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Abstract: In this paper, an adaptive remaining useful life prediction model is proposed for electric
vehicle lithium batteries. Capacity degradation of the electric car lithium batteries is modeled by the
multi-fractal Weibull motion. The varying degree of long-range dependence and the 1/f character-
istics in the frequency domain are also analyzed. The age and state-dependent degradation model
is derived, with the associated adaptive drift and diffusion coefficients. The adaptive mechanism
considers the quantitative relations between the drift and diffusion coefficients. The unit-to-unit
variability is considered a random variable. To facilitate the application, the convergence of the RUL
prediction model is proved. Replacement of the lithium battery in the electric car is recommended
according to the remaining useful life prediction results. The effectiveness of the proposed model is
shown in the case study.

Keywords: electric vehicle lithium battery; remaining useful life; multi-fractal Weibull motion;
long-range dependence; 1/f noise; age and state-dependent adaptive model

1. Introduction
1.1. Research Background

Recently, electric cars powered by lithium batteries are attracting more and more
interest from consumers [1]. The schematic structure of the lithium batteries used in the
electric vehicle is in Figure 1 [2]. The main components of lithium batteries are the negative
electrode, positive electrode, separator and packeting. The electric energy and the chemical
energy convert with each other in the charging and discharging process.

In the charging stage of the battery cycle, the electric car is plugged into the power
system to absorb electricity as a kind of single-phase load [3]. In the discharging stage,
the electricity is discharged from the battery to power the electric motor [4]. A typical
relationship between the lithium battery capacity and the voltage is presented in Figure 2
with respect to a single cycle of charge–discharge [5]. At the beginning and at the end, the
voltage fluctuates heavily for both the charging and discharging stages. When the voltage
is in the steady phase, the electric car is functioning in the desired way.

1.2. Significance of the Research

The charging of electric cars exposes people to risks and can impact the reliability of
the power system. Figure 3 presents a series of screenshots of an electric vehicle charging
station [6]. The charging accident may cause the burndown of the whole station.
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The main cause of dangerous accidents during the electric car charging stage is the
aging and failure of the lithium battery [7]. The degradation of the lithium battery can
cause thermal runaway, short circuits, and even an explosion of the plugged-in electric
car. The thermal and mechanical stresses during the charging stage result in degradation
and damage to the materials of the anode and cathode. The growth of Li dendrite in the
anode during the charging process can compromise the insulation of the battery. The sharp
metallic lithium can penetrate the insulation and cause a devastating short circuit.
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An effective way to control such risk is preventive battery replacement. The over-aged
and risk-exposed lithium batteries need to be replaced before the accident occurs. To
this aim, data collected from the embedded sensors are used to predict the probability
density function (pdf) of the remaining useful life (RUL) [8,9]. Based on the RUL prediction
results of the lithium battery, the driver of the electric car can be recommended to replace
the battery [10]. It is commonly accepted that the battery should be replaced when the
impedance doubles and the capacity decreases to 80% of the rated value [11]. Therefore,
we can consider the capacity and the impedance as the health indicator (HI) for the lithium
battery in the RUL prediction process.

1.3. Literature Review

Methods for RUL prediction of Lithium batteries can be divided into two main cate-
gories: model-based and data-driven approaches. The model-based approaches are based
on the physical and electrochemical theory of the lithium battery. The simulation of the
degradation evolution may not be accurate because of the complexity and nonlinearity
of the process. To overcome this, the error correction procedure is applied in [12]. The
data-driven approaches extract the degradation information from historical aging data
and predict the future degradation evolution with artificial intelligence algorithms and
stochastic processes. It should be noted that the data-driven RUL prediction model follows
the assumption that the training data and the test data are similar in distribution [13].

Support vector regression and classification are combined in an RUL prediction al-
gorithm for the lithium battery: the classification model provides a gross estimation of
the degradation trend, and the regression model is then used to accurately predict the
RUL when the battery is close to the end of life (EOL) [14]. Fuzzy information granula-
tion and linguistic description are applied to address some limitations of RUL prediction
methods for lithium batteries [15]. Ref [16] proposes a flexible and effective online training
strategy by relevance vector machine for incremental optimization to enhance prediction
ability. An RUL prediction method for lithium batteries is proposed based on Gaussian
mixture regression and an auto-encoder [17]. A novel multi-hierarchy network based on
multi-ordered neurons, namely, cocktail long short-term memory network (C-LSTM), is
proposed for the RUL prediction of the mechanical parts [18]. In [19], data of high quality
are generated by convolutional recurrent generative adversary networks to compensate
for the shortage of data. Considering the parallel integration of the spatial and temporal
features, ref [20] proposes a parallel hybrid neural network for the RUL prediction based
on multi-sensor data. In engineering application, acquiring sufficient data may be difficult.
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For the cross-domain condition of the RUL prediction, a variational local weighted deep
sub-domain adaptation network is proposed [21].

RUL prediction models based on the stochastic processes are formulated as the sum
of a drift term and a diffusion term [22]. The drift term contains a drift function and a
drift coefficient. The drift function is usually nonlinear and describes the degradation rate.
The drift coefficient describes the dispersion of the drift function. The diffusion term is
driven by the stochastic process to characterize the temporal variability. The stochastic
processes have different assumptions on the data distributions. The Weibull distribution,
Gamma distribution, log-normal distribution and exponential distribution are often used
in RUL prediction [23]. In this paper, we take the Weibull distribution to model the data
distribution for its better-fitting results.

The Brownian motion is suitable to describe the non-monotonous degradation pro-
cess [24]. However, the Brownian motion is Markovian, whereas the degradation data
often show non-Markovian characteristics, e.g., the capacity data of the lithium battery
possesses long-range dependence [25]. Long-range dependence means that the present
value is influenced by the previous values of the time series. The process and time series are
long-range dependent if the Hurst exponent takes value in (0.5, 1). The stochastic process
with long-range dependence is also a 1/f noise in the frequency domain [26]. Combined
with the Karman filter and the expectation maximation algorithm, the strong Markovian
characteristics of Brownian motion can be improved [27]. To track the dynamics and multi-
source variability of a degradation process together, a general time-varying Wiener process
(GTWP) is proposed in [28]. Ref. [29] proposes a nonlinear degradation model based on
fractional Brownian motion with dynamic properties (FBM-D) to feature the long-range
dependence of the lithium battery degradation data.

1.4. Recent Progress about the RUL Prediction Based on Random Process

The multifractional Brownian motion is derived by changing the constant Hurst
exponent in the FBM into a variable function [30]. The linear multifractional Lévy stable
motion is utilized to derive a RUL prediction method in [31]. The Hurst exponent in
the model varies. The purpose of the generalization is that the fractal properties in the
degradation change with varying operation conditions.

Currently, the nonlinear drift functions in the degradation models are mostly age
dependent. However, in practical systems, the deteriorating rate changes according to the
degradation status [32]. In [33], a degradation model depending on both age and state
are proposed, with unit-to-unit variability. The unit-to-unit variability is defined as the
change of degradation rates in the different health states, and it is expressed by a random
coefficient in the nonlinear degradation model.

The degradation rate of the lithium battery is constantly changing in the different
degradation modes [34]. Therefore, the drift function should be able to change constantly
based on historical information. Ref. [35] describes the adaptation of the drift term with the
evolution of random walk, which implies that the degradation rate is usually increasing.
Evidence shows that the noise variable can adaptively alleviate the difficulty of the data-
driven approach caused by the difference in data distributions.

Previous adaptive prediction models only consider the adaptation of the drift coeffi-
cient and assume the diffusion coefficient to be constant, which is not realistic. When the
degradation is fast, the temporal variation is also strong. Ref. [36] proposes a degradation
model in which the diffusion coefficient and drift coefficient are linearly correlated. The
experiment results also confirm the linear correlation theory. The proportional relationship
is derived based on the acceleration factor constant principle [37]. The acceleration factor is
used to calculate the RUL in stressed conditions based on the RUL in normal conditions.
Considering their quantitative relationship, both the drift and diffusion coefficients are
adaptive with the random walk-in Ref. [38].
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1.5. Contributions and Structure of the Article

The properties of the multi-fractal Weibull motion (mfWm) are analyzed, e.g., long-
range dependence and 1/f characteristics. With varying Hurst exponent, the mfWm can
express the varying degree of long-range dependence in the actual degradation.

An age and state-dependent degradation model is presented in the paper. The random
coefficient in the drift function accounts for the unit-to-unit variability. The nonlinearity of
the degradation is fitted with the power function. The linear relationship between the drift
and diffusion coefficients is considered so that both coefficients can be adaptively updated.
The adaptive RUL prediction method is then derived with the convergence proven.

The rest of the paper is arranged as follows. Section 2 provides proof of long-range
dependence and 1/f characteristics for the mfWm. In Section 3, the age and state-dependent
degradation model is derived. The adaptive mechanism for both the drift and diffusion
coefficients is proposed. In the case study, the RUL prediction for the lithium battery is
provided. The works of the paper are summarized in the conclusion.

2. Long Range Dependence and 1/f Characteristics of the mfWm
2.1. Definition of the mfWm

The pdf of the Weibull distribution is:

f (x|λ, k) =
k
λ
(

x
λ
)

k−1
exp

{
−( x

λ
)

k
}

, x ≥ 0, (1)

where λ is the scaling parameter and k is the shape parameter.
The mfWm is derived with the Riemann-Liouville integral. In the mfWm, the Hurst

exponent H is replaced by the random variable Hv:

m f Wm(t) =
1

Γ(Hv + 0.5)

t∫
0

(t− u)Hv−0.5dW p(u), (2)

where Hv ∼ U(0.5, 1) and W p is the white Weibull noise.
Defining a function ϕ(t), the mfWm can be viewed as a convolution operation:

ϕ(t) =
tHv−0.5

Γ(Hv + 0.5)
, (3)

m f Wm(t) =
t∫

0

(t−u)Hv−0.5

Γ(Hv+0.5)
dW p(u)

du du

= dW p(t)
dt ∗ tHv−0.5

Γ(Hv+0.5) ,

= dW p(t)
dt ∗ ϕ(t),

(4)

where Hv is the Hurst variable and Γ is the Gamma function.
Therefore, the mfWm can be considered the output of a linear system. The input

signal is the derivative of the white Weibull noise, and the impulse response is ϕ(t). The
exemplary trajectory of the mfWm is plotted in Figure 4. The augmented Dickey–Fuller test
proves that the mfWm is a stationary stochastic process [39]. The mean and variance of the
mfWm can be calculated, which means that the mfWm is also a wide stationary stochastic
process [40].
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2.2. The mfWm Is a Long Range Dependent 1/f Noise

The integration of the autocorrelation function for the long-range dependent time
series is divergent:

∞∫
0

autoC(τ)dτ = ∞, (5)

where autoC(τ) is the autocorrelation function and τ is the time delay.
The reason for the divergence is that the autocorrelation function is decaying in power

law, which implies that the autocorrelation is strong for long time delays:

autoC(τ) ∼ τ−β, (6)

where β is positive and represents the decaying rate.
The power spectrum density (PSD) is the Fourier transformation of the autocorrelation

function for a wide stationary stochastic process according to the Venasinchin theorem [41]:

PSD( f ) = Fourier(autoC(τ))

=
∞∫
0

autoC(τ) exp(−2π j f τ)dτ, (7)

where f is the frequency and j is the imaginary unit.
The stochastic process is 1/f noise if the PSD follows the power law decay:

PSD( f ) ∝
1
f α

, (8)

where α ∈ (0, 2) determines the decaying rate.
The long-range dependence in the time domain is equivalent to the 1/f characteristics

in the frequency domain:

lim
f→0

PSD( f ) =
∞∫
0

autoC(τ)dτ

∝ lim
f→0

1
f α = ∞.

(9)

In this section, the mfWm is proven to be a long-range dependent 1/f noise.
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Theorem 1. The mfWm is a long-range dependent 1/f noise.

Proof of Theorem 1. We can rewrite the definition of the mfWm as Equation (10):

m f Wm(t) =
∞∫

0

(t− u)Hv−0.5

Γ(Hv + 0.5)
dW p(u)

du
U(t− u)du, (10)

where U(t− u) =
{

1, u < t
0, u > t

.

According to the theory of linear systems, the following equations of input X(t) and
output Y(t) can be formulated with respect to the impulse response ϕ(t):

crossC(X(t1), Y(t2)) = autoC(X(t1), X(t2)) ∗ ϕ(t2), (11)

autoC(Y(t1), Y(t2)) = crossC(X(t1), Y(t2)) ∗ ϕ(t1), (12)

where crossC(τ) is the cross-correlation function.
The autocorrelation function can be calculated with convolution. The autocorrelation

function of the white Weibull noise is the Dirac function, which is in Equation (13). Then the
autocorrelation for the derivative of the white Weibull noise can be calculated in Equation (14).

autoC(W p(τ)) = W p(τ) ∗W p(−τ) = δ(τ), (13)

autoC(
dW p(τ)

d(τ)
) =

dW p(τ)
d(τ)

∗ dW p(−τ)

d(−τ)
=

..
δ(τ), (14)

where δ(τ) is the Dirac function and
..
δ(τ) is the second derivative of the Dirac function.

Therefore, the cross correlation can be calculated:

crossC(X(t1), Y(t2)) =
∞∫
0

autoC(X(t1), X(s))ϕ(t2 − s)ds

=
∞∫
0

..
δ(t1 − s) (t2−s)Hv−0.5U(t2−s)

Γ(Hv+0.5) ds

=

[
(t2−s)Hv−0.5U(t2−s)

Γ(Hv+0.5)

]′′
s=t1

= (Hv−0.5)(Hv−1.5)U(t2−t1)
Γ(Hv+0.5) (t2 − t1)

Hv−2.5,

(15)

where Γ is the Gamma function, Hv is the Hurst variable and U is the step function.
The autocorrelation function of the mfWm is:

autoC(Y(t1), Y(t2)) =
∞∫
0

crossC(X(s), Y(t2))ϕ(t1 − s)ds

=
∞∫
0

U(t1−s)U(t2−s)(Hv−0.5)(Hv−1.5)
Γ2(Hv+0.5)

(t2 − s)Hv−2.5(t1 − s)Hv−0.5ds.
(16)

Define t = min(t1, t2) and then we can discuss the autocorrelation function in the
interval of (0, t):

autoC(t)= (Hv−0.5)(Hv−1.5)
Γ2(Hv+0.5)

t∫
0
(t− s)2Hv−3ds

t−s=x→ (Hv−0.5)(Hv−1.5)
Γ2(Hv+0.5)

t∫
0

x2Hv−3dx

= (Hv−0.5)(Hv−1.5)
Γ2(Hv+0.5)(2Hv−2)

t2Hv−2,

(17)

where 2Hv − 2 ∈ (−1, 0).
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When the time is within (0, t), the time delay τ is the same as the current time.
Therefore, we can rewrite Equation (17) as:

autoC(τ) =
(Hv − 0.5)(Hv − 1.5)

Γ2(Hv + 0.5)(2Hv − 2)
τ2Hv−2. (18)

The autocorrelation of the mfWm is decaying in the power law, and therefore it is
long-range dependent. The PSD of mfWm is the Fourier transform of the autocorrelation:

PSD( f ) = (Hv−0.5)(Hv−1.5)
Γ2(Hv+0.5)(2Hv−2)

∞∫
0

τ2Hv−2 exp{−2π j f τ}dτ

2π j f τ=x→ (Hv−0.5)(Hv−1.5)(−j)2Hv−1

Γ2(Hv+0.5)(2Hv−2)(2π f )2Hv−1

∞∫
0

x2Hv−2 exp{−x}dx

= (Hv−0.5)(Hv−1.5)Γ(2Hv−3)(−j)2Hv−1

Γ2(Hv+0.5)(2Hv−2)(2π f )2Hv−1

∼ 1
f 2Hv−1 ,

(19)

where 2Hv − 1 ∈ (0, 1).
Thus, we have proven that the mfWm is also a 1/f noise. In conclusion, the mfWm is

a long-range dependent 1/f noise. �

3. Age and State-Dependent Degradation Model with Adaptive Mechanism
3.1. Age and State-Dependent Drift Function

In the degradation model, the drift function is utilized to quantify the deteriorating
rate, which is the deterministic characteristic of the degradation. The selection of the drift
function is of great importance for the performance of the degradation model [42]. The
age-dependent degradation function can be chosen as the linear function, power function
and exponential function [43–45].

With different parameters, the power function can mimic the degradation trend of
the linear function and exponential function. Therefore, we choose the power function to
describe the temporal nonlinearity of the degradation.

The state also impacts the degradation; thus, the state should be included in the
drift function. The age and state-dependent degradation model proposed by the previous
literature [46]:

η(X(t), t, θ) = aX(t) + bctc−1, (20)

where c expresses the degradation speed. a and b are the impact factor of state and age
separately. The formulation of Equation (20) indicates that the impact of age and state to
the degradation are equally important to the degradation.

The aging state is constantly changing, which affects the degradation rate. Therefore,
the unit-to-unit variability needs to be considered. The parameter a ∼ N(µa, σa

2) is
constantly changing during the degradation process to express the unit-to-unit variability.
The parameters b and c are fixed, which features the general degradation speed with the
nonlinear power function.

Coefficients should be added to balance the effects of age and state, which sum to be
one. The improved age and state-dependent drift function is:

η(X(t), t, θ) = 0.5(aX(t) + bctc−1), (21)

where the balance coefficient 0.5 is chosen because the age and state are equally important
to the degradation.
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3.2. Adaptive Updates of the Degradation Model

The degradation model is presented below in Equation (22), and the mfWm serves as
the temporal variability in the diffusion term of the degradation model:

X(t) = X(0) + µ
t−1∫
0

η(X(s), s, θ)ds + σHm f Wm(t)

= X(0) + 0.5µ
t−1∫
0

(aX(s) + bcsc−1)ds + σHm f Wm(t)

= X(0) + 0.5µa
t−1∫
0

X(s)ds + 0.5µb(t− 1)c + σHm f Wm(t),

(22)

where σH is the diffusion coefficient and µ is the drift coefficient. The initial value of the
degradation model is zero.

Take the linear correlation between the drift and diffusion coefficients into consideration:

X(t) = X(0) + 0.5µa
t−1∫
0

X(s)ds + 0.5µb(t− 1)c + κµm f Wm(t), (23)

where κ ∼ N(µκ , σκ
2).

The increment between two adjacent time points is calculated as:

∆X(t− 1) = X(t)− X(t− 1)

= 0.5µa
t−1∫

t−2
X(s)ds + 0.5µb∆(tc)+κµm f Wm(∆t), (24)

where ∆(tc) = (t− 1)c − (t− 2)c and m f Wm(∆t) = m f Wm(t)−m f Wm(t− 1).
The drift coefficient controls the dispersion of the degradation rate measured with the

drift function. Considering the stochasticity of the degradation, the drift coefficient needs
to be adaptively updated. The diffusion coefficient can also be updated due to the linear
correlation. The adaptive mechanism is:


µ(t) = µ(t− 1) + ε(t),

σH(t) = κµ(t),

X(t) = X(t− 1) + 0.5µ(t− 1)a
t−1∫

t−2
X(s)ds + 0.5µ(t− 1)b∆(tc) + σH(t− 1)m f Wm(∆t),

t ∈ 1, 2, . . . (25)

where ε(t) ∼ N(0, σµ
2) and µ(0) = 1.

The drift coefficient in Equation (25) is considered to be a time-dependent function. The
evolution is based on the random walk, which provides stochasticity to the degradation
speed. The purpose is to improve the robustness of the model when the future degradation
trend is significantly different from the historical data. The drift coefficient can adjust the
degradation model to future changes with dispersion. With the adaptation of the random
walk, the robust effect of the degradation model becomes stronger. At the beginning of the
evolution, the degradation speed is the same as the drift function derived from historical
knowledge. Therefore, the initial value of the drift coefficient is one. The mean of the Gaussian
white noise is zero to provide an asymmetric dispersion opportunity for the drift function.

3.3. Analysis of the Degradation Model for Lithium Batteries Powering the Electric Motor

The proposed degradation model is adaptive in two aspects. First, the degree of
long-range dependence in the degradation model changes frequently due to the multi-
fractal characteristics of the mfWm. This is different from previous degradation models
considering the fractional stochastic process with the uniform Hurst exponent, which con-
tradicts reality. Indeed, the fractal properties of the degradation process change frequently
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with the varying operation conditions. The RUL prediction model based on the mfWm
is, instead, adaptive to the varying statistical properties of the degradation. Second, the
drift and diffusion coefficients are adaptive to the change of modes within the degradation
process, which means that the degradation rate and the variational speed vary during the
degradation process.

An electric motor converts electrical energy into mechanical energy in the normal
rotation and otherwise in the sudden brake. This energy exchange between the battery
and electric motor contributes to a stronger recovery effect compared with other kinds
of electric load [47]. The recovery effect should be considered in the RUL prediction of
lithium batteries for the electric vehicle [48]. The degradation rate and the variational
speed in the normal discharging mode and the regenerative braking mode are different.
Therefore, adaptive updates for the drift coefficient and diffusion coefficient are proposed.
The operation condition for the electric motor in the electric car is quite complex, e.g., the
motor stall, compared with other kinds of electrical load [49]. The fractal characteristics of
the degradation data are changing constantly due to the varying operation condition. In
summary, the impact of age and state should not be ignored for the lithium battery powering
the electric motor. Thus, the age and state-dependent drift function is selected for this work.

3.4. Parameter Estimation

The capacity degradation data is decreasing with the initial value to be the maximum.
With the data preprocessing technique, the degradation trend can be transformed to be
increasing with the initial value to be zero.

The parameters of the mfWm are estimated based on the maximum likelihood estima-
tion. The logarithmic maximum likelihood function is written as:

ln L(x|λ, k) = n ln(
k
λ
) + n(k− 1) ln(

1
λ
) + (k− 1)

n

∑
i=1

ln xi − (
1
λ
)

k n

∑
i=1

xk
i . (26)

The estimates for the shape parameter and scaling parameter can be obtained by solving
Equations (27) and (28) numerically.

∂ ln L(x|λ, k)
∂λ

= (
−n
λ

)− n(k− 1)(
1
λ
) + k

n

∑
i=1

xk
i (

1
λ
)

k+1
= 0, (27)

∂ ln L(x|λ, k)
∂k

= n(
1
k
) + n ln(

1
λ
) +

n

∑
i=1

ln xi −
[
(

1
λ
)

k n

∑
i=1

xk
i ln xi

]
− [

n

∑
i=1

xk
i (

1
λ
)

k
ln(

1
λ
)] = 0. (28)

The parameter a connects the degradation states with the degradation speed. Defining the
variable X∆(t):

X∆(t) =

.
X(t)
X(t)

, (29)

the mean and variance of a are estimated from X∆(t).
The parameters b and c are estimated based on the fitting of the power function for

the degradation trend.
The drift coefficient controls the dispersion of the degradation rate. Therefore, the

variance for the updating random walk is estimated from the historical degradation rate.
The diffusion coefficient controls the changing rate of the degradation speed. The parameter
κ connects the degradation speed and the changing rate. Defining another variable Xκ(t):

Xκ(t) =

..
X(t)
.

X(t)
, (30)

the mean and variance of κ are estimated from Xκ(t).
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4. Adaptive RUL Prediction Model on the Basis of the Degradation Model
4.1. Adaptive RUL Prediction Algorithm Based on the mfWm

The RUL is defined with respect to the first arrival time of the HI to the predetermined
threshold. Denoting HI as X(t) to represent the degradation, the mathematical expression
of the RUL can be formulated as follows:

L(t) = inf{t : X(t + 1) ≥ ω|X(t) < ω}, (31)

where w is the positive failure threshold (FT).
The flow chart of the age and state-dependent degradation model with adaptive

mechanism is depicted in Figure 5. The linear relationship between the drift coefficient and
the diffusion coefficient is applied in the age and state-dependent degradation model. In
the iteration, the mfWm is utilized to model the stochasticity of the degradation, and both
the coefficients are continuously updated. When the degradation of HI first exceeds the FT,
the lithium battery is considered to have reached its EOL. The degradation of HI contains
stochasticity and uncertainty. Therefore, the point prediction is not the objective of the RUL
prediction. Given a large amount of EOL predictions, the pdf of the RUL can be calculated
by the Monte Carlo algorithm and the RUL with highest probability can be taken as the
point prediction.
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4.2. Convergence of the RUL Prediction Model

Theorem 2. The RUL prediction model based on mfWm is convergent.

Proof of Theorem 2. The values of the updated Gaussian noise are equally scattered around
the origin. Therefore, the sum of the Gaussian white noise equals zero in the infinite time
range.

The limitation of the drift coefficient is:

lim
t→∞

µ(t)

= lim
t→∞

(1 +
i=t
∑

i=1
ε(t)),

= 1,

(32)

where ε(t) ∼ N(0, σµ).
The degradation model is:

X(t) = 0.5µ(t)
t−1∫
0

a(s)X(s)ds + 0.5µ(t)b(t− 1)c + κ(t)µ(t)m f Wm(t). (33)
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The limitation for the degradation model is:

lim
t→∞

X(t) = lim
t→∞

0.5µ(t)
t−1∫
0

a(s)X(s)ds + lim
t→∞

0.5µ(t)b(t− 1)c + lim
t→∞

κ(t)µ(t)m f Wm(t)

= lim
t→∞

0.5µ(t)
t−1∫
0

.
X(s)ds + lim

t→∞
0.5µ(t)b(t− 1)c + lim

t→∞
κ(t)µ(t)m f Wm(t)

= lim
t→∞

0.5X(t− 1) + lim
t→∞

0.5b(t− 1)c + lim
t→∞

κ(t)m f Wm(t)

.

(34)
Assuming lim

t→∞
X(t) = lim

t→∞
X(t− 1) = S :

S = lim
t→∞

b(t− 1)c + 2 ∗ κ(∞)m f Wm(∞)

= ∞
. (35)

Given a positive threshold ω, Equation (36) will converge to a positive integer:

L(t) = inf{t : X(t + 1) ≥ ω|X(t) < ω}. (36)

Thus, we have proven that the RUL prediction model is convergent. �

5. Case Study
5.1. Lifetime Characteristics of the Lithium Battery in an Electric Vehicle

The lithium battery dataset here is a joint work of the Massachusetts Institute of
Technology, Stanford and Toyota research center and has been updated on 16 June 2021 [50].
The data come from commercial lithium batteries for electric vehicles cycled under fast-
charging conditions. These batteries have a nominal capacity of 1.1 Ah. The HI is the
capacity, and the EOL is the cycle in which the capacity degrades to under 80% of the
nominal capacity. All the batteries are tested in a 48-channel Arbin laboratory battery
testing cycler, which is positioned in a forced convection temperature chamber with a
steady temperature of 30 ◦C.

We utilize all the available lithium battery data in the Arbin cycler to demonstrate
the lifetime characteristics. The lifetime values and electricity consumptions of the lithium
batteries are plotted in Figure 6, which shows a clear linear relationship. Therefore, we can
estimate the total electricity consumption of the electric car based on the RUL prediction,
which provides a qualitative method to measure the impact of charging on the power
grid. The expected mileage before the battery failure can be approximated based on the
electricity consumption. The driver will be informed with the milage estimation for the
replacement of the lithium battery before the fatal electric failure.
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5.2. Lithium Battery Capacity Dataset for the Validation

In the case study, the lithium battery of channel 36 is used. The augmented Dickey–
Fuller test is performed, and the results show the training set is stationary. As we can see
from Figure 7, the battery capacity drops significantly in the first several cycles. After a long
period of slow degradation, the capacity drops at high speeds because of the accumulated
thermal and mechanical stresses. The red dotted line is the predefined FT. When the
capacity of the lithium battery crosses the threshold, the battery is prone to fail and, thus,
requires replacement for the safety of people and the reliability of the power system.
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Figure 7. Capacity degradation of the lithium battery in channel 36.

Gamma distribution, exponential distribution, log-normal distribution and the Weibull
distribution are the common options for the modeling of HI. Here, we select two criteria
to evaluate the fitting results: determination coefficient R2 and chi-square coefficient χ2: a
higher value of R2 and a lower value of χ2 indicate better fitting results [51]. The formulas
to compute them are given in Equations (37) and (38) below:

R2 = 1−

N
∑

i=1
(ci − fi)

2

N
∑

i=1
(ci − c)2

, (37)

χ2 =
n

∑
i=1

(ci − fi)
2

fi
, (38)

where ci and fi are the ith value of the capacity density function and of the fitted function.
c is the mean value of the capacity density function.

The results of R2 and χ2 for the statistical fittings are summarized in Table 1. As we
see in Table 1, the fitting performance for the Weibull distribution is the best among the four
distributions considered. Therefore, we chose the Weibull distribution as the fitting distribution.

Table 1. Deterministic coefficients and chi-square values of the statistical fitting.

Weibull Gamma Exponential Log-Normal

R2 0.6102 0.2375 0 0.25
χ2 993 1283 10351 1811
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5.3. Fluctuation of the Hurst Exponent in the Capacity Degradation Data

The Hurst exponent is used to characterize the long-range dependence of the stochastic
series. The degradation data are stationary; thus, we choose the rescaled range algorithm [52].
We calculate the Hurst exponents every 100 cycles and plot the fluctuation in Figure 8. As we
see in Figure 8, the Hurst exponents of the time series are fluctuating in the range of (0.5, 1),
due to different operation conditions. Therefore, the capacity data possesses varying degrees of
long-range dependence.
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In this paper, we use a uniform variable Hv instead of a constant H to define the
mfWm. The degree of long-range dependence in the degradation model changes during
the iteration, which enables the model to be adaptive to the varying operation conditions
in the lithium battery degradation.

5.4. 1/f Characteristics in the Frequency Domain of the Lithium Battery

The PSD of the lithium battery is plotted in Figure 9. The decaying rate of the PSD
corresponds to a power law, which indicates that the capacity degradation is a 1/f noise in
the frequency domain.
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The definition of the 1/f noise leads to Equations (39) and (40) below:

PSD = k
1
f α

, (39)

10lgPSD = 10lg(k 1
f α )

= 10lgk− α10lg f ,
(40)

where α ∈ (0, 2).
The value of α can be calculated through logarithmic linear regression. In Figure 10,

the parameter α is calculated to be 0.9607, which coincides with the 1/f characteristics of
the mfWm. This means that the mfWm is suitable to model the degradation process of the
battery capacity dataset.
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5.5. Performance Evaluation of the mfWm Predictive Model

The RUL prediction based on mfWm is depicted in Figure 11. For comparison, the
prediction results of other algorithms are summarized in Figure 12. The point prediction
is the mode of the RUL prediction results. In Table 2, the maximum, mean and standard
deviation (std) of the relative error are provided, as well as the mean absolute error (MAE).
The prediction errors for the GTWP and FBM-D are higher because they cannot express the
varying degree of long-range dependence of the battery degradation. As we can see, the
dispersion of the pdf is much larger for the C-LSTM method, which is mainly caused by
the insufficiency of the training data.
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Table 2. Statistical metrics of the predictive error.

Maximum Mean Std MAE

mfWm 0.0349 0.0246 0.0107 20.5
GTWP 0.0541 0.0310 0.0249 30.4
FBM-D 0.0509 0.0292 0.0238 27.6

C-LSTM 0.0434 0.0250 0.0176 22.8

6. Conclusions

In this work, the mfWm is employed for the adaptive RUL prediction model of electric
vehicle lithium batteries. The mfWm is suitable to describe the varying degree of long-
range dependence of the battery degradation, which is caused by the change of operation
conditions. The 1/f characteristics of the mfWm coincide with the lithium batteries in the
frequency domain. As the mode of degradation shifts, the degradation rate and variational
speed are continuously changing. Thus, the age and state-dependent degradation model
based on mfWm updates the drift and diffusion coefficients on each iteration step. On the
basis of the degradation model, the adaptive RUL prediction model is proposed for the
electric vehicle lithium batteries with convergence.

The drift function in this work is age and state-dependent, which is more general than the
time-dependent drift function. However, the drift function can be improved. Our future work
will apply more advanced drift functions to the RUL prediction of the rotary machinery.
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pdf probability density function
HI health indicator
EOL end of life
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