
Journal of Parallel and Distributed Computing 186 (2024) 104819

Contents lists available at ScienceDirect

Journal of Parallel and Distributed Computing

journal homepage: www.elsevier.com/locate/jpdc

GPU-optimized approaches to molecular docking-based virtual screening in 

drug discovery: A comparative analysis

Emanuele Vitali a,c, Federico Ficarelli b, Mauro Bisson e, Davide Gadioli c,∗, Gianmarco Accordi c, 
Massimiliano Fatica e, Andrea R. Beccari d, Gianluca Palermo c

a CSC - IT Center for Science, Espoo, Finland
b Dipartimento di Ingegneria dell’Energia Elettrica e dell’Informazione - Università di Bologna, Bologna, Italy
c Dipartimento di Elettronica, Informazione e Bioingegneria - Politecnico di Milano, Milano, Italy
d Dompé Farmaceutici S.p.A, Napoli, Italy
e NVIDIA Corp., Santa Clara, USA

A R T I C L E I N F O A B S T R A C T

Keywords:

High Performance Computing

High throughput virtual screening

GPU acceleration

CUDA

Batch

Finding a novel drug is a very long and complex procedure. Using computer simulations, it is possible to 
accelerate the preliminary phases by performing a virtual screening that filters a large set of drug candidates to a 
manageable number. This paper presents the implementations and comparative analysis of two GPU-optimized

implementations of a virtual screening algorithm targeting novel GPU architectures. This work focuses on the 
analysis of parallel computation patterns and their mapping onto the target architecture. The first method adopts 
a traditional approach that spreads the computation for a single molecule across the entire GPU. The second uses 
a novel batched approach that exploits the parallel architecture of the GPU to evaluate more molecules in 
parallel. Experimental results showed a different behavior depending on the size of the database to be screened, 
either reaching a performance plateau sooner or having a more extended initial transient period to achieve a 
higher throughput (up to 5x), which is more suitable for extreme-scale virtual screening campaigns.
1. Introduction

Drug discovery is a long and costly process that aims at finding 
new drugs. Typically, this process involves several in silico, in vitro

tasks (ranging from chemical design to toxicity analysis), and in vivo

experiments. Virtual screening is one of these tasks, which has to be 
performed at the beginning of the drug discovery process in the ex-

ploratory research phase. This task aims at reducing the number of 
candidate drugs from billions of molecules to a number that can be 
managed with costly chemical experiments. Molecular docking repre-

sents but one stage of this step [2,19]. It aims to estimate a given 
molecule’s three-dimensional pose, the ligand, when it interacts with 
the target protein. Since the ligand is much smaller than a protein in 
terms of the number of atoms, the first task is to identify one or more 
regions of the protein where we would like to place the ligand (dock-

ing site). The molecular docking algorithm positions the ligand inside 
the docking site in the most suitable place. The algorithm must perform 

* Corresponding author.

translation and rotation operations on the target ligand. This flexibility 
changes the geometric shape of the molecule, producing different poses, 
but does not alter its chemical and physical properties. Furthermore, it 
is possible to identify a subset of bonds – named rotamers or rotatable 
bonds – that split the ligand into two disjoint fragments when they are 
removed. These rotamers can be rotated without changing the chemical 
properties of the ligand. Therefore, the algorithm must also consider the 
different shapes of the ligand that can be generated from the rotation of 
all its rotamers.

An efficient implementation of the virtual screening phase has two 
positive effects. On one hand, it reduces the time to wait for the screen-

ing phase. On the other hand, it permits the enlargement of the input 
chemical space, thus increasing the number of molecules to be evalu-

ated. While these benefits are clear, they become even more apparent 
when a pandemic breaks out, as was the case with the recent COVID-

19 pandemic. Indeed, when the pandemic started, several efforts have 
been made to find a therapeutic cure for the SARS-CoV-2 infection. 
Available online 19 December 2023
0743-7315/© 2023 The Author(s). Published by Elsevier Inc. This is an open access

E-mail address: davide.gadioli@polimi.it (D. Gadioli).

https://doi.org/10.1016/j.jpdc.2023.104819

Received 3 August 2023; Received in revised form 6 December 2023; Accepted 12 D
article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

ecember 2023

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jpdc
mailto:davide.gadioli@polimi.it
https://doi.org/10.1016/j.jpdc.2023.104819
https://doi.org/10.1016/j.jpdc.2023.104819
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2023.104819&domain=pdf
http://creativecommons.org/licenses/by/4.0/


E. Vitali, F. Ficarelli, M. Bisson et al.

Example in this direction are the COVID-19 HPC Consortium,1 the EXS-

CALATE4CoV project,2 and the current LIGATE project.3 The workload 
in the case of screening a large set of molecules is embarrassingly par-

allel since each ligand-protein pair can be processed in parallel to the 
others. This makes the use of large supercomputer infrastructure the 
most suitable target [27,43] for urgent computation in the case of a 
pandemic, given the possibility to have a simple data splitting across 
the nodes with lighter synchronization for I/O accesses [22,40]. Simi-

lar thoughts can be done when considering resources within the node. 
In particular, current supercomputers are mainly accelerated with mul-

tiple GPU cards, and the workload can be further split for each card.

In this paper, we analyze two different GPU implementations of a 
high-throughput in silico virtual screening application, LiGen [1], to 
compare their behaviors given the different parallelization strategies. 
Despite the experimental results being related to the specific code im-

plementation, within the paper, we focus more on analyzing the parallel 
computation patterns and their mapping on the target architectures. 
Both of these implementations target NVIDIA GPU and are written in 
CUDA. However, they have an orthogonal approach where the first im-

plementation is a synchronous, latency-oriented one, while the second 
is an asynchronous implementation that uses a batched approach. In 
the first implementation, called latency implementation from now on, we 
exploit the GPU parallelism to shorten the computation time required 
to dock a single ligand by evaluating the different poses and differ-

ent atoms in parallel. This is the classic approach for the acceleration of 
molecular docking applications, used in AutoDock [33], and in previous 
versions of LiGen [48]. In the second implementation, we approach the 
problem of parallelizing the computation from a different perspective: 
we exploit the GPU parallelism to evaluate several ligands in parallel, 
and a single warp of threads always evaluates a single ligand. The warp 
is a collection of threads, 32 in current implementations, that are exe-

cuted simultaneously by a Streaming Multiprocessor, SM; therefore, this 
is considered the basic unit of execution on a GPU. For this reason, we 
will define this version as batched implementation.

The contributions of this work are:

• comparison between the latency and batch virtual screening imple-

mentation for drug discovery;

• demonstrates that while the latency version is the best solution for 
small-scale experiments, the batched version widely outperforms 
the other version for extreme-scale virtual screening campaigns;

• The batch approach performance benefits by rearranging the input 
data using architecture, kernel, and input features.

Although the analysis has been carried out on a single GPU, it can be 
generalized on a multi-GPU case since both implementations scale al-

most ideally in a virtual screening scenario. Multi-node optimizations 
are orthogonal to the current work and are widely described in a previ-

ous work [12]. The remainder of the document is organized as follows: 
Section 2 briefly describes the state of the art in the field and related 
approaches applied to virtual screening. Section 3 describes the target 
application and the two different implementations under analysis. Sec-

tion 4 reports the experimental results obtained by the two implemen-

tations, highlighting the performance characteristics and limitations, 
together with a deep profiling analysis on the use of the resources. Fi-

nally, Section 5 concludes the paper.

2. State of the art

High throughput virtual screening has been widely applied in recent 
years during the early stage of drug discovery. Indeed, this helped find 

1 https://covid19 -hpc -consortium .org/.
2 https://www .exscalate4cov .eu/.
2

3 https://www .ligateproject .eu/.
Journal of Parallel and Distributed Computing 186 (2024) 104819

some novel drugs [3,21,34]. Several steps are required to perform a vir-

tual screening campaign [13]; however, we will focus on the molecular 
docking step in this work.

Many pieces of software have been created during the latest years 
to this end, both open sources [6,26] and commercial [10,35]. There 
are two main approaches to the molecular docking step: the first is 
a deterministic approach, while the second favors a random-based ap-

proach. Random-based approaches use well-known techniques to create 
different poses of a ligand and measure their interactions with the pro-

tein docking sites. Examples of these are MolDock [41] and Gold [16]

where genetic algorithms are used, or Glide [10], and MCDock [20]

where the technique used is Monte Carlo simulation. However, this ap-

proach has a significant drawback since its results may not be entirely 
reproducible. This drawback may be a blocking issue for some pharma-

ceutical companies that refuse to start the expensive in-vitro and in-vivo 
phases without a reproducible result. For this reason, sometimes a deter-

ministic approach is required. Examples of deterministic approaches are 
BIGGER [29], DOCK [6], LiGen [1], and Flexx [35]. These approaches 
use deterministic algorithms that can modify the shape of the ligands 
by leveraging their torsional bonds. Many molecular docking applica-

tions were born as single workstation applications; however, given the 
amount of complex elaboration that has to be performed, they quickly 
evolved into High-Performance Computing (HPC) applications. As we 
can see from this survey [5], different techniques were studied to im-

prove the capabilities of this software and scale them to HPC machines. 
There are prominent approaches, such as scaling with MPI [52], and 
more complex solutions, such as developing ad hoc scripts to wrap the 
main kernel and deploy it to different nodes with different data [51]. 
In recent years, we have seen the rise of heterogeneous clusters in HPC, 
where several GPUs are used as accelerators next to the CPU. For this 
reason, some of these molecular docking applications have been modi-

fied in order to be able to exploit these co-processors [7,8,17,32,38,39]. 
In particular, MedusaDock [7] achieves a 1.54× overall speedup, and 
GeauxDock [8] has a 3.5× speedup thanks to the GPU porting. Other 
applications show better behavior on the GPU and have double digits 
speedup, such as PIPER [38] with a 17× speedup, AutoDock-Vina [39]

with a 50× speedup, and PLANT [17], that reported a 60× speedup. The 
latest GPU porting of AutoDock [18,33,37] has been optimized for run-

ning on the Summit supercomputer [14] to support COVID-19-related 
research. A new Autodock development was recently released: Uni-

Dock [50]. Uni-Dock increases the accuracy compared to the Autodock 
and VINA GPU versions, making the execution ten times faster thanks to 
batching. Uni-Dock tries to use heuristics, based on the type of architec-

ture used, to execute a batch of inputs likely to fill the entire memory 
of the GPU. Other approaches have improved performance by using 
dedicated hardware for matrix computation. For example, Autodock 
has been accelerated using NVIDIA’s Tensor Core [36]. Using this ap-

proach, they have achieved a 4-7× speedup in reduction operations, 
with an overall reduction of 27% in docking time. Much attention 
has been given to using HPC software on a cloud-available platform. 
An example using Autodock on clouds has been reported using Kuber-

netes and Apache Airflow [23]. This approach enables virtual screening 
campaigns on a more available cloud basis while taking advantage of 
heterogeneous platforms. In this paper, we focus on the efficient GPU 
porting of the LiGen application by describing and analyzing two differ-

ent parallelization approaches considering the peculiarities of the target 
workload and GPU devices. LiGen is an MPI application that distributes 
the workload across different nodes of a supercomputer [11]; for its em-

barrassingly parallel nature, we can consider multi-node optimizations 
orthogonal to the current work. The target LiGen code in this latency 
implementation has been used for the largest virtual screening campaign 
ever run (> 70 billion ligands and 12 viral proteins) during the first 
wave of the COVID-19 pandemic [12]. A recent interesting parallel in-

vestigation on LiGen is about its performance portability across multiple 

GPU architectures and vendors, adopting different high-level languages 

https://covid19-hpc-consortium.org/
https://www.exscalate4cov.eu/
https://www.ligateproject.eu/


E. Vitali, F. Ficarelli, M. Bisson et al.

Algorithm 1: LiGen virtual screening algorithm.

Data: max_num_ligands

Input: ligand_library, target

Output: top_candidates

1 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ← ∅;

2 foreach 𝑙𝑖𝑔𝑎𝑛𝑑 ← 𝑙𝑖𝑔𝑎𝑛𝑑_𝑙𝑖𝑏𝑟𝑎𝑟𝑦 do

3 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ← 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ∪ 𝑑𝑜𝑐𝑘(𝑙𝑖𝑔𝑎𝑛𝑑, 𝑡𝑎𝑟𝑔𝑒𝑡);
4 end

5 return 𝑡𝑜𝑝_𝑛(𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠, 𝑚𝑎𝑥_𝑛𝑢𝑚_𝑙𝑖𝑔𝑎𝑛𝑑𝑠)

Algorithm 2: LiGen dock algorithm.

Data: num_restart

Input: ligand, target

Output: best_pose

1 𝑝𝑜𝑠𝑒𝑠 ← ∅;

2 for 𝑖 ← 0 to 𝑛𝑢𝑚_𝑟𝑒𝑠𝑡𝑎𝑟𝑡 do

3 𝑝𝑜𝑠𝑒 ← 𝑖𝑛𝑖𝑡_𝑝𝑜𝑠𝑒(𝑙𝑖𝑔𝑎𝑛𝑑, 𝑖);
4 𝑝𝑜𝑠𝑒 ← 𝑎𝑙𝑖𝑔𝑛(𝑝𝑜𝑠𝑒, 𝑡𝑎𝑟𝑔𝑒𝑡);
5 𝑝𝑜𝑠𝑒 ← 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒(𝑝𝑜𝑠𝑒, 𝑡𝑎𝑟𝑔𝑒𝑡);
6 𝑝𝑜𝑠𝑒.𝑣𝑎𝑙𝑖𝑑𝑖𝑡𝑦 ← 𝑖𝑠_𝑣𝑎𝑙𝑖𝑑(𝑝𝑜𝑠𝑒, 𝑡𝑎𝑟𝑔𝑒𝑡);
7 if 𝑝𝑜𝑠𝑒.𝑣𝑎𝑙𝑖𝑑𝑖𝑡𝑦 then

8 𝑝𝑜𝑠𝑒.𝑠𝑐𝑜𝑟𝑒 ← 𝑠𝑐𝑜𝑟𝑒(𝑝𝑜𝑠𝑒.𝑎𝑡𝑜𝑚𝑠, 𝑡𝑎𝑟𝑔𝑒𝑡);
9 else

10 𝑝𝑜𝑠𝑒.𝑠𝑐𝑜𝑟𝑒 ← −∞;

11 end

12 𝑝𝑜𝑠𝑒𝑠 ← 𝑝𝑜𝑠𝑒𝑠 ∪ {𝑝𝑜𝑠𝑒};

13 end

14 return 𝑚𝑎𝑥_𝑠𝑐𝑜𝑟𝑒(𝑝𝑜𝑠𝑒𝑠)

[28]. This path is out of the scope of this paper, which focuses only on 
NVIDIA GPUs.

3. Application description

LiGen [1] is a molecular docking application designed to run on 
High-Performance Computers and adapted for extreme-scale virtual 
screening campaigns [12]. Algorithm 1 reports the pseudo-code for vir-

tual screening an input ligand library against a target docking site. The 
output lists the ligands with the highest interaction strength with the 
target. The procedure is straightforward; we must dock each ligand 
from the input library to estimate its interaction strength using a scor-

ing function. When we have more than one docking site, repeating the 
whole procedure for another target is possible, generating a different 
set of best candidates. Domain experts will combine the data to select 
a global set of candidates to test in-vitro (or further in-silico). Thus, we 
can focus on the single-target scenario without losing generality.

Algorithm 2 describes in more detail all the steps that LiGen uses to 
dock a ligand inside a target. The overall algorithm is a gradient descent 
with multiple restarts [30]. At each restart, we generate an initial pose 
(line 3) by rotating the ligand’s rotamers using a heuristic that maxi-

mizes the distance among the iterations in the conformation space of 
the molecule. The gradient descent procedure is composed of two op-

erations. The first considers the molecule to be a rigid body to align 
with the docking site (line 4). In contrast, the second uses the internal 
molecule flexibility to optimize its shape for the target and performs a 
local minimization (line 5). We use a geometric score to define the gra-

dient that drives the docking. To select the most suitable pose, we need 
to re-score the poses using a scoring function that considers physical 
and chemical properties (line 8). To avoid useless computation, we do 
not compute the scores of molecules (line 10) that clash internally or 
with the protein (lines 6,7). Finally, among all the ligand’s poses, we 
are interested only in the one that yields the highest score (line 14).

From the algorithm description, we can notice how a pose eval-

uation is independent of the others. We can generate many ligands 
by simulating known chemical reactions, making the virtual screen-

ing problem embarrassingly parallel. LiGen uses these properties to 
distribute the input ligand library across different nodes [12] and to 
3

offload the computation to GPUs. In this paper, we explore two strate-
Journal of Parallel and Distributed Computing 186 (2024) 104819

gies to implement the algorithm in CUDA that use drastically different 
design choices to hinge on hardware parallelism. In this section, we in-

troduce the main concepts of the CUDA architecture and how the two 
implementations map the algorithm in its computation model.

3.1. CUDA architecture

Since most of the world’s supercomputers make extensive use of 
GPUs, we target NVIDIA’s GPUs to accelerate computation, and we use 
the CUDA language to exploit the maximum potential of the architec-

ture.

GPUs implement a SIMT (single instruction multiple threads) archi-

tecture. In particular, NVIDIA’s GPUs organize threads in warps, which 
are groups of 32 threads [45]. A warp of threads follows the same 
execution flow. Conditional branching can cause divergence, which in-

troduces overhead because the instructions on the two paths are not 
executed in parallel. Full efficiency is, therefore, achieved when all 
threads in a warp agree on the execution path. In CUDA, threads are 
arranged hierarchically, whereby they are grouped into blocks and then 
launched in grids [45]. These threads and blocks may be grouped in a 
three-dimensional structure, allowing for efficient organization and ex-

ecution of instructions. Different structures can be utilized to achieve 
maximum occupancy or maximum parallelism [46]. A SM is made of 
up to 4 dual-issue warp schedulers. This means that it will select po-

tentially two instructions to be executed. As with threads, GPU memory 
is also organized in a hierarchy. All the data must be close to where 
they are needed. The NVIDIA GPU’s memory is organized so that dif-

ferent memory is intended for different granularity accesses. There are 
three different levels of memory on the board. The main global memory

can be accessed by each thread independently from its position in the 
block/grid. It allows communication between all threads and between 
the host and the GPU, but is the slowest. To get closer to the threads, 
one can preload data into the shared memory, which, as the name sug-

gests, is shared by the threads of the same block. It is faster than global 
memory, but its size is limited per block so that it can limit the oc-

cupancy of the GPU. The closest type of memory to threads is registers, 
which are very few and are allocated to threads in a fixed amount. They 
are the fastest memory a thread can use, but since they are limited per 
SM, registers limit the number of concurrent threads that can run on an 
SM.

3.2. Latency implementation

The first implementation we will analyze is the latency implemen-

tation. This approach aims to keep a synchronous interface, where a 
single ligand is docked on the GPU in every host call to the dock func-

tion. This approach is the same as the previous implementation of LiGen 
[12,48] and allows us to focus only on the acceleration of the kernels 
without having to modify the whole application structure, thus purely 
following Algorithm 1 for screening a ligand library. On the GPU, we 
distribute the operation that we have to perform as much as possible, 
trying to make each kernel as parallel (and fast) as possible to execute 
(See Fig. 1). This approach is the most straightforward and traditional 
one, and it is the same followed by most of the GPU porting for molec-

ular docking (e.g., AutoDock-GPU [18,33]).

Fig. 2 provides an overview of the approach in terms of the main 
parallelism exploited and execution phases. The idea is to parallel exe-

cute all the iterations for the loop at line 3 of Algorithm 2. To reach this 
goal, we must perform each step of the computation on all the poses 
as depicted in Fig. 2. The CUDA grid is set over the different ligand 
poses. We implemented all the steps using at least one kernel to in-

crease the exposed parallelism. In this way, we can execute in parallel 
the internal loops required to carry out the computation. In particu-

lar, for the init_pose step, each CUDA thread updates the position of a 
single atom. For the align step, we use two kernels. The first one eval-
uates all the rigid transformations for all the poses in parallel, where 



E. Vitali, F. Ficarelli, M. Bisson et al.

Fig. 1. Latency implementation GPU usage.

Fig. 2. Logical mapping on how the latency approach hinges on GPU parallelism 
to accelerate the execution time. Each step is implemented using at least one 
dedicated kernel.

each CUDA thread updates the atoms’ displacement and computes the 
gradient value. The second kernel performs a reduction to find the opti-

mal alignment for the ligand and updates the pose atoms displacement 
accordingly. In the optimize step, we need to evaluate each rotamer 
sequentially to preserve the ligand geometry. We use two kernels to 
evaluate a single rotamer using an approach similar to the align step. 
Besides rotating and computing the gradient value, the main difference 
is that each CUDA thread needs to check if the rotamer’s angle leads to 
an internal clash. For the is_valid step, we use two different kernels to 
check whether there is a clash with the protein or an internal one. In 
both cases, the distance between each atom pair has to be calculated. 
To limit the computation effort, we perform an early escape when we 
detect a bump between atoms, thus determining an invalid pose.

By computing poses using the parallelism at grid level, these kernels 
have a very short execution time and aim at freeing the hardware re-

source for other kernels. To maximize the GPU utilization, we rely on 
a multi-threaded approach to instantiate several different kernels (on 
different streams). Every ligand will be tied to a host thread tied to an 
asynchronous queue (CUDA stream) and a reserved space in the GPU 
memory. The reservation of the space at the thread level instead of at 
the ligand level allows us to allocate and deallocate that memory only 
once in the thread’s lifetime. This first optimization saves a lot of mem-

ory operations since this memory space is not linked to the docking 
of a single ligand but is linked to the application’s lifetime. The draw-

back of this approach is that we need to allocate the worst case space, 
which must be known at compile time. This introduces a limitation on 
the maximum size of the processed ligands. However, this is not a real 
issue for the application since it can be changed at compile time. More-

over, some data structures (such as the one that represents the target 
pocket) can be shared among all the threads using the same GPU: this 
can be done since they are read-only data structures, not modified in the 
docking process. The access to the pocket does not follow a coalesced 
pattern, but the access point is given by the x, y, and z coordinates of 
the atom and, for this reason, has a random pattern. Random accesses in 
memory are a costly operation in GPU since they disable the coalesced 
access mechanism that allows for providing data to all the threads in a 
warp with a single read operation. However, there is a feature in CUDA 
that allows for improving the performance in these situations, which 
4

is the texture cache. Texture caches allow organizing data in 2D or 3D 
Journal of Parallel and Distributed Computing 186 (2024) 104819

Fig. 3. Batched implementation GPU usage.

spaces and are optimized for semantic data locality. This means that ac-

cessing points in the space close to the previous ones is usually faster 
since they should already be cached. We expect rotations and transla-

tions in the 3D space will not place atoms “too far” across the different 
iterations. For this reason, we use the texture cache to store the protein 
pocket values.

On the other hand, when multi-dimensional arrays are needed and 
have to be accessed from different thread blocks, it is very important 
to organize the data to allow the reads to be coalesced. For this reason, 
we extensively use CUDA-pitched arrays in storing temporary values 
that are needed across kernels. Pitched multi-dimensional arrays are an 
instrument provided by CUDA. They are allocated with rows padded 
to a size that ensures that each row starts at an address that meets the 
alignment requirements for coalescing.

3.3. Batched implementation

The second version of the application is the batched implementation. 
This implementation follows a different paradigm from the latency one. 
Instead of using the whole GPU to process a single ligand at a time, we 
pack it with as many ligands as possible that are processed in parallel 
(using fewer resources per ligand) as depicted in Fig. 3. This approach 
follows a paradigm similar to the one described in [15], used within 
the NAS [31] benchmark suite to estimate the upper achievable limits 
of floating-point performances on a system since it requires almost no 
communication to process the data. This approach is possible since the 
amount of data per ligand is limited (up to 20 KB input - 1 MB output), 
and thus we can upload on the GPU a huge number of them.

With this approach, the time to process a single ligand 𝑡𝑏𝑎𝑡𝑐ℎ will be 
greater than the time required by the latency implementation 𝑡𝑙𝑎𝑡𝑒𝑛𝑐𝑦; 
however, many more ligands will be processed in parallel during the 
time 𝑡𝑏𝑎𝑡𝑐ℎ. As long as the size of the batch of ligands processed in 
parallel is greater than 𝑡𝑏𝑎𝑡𝑐ℎ∕𝑡𝑙𝑎𝑡𝑒𝑛𝑐𝑦, this implementation is expected 
to deliver higher throughput than the latency one since reduces to the 
minimum the number of synchronization points.

When we focus on the kernel design, we must take a completely 
different approach. The main idea is to parallelize the loop at line 2 
of Algorithm 1 and to implement all the steps depicted in Algorithm 2

sequentially in the same kernel. Following CUDA’s thread hierarchy, we 
use 32 CUDA threads to process the ligand’s atoms in parallel. A CUDA 
thread may process more than one atom when the molecule has more 
than 32 atoms. The spare CUDA threads are not used if the molecule 
has less than 32 atoms. So, in the following part of the paper, we intend 
a warp to be a single block of 32 CUDA threads. We launch the kernel 
over a number of ligands that are enough to cover the GPU parallelism. 
Fig. 4 provides a schematic view of the logical mapping. It is important 
to notice that using a single warp to compute a ligand implies that 
we can use CUDA cooperative groups to perform reductions and early 
escape in pose evaluations.

This implementation forces us to redesign the whole application ap-

proach because we must first load several ligands in a single batch and 
then launch the processing kernels when the batch is full. We adopted 
an asynchronous paradigm where different CPU threads managing the 
upstream phases push ligands in the batch, and another CPU thread 
is in charge of launching the GPU kernels when the batch is full. In 

this implementation, external parallelism (CUDA grid) is addressed by 



E. Vitali, F. Ficarelli, M. Bisson et al.

Fig. 4. Logical mapping on how the batched approach hinges on GPU paral-

lelism to accelerate the execution time. All the steps are implemented using a 
single kernel.

docking multiple ligands simultaneously, while thread-level parallelism 
is addressed by distributing the set of operations to be performed on the 
atoms of a single ligand over a single warp.

To make this approach to be successful, we need to address some 
criticalities. The obvious one is that we need a large number of ligands 
to fully utilize the GPU. This is not a concern since, as mentioned in 
Section 1, the virtual screening task we are targeting considers a large 
chemical space (up to millions or billions of candidate molecules). The 
second one is that, since we are processing batches of ligands concur-

rently, the overall kernel time will be dictated by the slowest warp of 
the grid, i.e., the warp assigned to the ligand that requires more oper-

ations. Since the processing is data-dependent, we need to balance the 
size of the ligands that are collected in a single batch. It is also important 
to efficiently use registers and shared memory, two precious and scarce 
resources in the GPU. To make the batched kernels run as fast as pos-

sible, the ligand data used often (i.e., atom coordinates and fragments 
indices) are kept in registers and shared memory to be accessed more ef-

ficiently. Since this requires defining at compile time the resources used 
by the kernels, balancing the sizes of the ligands in the batches allows 
for maximizing the usage of those statically allocated resources. For this 
reason, we have clustered the ligands in 5 different batches according 
to their number of atoms: (0, 32], (32, 64], (64, 96], (96, 128], (128, 
160]. The number of ligands accumulated in each batch before being 
processed by the GPU depends on the maximum number of atoms in its 
range. For each range, we used kernels compiled to reserve a precise 
number of registers per thread such that each warp can hold, at most, 
a number of atoms equal to the upper limit of the range. Thus, the size 
of each batch is set equal to the maximum number of warps that can 
be concurrently active on all GPU’s SMs with the respective kernel. We 
determined this number by using Equation (1).

𝑙 = 𝑏 ×𝑆𝑀 × 𝑡

𝑤𝑠
(1)

In Equation (1), we compute the size of each batch 𝑙, where 𝑆𝑀 is the 
number of SMs available on the GPU, 𝑤𝑠 is the warp size, and 𝑏 is the 
number of blocks that can run on the same Streaming Multiprocessors 
(SM) for any given kernel.4 Section 4 uses an NVIDIA A100 GPU card 
to validate the approach. However, since we compute the number of 
ligands 𝑙 for each bucket using a query to the CUDA runtime, the pro-

posed methodology is agnostic about the target architecture. Indeed, 
we efficiently deployed LiGen on systems also equipped with V100 and 
H100 NVIDIA cards. The proposed methodology was able to adapt the 
number of ligands accordingly.

4 CUDA function to query the number of active blocks on an SM for the given 
5

kernel cudaOccupancyMaxActiveBlocksPerMultiprocessor.
Journal of Parallel and Distributed Computing 186 (2024) 104819

Fig. 5. Graphical representation of the batch creation process: all incoming 
ligands are divided into batches according to their characteristics, and only 
when a bucket is full is sent to the GPU.

Moreover, since the optimize step needs to process the ligand’s ro-

tamers sequentially, we can introduce a strong imbalance if we bundle 
in the same batch ligands with a different number of rotamers. For this 
reason, we also need to cluster the ligands by their number of fragments. 
We decided to group them by four (i.e., ligands with 0-3 fragments clus-

tered in one batch, while ligands with 4-7 fragments in another, and so 
on). This decision is a compromise between having the ligands as sim-

ilar as possible and avoiding the explosion of the number of different 
batches. Considering all of these divisions, we have a matrix of buck-

ets where we collect ligands with similar features. This aims at reducing 
the disparity between the ligands that need to be processed in a batch to 
improve the efficiency of the computations. A graphical representation 
of this process is provided in Fig. 5.

The kernels developed for this implementation declare the array pa-

rameters as const __restrict__ so that the compiler can automatically use 
cached loads for them. Moreover, since we read them only once to copy 
their content in the register/shared memory, we use regular allocations 
instead of pitched ones.

4. Experimental results

In this section, we will compare the two implementations in terms 
of application throughput (end-to-end) on different datasets and condi-

tions. Given that the target molecular docking application has a highly 
data-dependent throughput, we performed four types of different anal-

yses by changing the characteristics and size of ligand libraries.

The first one takes into consideration more uniform datasets (prepro-

cessed datasets), where the ligands to be processed have been clustered 
according to their characteristics in terms of the number of atoms and 
fragments (see Subsection 4.2). This analysis has been done to show the 
different performance trends without the possible noise introduced by 
the different sizes and flexibility of the target molecules.

The second analysis regards the scaling of the throughput of the ap-

plication according to the size of the dataset (see Subsection 4.3). In this 
case, we want to know if one of the implementations is always optimal 
or (and this is the expected behavior) if it depends on the dataset size. In 
this second circumstance, we are particularly interested in finding the 
dataset size that triggers the optimality change. This analysis has been 
performed on preprocessed and real-world datasets, where the molecule 
size and flexibility are unknown a priori.

The third analysis (see Subsection 4.4) refers to the performance 
of both implementations on real-world public datasets, taken from the 
MEDIATE initiative [24]. The datasets are characterized by a large size 
and molecule characteristics variability and can be seen as the target of 
an actual virtual screening campaign.

In Subsection 4.5, we report an in-depth analysis of the workload 
using the instruction roofline methodology. This analysis has been per-

formed to better understand the different resource utilization for the 
two implementations.

4.1. Experimental setup

To perform the docking experiment, we target a machine that re-

sembles an HPC node, equipped with 2 CPU AMD Epyc 7282 2.80 GHz 

16 core and one NVIDIA A100 GPU, connected with PCI-E 4.0.



E. Vitali, F. Ficarelli, M. Bisson et al.

Fig. 6. Throughput of the two implementations with the different datasets, or-

ganized by the number of atoms and increasing the number of fragments on the 
X axis.

4.2. Preprocessed datasets

The first set of experiments wants to show the throughput of the two 
implementations when we are running at the best of the application ca-

pabilities (i.e. we recorded the average throughput, which is the total 
number of items processed since the application launch divided by the 
total execution time of the application, when its value reaches a stable 
value.). We have docked several uniform datasets of 50 K ligands, each 
with fixed characteristics in heavy atoms and fragments. The range is 
between 20 and 50 heavy atoms and 1 and 20 fragments. In this con-

text, we define every non-hydrogen atom that is part of the molecule 
as a heavy atom. We need to point out that for the batched implemen-

tation, having the same number of heavy atoms does not mean that all 
the ligands belong to the same batch since LiGen groups them accord-

ing to the total number of atoms, which also includes the hydrogens. 
The ranges of heavy atoms and fragments for the molecules have been 
selected considering the ones available in commercial databases.

Fig. 6 and Fig. 7 report the throughput reached by the two imple-

mentations for each uniform dataset from two different perspectives.

Fig. 6 plots the varying throughput according to the change in the 
number of fragments (x-axis) while considering the number of heavy 
atoms fixed. We can see that this data feature heavily impacts the 
throughput. The two implementations show similar behavior, going 
from a high throughput value with 1 fragment and slowing down more 
with the increase of the number of fragments. However, if we look at 
the y-axis, we can notice that the batched implementation is much faster 
6

than the latency one, on average, by three times.
Journal of Parallel and Distributed Computing 186 (2024) 104819

Fig. 7. Throughput of the two implementations with the different datasets, or-

ganized by the number of fragments and increasing the number of atoms on the 
X axis.

In Fig. 7, we plot the variation in the throughput at the change of the 
number of atoms (plotted on the x-axis) while keeping the number of 
fragments constant. We can notice that, in this case, the behavior is dif-

ferent. The latency implementation has a negligible throughput degra-

dation when we change the number of atoms with a constant number 
of fragments, while the batched implementation has a more significant 
throughput loss. However, since it starts from a higher throughput, it 
still performs better than the latency implementation, in the worst case, 
by 1.37×.

To conclude this analysis, we can see in Fig. 8 the heatmap of the 
speedup obtained by the batched implementation compared to the la-

tency implementation, with several datasets of 50 K ligands. As we can 
see, the batched implementation is always better than the latency one, 
given this dataset dimension on a single GPU. However, we can notice 
that the amount of speedup changes according to the characteristics 
of the ligands: the batched implementation behaves dramatically better 
with fewer atoms and a higher number of fragments.

4.3. Scaling analysis

With this experiment, we aim to find the minimal database size to 
reach throughput optimality with both implementations, and we are in-

terested in seeing the impact of the dataset composition on this size. 
For this analysis, we used two different datasets with homogeneous and 
heterogeneous ligands. We considered a set of molecules with 35 Heavy 
Atoms and 12 Fragments within the first dataset. This dataset has been 

selected considering average values for ligand size and flexibility from 



E. Vitali, F. Ficarelli, M. Bisson et al.

Fig. 8. Speedup Heatmap of the batched version against the latency one for the 
different homogeneous datasets of 50 K ligands with the same characteristics.

Fig. 9. Scaling analysis.

the ligands considered in the previous section. The second dataset in-

cludes a heterogeneous mix of ligands from all previously considered 
libraries.

Fig. 9 reports the growth of the throughput (y-axis) at the varying 
of the dataset size (x-axis). As we can see, with small datasets, the la-

tency implementation outperforms the batched implementation. This 
happens because the batched implementation waits until the batch size 
is reached and distributes the computation on different CUDA warps. 
If the dataset is too small and does not reach the size of the batch, 
we are going to underutilize the GPU, and this explains why in these 
circumstances, the latency implementation performs better. However, 
after a certain threshold, we can see that the batched implementation 
overtakes the latency implementation (with almost exponential growth) 
until it reaches its saturation point (with a total speedup of around 
3.5×). This behavior is observed in both the homogeneous dataset (pur-

ple and yellow lines) and the heterogeneous one (blue and red lines). 
The only difference between the two is when the batched implementa-

tion overtakes the latency one, and this happens for the homogeneous 
dataset one order of magnitude earlier. We can also notice that the 
growth phase of the batching application when using a mixed dataset 
ends at almost 106 ligands. This means that to get the maximum out of 
this implementation, we need to dock a very large dataset with at least 
106 ligands for each GPU involved in the computation. On the other 
hand, for the homogenous dataset, 20 K ligands are enough to stabilize 
the throughput. Finally, it is interesting to notice the fluctuations of the 
throughput in the yellow line (homogeneous batched implementation). 
As mentioned, the batches are created according to the total number 
of atoms, including hydrogens, and some ligands are processed in dif-

ferent batches. When many buckets are processed, even if they are not 
completed (i.e., small batches), the resources are not well used, result-
7

ing in a performance loss. The higher the number of ligands, the lower 
Journal of Parallel and Distributed Computing 186 (2024) 104819

Table 1

MEDIATE dataset characterization. For each library, its size and 
the average values (± standard deviations) for the number of 
heavy atoms and rotatable bonds have been reported.

Library Size #Heavy Atoms #Rot. Bonds

Comm. MW330- 1.9M 18.06 ± 4.05 3.65 ± 1.79

Comm. MW330-500 2.8M 28.12 ± 3.70 5.71 ± 2.11

Comm. MW500+ 250 K 38.46 ± 4.83 8.35 ± 3.52

Drugs 8.8 K 29.04 ± 12.89 6.87 ± 5.66

Foods 65.5 K 51.06 ± 18.88 37.91 ± 20.45

Natural Products 263.5 K 30.94 ± 13.03 6.35 ± 6.10

Peptides 2AA 400 20.07 ± 3.33 7.60 ± 1.77

Peptides 3AA 8 K 29.05 ± 4.07 11.40 ± 2.16

Peptides 4AA 160 K 37.40 ± 4.71 15.20 ± 2.51

the probability of falling in this situation, which can be noticed by the 
fluctuation reduction while increasing the dataset size.

4.4. Real world datasets

Finally, we want to evaluate the performance of the two implemen-

tations on real-world datasets. These datasets come from the MEDIATE 
[24,44] initiative and contain libraries including ligands from different 
categories: commercial compounds, natural products, drugs, and pep-

tides.

The “Commercial” category represents the space of currently pur-

chasable compounds libraries [42]. In particular, this set is clustered in 
three libraries where molecules are selected according to their molecu-

lar weight (MW). The first one contains ligands with a molecular weight 
lower than 330 (MW330-), the second set has ligands with a molecu-

lar weight between 330 and 500 (MW330-500), and the last contains 
all the ligands with a molecular weight higher than 500 (MW500+). 
The “Drugs” category contains known drugs, including the set of safe-

in-man drugs, commercialized or under active development in clinical 
phases. The “Natural” category contains two sets of molecules: Foods 
and Natural Products. They are taken from the FooDB online database 
[9]. FooDB is the world’s largest and most comprehensive resource 
on food constituents, chemistry, and biology. It provides information 
on many constituents that give foods flavor, color, taste, texture, and 
aroma.

Finally, “Peptides” were generated by mixing in a combinatorial way 
all 20 natural amino acids. They are collected in three files according to 
the number of amino acids that compose the peptide. In particular, 2AA 
contains dipeptides (peptides formed by two amino acids), 3AA contains 
tripeptides, and 4AA contains tetrapeptides. All peptides have been con-

structed with an extended structure and optimized with MOPAC 2016 
[25]. They have been protected with acetylation of the N-terminal end 
and the addition of amide in the C-terminal one. The total amount of 
peptides is quite low and not evenly distributed. This is because they 
are a combination of the 20 amino acids found in nature.

To better contextualize the different sets concerning the analysis 
done in the previous subsections, a characterization of them in terms of 
size of the ligand library, number of heavy atoms, and rotatable bonds 
has been reported in Table 1.

Fig. 10 reports the throughput of the different implementations on 
the several files composing the mediate dataset. We can immediately 
notice that the batched version strongly outperforms the latency im-

plementation on the largest files (the Commercial with the different 
molecular weight). This is expected since we have 5 million molecules 
here, which heavily exceeds what we have found to be the cross-over 
point (Subsection 4.3). However, the remaining files are smaller. There 
are, in particular, two datasets (Drugs and Peptides2AA), where the 
batched version is unable to reach its optimal performances and a 

throughput good enough to be better than the latency implementa-



E. Vitali, F. Ficarelli, M. Bisson et al.

Fig. 10. Throughput comparison on the Mediate dataset.

tion. The first dataset has 14 K ligands, which should be enough for the 
scaling analysis to exceed the latency implementation’s performance at 
least. However, it cannot reach a good throughput because it is heav-

ily unbalanced. Thus, in the runtime, it forces the execution of several 
almost empty batches, which is detrimental to the performances. On 
the other hand, the Peptides_2AA is a very small dataset, and even if 
it is quite uniform, it still does not have enough data to outperform 
the latency implementation. In all the remaining libraries, the batched 
implementation performs closely or better than the latency but cannot 
reach its peak performance.

4.5. Workload analysis

The previous analysis shows that the batched implementation has 
a slow start but a better overall throughput. Now, we want to ana-

lyze the two implementations more in-depth to find the reason behind 
this result, given the performance improvement of the batched imple-

mentation goes beyond the reduction in the grid level synchronization. 
To reach this goal, we will characterize both workloads in terms of 
execution profiles, applying the instruction roofline methodology [4], us-

ing GIPS(Giga Instructions Per Second) to assess and measure perfor-

mance, on an input dataset constructed to be representative of different 
molecule categories from real-world datasets [24].

We now consider the dimensions that affect the computational com-

plexity of the workload, namely the number of atoms and rotatable 
bonds. We cannot analyze all possible combinations of atoms and frag-

ments. Therefore, we analyze the application’s performance with three 
clusters of molecules. The characteristics of the clusters have been cho-

sen in an attempt to highlight different levels of complexity. A sample 
molecule was randomly selected from the test dataset for each of these 
clusters and then duplicated. The duplicate of the molecule in each clus-

ter coincides with the suggested batch size, as described in Section 3.3. 
A uniform input dataset allows for homogeneous execution paths across 
all warps involved in a single kernel grid, especially for the batched 
implementation where each warp handles different input ligands. The 
results of this analysis would be the same if, instead of an artificial 
dataset composed by a duplicated molecule, we use a dataset composed 
by different ligands referring to the same batch. The test molecule clus-

ters have been defined as:

• Small: (0, 64] atoms, 1 rotatable bond, batch of 1920 molecules;

• Medium: (64, 96] atoms, 12 rotatable bonds, batch of 1600 mole-

cules;

• Large: (96, 160] atoms, 20 rotatable bonds, batch of 960 molecules.

Since we want to know why the two implementation throughput 
is so different, we focus our analysis on the CUDA bottleneck kernel of 
each implementation. For the latency version, this is the kernel that per-

forms the ligand’s fragment optimization (lines 10-16 in Algorithm 2, 
8

accounting for 92% of the overall docking pipeline’s runtime).
Journal of Parallel and Distributed Computing 186 (2024) 104819

Fig. 11. Static ligands allocation per SM.

4.5.1. Resources allocation

We first analyzed static resource allocation to understand the conse-

quences of different design principles between the two approaches.

In Fig. 11, the maximum amount of ligands allocated on a single SM 
is shown. While the latency version dedicates all the resources within 
an SM to a single ligand, the batch version allocates multiple ligands 
to a single warp, allowing for multiple concurrently running ligands in 
a single SM. In the latter implementation, the registers per thread are 
the limiting factor for the ligands allocation to an SM. Therefore, the 
number of ligands assigned to an SM decreases with the increment of 
their complexity.

This has two evident consequences: on the one hand, the latency 
implementation has a more consistent behavior that does not depend 
on the ligand size; on the other hand, the batched implementation is 
strongly influenced by the data size. It has an optimal behavior with 
small ligands and degrades, increasing the size of the ligand.

Moreover, we can see that the batched implementation can process 
more ligands per SM, which allows it to reduce the overheads when 
launching the kernels since it will have a smaller amount of kernels to 
launch. Indeed, while in the latency implementation, we have to launch 
at least one kernel per ligand, we process between 960 and 1920 ligands 
with a single kernel in the batched one.

4.5.2. Roofline analysis

In this section, we compare the use of computing resources for the 
two implementations to understand if this could be the reason for the 
performance differences. In this analysis, we are more interested in the 
difference between the two implementations rather then their absolute 
values. We present a comparison between different roofline plots [4]

produced by measuring both implementations’ execution behaviors via 
NVIDIA NSight profiler [47] in Fig. 12.

In particular, in Fig. 12a and Fig. 12b, we report the instruction is-
sued roofline. These rooflines are obtained by considering all kinds of 
warp-level instructions issued. From these two graphs, we can say that 
both application implementations are not memory-bound. Moreover, 
we use the GPU appropriately since we are close to the roof. We can 
notice a difference in the two implementations if we look at their be-

havior on the size of the different molecules. On one hand, in the batch

implementation, the amount of GIPS decreases with bigger molecules; 
on the other hand, in the latency implementation, the GIPS value in-

creases with bigger molecules. This is expected due to respective scaling 
design choices: on the latency version, we improve the number of in-

structions because the efficiency of the kernel is constant; thus, with 
bigger molecules, the amount of data to feed the GPU increases. On the 
other hand, in the batched implementation, we are using more registers 
to store bigger ligands, and in this way, we have fewer active threads 
per SM, which decreases the number of instructions issued.

Another insight given by these two plots is the cache reuse: the hor-

izontal distance between points of the same molecule class represents 
the ability of the cache to satisfy a request. The larger the distance be-

tween two points, the higher the reuse of data present in the highest 
level memory (i.e., the distance between L1 and L2 caches represents 

the ability of the L1 cache to serve the read request).



Journal of Parallel and Distributed Computing 186 (2024) 104819E. Vitali, F. Ficarelli, M. Bisson et al.

Fig. 12. Roofline analysis comparison between latency (left) and batch (right) on instruction performance (Fig. 12a and Fig. 12b) and shared memory access pattern 
(Fig. 12c and Fig. 12d).
The latency implementation (Fig. 12a) shows regular cache reuse 
across molecule classes, and we can notice that the reuse of the L2 cache 
increases with the size of the ligands; we can see from the image that 
the distance between the red symbols (L2) and purple symbols (HBM) 
are greater when comparing squares (Small ligands) with circles (Large 
ligands). On the other hand, the batched implementation (Fig. 12b) has a 
high L1 reuse for Small, but the L1 arithmetic and instruction intensities 
are ∼ 10× lower than L2 and HBM values. However, larger molecule 
classes begin to rely heavily on L2 cache: this can be seen by the fact 
that the HBM arithmetic and instruction intensities are ∼ 100× higher 
than L1 and L2 values. This also strengthens the idea that the batched 
implementation has better behavior with small molecules but degrades 
with the data size growth.

The second set of images reports the shared memory roofline (Fig. 12c 
and Fig. 12d). They are obtained by measuring both warp-level 
load/store instructions issued and shared memory transactions per-

formed). The x-axis indicates within the interval between no bank 
conflict and 32-way bank conflicts how efficient the kernel is in terms 
of shared memory access. It is the ratio between the number of shared 
load and store instructions issued by warps and the effective number 
of shared memory transactions. For example, in case of no conflict, we 
can accommodate the load/store operations of all warp’s threads in one 
shared memory transaction; on the contrary, we need to serialize all of 
them. The y-axis represents the number of shared memory load/store 
instructions per second. Both implementations show little to no impact 
due to shared memory bank conflicts and, thus, an efficient access pat-

tern.

From this analysis, the two implementations look similar, with the 
batched one showing a slightly better utilization of the GPU for small 
ligands. At the same time, the latency one uses the resources better with 
large ligands. However, this analysis is unable to explain the speedups 
that we have found from the experiments done in Subsection 4.2, Sub-

section 4.4 and Subsection 4.3.

4.5.3. Execution profiling

In this section, we want to investigate the execution profiles of the 
two implementations in order to gather more insight about them. The 
results of this analysis are reported in Fig. 13.

Fig. 13a reports the occupancy, defined as the ratio between sus-
9

tained and peak percentage of active warps per SM. Occupancy is one 
of the factors that can be used to improve performance. However, there 
are others since it is possible to reach optimal performances by decreas-

ing the occupancy and having more registers per thread [49]. For this 
reason, we are not interested in the absolute value in this graph, but 
we are looking at the comparison between the two implementations. 
Both implementations show a comparable degree of SM occupancy. We 
can notice that while for batch, it decreases with an increasing molecule 
complexity (more registers used), for latency, the behavior is uniform. 
This analysis does not provide insight into the difference in throughput 
but helps explain why the advantage of using the batched implementa-

tion decreases with larger molecules.

Fig. 13b reports the efficiency, defined as the degree of thread pred-

ication across all the instructions executed in a single SM Sub Partition. 
Both implementations show high execution efficiency and thus low 
degrees of thread predication. Slightly lower efficiency in batch is as-

cribed to molecule sizes not being a multiple of the warp size. This plot 
demonstrates how both implementations are quite efficient in the use 
of resources.

Finally, Fig. 13c reports the instruction mix, defined as the percentage 
of instructions executed in a single SMSP grouped by instruction type:

• fp: floating point instructions (any precision, including scalar, 
FMA, and tensor),

• int: integer instructions (any integer data type),

• mem: memory operations (load/stores),

• cf: control flow operations,

• comm: inter-thread communication and synchronization,

• misc: everything else including bit-wise operations and casts

There are two interesting pieces of information in this figure. The first 
one is that the largest part of the operation done is integer arithmetic. 
This is expected since they comprehend index calculations, and the 
Score function used to select the best pose is a sum over integer val-

ues. Moreover, if we look at the latency implementation, it has a large 
(20 to 40%) of comm instructions that almost completely disappear in 
the batched implementation. These comm instructions are mostly due 
to the design of the latency kernel, as shown by the algorithm’s pseu-

docode in Section 3. As we already mentioned, we need to process all 
the fragments sequentially in the pose optimization phase. To analyze 

the impact on the performance of the check_bump kernels, we have run 



E. Vitali, F. Ficarelli, M. Bisson et al.

Fig. 13. Comparison between latency (left) and batch (right) on peak and sus-

tained active warps (Fig. 13a), efficiency (or thread predication, Fig. 13b) and 
instruction mix (Fig. 13c).

both implementations without the early escape from this loop and re-

port the result in Fig. 14. The advantage in terms of speedup in using 
the batched approach has been reduced a lot and reached a maximum 
value of 2× only for very small ligands. This is expected since the pre-

vious analysis shows that the batched approach is more efficient for 
small molecules. On other molecule dimensions, i.e., larger in terms 
of atoms and fragments), the speedup is slightly above 1, including a 
small slowdown for the bottom left corner. This analysis confirms that 
the management of the early exit condition is the tie-breaker between 
the two implementations since, in the batched version, we can use it 
without introducing much synchronization overhead.

The latency implementation demonstrates consistent performance 
across molecule classes regarding performance, occupancy, and instruc-

tion throughput. This is due to its design principle of scaling computing 
resources based on the complexity of the input ligand.

On the other hand, the batch implementation uses a fixed amount 
of computing resources allocated to a batch of input ligands and deals 
with the increasing molecules’ complexity by increasing the amount of 
work a single warp must carry out. Moreover, this second implemen-

tation has its best behavior with small molecules, and its performances 
have a slight degradation when increasing the data size because fewer 
compute resources are used since we need more registers for the data, 
10

thus decreasing the number of active threads.
Journal of Parallel and Distributed Computing 186 (2024) 104819

Fig. 14. Speedup Heatmap of the batched version against the latency one for 
the different homogeneous datasets without the early exit from the check_bump

function. Both throughputs are taken with large enough datasets.

To summarize this discussion, we have seen that a batched method 
provides a significant benefit, primarily because processing a ligand 
with a warp can eliminate most synchronization issues among warps in 
the same SM. This is fundamental in the check_bump function because it 
allows the exploitation of the early exit condition without introducing 
too much overhead.

5. Conclusion

In this paper, we have presented the problem of virtual screening 
a large set of molecules. We have seen that it is usually tackled by 
performing molecular docking of the candidate molecules in the pro-

tein pocket, a process done using large computer simulations. We have 
presented two optimized implementations of a molecular docking appli-

cation designed for virtual screening that uses the GPU as a hardware 
accelerator for the docking procedure. While the first version refers to 
the classical latency approach that spreads the computation of a ligand-

protein pair across the device, the second one focuses more on the 
throughput of a virtual screening campaign. In this second version, 
we process a batch of ligand-protein pairs across the device, increas-

ing the latency of a single evaluation but improving the throughput 
of the whole screening. The batch version required a redesign of the 
application to pack and carefully cluster similar ligands for more effi-

cient resource usage. We compare the different ideas behind the two 
approaches, and thanks to an extensive experimental section, we evalu-

ated the two implementations to search for their limits and advantages.

While this paper reports the results only on NVIDIA GPUs, the ex-

tension of the analysis on other GPU vendors using different high-level 
programming languages (i.e., SYCL, HIP) is ongoing.

CRediT authorship contribution statement

Emanuele Vitali: Conceptualization, Data curation, Methodology, 
Software, Validation, Writing – original draft. Federico Ficarelli: Inves-

tigation, Software, Writing – original draft. Mauro Bisson: Conceptual-

ization, Methodology, Software, Validation, Writing – review & editing.

Davide Gadioli: Conceptualization, Investigation, Methodology, Soft-

ware, Writing – original draft, Writing – review & editing. Gianmarco 
Accordi: Methodology, Software, Writing – review & editing. Massi-

miliano Fatica: Conceptualization, Methodology, Supervision, Writing 
– review & editing. Andrea R. Beccari: Funding acquisition, Supervi-

sion, Writing – review & editing. Gianluca Palermo: Conceptualiza-

tion, Funding acquisition, Methodology, Supervision, Writing – original 
draft, Writing – review & editing.

Declaration of competing interest

The authors declare the following financial interests/personal re-

lationships which may be considered as potential competing inter-
ests: Emanuele Vitali, Federico Ficarelli, Davide Gadioli, Andrea R. 



E. Vitali, F. Ficarelli, M. Bisson et al.

Beccari, Gianluca Palermo reports financial support was provided by 
Horizon 2020 Programme under Grant Agreement 101003551 (EXSCA-

LATE4CoV). Emanuele Vitali, Federico Ficarelli, Davide Gadioli, Andrea 
R. Beccari, Gianluca Palermo reports financial support was provided by 
EuroHPC Joint Undertaking under Grant Agreement No 956137 (LIG-

ATE).

Data availability

The data that has been used is confidential.

Acknowledgments

This work has received funding from EuroHPC Joint Undertak-

ing under grant agreement No 956137 (LIGATE) and from the Hori-

zon 2020 Programme under grant agreement No 101003551 (Exsca-

late4CoV). We acknowledge EuroHPC Joint Undertaking for awarding 
us access to Karolina at IT4Innovations, Czech Republic (EHPC-DEV-

2021D02-049).

References

[1] A.R. Beccari, C. Cavazzoni, C. Beato, G. Costantino, Ligen: a high performance 
workflow for chemistry driven de novo design, J. Chem. Inf. Model. 53 (6) (2013) 
1518–1527.

[2] A.R. Beccari, M. Gemei, M.L. Monte, N. Menegatti, M. Fanton, A. Pedretti, S. Bovo-

lenta, C. Nucci, A. Molteni, A. Rossignoli, L. Brandolini, A. Taddei, L. Za, C. Liberati, 
G. Vistoli, Novel selective, potent naphthyl trpm8 antagonists identified through a 
combined ligand- and structure-based virtual screening approach, in: Scientific Re-

ports, 2017.

[3] D.E. Clark, What has virtual screening ever done for drug discovery?, Expert Opin. 
Drug Discov. 3 (8) (2008) 841–851, https://doi .org /10 .1517 /17460441 .3 .8 .841, 
pMID: 23484962.

[4] N. Ding, S. Williams, An instruction roofline model for GPUs, in: 2019 IEEE/ACM 
Performance Modeling, Benchmarking and Simulation of High Performance Com-

puter Systems (PMBS), IEEE, Denver, CO, USA, 2019, pp. 7–18, https://ieeexplore .
ieee .org /document /9059264/.

[5] D. Dong, Z. Xu, W. Zhong, S. Peng, Parallelization of molecular dock-

ing: a review, Curr. Top. Med. Chem. 18 (2018), https://doi .org /10 .2174 /
1568026618666180821145215.

[6] T.J. Ewing, S. Makino, A.G. Skillman, I.D. Kuntz, Dock 4.0: search strategies for 
automated molecular docking of flexible molecule databases, J. Comput.-Aided Mol. 
Des. 15 (5) (2001) 411–428.

[7] M. Fan, J. Wang, H. Jiang, Y. Feng, M. Mahdavi, K. Madduri, M.T. Kandemir, N.V. 
Dokholyan, Gpu-accelerated flexible molecular docking, J. Phys. Chem. B 125 (4) 
(2021) 1049–1060, https://doi .org /10 .1021 /acs .jpcb .0c09051, pMID: 33497567.

[8] Y. Fang, Y. Ding, W.P. Feinstein, D.M. Koppelman, J. Moreno, M. Jarrell, J. Ra-

manujam, M. Brylinski, Geauxdock: accelerating structure-based virtual screening 
with heterogeneous computing, PLoS ONE 11 (7) (2016) e0158898.

[9] Foodb: the largest and most comprehensive resource on food constituents, www .
foodb .ca.

[10] R.A. Friesner, J.L. Banks, R.B. Murphy, T.A. Halgren, J.J. Klicic, D.T. Mainz, M.P. 
Repasky, E.H. Knoll, M. Shelley, J.K. Perry, D.E. Shaw, P. Francis, P.S. Shenkin, 
Glide: a new approach for rapid, accurate docking and scoring. 1. method and as-

sessment of docking accuracy, J. Med. Chem. 47 (7) (2004) 1739–1749, https://

doi .org /10 .1021 /jm0306430, pMID: 15027865.

[11] D. Gadioli, G. Palermo, S. Cherubin, E. Vitali, G. Agosta, C. Manelfi, A.R. Beccari, C. 
Cavazzoni, N. Sanna, C. Silvano, Tunable approximations to control time-to-solution 
in an hpc molecular docking mini-app, J. Supercomput. 77 (1) (2021) 841–869.

[12] D. Gadioli, E. Vitali, F. Ficarelli, C. Latini, C. Manelfi, C. Talarico, C. Silvano, C. 
Cavazzoni, G. Palermo, A.R. Beccari, Exscalate: an extreme-scale virtual screening 
platform for drug discovery targeting polypharmacology to fight sars-cov-2, IEEE 
Trans, Emerg. Topics Comput. (2022) 1–12, https://doi .org /10 .1109 /TETC .2022 .
3187134.

[13] E. Glaab, Building a virtual ligand screening pipeline using free software: a sur-

vey, Brief. Bioinform. 17 (2) (2016) 352–366, https://doi .org /10 .1093 /bib /bbv037, 
https://europepmc .org /articles /PMC4793892.

[14] J. Glaser, J.V. Vermaas, D.M. Rogers, J. Larkin, S. LeGrand, S. Boehm, M.B. Baker, 
A. Scheinberg, A.F. Tillack, M. Thavappiragasam, et al., High-throughput virtual 
laboratory for drug discovery using massive datasets, Int. J. High Perform. Comput. 
Appl. (2021) 10943420211001565.

[15] C. Gong, J. Liu, J. Qin, Q. Hu, Z. Gong, Efficient embarrassingly parallel on graphics 
processor unit, in: 2010 2nd International Conference on Education Technology and 
Computer, vol. 4, 2010, pp. V4–400–V4–404.

[16] G. Jones, P. Willett, R.C. Glen, A.R. Leach, R. Taylor, Development and validation 
11

of a genetic algorithm for flexible docking, J. Mol. Biol. 267 (3) (1997) 727–748.
Journal of Parallel and Distributed Computing 186 (2024) 104819

[17] O. Korb, T. Stützle, T.E. Exner, Accelerating molecular docking calculations using 
graphics processing units, J. Chem. Inf. Model. 51 (4) (2011) 865–876, https://

doi .org /10 .1021 /ci100459b.

[18] S. LeGrand, A. Scheinberg, A.F. Tillack, M. Thavappiragasam, J.V. Vermaas, R. Agar-

wal, J. Larkin, D. Poole, D. Santos-Martins, L. Solis-Vasquez, et al., Gpu-accelerated 
drug discovery with docking on the summit supercomputer: porting, optimization, 
and application to covid-19 research, in: Proceedings of the 11th ACM International 
Conference on Bioinformatics, Computational Biology and Health Informatics, 2020, 
pp. 1–10.

[19] E. Lionta, G. Spyrou, D.K. Vassilatis, Z. Cournia, Structure-based virtual screening 
for drug discovery: principles, applications and recent advances, Curr. Top. Med. 
Chem. 14 (16) (2014) 1923–1938.

[20] M. Liu, S. Wang, Mcdock: a Monte Carlo simulation approach to the molecular dock-

ing problem, J. Comput.-Aided Mol. Des. 13 (5) (1999) 435–451.

[21] A. MacConnachie, Zanamivir (relenza®) — a new treatment for influenza, Intensive 
Crit. Care Nurs. 15 (6) (1999) 369–370, https://doi .org /10 .1016 /S0964 -3397(99 )
80031 -7.

[22] S. Markidis, D. Gadioli, E. Vitali, G. Palermo, Understanding the i/o impact on the 
performance of high-throughput molecular docking, in: 2021 IEEE/ACM Sixth In-

ternational Parallel Data Systems Workshop (PDSW), 2021, pp. 9–14.

[23] D. Medeiros, G. Schieffer, J. Wahlgren, I. Peng, A gpu-accelerated molecular dock-

ing workflow with kubernetes and apache airflow, in: A. Bienz, M. Weiland, M. 
Baboulin, C. Kruse (Eds.), High Performance Computing, Springer Nature Switzer-

land, Cham, 2023, pp. 193–206.

[24] Mediate: Molecular docking at home, https://mediate .exscalate4cov .eu/.

[25] Mopac2016, http://openmopac .net /home .html.

[26] G.M. Morris, R. Huey, W. Lindstrom, M.F. Sanner, R.K. Belew, D.S. Goodsell, A.J. 
Olson, Autodock4 and autodocktools4: automated docking with selective receptor 
flexibility, J. Comput. Chem. 30 (16) (2009) 2785–2791.

[27] N.A. Murugan, A. Podobas, D. Gadioli, E. Vitali, G. Palermo, S. Markidis, A review 
on parallel virtual screening softwares for high-performance computers, Pharma-

ceuticals 15 (1) (2022), https://doi .org /10 .3390 /ph15010063, https://www .mdpi .
com /1424 -8247 /15 /1 /63.

[28] G. Palermo, G. Accordi, D. Gadioli, E. Vitali, C. Silvano, B. Guindani, D. Ardagna, 
A.R. Beccari, D. Bonanni, C. Talarico, F. Lughini, J. Martinovic, P. Silva, A. Bohm, 
J. Beranek, J. Krenek, B. Jansik, B. Cosenza, L. Crisci, P. Thoman, P. Salzmann, 
T. Fahringer, L.T. Alexander, G. Tauriello, T. Schwede, J. Durairaj, A. Emerson, F. 
Ficarelli, S. Wingbermühle, E. Lindhal, D. Gregori, E. Sana, S. Coletti, P. Gschwandt-

ner, Tunable and portable extreme-scale drug discovery platform at exascale: the 
ligate approach, in: Proceedings of the 20th ACM International Conference on Com-

puting Frontiers, CF ’23, Association for Computing Machinery, New York, NY, USA, 
2023, pp. 272–278.

[29] P.N. Palma, L. Krippahl, J.E. Wampler, J.J. Moura, Bigger: a new (soft) docking algo-

rithm for predicting protein interactions, Proteins, Struct. Funct. Bioinform. 39 (4) 
(2000) 372–384.

[30] S. Ruder, An overview of gradient descent optimization algorithms, arXiv :1609 .
04747, 2017.

[31] S. Saini, D.H. Bailey, Nas Parallel Benchmark (Version 1.0) Results 11-96, NASA 
Ames Research Center, 1996.

[32] I. Sánchez-Linares, H. Pérez-Sánchez, J.M. Cecilia, J.M. García, High-throughput 
parallel blind virtual screening using BINDSURF, BMC Bioinform. 13 (SUPPL 14) 
(2012), https://doi .org /10 .1186 /1471 -2105 -13 -S14 -S13.

[33] D. Santos-Martins, L. Solis-Vasquez, A.F. Tillack, M.F. Sanner, A. Koch, S. Forli, 
Accelerating autodock4 with gpus and gradient-based local search, J. Chem. Theory 
Comput. (2021).

[34] J.R. Schames, R.H. Henchman, J.S. Siegel, C.A. Sotriffer, H. Ni, J.A. McCammon, 
Discovery of a novel binding trench in hiv integrase, J. Med. Chem. 47 (8) (2004) 
1879–1881, https://doi .org /10 .1021 /jm0341913, pMID: 15055986.

[35] I. Schellhammer, M. Rarey, Flexx-scan: fast, structure-based virtual screening, Pro-

teins: Struct. Funct. Bioinform. 57 (3) (2004) 504–517.

[36] G. Schieffer, I. Peng, Accelerating drug discovery in autodock-gpu with tensor 
cores, in: J. Cano, M.D. Dikaiakos, G.A. Papadopoulos, M. Pericàs, R. Sakellar-

iou (Eds.), Euro-Par 2023: Parallel Processing, Springer Nature Switzerland, Cham, 
2023, pp. 608–622.

[37] L. Solis-Vasquez, D. Santos-Martins, A.F. Tillack, A. Koch, J. Eberhardt, S. Forli, 
Parallelizing irregular computations for molecular docking, in: 2020 IEEE/ACM 
10th Workshop on Irregular Applications: Architectures and Algorithms (IA3), 2020, 
pp. 12–21.

[38] B. Sukhwani, M.C. Herbordt, Gpu acceleration of a production molecular docking 
code, in: Proceedings of 2nd Workshop on General Purpose Processing on Graphics 
Processing Units, 2009, pp. 19–27.

[39] S. Tang, R. Chen, M. Lin, Q. Lin, Y. Zhu, J. Ding, H. Hu, M. Ling, J. Wu, Accelerating 
autodock vina with gpus, Molecules 27 (9) (2022) 3041.

[40] M. Thavappiragasam, V. Kale, O. Hernandez, A. Sedova, Addressing load imbalance 
in bioinformatics and biomedical applications: efficient scheduling across multiple 
gpus, in: 2021 IEEE International Conference on Bioinformatics and Biomedicine 
(BIBM), 2021, pp. 1992–1999.

[41] R. Thomsen, M.H. Christensen, Moldock: a new technique for high-accuracy molec-

ular docking, J. Med. Chem. 49 (11) (2006) 3315–3321.

[42] H. van Vlijmen, J.-Y. Ortholand, V.M.-J. Li, J.S. de Vlieger, The European lead fac-
tory: an updated hts compound library for innovative drug discovery, Drug Discov. 

http://refhub.elsevier.com/S0743-7315(23)00189-2/bibFB90F588D3CF796BC30B2B511AC237F9s1
http://refhub.elsevier.com/S0743-7315(23)00189-2/bibFB90F588D3CF796BC30B2B511AC237F9s1
http://refhub.elsevier.com/S0743-7315(23)00189-2/bibFB90F588D3CF796BC30B2B511AC237F9s1
http://refhub.elsevier.com/S0743-7315(23)00189-2/bib391345F24DB53BB55F384F392C2EF783s1
http://refhub.elsevier.com/S0743-7315(23)00189-2/bib391345F24DB53BB55F384F392C2EF783s1
http://refhub.elsevier.com/S0743-7315(23)00189-2/bib391345F24DB53BB55F384F392C2EF783s1
http://refhub.elsevier.com/S0743-7315(23)00189-2/bib391345F24DB53BB55F384F392C2EF783s1
http://refhub.elsevier.com/S0743-7315(23)00189-2/bib391345F24DB53BB55F384F392C2EF783s1
https://doi.org/10.1517/17460441.3.8.841
https://ieeexplore.ieee.org/document/9059264/
https://ieeexplore.ieee.org/document/9059264/
https://doi.org/10.2174/1568026618666180821145215
https://doi.org/10.2174/1568026618666180821145215
http://refhub.elsevier.com/S0743-7315(23)00189-2/bib05DEBDB8B38C7E1E244DD770B62D1D4Fs1
http://refhub.elsevier.com/S0743-7315(23)00189-2/bib05DEBDB8B38C7E1E244DD770B62D1D4Fs1
http://refhub.elsevier.com/S0743-7315(23)00189-2/bib05DEBDB8B38C7E1E244DD770B62D1D4Fs1
https://doi.org/10.1021/acs.jpcb.0c09051
http://refhub.elsevier.com/S0743-7315(23)00189-2/bib2BEB99C31384FB730CCD231403AF2FACs1
http://refhub.elsevier.com/S0743-7315(23)00189-2/bib2BEB99C31384FB730CCD231403AF2FACs1
http://refhub.elsevier.com/S0743-7315(23)00189-2/bib2BEB99C31384FB730CCD231403AF2FACs1
http://www.foodb.ca
http://www.foodb.ca
https://doi.org/10.1021/jm0306430
https://doi.org/10.1021/jm0306430
http://refhub.elsevier.com/S0743-7315(23)00189-2/bib27976BA7021999956B45A1C44B053C95s1
http://refhub.elsevier.com/S0743-7315(23)00189-2/bib27976BA7021999956B45A1C44B053C95s1
http://refhub.elsevier.com/S0743-7315(23)00189-2/bib27976BA7021999956B45A1C44B053C95s1
https://doi.org/10.1109/TETC.2022.3187134
https://doi.org/10.1109/TETC.2022.3187134
https://doi.org/10.1093/bib/bbv037
https://europepmc.org/articles/PMC4793892
http://refhub.elsevier.com/S0743-7315(23)00189-2/bib6641F781BF575F4947008140308D93D6s1
http://refhub.elsevier.com/S0743-7315(23)00189-2/bib6641F781BF575F4947008140308D93D6s1
http://refhub.elsevier.com/S0743-7315(23)00189-2/bib6641F781BF575F4947008140308D93D6s1
http://refhub.elsevier.com/S0743-7315(23)00189-2/bib6641F781BF575F4947008140308D93D6s1
http://refhub.elsevier.com/S0743-7315(23)00189-2/bib536F6918EEF32E73A6DE0197B69F5F04s1
http://refhub.elsevier.com/S0743-7315(23)00189-2/bib536F6918EEF32E73A6DE0197B69F5F04s1
http://refhub.elsevier.com/S0743-7315(23)00189-2/bib536F6918EEF32E73A6DE0197B69F5F04s1
http://refhub.elsevier.com/S0743-7315(23)00189-2/bib5E94C4A33A42D2E2C58297B497CD08EFs1
http://refhub.elsevier.com/S0743-7315(23)00189-2/bib5E94C4A33A42D2E2C58297B497CD08EFs1
https://doi.org/10.1021/ci100459b
https://doi.org/10.1021/ci100459b
http://refhub.elsevier.com/S0743-7315(23)00189-2/bib4895D1F3CC09DE7F99A4258B8F9E690Es1
http://refhub.elsevier.com/S0743-7315(23)00189-2/bib4895D1F3CC09DE7F99A4258B8F9E690Es1
http://refhub.elsevier.com/S0743-7315(23)00189-2/bib4895D1F3CC09DE7F99A4258B8F9E690Es1
http://refhub.elsevier.com/S0743-7315(23)00189-2/bib4895D1F3CC09DE7F99A4258B8F9E690Es1
http://refhub.elsevier.com/S0743-7315(23)00189-2/bib4895D1F3CC09DE7F99A4258B8F9E690Es1
http://refhub.elsevier.com/S0743-7315(23)00189-2/bib4895D1F3CC09DE7F99A4258B8F9E690Es1
http://refhub.elsevier.com/S0743-7315(23)00189-2/bib7E0BC005FC38A3A8F81BFA076DAFA9FBs1
http://refhub.elsevier.com/S0743-7315(23)00189-2/bib7E0BC005FC38A3A8F81BFA076DAFA9FBs1
http://refhub.elsevier.com/S0743-7315(23)00189-2/bib7E0BC005FC38A3A8F81BFA076DAFA9FBs1
http://refhub.elsevier.com/S0743-7315(23)00189-2/bib6BC4CECF2BB275CF8C84BFB648B51BA1s1
http://refhub.elsevier.com/S0743-7315(23)00189-2/bib6BC4CECF2BB275CF8C84BFB648B51BA1s1
https://doi.org/10.1016/S0964-3397(99)80031-7
https://doi.org/10.1016/S0964-3397(99)80031-7
http://refhub.elsevier.com/S0743-7315(23)00189-2/bib21CAF60E0681317B283B81F8B97E2803s1
http://refhub.elsevier.com/S0743-7315(23)00189-2/bib21CAF60E0681317B283B81F8B97E2803s1
http://refhub.elsevier.com/S0743-7315(23)00189-2/bib21CAF60E0681317B283B81F8B97E2803s1
http://refhub.elsevier.com/S0743-7315(23)00189-2/bib63C5F9C5ED6A68DDEB3B186A7784E4A4s1
http://refhub.elsevier.com/S0743-7315(23)00189-2/bib63C5F9C5ED6A68DDEB3B186A7784E4A4s1
http://refhub.elsevier.com/S0743-7315(23)00189-2/bib63C5F9C5ED6A68DDEB3B186A7784E4A4s1
http://refhub.elsevier.com/S0743-7315(23)00189-2/bib63C5F9C5ED6A68DDEB3B186A7784E4A4s1
https://mediate.exscalate4cov.eu/
http://openmopac.net/home.html
http://refhub.elsevier.com/S0743-7315(23)00189-2/bib1CB3EA9122A4143BA0EF6FA64E3BCD2Fs1
http://refhub.elsevier.com/S0743-7315(23)00189-2/bib1CB3EA9122A4143BA0EF6FA64E3BCD2Fs1
http://refhub.elsevier.com/S0743-7315(23)00189-2/bib1CB3EA9122A4143BA0EF6FA64E3BCD2Fs1
https://doi.org/10.3390/ph15010063
https://www.mdpi.com/1424-8247/15/1/63
https://www.mdpi.com/1424-8247/15/1/63
http://refhub.elsevier.com/S0743-7315(23)00189-2/bib28920E86A510634C241F1A4FEE277025s1
http://refhub.elsevier.com/S0743-7315(23)00189-2/bib28920E86A510634C241F1A4FEE277025s1
http://refhub.elsevier.com/S0743-7315(23)00189-2/bib28920E86A510634C241F1A4FEE277025s1
http://refhub.elsevier.com/S0743-7315(23)00189-2/bib28920E86A510634C241F1A4FEE277025s1
http://refhub.elsevier.com/S0743-7315(23)00189-2/bib28920E86A510634C241F1A4FEE277025s1
http://refhub.elsevier.com/S0743-7315(23)00189-2/bib28920E86A510634C241F1A4FEE277025s1
http://refhub.elsevier.com/S0743-7315(23)00189-2/bib28920E86A510634C241F1A4FEE277025s1
http://refhub.elsevier.com/S0743-7315(23)00189-2/bib28920E86A510634C241F1A4FEE277025s1
http://refhub.elsevier.com/S0743-7315(23)00189-2/bib28920E86A510634C241F1A4FEE277025s1
http://refhub.elsevier.com/S0743-7315(23)00189-2/bibA23F30A7DC255E022DD523207B4592BFs1
http://refhub.elsevier.com/S0743-7315(23)00189-2/bibA23F30A7DC255E022DD523207B4592BFs1
http://refhub.elsevier.com/S0743-7315(23)00189-2/bibA23F30A7DC255E022DD523207B4592BFs1
http://refhub.elsevier.com/S0743-7315(23)00189-2/bib744190D2845C7ACFCEB7B5FEDE06FBDCs1
http://refhub.elsevier.com/S0743-7315(23)00189-2/bib744190D2845C7ACFCEB7B5FEDE06FBDCs1
http://refhub.elsevier.com/S0743-7315(23)00189-2/bib13A986DEF209F855D8051224116B8D50s1
http://refhub.elsevier.com/S0743-7315(23)00189-2/bib13A986DEF209F855D8051224116B8D50s1
https://doi.org/10.1186/1471-2105-13-S14-S13
http://refhub.elsevier.com/S0743-7315(23)00189-2/bibD26F5C1C85D6283F1DE9F62A24C7301Ds1
http://refhub.elsevier.com/S0743-7315(23)00189-2/bibD26F5C1C85D6283F1DE9F62A24C7301Ds1
http://refhub.elsevier.com/S0743-7315(23)00189-2/bibD26F5C1C85D6283F1DE9F62A24C7301Ds1
https://doi.org/10.1021/jm0341913
http://refhub.elsevier.com/S0743-7315(23)00189-2/bibC7747FBC4EC87E33A546AD157641785Bs1
http://refhub.elsevier.com/S0743-7315(23)00189-2/bibC7747FBC4EC87E33A546AD157641785Bs1
http://refhub.elsevier.com/S0743-7315(23)00189-2/bibC6DC48F50D0C486C09FCCE947BFDAC17s1
http://refhub.elsevier.com/S0743-7315(23)00189-2/bibC6DC48F50D0C486C09FCCE947BFDAC17s1
http://refhub.elsevier.com/S0743-7315(23)00189-2/bibC6DC48F50D0C486C09FCCE947BFDAC17s1
http://refhub.elsevier.com/S0743-7315(23)00189-2/bibC6DC48F50D0C486C09FCCE947BFDAC17s1
http://refhub.elsevier.com/S0743-7315(23)00189-2/bib98FD41CC50058B8C53D941810F7D17B2s1
http://refhub.elsevier.com/S0743-7315(23)00189-2/bib98FD41CC50058B8C53D941810F7D17B2s1
http://refhub.elsevier.com/S0743-7315(23)00189-2/bib98FD41CC50058B8C53D941810F7D17B2s1
http://refhub.elsevier.com/S0743-7315(23)00189-2/bib98FD41CC50058B8C53D941810F7D17B2s1
http://refhub.elsevier.com/S0743-7315(23)00189-2/bib99FD6021B915E33424C317E9E1191C52s1
http://refhub.elsevier.com/S0743-7315(23)00189-2/bib99FD6021B915E33424C317E9E1191C52s1
http://refhub.elsevier.com/S0743-7315(23)00189-2/bib99FD6021B915E33424C317E9E1191C52s1
http://refhub.elsevier.com/S0743-7315(23)00189-2/bibBC718FA3C244780004F6A8CAFDCEEA91s1
http://refhub.elsevier.com/S0743-7315(23)00189-2/bibBC718FA3C244780004F6A8CAFDCEEA91s1
http://refhub.elsevier.com/S0743-7315(23)00189-2/bibF98686571AA89DC651ADEC38C7DDBB82s1
http://refhub.elsevier.com/S0743-7315(23)00189-2/bibF98686571AA89DC651ADEC38C7DDBB82s1
http://refhub.elsevier.com/S0743-7315(23)00189-2/bibF98686571AA89DC651ADEC38C7DDBB82s1
http://refhub.elsevier.com/S0743-7315(23)00189-2/bibF98686571AA89DC651ADEC38C7DDBB82s1
http://refhub.elsevier.com/S0743-7315(23)00189-2/bibBFBAA9D03148BC1767B46BFE737AF309s1
http://refhub.elsevier.com/S0743-7315(23)00189-2/bibBFBAA9D03148BC1767B46BFE737AF309s1


E. Vitali, F. Ficarelli, M. Bisson et al.

Today 26 (10) (2021) 2406–2413, https://doi .org /10 .1016 /j .drudis .2021 .04 .019, 
https://www .sciencedirect .com /science /article /pii /S1359644621002063.

[43] J.V. Vermaas, A. Sedova, M.B. Baker, S. Boehm, D.M. Rogers, J. Larkin, J. Glaser, 
M.D. Smith, O. Hernandez, J.C. Smith, Supercomputing pipelines search for thera-

peutics against covid-19, Comput. Sci. Eng. 23 (1) (2021) 7–16, https://doi .org /10 .
1109 /MCSE .2020 .3036540.

[44] G. Vistoli, C. Manelfi, C. Talarico, A. Fava, A. Warshel, I.V. Tetko, R. Apostolov, Y. 
Ye, C. Latini, F. Ficarelli, G. Palermo, D. Gadioli, E. Vitali, G. Varriale, V. Pisapia, M. 
Scaturro, S. Coletti, D. Gregori, D. Gruffat, E. Leija, S. Hessenauer, A. Delbianco, M. 
Allegretti, A.R. Beccari, MEDIATE - molecular DockIng at homE: turning collabora-

tive simulations into therapeutic solutions, Expert Opin. Drug Discov. 18 (8) (2023) 
821–833, https://doi .org /10 .1080 /17460441 .2023 .2221025, pMID: 37424369.

[45] NVIDIA CUDA Guide, https://docs .nvidia .com /cuda/.

[46] NVIDIA CUDA Occupancy Calculator, https://docs .nvidia .com /cuda /cuda -
occupancy -calculator.

[47] NVIDIA Nsight Compute Kernel Profiling Guide, https://docs .nvidia .com /nsight -
compute /ProfilingGuide.

[48] E. Vitali, D. Gadioli, G. Palermo, A. Beccari, C. Cavazzoni, C. Silvano, Exploiting 
openmp and openacc to accelerate a geometric approach to molecular docking in 
heterogeneous hpc nodes, J. Supercomput. 75 (7) (2019) 3374–3396.

[49] V. Volkov, Better performance at lower occupancy, in: Proceedings of the GPU Tech-

nology Conference, GTC, vol. 10, San Jose, CA, 2010, p. 16.

[50] Y. Yu, C. Cai, J. Wang, Z. Bo, Z. Zhu, H. Zheng, Uni-dock: gpu-accelerated dock-

ing enables ultralarge virtual screening, J. Chem. Theory Comput. 19 (11) (2023) 
3336–3345, https://doi .org /10 .1021 /acs .jctc .2c01145, pMID: 37125970.

[51] S. Zhang, K. Kumar, X. Jiang, A. Wallqvist, J. Reifman, Dovis: an implementation 
for high-throughput virtual screening using autodock, BMC Bioinform. 9 (1) (2008) 
1–4.

[52] X. Zhang, S.E. Wong, F.C. Lightstone, Message passing interface and multithreading 
hybrid for parallel molecular docking of large databases on petascale high perfor-

mance computing machines, J. Comput. Chem. 34 (11) (2013) 915–927.

Emanuele Vitali graduated in 2015 from Politecnico di Mi-

lano (Italy) after completing his Master of Science in Computer 
Engineering, and in 2021 he received the PhD degree from the 
same university. Currently, he is a postdoctoral researcher at 
CSC-IT Center for Science, Finland and at Dipartimento di Elet-

tronica, Informazione e Bioingegneria (DEIB) of Politecnico di 
Milano. In 2019, he has been Visiting Student at Dividiti (UK). 
His main research interests include GPGPU architectures and pro-

gramming, application autotuning and high throughput molecu-

lar docking.

Federico Ficarelli graduated in Computer Science at the 
University of Milan in 2008. He is currently a senior HPC soft-

ware engineer in the High Performance Computing dept. at 
Cineca where he leads several co-design and development activi-

ties in the industrial R&D team. He is involved in several research 
projects as responsible for application and hardware-software 
co-design activities focusing on novel computing architectures, 
programming paradigms for heterogeneous platforms and com-

piler technologies.

Mauro Bisson graduated in Computer Science in 2006 and 
received his PhD degree in Computer Science in 2011, both from 
the Sapienza University of Rome, Italy. He is a software engi-

neer in the High Performance Computing and Benchmarks team 
at NVIDIA. His research interests include graph processing, im-

age processing, scientific and high performance computing and 
code optimization. He has been an ACM Gordon Bell finalist four 
times, received an honorable mention in 2011 and has received 
a number of IEEE awards for his works on graph processing.
12
Journal of Parallel and Distributed Computing 186 (2024) 104819

Davide Gadioli received his Master of Science degree in 
Computer Engineering in 2013, while in 2019 he received the 
Ph.D degree in Computer Engineering, from Politecnico di Mi-

lano (Italy). Currently, he is a postdoc at Dipartimento di Elet-

tronica, Informazione e Bioingegneria (DEIB) of Politecnico di 
Milano. In 2015, he was a Visiting Student at IBM Research (The 
Netherlands). His main research interests are in application auto-

tuning, approximate computing, and high throughput molecular 
docking.

Accordi Gianmarco received his Master of Science degree 
in Computer Engineering in 2022, while in the same year he 
started his Ph.D degree in Computer Engineering, from Politec-

nico di Milano (Italy). In the meanwhile, he is a Temporary 
Research associate at Dipartimento di Elettronica, Informazione e 
Bioingegneria (DEIB) of Politecnico di Milano. His main research 
interests are in autonomic computing, approximate computing, 
and high-performance computing.

Massimiliano Fatica graduated in Aeronautical Engineering 
and received a PhD degree in Theoretical and Applied Mechanics, 
both from the Sapienza University of Rome, Italy. He is the Di-

rector of the High Performance Computing and Benchmarks team 
at NVIDIA. His research interests include computational fluid dy-

namics and parallel and high performance computing. He has 
been a finalist in the ACM Gordon Bell prize multiple times, re-

ceived an honorable mention in 2011 and won the prize in 2018 
for applying an exascale-class deep learning application to ex-

treme climate data and breaking the Exaop computing barrier 
for the first time with a deep learning application.

Andrea R. Beccari is currently responsible for the Drug Dis-

covery Platform of Domp´e Farmaceutici SpA and leader of the 
EXSCALATE team. Since 2015, responsible of the Joint Bioin-

formatics Groups at the IBP Institute of the National Research 
Council of Italy. He was promoter and coordinator of the open 
innovation initiative: Italian Drug Discovery Network and co-

founder and member of the board of the Avicenna Alliance (Brus-

sel). He was the originator and chairman of the Computational 
Driven Drug Discovery and Italian Drug Discovery Summit se-

ries of meetings. He has co-organized several initiatives with 
the European Commission and parliament promoting the use of in-silico simulation to 
increase the awareness towards the potentiality of high-performance computing in health-

care. He is project coordinator of the H2020-EXSCALATE4CoV and EuroHPC-LIGATE 
projects. He published more than 20 publications in peer review journals and co-author 
for 7 patents.

Gianluca Palermo received his Master of Science degree in 
Electronic Engineering, in 2002, and the PhD degree in Com-

puter Engineering, in 2006, from Politecnico di Milano (Italy). 
He is currently a Full Professor at the Department of Electronics, 
Information, and Bioengineering (DEIB) at the same University. 
Previously, he was part of the Low-Power Design Group of AST 
- STMicroelectronics working on Network-on-Chip architectures, 
and a Research Assistant at the Advanced Learning and Research 
Institute (ALaRI) of the Universita’ della Svizzera Italiana. His re-

search interests include design methodologies and architectures 
for embedded and HPC systems focusing on autotuning aspects. Since 2003, he published 
more than 100 scientific papers in peer-reviewed conferences and journals.

https://doi.org/10.1016/j.drudis.2021.04.019
https://www.sciencedirect.com/science/article/pii/S1359644621002063
https://doi.org/10.1109/MCSE.2020.3036540
https://doi.org/10.1109/MCSE.2020.3036540
https://doi.org/10.1080/17460441.2023.2221025
https://docs.nvidia.com/cuda/
https://docs.nvidia.com/cuda/cuda-occupancy-calculator
https://docs.nvidia.com/cuda/cuda-occupancy-calculator
https://docs.nvidia.com/nsight-compute/ProfilingGuide
https://docs.nvidia.com/nsight-compute/ProfilingGuide
http://refhub.elsevier.com/S0743-7315(23)00189-2/bibD9593569E765BCF23DE49257EA9CD5D4s1
http://refhub.elsevier.com/S0743-7315(23)00189-2/bibD9593569E765BCF23DE49257EA9CD5D4s1
http://refhub.elsevier.com/S0743-7315(23)00189-2/bibD9593569E765BCF23DE49257EA9CD5D4s1
http://refhub.elsevier.com/S0743-7315(23)00189-2/bib1AAED78E16E2168F24B0B27F61CF2260s1
http://refhub.elsevier.com/S0743-7315(23)00189-2/bib1AAED78E16E2168F24B0B27F61CF2260s1
https://doi.org/10.1021/acs.jctc.2c01145
http://refhub.elsevier.com/S0743-7315(23)00189-2/bibA77FD7308B50A2D6D5ACC03DD4666AADs1
http://refhub.elsevier.com/S0743-7315(23)00189-2/bibA77FD7308B50A2D6D5ACC03DD4666AADs1
http://refhub.elsevier.com/S0743-7315(23)00189-2/bibA77FD7308B50A2D6D5ACC03DD4666AADs1
http://refhub.elsevier.com/S0743-7315(23)00189-2/bib508BFCF7B3F9AA5DAA70CBB5261009DAs1
http://refhub.elsevier.com/S0743-7315(23)00189-2/bib508BFCF7B3F9AA5DAA70CBB5261009DAs1
http://refhub.elsevier.com/S0743-7315(23)00189-2/bib508BFCF7B3F9AA5DAA70CBB5261009DAs1

	GPU-optimized approaches to molecular docking-based virtual screening in drug discovery: A comparative analysis
	1 Introduction
	2 State of the art
	3 Application description
	3.1 CUDA architecture
	3.2 Latency implementation
	3.3 Batched implementation

	4 Experimental results
	4.1 Experimental setup
	4.2 Preprocessed datasets
	4.3 Scaling analysis
	4.4 Real world datasets
	4.5 Workload analysis
	4.5.1 Resources allocation
	4.5.2 Roofline analysis
	4.5.3 Execution profiling


	5 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References


