 

the mechanism of excitation is due to the coupling of bogie bounce to car-body bending 

which is considered by both simplified models. Consistently, both controllers are able to 

suppress the vibrations in the interested frequency range, although the LQG based on the 

classic model is less effective for bending control. The difference between the two cases 

shows clearly that the classic 7-DOF model is only acceptable when car-body bending is 

excited by a mechanism involving the coupling with bogie bounce motion.  

    

Fig. 16 Comparison of the PSD of car-body acceleration for the Multimode 𝑄1 LQG controller 

designed using the classic and Coupling 7-DOF models. Left: vehicle speed 230 km/h. Right: 

vehicle speed 157km/h  

 

6 Conclusions  

This paper investigated the use of semi-active primary suspensions (SAPS) to improve ride 

quality in a high-speed railway vehicle. A new approach to the design of a model-based 

controller for SAPS is introduced in this work, allowing to consider the effect of carbody-

to-bogie connection through yaw dampers and traction links. This effect plays a pivotal 

role in determining the bending vibration of the car-body, and missing to consider this 

effect may result in unsuccessful design of the controller.  



The design of an LQG controller for the semi-active suspension is based on a new 7-DOF-

Coupling model: this model is sufficiently simple to be used as the basis for the design of 

the controller and for state estimation based on a Kalman filter, but is found to be much 

more accurate than the ‘classic’ 7-DOF model used in previous work [14, 16] when stiff 

yaw dampers and traction links are included in the vehicle’s suspensions. 

Different configurations of the LQG controller are assessed using co-simulation of a 

detailed FMBS vehicle model defined in SIMPACK and a Simulink model of the 

controllers and of the semi-active dampers. First, one-at-time modal control is implemented 

showing the benefits of controlling different components of motion in the vehicle. This 

analysis shows that car-body vibration in the high frequency range can be mitigated not 

only by directly controlling the bending mode of the car-body, but also through the control 

of bogie vibration, either bogie pitch or bogie bounce depending on the specific resonance 

of the car-body caused by the combination of vehicle speed and dominant wavelength of 

track irregularity. These results suggest that simpler control strategies, such as modal 

skyhook applied to bogie bounce and bogie pitch could also be effective towards improving 

ride quality in a wide range of running speeds and could be implemented using a reduced 

set of sensors and a simpler controller compared to model-based controllers. 

Then, two multi-mode LQG controller are proposed which combine the benefits of different 

one-at-a-time ones and therefore allow to reduce car-body vibration in the entire frequency 

range of interest up to 20Hz.  

Further developments of this work are envisaged to consider the effect of the controllable 

damper dynamics, in particular considering magneto-rheological damper as a suitable 

technology for this application, requiring a large pass-band of the semi-active dampers. 

Furthermore, improved control strategies for this application could be investigated, 

introducing gain scheduling to consider the fact that different modes of the vehicle are 

excited at different running speeds, and designing a robust controller like 𝐻∞ which is the 

best suited to cope with parameter uncertainty affecting the railway vehicle in real service.  
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Appendix 1  

Table A.1 parameters of the vehicle model 

Symbol Explanation  Value 

𝑀𝑐 Mass of car-body  40 [t] 

𝐽𝑐 Inertia of car-body 2 × 106 [kg∙ 𝑚2] 

𝑀𝑡 Mass of bogie 3000 [kg] 

 
𝐽𝑡 Inertia of bogie 2000 [kg∙ 𝑚2] 

𝐶𝑠𝑧 Equivalent vertical damping of secondary suspension 2 × 45 [kNs/m] 

𝐾𝑠𝑧 Equivalent vertical stiffness of secondary suspension 2 ×0.6 [MN/m] 

𝐶𝑒𝑑 Equivalent longitudinal damping of yaw dampers 2 × 500 [kNs/m] 

𝐾𝑒𝑑 Equivalent longitudinal stiffness of yaw dampers 2 × 8 [MN/m] 

𝐾𝑡 Stiffness of traction link  8   [MN/m] 

𝐶𝑝𝑧 Equivalent vertical damping of primary suspension (in passive mode) 2 × 10 [kNs/m] 

𝐾𝑝𝑧 Equivalent vertical stiffness of primary suspension 2 × 1.3  [MN/m] 

𝐻𝑏 Height of bogie centre of gravity  0.65 [m] 

𝐻𝑐𝑔 Height of car-body centre of gravity 1.85 [m] 

𝐻𝑐𝑏 Height of car-body first bending neutral layer  1.6 [m] 

𝐿𝑐 Car-body length 25 [m] 

𝐿𝑡 Half distance between two bogie centres 8.9 [m] 

𝐿𝑤 Half distance of wheelbase 1.25 [m] 

𝐻𝑡 Height of traction link  0.35 [m] 

𝐻𝑦 Height of yaw damper 0.4 [m] 

𝐿1,𝐿2 Distance from car-body rear end to front/rear bogie centre 21.4/3.6 [m] 

𝐿𝑦1,𝐿𝑦2 Distance from car-body rear end to the front/rear yaw damper  20.86/4.14 [m] 

𝐿𝑡1,𝐿𝑡2 Distance from car-body rear end to the front/rear traction link 21.2/3.8 [m] 

 

 

 

 

 

 

 

 

 


