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Abstract. In this study, diverse typologies of external actions are outlined, which turn out to be admissible for the third-
gradient modeling of elastic materials. It is shown how such loading, when prescribed over the boundary surface, along the
border edges and at the wedges of a deformable body in the Eulerian configuration, can be transformed into the Lagrangian
description generating multiple interactions, with a surprising deformation-induced coupling. Such a phenomenon becomes
more and more important at increasing the order of the β-forces, specified by duality as covectors expending work on the
βth normal derivative of the virtual displacements, being herein at most β = 2. Insights are provided into the true nature
of such generalized forces, resting on the differential geometric features of the deformation process.
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1. Introduction

The expression third-gradient materials denotes a class of elastic models for continuous bodies, whose
deformation energy density depends on the derivatives of the placement map up to the third order see
e.g. [1,2]. To govern the inner virtual work for such materials, the double-rank stress tensor is no more
sufficient, and hyperstress tensors of order three and four are required, referred to as double and triple
stresses, see e.g. [3]. By a variational approach, through iterated applications of the integration by parts
and of the divergence theorem extended to submanifolds with boundary [4,5], the inner virtual work,
namely the first variation of the deformation energy functional, can be represented by the sum of volume,
surface, edge and wedge integrals [6]. In this way, the Cauchy representation theorem for external loads in
terms of stress tensor is extended, so that generalized external forces are equated to hyperstress tensors
applied to the shape of Cauchy cuts, see [7,8]. Such generalized forces are defined by duality as covectors
that expend work on the virtual displacements and on their directional derivatives: up to the second order
along the direction of the normal, over the boundary faces, and along the direction of the normal vectors,
for the curved edges having codimension two. From the mathematical standpoint, such a problem can
be interpreted as the representation of a finite-order distribution through the sum of a finite number of
addends, each including function derivatives with increasing order, see e.g. [9,10]. In this way, nonstandard
boundary conditions are deduced: a complex expression is met also for the generalized contact pressures
over the boundary surface, depending not only on the normal but also on the local curvature and on its
square. In this respect, the principle of virtual work turns out to be more powerful and versatile than the
postulation of mechanics resting on the balance of forces and of moments of forces.

By the third-gradient modeling, several phenomena of solid and fluid mechanics have been effectively
addressed, which are not fully consistent with Cauchy’s first gradient theory [11]. Among the others, we
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can mention size effects depending on characteristic length scales [12,13], dislocation theory [14], corner
and surface effects, boundary layers [15,16], reflection and transmission of waves in the presence of dis-
continuities [17–19], surface tension in fluids [20,21], fabric sheets [22,23], joints and interfaces. Moreover,
the present approach is especially suitable to describe metamaterials constituted of a beam lattice [24–27],
which in a sense mimic the crystal structure: their properties, depending on the microscopic architecture,
can be tailored for the specific applications in civil, mechanical and aerospace engineering. To investi-
gate several of these phenomena, during the last years novel experimental techniques are being utilized,
providing high-quality information at the microscale never achieved before, see e.g. [28,29]. For instance,
in wettability experiments at high temperatures and under inert atmosphere, droplets of a molten alloy
at rest on a ceramic substrate can be monitored “in situ” by X-ray computed microtomography, see
[30]: such droplets exhibit a three-dimensional profile and a contact angle which depend on both surface
tension and adhesion. During mechanical tests, full-field kinematic measurements can be provided by
multiscale digital image correlation procedures, see e.g. [31,32], over the free surface (2D DIC) or within
the bulk (3D Volume DIC), as carried out in [33,34] on pantographic metamaterials.

The main feature of the present approach resides in the very high number of constitutive parameters
governing the deformation energy density [35]: besides the enriched experimental information mentioned
above, it is therefore necessary to develop robust identification strategies to calibrate such parameters at
the macroscale, see e.g. [36,37], or through homogenization techniques on the basis of simple assumptions
at the lower scales, as proposed in [38–41]. As a further difficulty, the synthesis of third-gradient meta-
materials still represents a prohibitive issue. In fact, in the literature strategies are not yet available to
design a microstructure giving rise, through homogenization, to a mechanical response at the macroscale
consistent with assigned third-gradient features [42], solving a sort of nonparametric inverse problem. An
attempt in this direction has been carried out with reference to beams constituted of microscopic trusses
[24,43]. Moreover, fundamental results concerning existence, uniqueness and stability of third-gradient
models have not been yet addressed (see e.g. [44]), differently from second-gradient materials for which
a few contributions exist concerning weak solutions [45], well-posedness [46] and strong ellipticity condi-
tions [47,48]. Numerical implementations of third-gradient models based on finite elements and NURBS
have been developed, see e.g. [49–51].

In some of his works [52], Gabrio Piola started the study of generalized actions that expend work on
the βth normal derivative of the virtual displacements. Notwithstanding this, a debate characterized the
modern (re-)discovery of higher-order gradient models involving Mindlin, Sedov, Toupin and Germain
among the others on the one side, and Truesdell and his followers on the other, concerning the nature of
such “exotic” β-forces and their role in mathematical physics, see e.g. [53–55]. It is true that with extreme
difficulty the generalized loading can enter the postulation of mechanics based on the balance of forces
and of moments of forces: Some attempts have been made, leading to an extension named “quasi-balanced
power” [56]. But it is still more clear that the β-forces appear naturally by duality in the postulation of
mechanics based on the principle of virtual work, see e.g. the first attempt by [57] and the more recent
contribution [8].

In previous studies, the governing equations for second-gradient continua have been deduced by a
truly variational approach, see [58,59], and the external actions were specified consistently. Through
some novel results of differential geometry serving as intermediate steps [4], a strategy was developed
to transform such second-gradient governing equations from the Eulerian to the Lagrangian description
[5,9]. More recently, in [6] the third-gradient equilibrium equations were deduced, endowed by suitable
relationships between Lagrangian and Eulerian hyperstress tensors of order lower or equal to four. In the
present study, the transport of the external actions from the Eulerian to the Lagrangian form is carried
out for the first time with reference to such third-gradient continua. Surprisingly, Eulerian loading of
high-order generate multiple Lagrangian actions, with a coupling induced by the deformation process.
On the basis of the present results, a few recursive mathematical structures have been identified, useful
for further generalizations.
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The paper is organized as follows. Section 2 recalls the main assumptions of third-gradient modeling
and outlines the admissible external actions. In Sect. 3, the transformation of the external loading is
carried out from the Eulerian to the Lagrangian description, finding a surprising coupling of actions,
especially for the higher-order terms. An attempt to identify possible recursive structures in the transfor-
mation formulae is carried out in Sect. 4. Section 5 is devoted to the practical evaluation of the diverse
integral contributions, taking into account the differential geometric structure of the oriented boundary
constituted of multiple regular faces with piecewise regular border edges, including in turn a finite number
of wedges. Finally, basic properties of surface and edge projectors, the formulation of the divergence the-
orem extended to submanifolds with boundary, transformation formulae for the edge vectors enriched by
some useful corollaries, are made available in three short Appendices, labeled as A, B and C, respectively.

1.1. Notation

In what follows recourse is made to tensor notation, in the classical syntax by Levi Civita and Ricci, and to
the Einstein convention on the implicit sum of repeated indices, distinguishing between contravariant and
covariant components. Whenever possible, Eulerian quantities are denoted by lowercase letters, and their
Lagrangian counterparts by uppercase ones. Consistently, to distinguish valences acting on Lagrangian
vectors from those specifying Eulerian components, e.g., as in F a

A, the former are indicated by uppercase
letters, i.e., A,B, · · · , the latter by lowercase ones, a, b, · · · . The Lagrangian gradient is denoted by the
symbols ∇ ≡ ∂

∂XA , with the obvious extension to kth-order gradients as ∇(k) = ∇∇(k−1). The derivative
along the direction of the unit vector NR is denoted as ∂

∂N ≡ NR ∂
∂XR ; the Lagrangian divergence

operator is seldom indicated by symbol DIV, while symbol DIV‖ is adopted for the surface divergence.
With reference to a domain D with dimension i (i = 3, 2, 1), symbol ∂D denotes its differential border,
having dimension (i − 1), with the obvious extension to the pth-order border as ∂(p)D ≡ ∂ ∂(p−1)D. The
word action, widely utilized in the jargon of structural mechanics, is adopted herein as a synonym of
loading and is not to be confused with the Hamilton functional.

2. Admissible external actions

Let us consider a three-dimensional body which occupies the volume Ω� ⊂ R3 (marked by a star) at a
reference instant t�, and the volume Ω ⊂ R3 at the generic instant t > t�. The former is usually referred to
as the Lagrangian, material or reference configuration, the latter as the Eulerian, spatial or current one. In
the Lagrangian configuration we denote the piecewise regular boundary surface, the regular border edges,
discontinuity loci for the face normals, and the discrete set of wedges, in turn discontinuity loci for the edge
tangent, as differential borders of increasing order starting from the volume occupied by the deformable
body, namely Σ� ≡ ∂Ω�, L� ≡ ∂Σ� ≡ ∂∂Ω�, and P� ≡ ∂L� ≡ ∂∂Σ� ≡ ∂∂∂Ω�, respectively. For the
relevant domains in the Eulerian configuration, we adopt the same symbols without the subscript �. All
the above domains with different codimensions are oriented consistently with the boundary surface Σ�,
starting from the orientation of the normal field NR (as usual, the normal pointing outwards is assumed
as positive). Both the material and the spatial configurations are equipped with an orthonormal vector
basis: symbol 〈a,b〉g = grsa

rbs will denote the inner (scalar) product according to the metric tensor g.
If the usual Euclidean norm is utilized, one has 〈a,a〉 = ‖a‖2. Along each border edge L� of a boundary
face, we can define the Darboux orthonormal moving frame (repère mobile) oriented counterclockwise,
constituted of the vectors T,N and B ≡ T∧N, where symbol ∧ denotes the wedge (cross) product. Both
the edge tangent T and the edge normal B belong to the plane tangent to the face: at each point of the
border edge, a rigid rotation around the tangent axis distinguishes such a frame from the Frenet–Serret
moving basis.
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The deformation process of the body is herein described as a diffeomorphism between the above
volumes Ω� and Ω, regarded as submanifolds with boundary [60–62] embedded in the ambient space R3.
Hence, a one-to-one map is specified, continuous and differentiable with a continuous and differentiable
inverse, so that each point x ∈ Ω can be uniquely obtained as the image of a point in the Lagrangian
configuration, labeled as X ∈ Ω�, namely x = χ(X). As an alternative, additional kinematic descriptors
can be introduced, e.g. see [63]. We will denote as usual the tangent operator as F = ∂χ/∂X, with
the assumption J = det(F) > 0 to prevent matter interpenetration. In third-gradient continua, the
deformation energy density is assumed of the form W

(
F, ∇F,∇(2)F

)
, see e.g. [6]. In the postulation of

mechanics based on the virtual work principle, the contributions to the external work can be specified
only after that the inner virtual work, first variation of the stored energy functional, has been represented
in a unique and no more reducible way as the sum of volume, surface, edge and wedge terms. For the
third-gradient continua, the contributions to the external virtual work in the Lagrangian description are
as follows:

δ EEXT =
∫

Ω�

Fext
Ω� i δχi dΩ� (V 0)

+
∫

Σ�

Fext
Σ� i δχi dΣ� (S0) +

∫

Σ�

Fext
Σ�N i

∂ δχi

∂ N
dΣ� (S1) +

∫

Σ�

Fext
Σ�NN i

∂2 δχi

∂ N2
dΣ� (S2)

+
∫

L�

Fext
L� i δχi dL� (L0) +

∫

L�

Fext
L� N i

∂ δχi

∂ N
dL� (L1) +

∫

L�

Fext
L� B i

∂ δχi

∂ B
dL� (L2)

+
ntotwedge∑

w=1

Fext
P� w i δχi(P� w) (W0) ; (1)

For the sake of clarity, each contribution in Eq. (1) was labeled by a letter, as a volume (V ), surface (S),
edge (L) and wedge (W ) term, followed by a progressive number from 0 to 2. The above symbols possess
the following meaning: Fext

Ω� i(X), Fext
Σ� i(X) , Fext

L� i(X) and Fext
P� w i denote Eulerian vectors defined in the

Lagrangian domain (Ω�), over its boundary face (Σ�), along the its edges (L�) and at relevant wedges
({P� w} with coordinates P� w, w = 1, · · · ,ntotwedge), dimensionally equal to force densities per unit
volume, per unit surface, per unit length and to a point force, respectively; Fext

Σ�N i(X) and Fext
Σ�NN i(X)

indicate Eulerian vector fields defined over the Lagrangian boundary surfaces, referred to as external
(surface) double and triple force densities, respectively, dimensionally equal to a force per unit surface
multiplied by a length (or a work per unit surface), and to a force per unit surface multiplied by a length
squared; symbols Fext

L�N i(X) and Fext
L�B i(X) indicate Eulerian vector fields defined over the Lagrangian

boundary edge, referred to as external (edge) double force densities, dimensionally equal to a force. It
can be proven that, selecting suitable pairs of work conjugate variables, the governing equations exhibit
the same mathematical form in the Lagrangian and in the Eulerian configuration, see [5,6]. Hence, the
expression of the external virtual work results to be the same, on condition of substituting the Lagrangian
variables and the integration domains with their Eulerian counterparts (without the subscript �). As
detailed in the next sections, the Eulerian loading will be denoted by lowercase symbols, maintaining the
same convention of Lagrangian actions, for instance f ext

Ω i will indicate the Eulerian counterpart of the
volume loading density Fext

Ω� i, f ext
Σ i will be used in the spatial configuration for the surface loading density

Fext
Σ� i, etc .

Equation (1), deduced by a variational approach in [6], must be regarded as a particularization of the
general representation formula for the external virtual work, provided in [7] for the Hth gradient material
occupying the volume Ω�, namely
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δ EEXT =
∫

Ω�

FΩ� i δχi dH3 +
H−1∑

β=0

∫

∂Ω�

F (β)
∂Ω� i

∂(β)δχi

∂N (β)
dH2

+
H−2∑

β=0

∫

∂∂Ω�

F (β)
∂∂Ω� i

∂(β)δχi

∂N (β)
dH1 +

H−3∑

β=0

∫

∂∂∂Ω�

F (β)
∂∂∂Ω� i

∂(β)δχi

∂N (β)
dH0 ; (2)

where symbols have the following meaning: dH(3−p) indicates a (3 − p)-dimensional Hausdorff measure
over the pth differential border of Ω�, i.e., ∂(p)Ω�, being ∂(0)Ω� ≡ Ω� and dH0 a measure on the dis-
crete set of wedges; ∂(β)δχi

∂N(β) denotes the βth normal derivative of the virtual displacements, which for
β = 0 retrieves the virtual displacements themselves; vector FΩ� i denotes a long-range force density,
while vectors F (β)

∂···∂Ω� i indicate contact interaction densities of (β)th order prescribed over domains with
different codimensions. For the present case with H = 3, we can notice that over the surface contributions
including up to the second normal derivative are expected, while along the border edge we attain at most
the first normal derivative but along two different “normal” directions, since in this case the submanifold
exhibits codimension two. Finally, at the wedges, only terms expending work on the virtual displacements
are found. For the sake of clarity, in what follows symbols utilized in Eq. (1) will be preferred.

3. Loading transformation

3.1. Volume forces

The Eulerian volume loading labeled as (V 0), expending work on the virtual displacement vector, can be
transformed into its Lagrangian counterpart as follows:

∫

Ω

f ext
Ω i δχi dΩ =

∫

Ω�

dΩ� J f ext
Ω i ◦ χ δχi ; (3)

where J = det(F) = dΩ/dΩ� denotes the Jacobian determinant of the placement map regarded as a
diffeomorphism between the material and the spatial configuration. Symbol ◦ indicates the composition
of functions, so that f ext

Ω i ◦ χ(X) is defined in the Lagrangian configuration: This change of variables for
the Eulerian loading will be assumed implicitly in what follows. The present Eulerian term gives rise
exclusively to the Lagrangian action Fext

Ω� i = J f ext
Ω i : This transformation coincides with that occurring

for Cauchy’s materials.

3.2. Contact pressures

The Eulerian surface loading labeled as (S0), expending work on the virtual displacements (retrieved
in Eq. 2 by setting β = 0 over ∂Ω�), can be transformed into its Lagrangian counterpart through the
transformation rule of the area elements [4,58,60], namely dΣ = ‖J F−TN‖dΣ�, obtaining

∫

Σ

f ext
Σ i δχi dΣ =

∫

Σ�

dΣ�‖J F−TN‖ f ext
Σ i δχi ; (4)

This term gives rise uniquely to the Lagrangian action Fext
Σ� i = ‖J F−TN‖ f ext

Σ i .
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3.3. Double force

Now let us focus on the Eulerian double force (S1), expending work on the normal derivative of the
virtual displacement vector. This action can be retrieved in Eq. 2 by setting β = 1 over ∂Ω. By the usual
transformation of the area element and of the covariant normal ns when passing from the Eulerian to
the Lagrangian configuration [4,58] (see “Appendix C”), we obtain

∫

Σ

f ext
Σn i

∂ δχi

∂ n
dΣ =

∫

Σ�

‖JF−TN‖ f ext
Σn i grsns

∂ δχi

∂ xr
dΣ�

=
∫

Σ�

‖JF−TN‖ f ext
Σn i grs

(
F−1

)Q
s

NQ

‖F−TN‖
(
F−1

)R
r

∂ δχi

∂ XR
dΣ�

=
∫

Σ�

Jfext
Σn i g� QRNQ

∂ δχi

∂ XR
dΣ� (5)

Symbol g� RS ≡ grs
(
F−1

)R
r

(
F−1

)S
s

denotes the pullback metric tensor in doubly contravariant form (also
indicated by the musical symbol g� �), having the property g� RQNRNQ = 〈N,N〉g� � = ‖F−TN‖2, see
[4,58,60]. For the sake of simplicity, in what follows we will denote by N�R ≡ g� RSNS the contravariant
form of the normal vector according to the pullback metrics, for which in general one has N�R �= NR.
Making recourse to the additive decomposition of the gradient by the complementary surface projectors
[M⊥]SR = NSNR and [M‖]SR = δS

R − [M⊥]SR (see “Appendix A” and [59]), exploiting idempotence and
integration by parts one can write

= +
∫

Σ�

Jfext
Σn i N� R

(
[M⊥]SR + [M‖]SR

)

︸ ︷︷ ︸
=δS

R

∂ δχi

∂ XS
dΣ�

= +
∫

Σ�

Jfext
Σn i N�RNR︸ ︷︷ ︸

=‖F−T N‖2

NS ∂ δχi

∂ XS
dΣ�

+
∫

Σ�

dΣ� [M‖]SR′
∂

∂ XS

{
Jfext

Σn i N�R δχi [M‖]R
′

R

}

−
∫

Σ�

dΣ� [M‖]SR′
∂

∂ XS

{
Jfext

Σn i N�R[M‖]R
′

R

}
δχi

= +
∫

Σ�

‖F−TN‖2 Jfext
Σn i

∂ δχi

∂ N
dΣ�

+
∫

L�

dL� Jfext
Σn i

(
BRN�R

)
δχi

−
∫

Σ�

dΣ� [M‖]SR′
∂

∂ XS

{
Jfext

Σn i N�R [M‖]R
′

R

}
δχi ; (6)

where the boxes graphically emphasize the irreducible terms. The divergence theorem for submanifolds
with boundary allowed us to transport the second addend from the boundary surface Σ� to the border
edge L�, whose outward unit normal is denoted by BR (see “Appendix B” and [5,58,64] for more details).
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It is worth emphasizing that the Eulerian double force f ext
Σn i gives rise in the Lagrangian configuration to

a double force (after multiplication by a local scaling factor), to surface contact pressures, via the surface
divergence operator, and to an edge force.

Lagrangian actions generated by the Eulerian force f ext
Σn i (S1)

Fext
Σ�N i = ‖F−TN‖2 Jfext

Σn i ; (7)

Fext
Σ� i = − [M‖]SR′

∂

∂ XS

{
Jfext

Σn i N�R [M‖]R
′

R

}
;

Fext
L� i = Jfext

Σn i

(
BRN�R

)
;

It is worth noting that in Eq. (7) the coupling of the Lagrangian actions Fext
Σ� i and Fext

L� i with Fext
Σ�N i is

induced by the deformation process: in fact, the contact pressures over the surface and the edge loading
include in turn the products N�R [M‖]R

′

R and BRN�R, which vanish when the deformation gradient tends
to the unit tensor, namely when F a

A → δa
A. In that scenario, the pulled-back normal N�R is still normal

to the tangent plane (and hence to the border edge normal), and Fext
Σ�N i remains the only Lagrangian

counterpart of the Eulerian double force f ext
Σn i. The surprising fact (and in a sense counterintuitive) is that

the double force, generating work on the normal derivative of the virtual displacements over the boundary
surface, in the deformation process gives rise also to contact pressures over the same face through the
surface divergence operator, generating work on the virtual displacements, and can be transported to the
border edge like any other surface force with a tangential component.

3.4. Triple force

Let us analyze the Eulerian triple force f ext
Σnn i labeled as (S2), generating work on the second normal

derivative of the virtual displacements. This action can be retrieved in Eq. 2 by setting β = 2 over ∂Ω.
Considering the transformation formula for the covariant normal nr, by permuting the partial derivatives
according to the Schwarz’ theorem one finds

∫

Σ

f ext
ΣNN i

∂2 δχi

∂ n2
dΣ =

∫

Σ�

dΣ�‖J F−TN‖ f ext
Σnni nrns ∂2 δχi

∂ xr∂ xs

=
∫

Σ�

dΣ�‖J F−TN‖ f ext
Σnn i grt

(
F−1

)Q
t

NQ

‖F−TN‖ gsv

(
F−1

)V
v

NV

‖F−TN‖
(
F−1

)R
r

(
F−1

)S
s

∂2 δχi

∂ XR∂ XS

=
∫

Σ�

dΣ�
J f ext

Σnn i

‖F−TN‖ N� R N� S ∂2 δχi

∂ XR∂ XS
(7)

where we have set N� R = g� RSNS , being g� RS = grs
(
F−1

)R
r

(
F−1

)S
s

the pullback metric tensor. By the
additive decomposition of the gradient through the complementary surface projectors M⊥ = N⊗N and
M‖ = 1 − M⊥ (see “Appendix A” and [4,59]), one finds

=
∫

Σ�

dΣ�
J f ext

Σnn i

‖F−TN‖ N� R N� S
(
[M⊥]AR + [M‖]AR

) ∂2 δχi

∂ XA∂ XS

=
∫

Σ�

dΣ�
J fext

Σnn i

‖F−TN‖
(
NRN� R

)

︸ ︷︷ ︸
=‖F−T N‖2

N� SNA ∂2 δχi

∂ XA∂ XS
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+
∫

Σ�

dΣ� [M‖]AR′
∂

∂XA

{
J fext

Σnn i

‖F−TN‖ N� R N� S ∂ δχi

∂ XS
[M‖]R

′

R

}

−
∫

Σ�

dΣ� [M‖]AR′
∂

∂XA

{
J fext

Σnn i

‖F−TN‖ N� R N� S [M‖]R
′

R

}
∂ δχi

∂ XS
(8)

In the last equality, we exploited the idempotence of the tangential projector, namely [M‖]AR = [M‖]AR′ [M‖]R
′

R

(see “Appendix A”), and the integration by parts before applying the divergence theorem. One has

=
∫

Σ�

dΣ� ‖F−TN‖J fext
Σnn i N� SNA ∂2 δχi

∂ XS∂ XA

+
∫

L�

dL�
J f ext

Σnn i

‖F−TN‖
(
BRN� R

)
N� S ∂ δχi

∂ XS

−
∫

Σ�

dΣ� [M‖]AR′
∂

∂XA

{
J fext

Σnn i

‖F−TN‖ N� R N� S [M‖]R
′

R

}
∂ δχi

∂ XS
; (9)

The procedure carried out to reduce the first partial derivative of the virtual displacements can be iterated
for the second partial derivative by virtue of the Schwarz’ theorem. Let us analyze separately the three
addends in Eq. (9) at next points (i)–(iii).
(i) For the first contribution, one finds

∫

Σ�

dΣ� ‖F−TN‖J fext
Σnn i N� SNA

(
[M⊥]LS + [M‖]LS

) ∂2 δχi

∂ XL∂ XA

=
∫

Σ�

dΣ� ‖F−TN‖J fext
Σnn i

(
N� SNS

)

︸ ︷︷ ︸
=‖F−T N‖2

NANL ∂2 δχi

∂ XL∂ XA

+
∫

Σ�

dΣ� ‖F−TN‖J fext
Σnn i N� SNA [M‖]LS′ [M‖]S

′

S

∂2 δχi

∂ XL∂ XA

=
∫

Σ�

dΣ� ‖F−TN‖3J f ext
Σnn i

∂2 δχi

∂ N2

+
∫

Σ�

dΣ� [M‖]LS′
∂

∂ XL

{
‖F−TN‖J fext

Σnn i N� SNA [M‖]S
′

S

∂ δχi

∂ XA

}

−
∫

Σ�

dΣ� [M‖]LS′
∂

∂ XL

{
‖F−TN‖J fext

Σnn i N� SNA [M‖]S
′

S

} ∂ δχi

∂ XA
(10)

In the first addend of the last equality, we can recognize the Lagrangian second derivative along the
direction of the surface normal. Reiterating the application of the divergence theorem, one can write

=
∫

Σ�

dΣ� ‖F−TN‖3J f ext
Σnn i

∂2 δχi

∂ N2

+
∫

L�

dL� ‖F−TN‖J fext
Σnn i

(
BSN� S

) ∂ δχi

∂ N
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−
∫

Σ�

dΣ� [M‖]LS′
∂

∂ XL

{
‖F−TN‖J fext

Σnn i N� SNA [M‖]S
′

S

} ∂ δχi

∂ XA

︸ ︷︷ ︸
=(�)

(11)

The first two addends above, concerning the boundary surface Σ� and the border edge L�, are now
complete: a box surrounding the relevant contributions graphically emphasizes this circumstance. The
last addend can be further reduced through the additive decomposition of the gradient resting on surface
projectors, namely

(�) = −
∫

Σ�

dΣ� [M‖]LS′
∂

∂ XL

{
‖F−TN‖J fext

Σnn i N� SNA [M‖]S
′

S

}
NQNA︸ ︷︷ ︸
=[M⊥]QA

∂ δχi

∂ XQ

−
∫

Σ�

dΣ� [M‖]LS′
∂

∂ XL

{
‖F−TN‖J fext

Σnn i N� SNA [M‖]S
′

S

}
[M‖]

Q

A′ [M‖]A
′

A
︸ ︷︷ ︸

=[M‖]QA

∂ δχi

∂ XQ

= −
∫

Σ�

dΣ� [M‖]LS′
∂

∂ XL

{
‖F−TN‖J fext

Σnn i N� SNA [M‖]S
′

S

}
NA

∂ δχi

∂ N

−
∫

Σ�

dΣ� [M‖]
Q

A′
∂

∂ XQ

{
[M‖]LS′

∂

∂ XL

(
‖F−TN‖J fext

Σnn i N� SNA [M‖]S
′

S

)
[M‖]A

′

A δχi

}

+
∫

Σ�

dΣ� [M‖]
Q

A′
∂

∂ XQ

{
[M‖]LS′

∂

∂ XL

(
‖F−TN‖J fext

Σnn i N� SNA [M‖]S
′

S

)
[M‖]A

′

A

}
δχi (12)

where the addend with the tangential projector was integrated by parts. Hence, through the divergence
theorem (see “Appendix B”) we attain the complete expressions

= −
∫

Σ�

dΣ� [M‖]LS′
∂

∂ XL

(
‖F−TN‖J fext

Σnn i N� SNA [M‖]S
′

S

)
NA

∂ δχi

∂ N

−
∫

L�

dL� [M‖]LS′
∂

∂ XL

(
‖F−TN‖J fext

Σnn i N� SNA [M‖]S
′

S

)
BA δχi

+
∫

Σ�

dΣ� [M‖]
Q

A′
∂

∂ XQ

{
[M‖]LS′

∂

∂ XL

(
‖F−TN‖J fext

Σnn i N� SNA [M‖]S
′

S

)
[M‖]A

′

A

}
δχi ; (13)

In the first two addends, a surface and an edge integral, we recognize the surface divergence operator,
namely DIV‖(v‖), with one additional valence contracted with the face normal NA for the former, and
with the edge normal BA for the latter. The covector in the third addend represents indeed a double
surface divergence operator, namely DIV‖

{[
DIV‖(v‖)

]
‖
}

, requiring the argument v to possess two free
valences (at least).
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(ii) For reducing the second addend in Eq. (9), we utilize complementary edge projectors (marked by
subscript L), tangential and normal (wrt to the border edge), namely ML ‖ = T ⊗ T and ML ⊥ =
B ⊗ B + N ⊗ N, respectively, resulting hence ML ⊥ + ML ‖ = 1. As expected, the border edge has
codimension two and the orthogonal complement of the tangent space is spanned by two normals, B and
N. Hence, one finds

+
∫

L�

dL�
J fext

Σnn i

‖F−TN‖
(
BRN� R

)
N� S

(
[ML ⊥]WS + [ML ‖]WS

)

︸ ︷︷ ︸
=δW

S

∂ δχi

∂ XW

= +
∫

L�

dL�
J fext

Σnn i

‖F−TN‖
(
BRN� R

)
N� SNS︸ ︷︷ ︸

=‖F−T N‖2

NW ∂ δχi

∂ XW
+

+
∫

L�

dL�
J fext

Σnn i

‖F−TN‖
(
BRN� R

)
N� SBW BS

∂ δχi

∂ XW

+
∫

L�

dL� [ML ‖]WS′
∂

∂ XW

{
J fext

Σnn i

‖F−TN‖
(
BRN� R

)
N� S [ML ‖]S

′

S δχi

}

−
∫

L�

dL� [ML ‖]WS′
∂

∂ XW

{
J fext

Σnn i

‖F−TN‖
(
BRN� R

)
N� S [ML ‖]S

′

S

}
δχi (14)

Rearranging terms and applying the divergence theorem to the third addend, we obtain

= +
∫

L�

dL� ‖F−TN‖J fext
Σnn i

(
BRN� R

) ∂ δχi

∂ N

+
∫

L�

dL�
J fext

Σnn i

‖F−TN‖
(
BRN� R

) (
BSN� S

) ∂ δχi

∂ B

+
ntotedge∑

e=1

[
J f ext

Σnn i

‖F−TN‖
(
BRN� R

) (
TSN� S

)
δχi

]P� we(2)

P� we(1)

+

−
∫

L�

dL� TW TS′
∂

∂ XW

{
J fext

Σnn i

‖F−TN‖
(
BRN� R

) (
TSN� S

)
TS

′
}

δχi ; (15)

Symbol [t]ba ≡ t(b) − t(a) possesses the usual meaning derived from the fundamental theorem of calculus:
herein, along each curved branch of the oriented face border, the function within the square parentheses
must be evaluated at the ends, coinciding with two wedges, before computing the above difference. A
suitable connectivity matrix can be used to specify in the global array the indices of the wedge pair
belonging to the eth oriented edge, say P� we(1) and P� we(2). Index e spans all the ntotedge border edges,
taking into account the local orientation of the contiguous faces sharing the support of each edge: To
avoid a cumbersome notation, further highlights for the correct evaluation of this term will be provided
in Sect. 5.
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(iii) Finally, let us reduce the third addend in Eq. (9). Through an additive decomposition by comple-
mentary surface projectors, one has

−
∫

Σ�

dΣ� [M‖]AR′
∂

∂XA

{
J fext

Σnn i

‖F−TN‖ N� R N� S [M‖]R
′

R

}
(
[M⊥]YS + [M‖]YS

) ∂ δχi

∂ XY

= −
∫

Σ�

dΣ� [M‖]AR′
∂

∂XA

{
J fext

Σnn i

‖F−TN‖ N� R N� S [M‖]R
′

R

}
[M⊥]YS︸ ︷︷ ︸
=NSNY

∂ δχi

∂ XY

−
∫

Σ�

dΣ� [M‖]AR′
∂

∂XA

{
J fext

Σnn i

‖F−TN‖ N� R N� S [M‖]R
′

R

}
[M‖]YS

∂ δχi

∂ XY

= −
∫

Σ�

dΣ� [M‖]AR′
∂

∂XA

{
J fext

Σnn i

‖F−TN‖ N� R N� S [M‖]R
′

R

}
NS

∂ δχi

∂ N

−
∫

Σ�

dΣ� [M‖]YS′
∂

∂ XY

{
[M‖]AR′

∂

∂XA

(
J fext

Σnn i

‖F−TN‖ N� R N� S [M‖]R
′

R

)
δχi [M‖]S

′

S

}
+

+
∫

Σ�

dΣ� [M‖]YS′
∂

∂ XY

{
[M‖]AR′

∂

∂XA

(
J fext

Σnn i

‖F−TN‖ N� R N� S [M‖]R
′

R

)
[M‖]S

′

S

}
δχi (16)

Hence, we can write

= −
∫

Σ�

dΣ� [M‖]AR′
∂

∂XA

{
J fext

Σnn i

‖F−TN‖ N� R N� S [M‖]R
′

R

}
NS

∂ δχi

∂ N

−
∫

L�

dL� [M‖]AR′
∂

∂XA

(
J fext

Σnn i

‖F−TN‖ N� R N� S [M‖]R
′

R

)
BS δχi

+
∫

Σ�

dΣ� [M‖]YS′
∂

∂ XY

{
[M‖]AR′

∂

∂XA

(
J f ext

Σnn i

‖F−TN‖ N� R N� S [M‖]R
′

R

)
[M‖]S

′

S

}
δχi ; (17)

Before closing this section, it is worth emphasizing that some of the above addends admit alternative
expressions. For instance, in Eq. (13) by product differentiation and through well-known properties of
the normal vector gradient (see “Appendix C”) one can write

−
∫

Σ�

dΣ� [M‖]BS′
∂

∂ XB

{
‖F−TN‖J fext

Σnn i N� S NA [M‖]S
′

S

}
NA

∂ δχi

∂ N

= −
∫

Σ�

dΣ� [M‖]BS′
∂

∂ XB

{
‖F−TN‖J fext

Σnn i N� S [M‖]S
′

S

} ∂ δχi

∂ N
; (18)
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Other formulae including the tangential edge projector ML ‖ = T ⊗ T can be simplified through the
relationships at point (vi) of “Appendix C” and Eqs. (48)-(49) in “Appendix A.”

By rearranging the addends originated from the Eulerian loading (S2), one has

=
∫

Σ�

dΣ� ‖F−TN‖3 J fext
Σnn i

∂2 δχi

∂ N2

−
∫

Σ�

dΣ� [M‖]BS′
∂

∂ XB

{
‖F−TN‖J fext

Σnn i N� SNA [M‖]S
′

S

}
NA

∂ δχi

∂ N

−
∫

Σ�

dΣ� [M‖]BS′
∂

∂XB

{
J fext

Σnn i

‖F−TN‖ N� S N� A [M‖]S
′

S

}
NA

∂ δχi

∂ N

+
∫

Σ�

dΣ� [M‖]LA′
∂

∂ XL

{
[M‖]BS′

∂

∂ XB

(
‖F−TN‖J fext

Σnn i N� SNA[M‖]S
′

S

)
[M‖]A

′

A

}
δχi

+
∫

Σ�

dΣ� [M‖]LA′
∂

∂ XL

{
[M‖]BS′

∂

∂XB

(
J fext

Σnn i

‖F−TN‖ N� S N� A [M‖]S
′

S

)
[M‖]A

′

A

}
δχi

+ 2
∫

L�

dL� ‖F−TN‖J fext
Σnn i

(
BSN�S

) ∂ δχi

∂ N
+
∫

L�

dL�
J f ext

Σnn i

‖F−TN‖
(
N�RBR

)2 ∂ δχi

∂ B

−
∫

L�

dL� TLTS′
∂

∂ XL

{
J fext

Σnn i

‖F−TN‖
(
N� RBR

) (
TSN� S

)
TS

′
}

δχi

−
∫

L�

dL� [M‖]BS′
∂

∂ XB

{
‖F−TN‖J fext

Σnn i N� SNA[M‖]S
′

S

}
BA δχi

−
∫

L�

dL� [M‖]BS′
∂

∂XB

{
J fext

Σnn i

‖F−TN‖ N� S N� A [M‖]S
′

S

}
BA δχi

+
ntotedge∑

e=1

[
J fext

Σnn i

‖F−TN‖
(
BRN� R

) (
TSN� S

)
δχi

]P� we(2)

P� we(1)

(19)

It is worth emphasizing that the Eulerian triple force f ext
Σnn i when transported to the Lagrangian configu-

ration gives rise to all the typologies of actions: a triple force, after multiplication by a local scale factor;
a double force, through the surface divergence operator; contact pressures over the face, through a dou-
ble surface divergence operator; edge double forces; edge forces via the edge divergence operator; finally,
wedge forces. Concerning the edge and wedge contributions, we can recognize the presence of several pull-
back products between edge vectors, i.e., N� RBR = g� QRBRNQ (even squared), N� RTR = g� QRTRNQ

and N� S [M‖]S
′

S , all vanishing when F a
A → δa

A.
For the sake of clarity, we orderly gather the Lagrangian loading corresponding to the Eulerian action

f ext
Σnn i in a synopsis.
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Lagrangian actions generated by the Eulerian force f ext
Σnn i (S2)

Fext
Σ�NN i = ‖F−TN‖3 J fext

Σnn i ; (21)

Fext
Σ�N i = −[M‖]BS′

∂

∂ XB

{
‖F−TN‖J fext

Σnn i N� S [M‖]S
′

S

(
NA +

N� A

‖F−TN‖2

)}
NA ;

Fext
Σ� i = +[M‖]LA′

∂

∂ XL

{
[M‖]BS′

∂

∂ XB

[
‖F−TN‖J fext

Σnn i N� S [M‖]S
′

S

×
(

NA +
N� A

‖F−TN‖2

)]
[M‖]A

′

A

}
;

Fext
L�N i = 2 ‖F−TN‖J fext

Σnn i

(
BSN� S

)
;

Fext
L�B i = +

J fext
Σnn i

‖F−TN‖
(
BRN� R

)2
;

Fext
L� i = −TLTS′

∂

∂ XL

{
J fext

Σnn i

‖F−TN‖
(
BRN� R

) (
TSN� S

)
TS

′
}

− [M‖]BS′
∂

∂ XB

{
‖F−TN‖J fext

Σnn i N� S [M‖]S
′

S

(
NA +

N� A

‖F−TN‖2

)}
BA ;

ntotwedge∑

w=1

Fext
P� w i δχi(P� w) =

ntotedge∑

e=1

[
J f ext

Σnn i

‖F−TN‖
(
BRN� R

) (
N� STS

)
δχi

]P� we(2)

P� we(1)

;

On the basis of the relationships outlined in the “Appendices A and C,” concerning the directional
derivatives of the edge vectors and the properties of the edge projectors, the Lagrangian edge action in
Eq. (21) can be written equivalently as follows:

Fext
L� i = −TL ∂

∂ XL

{
J fext

Σnn i

‖F−TN‖
(
BRN� R

) (
N� STS

)
}

− TB ∂

∂ XB

{
‖F−TN‖J fext

Σnn i

(
N� STS

)
(

NA +
N� A

‖F−TN‖2

)}
BA

− BB ∂

∂ XB

{
‖F−TN‖J fext

Σnn i

(
N� SBS

)
(

NA +
N� A

‖F−TN‖2

)}
BA +

− TBTS′
∂ BS

′

∂ XB

(
N� SBS

)2 J f ext
Σnn i

‖F−TN‖ ; (22)

3.5. Edge contributions

The Eulerian edge contribution including f ext
L i and labeled as (L0) can be easily transformed into the

Lagrangian description. In fact, one finds
∫

L

f ext
L i δχi dL =

∫

L�

‖FT‖ f ext
L i δχi dL� ; (23)

resulting for the length element dL = ‖FT‖dL�. One obtains Fext
L� i = ‖FT‖ f ext

L i , see e.g. [9,58]: such a
contribution does not generate any other loading action in the Lagrangian configuration. This action can
be retrieved in Eq. 2 by setting β = 0 along ∂∂Ω.

Let us consider the Eulerian edge double force f ext
Ln i, expending work on the (face) normal derivative

of the virtual displacements and above labeled as (L1). This action can be retrieved in Eq. 2 by setting
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β = 1 over ∂∂Ω. One can write

∫

L

f ext
Ln i grsns

∂ δχi

∂ xr
dL =

∫

L�

‖FT‖ f ext
Ln i grs

(
F−1

)Q
s

NQ

‖F−TN‖
(
F−1

)S
r

∂ δχi

∂ XS
dL� (24)

In this case, we decompose the Lagrangian gradient by means of orthogonal projectors defined along the
border edge (marked by subscript L, see “Appendix A”), namely through the tangential edge projector
ML ‖ = T ⊗ T and the normal edge projector ML ⊥ = B ⊗ B + N ⊗ N, for which the complementarity
relationship holds, i.e., ML ⊥ + ML ‖ = 1. Introducing as above the pullback metric tensor g�QS =

grs
(
F−1

)Q
s

(
F−1

)S
r

with the simplified notation N� Q = g�QSNS , one has

= +
∫

L�

‖FT‖
‖F−TN‖ f ext

Ln i N� S
(
[ML ⊥]CS + [ML ‖]CS

)

︸ ︷︷ ︸
=δC

S

∂ δχi

∂ XC
dL�

= +
∫

L�

‖FT‖
‖F−TN‖ f ext

Ln i N� SNS︸ ︷︷ ︸
=‖F−T N‖2

NC ∂ δχi

∂ XC
dL�

+
∫

L�

‖FT‖
‖F−TN‖ f ext

Ln i

(
N� SBS

)
BC ∂ δχi

∂ XC
dL�

+
∫

L�

‖FT‖
‖F−TN‖ f ext

Ln i N� S [ML ‖]CS
∂ δχi

∂ XC
dL� (25)

Through the integration by parts and applying the divergence theorem along the one-dimensional
curved edge (see “Appendix B”), one obtains

= +
∫

L�

‖FT‖‖F−TN‖ f ext
Ln i

∂ δχi

∂ N
dL�

+
∫

L�

‖FT‖
‖F−TN‖ f ext

Ln i

(
N� SBS

) ∂ δχi

∂ B
dL�

+
∫

L�

dL� [ML ‖]CS′
∂

∂ XC

{ ‖FT‖
‖F−TN‖ f ext

Ln i N� S δχi [ML ‖]S
′

S

}

−
∫

L�

dL� [ML ‖]CS′
∂

∂ XC

{ ‖FT‖
‖F−TN‖ f ext

Ln i N� S [ML ‖]S
′

S

}
δχi

= +
∫

L�

‖FT‖‖F−TN‖ f ext
Ln i

∂ δχi

∂ N
dL�

+
∫

L�

‖FT‖
‖F−TN‖ f ext

Ln i

(
N� SBS

) ∂ δχi

∂ B
dL�

+
ntotedge∑

e=1

[ ‖FT‖
‖F−TN‖ f ext

Ln i

(
TSN� S

)
δχi

]P� we(2)

P� we(1)

+
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−
∫

L�

dL� [ML ‖]CS′
∂

∂ XC

{ ‖FT‖
‖F−TN‖ f ext

Ln i N� S [ML ‖]S
′

S

}
δχi ; (26)

Hence, the Eulerian edge double force f ext
Ln i, working on the derivative of the virtual displacements along

the direction of the face normal nr, has generated in the Lagrangian configuration, besides its Lagrangian
counterpart of equal order and typology, an edge double force working on the directional derivative of the
virtual displacements along the edge normal BR, an edge force through the surface divergence operator,
and concentrated forces at the wedges. All the above contributions include the same functional group,
i.e., f ext

Ln i N� S‖FT‖/‖F−TN‖, but each time the pulled-back normal N� S is multiplied by a different
vector of the Darboux moving frame, namely by NS , BS and TS (see Eq. 25).

Lagrangian actions generated by the Eulerian edge double force f ext
Ln i (L1)

Fext
L�N i = ‖FT‖‖F−TN‖ f ext

Ln i ; (27)

Fext
L�B i =

‖FT‖
‖F−TN‖ f ext

Ln i

(
BSN� S

)
;

Fext
L� i = −TCTS′

∂

∂ XC

{ ‖FT‖
‖F−TN‖ f ext

Ln i

(
N� STS

)
TS

′
}

;

ntotwedge∑

w=1

Fext
P� w i δχi (P� w) =

ntotedge∑

e=1

[ ‖FT‖
‖F−TN‖ f ext

Ln i

(
N� STS

)
δχi

]P� we(2)

P� we(1)

;

At this stage, we can consider the edge contribution to the Eulerian virtual work expending work on
the derivative of the virtual displacements along the edge normal, namely fext

L b i labeled as (L2). Through
the transformation formula for the contravariant edge normal br (see “Appendix C” and [4,5]), one can
write

∫

L

f ext
Lb i br ∂ δχi

∂ xr
dL

=
∫

L�

dL� ‖FT‖ f ext
Lb i

{
F r

RBR − 〈FB,FT〉
〈FT,FT〉F r

RTR

} ‖FT‖
‖JF−TN‖

(
F−1

)S
r

∂ δχi

∂ XS

=
∫

L�

dL�
‖FT‖2

‖JF−TN‖ f ext
Lb i

{
BS − 〈FB,FT〉

〈FT,FT〉TS

}
∂ δχi

∂ XS
(28)

resulting F r
R

(
F−1

)S
r

= δS
R. Through complementary orthogonal projectors defined along the edge (marked

by subscript L, see “Appendix A”), exploiting the integration by parts for the term including the tan-
gential edge projector one can write

= +
∫

L�

dL�
‖FT‖2

‖JF−TN‖ f ext
Lb i

{
BS − 〈FB,FT〉

〈FT,FT〉TS

} (
[ML ⊥]QS + [ML ‖]

Q
S

)

︸ ︷︷ ︸
=δQ

S

∂ δχi

∂ XQ

= +
∫

L�

dL�
‖FT‖2

‖JF−TN‖ f ext
Lb i

{
BS − 〈FB,FT〉

〈FT,FT〉TS

}
BS

︸ ︷︷ ︸
=1

BQ ∂ δχi

∂ XQ
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+
∫

L�

dL�
‖FT‖2

‖JF−TN‖ f ext
Lb i

{
BS − 〈FB,FT〉

〈FT,FT〉TS

}
NS

︸ ︷︷ ︸
=0

NQ ∂ δχi

∂ XQ

+
∫

L�

dL� [ML ‖]
Q

S′
∂

∂ XQ

( ‖FT‖2

‖JF−TN‖ f ext
Lb i

{
BS − 〈FB,FT〉

〈FT,FT〉TS

}
δχi [ML ‖]S

′

S

)

−
∫

L�

dL� [ML ‖]
Q

S′
∂

∂ XQ

⎛

⎜
⎜
⎝

‖FT‖2

‖JF−TN‖ f ext
Lb i

{
BS − 〈FB,FT〉

〈FT,FT〉TS

}
[ML ‖]S

′

S︸ ︷︷ ︸
=T S

′
TS

⎞

⎟
⎟
⎠ δχi (29)

taking into account that the normalized vectors of Darboux moving frame, BS , TS and NS , are mutually
orthogonal. Recalling that [ML ‖]

Q

S′ = TQTS′ and ‖FT‖2 = 〈FT,FT〉, one obtains

= +
∫

L�

dL�
‖FT‖2

‖JF−TN‖ f ext
Lb i

∂ δχi

∂ B

−
ntotedge∑

e=1

[ 〈FB,FT〉
‖JF−TN‖ f ext

Lb i δχi

]P� we(2)

P� we(1)

+
∫

L�

dL� TLTS′
∂

∂ XL

( 〈FB,FT〉
‖JF−TN‖ f ext

Lb i TS
′
)

δχi ; (30)

Then, the Eulerian edge double force f ext
Lb i, working on the derivative of the virtual displacements along

the edge normal br, has generated in the Lagrangian configuration, besides its Lagrangian counterpart of
equal order and typology, an edge force through the surface divergence operator, and forces concentrated
at the wedges. It is worth noting that, differently from the edge double force working on the displacement
derivative along the face normal, i.e., f ext

Ln i see Eq. (27), the present Eulerian action does not generate
any Lagrangian edge double force Fext

L�N i.

Lagrangian actions generated by the Eulerian edge double force f ext
Lb i (L2)

Fext
L�B i = +

‖FT‖2

‖JF−TN‖ f ext
Lb i ; (31)

Fext
L� i = +TLTS′

∂

∂ XL

{ 〈FB,FT〉
‖JF−TN‖ f ext

Lb i TS
′
}

;

ntotwedge∑

w=1

Fext
P� w i δχi(P� w) = −

ntotedge∑

e=1

[ 〈FB,FT〉
‖JF−TN‖ f ext

Lb i δχi

]P� we(2)

P� we(1)

;

The same results of Eqs. (30) and (31) can be obtained by using in Eq. (28) the metric tensor grs with the
transformation formula for the covariant edge normal bs, and then considering the relationships reported
in “Appendix C” at point (iv). Considering Eq. (29) before the final developments, it appears clear that
the above integral contributions include the same functional group, each time multiplied by a different
edge vector.

The Eulerian loading concentrated at the discrete set of wedges are easily referred to the Lagrangian
configuration by composition with the placement map x = χ(X). Since the same composition is considered
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for the virtual displacements at the corresponding points, the forces concentrated at the wedges do not
require any transformation formula. Assuming pw = χ (P� w), one has δχi(P� w) = δχi (pw).

Lagrangian actions generated by the Eulerian wedge forces f ext
p w i labeled as (W0)

Fext
P� w i = f ext

p w i ∀w = 1, ...,ntotwedge; (32)

4. Recursive formal structures

At this stage, we can consider synoptically the transformed contributions to the external virtual work,
to seek for the possible presence of recursive formal structures, suitable for further generalizations. Con-
sidering only the transformation of the Eulerian contact pressures, the surface double and triple forces,
their Lagrangian surface counterparts can be outlined as follows:

Fext
Σ�NN i = ‖F−TN‖3 J fext

Σnn i ;

Fext
Σ�N i = ‖F−TN‖2 Jfext

Σn i

− [M‖]BS′
∂

∂ XB

{
‖F−TN‖J fext

Σnn i N� S [M‖]S
′

S

(
NA +

N� A

‖F−TN‖2

)}
NA ;

Fext
Σ� i = ‖J F−TN‖ f ext

Σ i

− [M‖]SR′
∂

∂ XS

{
Jfext

Σn i N�R [M‖]R
′

R

}

+ [M‖]LA′
∂

∂ XL

{
[M‖]BS′

∂

∂ XB

[
‖F−TN‖J fext

Σnn i N� S [M‖]S
′

S

×
(

NA +
N� A

‖F−TN‖2

)]
[M‖]A

′

A

}
; (33)

In the above addends, we recognize a top-down structure which is typical of the higher-order gradient
materials: in [6], we already noticed the same architecture with reference to the relationships between
Eulerian and Lagrangian hyperstresses. Firstly, the Eulerian loading of highest order generates Lagrangian
actions of order lower or equal. Such a transformation implies the application of the surface divergence
operator for each lower level: thus, with reference for instance to the Eulerian triple force f ext

Σnn i, a
surface divergence operator appears in the Lagrangian surface double force Fext

Σ�N i, while a double surface
divergence operator contributes to the Lagrangian surface force Fext

Σ� i. Moreover, one can notice that the
sign of the pth surface divergence is alternating; hence, it must be multiplied by (−1)p. The contributions
of the Eulerian triple force to the Lagrangian double force and to the Lagrangian contact pressures in
terms of surface divergence and double surface divergence, respectively, must be split into two addends,
since they include the sum of NA and N�A/‖F−TN‖2. Furthermore, the Eulerian action of order β
over the boundary face (β = 0, 1, 2) gives rise to the Lagrangian loading of equal order and typology
after multiplication by the factor ‖F−TN‖β+1 J : In fact, for the triple force, the double force and the
generalized contact pressures, one has Fext

Σ�NN i = ‖F−TN‖3 J fext
Σnn i , Fext

Σ�N i = ‖F−TN‖2 Jfext
Σn i , and

Fext
Σ� i = ‖J F−TN‖ f ext

Σ i , respectively.
As for the Lagrangian edge force, considering the original expressions one has

Fext
L� i = ‖FT‖ f ext

L i

− [ML ‖]
Q

S′
∂

∂ XQ

( ‖FT‖2

‖JF−TN‖ f ext
Lb i

{
BS − 〈FB,FT〉

〈FT,FT〉TS

}
[ML ‖]S

′

S

)
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− [ML ‖]
Q

S′
∂

∂ XQ

{ ‖FT‖
‖F−TN‖ f ext

Ln i N� S [ML ‖]S
′

S

}

+ Jfext
Σn i

(
BRN�R

)

− [ML ‖]
Q

S′
∂

∂ XQ

{
J fext

Σnn i N� S

‖F−TN‖
(
BRN� R

)
[ML ‖]S

′

S

}
+

− [M‖]BS′
∂

∂ XB

{
‖F−TN‖J fext

Σnn i N� S [M‖]S
′

S

(
NA +

N� A

‖F−TN‖2

)}
BA ; (34)

As expected, the Eulerian edge force f ext
L i gives rise only to its Lagrangian counterpart Fext

L� i, after multi-
plication by a local scale factor. On the contrary, the Eulerian edge double forces fext

Lb i and f ext
Ln i, expending

work on the derivatives of the virtual displacements along the face normal and the edge normal, respec-
tively, are transformed through an edge divergence into the Lagrangian edge action. The Eulerian surface
triple force f ext

Σnn i gives rise to the Lagrangian edge action through the edge and the surface divergence
operators, while the Eulerian surface double force f ext

Σn i is transformed via a scale factor as a result of the
divergence theorem.

As for the edge double forces, expending work on the derivatives of the virtual displacement vector
along the two normal directions along the border edge, one finds

Fext
L�N i = ‖FT‖‖F−TN‖ f ext

Ln i + 2 ‖F−TN‖J fext
Σnn i

(
BSN� S

)

Fext
L�B i = +

‖FT‖2

‖JF−TN‖ f ext
Lb i +

‖FT‖
‖F−TN‖ f ext

Ln i

(
BSN� S

)
+

J fext
Σnn i

‖F−TN‖
(
BRN� R

)2
; (35)

With reference to Eq. (35), it can be noticed that the Eulerian edge double force f ext
Ln i when transformed

into the Lagrangian description gives rise to both the Lagrangian actions of equal order relevant to the
normals NR and BR, namely Fext

L�N i and Fext
L�B i, while the Eulerian edge double force f ext

Lb i gives rise
exclusively to the Lagrangian force Fext

L�B i relevant to the edge normal BR. Moreover, we observe that
the Eulerian double force over the boundary surface f ext

Σn i does not affect the above Lagrangian 1-forces
along the edge. For the readers’ convenience, in “Appendix A” at points (i)-(ii) we have reported some
relationships which might be useful to attain simpler expressions of the above equations, in view of further
generalizations.

5. Boundary geometry and virtual work integrals

In [6], we deduced the equilibrium equations for third-gradient materials: in the adopted variational
approach, the boundary surface, the border edge and the discrete set of wedges were dealt with as
differential borders of increasing order of the reference volume, namely as ∂(p)Ω� where p varies from 0
to 3. To avoid a cumbersome notation for the mathematical expressions, details concerning the actual
geometry of the boundary were not made explicit so far. Herein we recall that the boundary surface of the
body volume is constituted of a finite number of disjoint oriented faces (with the positive normal pointing
outwards), say nface, having in common two by two the support of their border edges, namely Σ� ≡⋃nface

h=1 Σ� h. Hence, the surface integrals for finite additivity must be split into the sum of contributions
each one extended to a singular (regular) boundary face. For instance, the surface integral in Eq. (11)
originated from (S2) can be evaluated as follows:

∫

Σ�

dΣ� ‖F−TN‖3 J fext
Σnn i

∂2 δχi

∂ N2
=

nface∑

h=1

∫

Σ� h

dΣ� h ‖F−TN‖3 J fext
Σnn i NRNS ∂2 δχi

∂ XRXS
; (36)

Quantities entering the above integral, such as the normal vector, are defined over the entire face Σ� h

without ambiguity.
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Instead, when considering edge and wedge contributions to the virtual work, some clarifications are
needed. The curved border of each face represents a discontinuity locus for the normal vector field:
such a border in turn is constituted of a finite number of regular branches, say ntotedge, namely L� ≡⋃ntotedge

e=1 L� e, where the wedges represent discontinuity points for the edge tangents. Two faces may share
the support of an edge: Hence, there are two oriented edges with the same support, each ideally belonging
to one of the contiguous faces and oriented consistently with it ([T+]R = −[T−]R). The positive direction
of the tangent T along the face border is suggested by a counterclockwise curling of the fingers when
the thumb points the positive normal of that face. For the readers’ convenience, let us consider an edge
integral in Eq. (26) originated from the Eulerian edge loading f ext

Ln i labeled as (L1). This edge contribution
must be evaluated as the sum of ntotedge integrals each one extended to a singular regular edge, say L� e,
whose support is shared between two contiguous faces (inducing on it two opposite orientations). Hence,
one can write∫

L�

‖FT‖‖F−TN‖ f ext
Ln i

∂ δχi

∂ N
dL� =

ntotedge∑

e=1

∫

L� e

f ext
Ln i

{‖F[T+]‖‖F−T [N+]‖ [N+]R+

‖F[T−]‖‖F−T [N−]‖ [N−]R
} ∂ δχi

∂ XR
dL� e ; (37)

where symbol [N+]R (resp. [N−]R) denotes the normal to the boundary face at the left (resp. at the right)
of the edge in point, and [T+]R = −[T−]R indicates the edge tangent consistent with the orientation of
the face at the left. In the above formula, the orientation assumed for the edge tangent can be noticed to
be irrelevant due to the norm.

With the intention to clarify as much as possible the present procedure, we are going to illustrate
other three edge contributions. The first is derived from Eq. (17), originated from the Eulerian surface
loading f ext

Σnn i labeled as (S2). Also in this case, if a unique index e spans all the ntotedge border edges,
each counted once, we must include contributions from the contiguous faces sharing the support of any
singular edge, namely

+
∫

L�

dL�
J fext

Σnn i

‖F−TN‖
(
BRN�Q

)2 ∂ δχi

∂ B

=
ntotedge∑

e=1

∫

L� e

dL� e J

{

f ext +
Σnn i

(
[B+]R[N+]�R

)2

‖F−T [N+]‖ [B+]R

+f ext −
Σnn i

(
[B−]R[N−]�R

)2

‖F−T [N−]‖ [B−]R
}

∂ δχi

∂ XR
; (38)

Also for the surface loading f ext +
Σnn i ◦ χ(X) we specified the face (at the right or at the left), since it may

be prescribed over one face only. No specifications are needed for the deformation gradient F and the
Jacobian J , since they are continuous along the edge.

The second edge contribution comes from Eq. (17). In the presence of multiple faces with their border
edges consistently oriented, we find

−
∫

L�

dL� [M‖]AR′
∂

∂XA

{
J fext

Σnn i

‖F−TN‖ N� R N� S [M‖]R
′

R

}
BS δχi

= −
ntotedge∑

e=1

∫

L� e

dL� e δχi

{
[M+

‖ ]A
R′

∂

∂XA

{
J fext +

Σnn i

‖F−T [N+]‖ [N+]�R [N+]�S [M+
‖ ]R

′

R

}
[B+]S

+[M−
‖ ]A

R′
∂

∂XA

{
J fext −

Σnn i

‖F−T [N−]‖ [N−]�R [N−]�S [M−
‖ ]R

′

R

}
[B−]S

}
; (39)



218 Page 20 of 29 R. Fedele ZAMP

The third and last example comes from Eq. (30), originated from the Eulerian edge loading f ext
Lb i

labeled as (L2). One can write

+
∫

L�

dL� TLTS′
∂

∂ XL

( 〈FB,FT〉
‖F−TN‖ J−1 f ext

Lb i TS
′
)

δχi

=
ntotedge∑

e=1

∫

L� e

dL� e

{
[T+]L[T+]S′

∂

∂ XL

( 〈F[B+],F[T+]〉
‖F−T [N+]‖ J−1 f ext

Lb i [T+]S
′
)

+[T−]L[T−]S′
∂

∂ XL

( 〈F[B−],F[T−]〉
‖F−T [N−]‖ J−1 f ext

Lb i [T−]S
′
)}

δχi (40)

It is worth noting that for a given boundary face the number of regular branches constituting its
border equals the global number of wedges belonging to it. Hence, over the same boundary face a pair
of oriented border edges share the same wedge, which necessarily coincides with the first end of one edge
and with the last end of the other edge. For a while let us exploit such a wedge-centered perspective. To
balance the external force concentrated at one wedge, in fact, we must simply gather the contributions
from all the edges converging to it, and hence from all the pairs of contiguous faces sharing the support
of those edges. Hence, if index w runs over all the ntotwedge wedges, a nested loop must be included by
index e spanning all the oriented edges converging to the wth wedge, the number of which is indicated by
nedg(w). Also in this case, distinct contributions are provided by the contiguous oriented faces sharing
the support of the eth edge. Indicating by P� w the coordinates of the wth wedge, from Eq. (19) one has

ntotedge∑

e=1

[(
J f ext

Σnn i

‖F−TN‖ N� RBR N� STS

)
δχi

]P� we(2)

P� we(1)

=
ntotwedge∑

w=1

δχi (P� w)J(P� w)
nedg(w)∑

e=1

{
f ext +
Σnn i α+ [B+]R[N+]�R [T+]S [N+]�S

‖F−T [N+]‖

+f ext −
Σnn i α− [B−]R[N−]�R [T−]S [N−]�S

‖F−T [N−]‖
}

; (41)

where α(e,w) = ±1 depending on whether the wth wedge coincides with the last or the first end of the
eth curved edge, whose support is shared between contiguous faces for which one has α+ = −α−. Surface
loading f ext ±

Σnn i ◦ χ(X) may be prescribed over one face only.

6. Closing remarks

In this study, the external actions consistent with third-gradient modeling of elastic bodies are outlined
and their transformation from the Eulerian to the Lagrangian description is carried out. The results
presented above, resting on the geometric differential features of the deformation process, enlighten the
role of the generalized loading that such materials can sustain. In particular, the Eulerian double and triple
forces prescribed over the boundary face, expending work in the order on the first and second normal
derivatives of the virtual displacements, give rise to multiple Lagrangian actions over domains with a
dimension lower or equal, namely surfaces, edges and even wedges (for the latter). Analogous results are
met for the edge double forces, working on the directional derivative of the virtual displacements along
the two normals to the border curves. Such a surprising coupling is a consequence of the fact that the
diffeomorphisms between the material and the spatial configurations do not preserve neither the metrics
nor the structure of the external interactions when regarded as distributions. The Eulerian derivative along
the direction of the normal to the Eulerian boundary face corresponds, in the Lagrangian configuration,
to a derivative along a direction with both normal and tangential components with respect to the relevant
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material face: hence, in the transformation procedure the term including the tangential derivative can be
integrated by parts, obtaining one contribution along the boundary due to the divergence theorem, and
another one over the same domain expressed through the divergence operator. Accordingly, the surface
divergence operator and the pullback metric tensor play a crucial role in such a transformation.

To correctly evaluate face, edge and wedge contributions to the external virtual work, detailed formulae
are provided, taking into account the actual geometry of the volume boundary, constituted of multiple
faces with piecewise regular border edges consistently oriented, including in turn a finite number of wedges.
Although in the resulting equations some algebraic structures have been recognized, the specification of
a global recursive formula for third- and higher-gradient models, apt to draw the Lagrangian external
actions once their Eulerian counterparts have been prescribed, remains an open problem, which needs
further investigation.

The present results represent a significant, although intermediate step to complete the transformation
of the governing equations for the third-gradient materials from the Eulerian to the Lagrangian descrip-
tion. This transformation is expected to play an important role in several nonlinear theories for materials
mechanics, such as fracture and damage, allowing one to describe effectively the elastic deformation in-
cluding also wedge and edge loading, besides the higher-order actions, and to specify more accurately the
homogenized response of novel metamaterials.

The deformation-induced coupling among Lagrangian interactions observed in the presence of high-
order Eulerian loading could represent a starting point to develop a geometrically nonlinear theory for
third- and higher-order gradient materials. We expect a strong interest for possible results in the study
of micro and nano-systems. Moreover, the present theoretical study has to be regarded as a further
contribution to improve the numerical tools based on the third-gradient equations, with the aim to
provide reliable predictions for a variety of engineering scenarios.
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Appendix A. Properties of surface and edge projectors

In this appendix, some basic properties of surface and edge orthogonal projectors are briefly recalled, see
[4,58,60,61]). As well known, at each point of the same regular face Σ� ≡ ∂Ω� a pair of complementary
linear operators can be defined, apt to project orthogonally any vector of the ambient space onto the
tangential and normal spaces at that point, referred to as the (Lagrangian) tangential and normal pro-
jectors and denoted by symbols [M‖]AB and [M⊥]AB, respectively. Such projectors possess the following
noteworthy properties (in both index and matrix notation):

[M‖]AB + [M⊥]AB = δA
B ; M‖ + M⊥ = 1 ;

[M⊥]CA = NC NA ; [M⊥] = N ⊗ N ;

[M‖]CA = δC
A − NC NA ; [M‖] = 1 − N ⊗ N ;

http://creativecommons.org/licenses/by/4.0/
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[M‖]AB [M‖]BC = [M‖]AC ; M2
‖ = M‖ ;

[M⊥]AB [M⊥]BC = [M⊥]AC ; M2
⊥ = M⊥ ; (42)

where the Kronecker symbol δA
B = 1 = gA

B represents the unit operator, coincident with the mixed form
of the metric tensor. The property expressed in the first row is usually referred to as complementarity
of the projector pair, while the idempotence of both the projectors is defined by the relationships in the
last two rows. The following equality can be easily proven [6]

[M‖]RS
∂

∂XR
[M‖]SD = −ND

∂NS

∂XS
=

2
Rm

ND (43)

where symbol Rm denotes the local mean curvature over the boundary face.
Analogously, at each point of a border edge L� ≡ ∂Σ� ≡ ∂∂Ω�, which is a unidimensional manifold with

codimension two, a pair of complementary linear operators can be defined, apt to project orthogonally any
vector of the ambient space onto the tangent space, spanned by the tangent vector T at that point, and
onto its orthogonal complement (i.e., the normal space), spanned by any linear combination of the face
normal N and of the edge normal B. Such projectors will be denoted by symbols [ML ‖]AB and [ML ⊥]AB ,
respectively, marked by subscript L. One has

[ML‖]EA = TE TA ; ML ‖ = T ⊗ T ;

[ML⊥]EA = BE BA + NE NA ; ML ⊥ = B ⊗ B + N ⊗ N ;

δE
A = [ML‖]EA + [ML⊥]EA = TE TA + BE BA + NE NA ;

1 = ML‖ + ML⊥ = T ⊗ T + B ⊗ B + N ⊗ N ; (44)

It is worth noting that, along a border edge, the edge tangent vector and the edge normal belong to
the plane tangent to the boundary face at that point. Hence, the surface tangential projector acts on
them as the identity, namely

[M‖]EATA = T E ; [M‖]EABA = B E ; (45)

When evaluated along an edge, the above face projectors can be represented in terms of edge vectors
(constituting the Darboux frame), namely

[M‖]EA′ = TE TA′ + BE BA′ ; [M⊥]E
A′ = NE NA′ ;

Two expressions frequently met in the study of third-gradient models are considered at the next point
(i) and (ii).
(i) Let us consider the following expression included in some edge integrals (the involved variables are
restricted to such an edge)

[M‖]EA′
∂

∂XE

{
g�AQNQ[M‖]A

′

A

}
(46)

Exploiting the relationships specified in “Appendix C” at points (v)–(vi), one can write

=
(
TE TA′ + BE BA′

) ∂

∂XE

{
g�AQNQ

(
TA

′
TA + BA

′
BA

)}

= TE TA′
∂

∂XE

{
g�AQNQTATA

′}
+ TE TA′

∂

∂XE

{
g�AQNQBA BA

′}

+ BE BA′
∂

∂XE

{
g�AQNQTATA

′}

︸ ︷︷ ︸
=0

+BE BA′
∂

∂XE

{
g�AQNQBA BA

′}

= TE TA′
∂

∂XE

{
g�AQNQTATA

′}
+ TE TA′

∂

∂XE

{
g�AQNQBA BA

′}
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+ BE BA′ BA
′

︸ ︷︷ ︸
=1

∂

∂XE

{
g�AQNQBA

}
(47)

since the derivatives of both the tangent and the edge normal along the direction of the edge normal
vanish. The above equality by the product rule can be written as follows:

= TE TA′ TA
′

︸ ︷︷ ︸
=1

∂

∂XE

{
g�AQNQTA

}
+ g�AQNQTA TE TA′

∂TA
′

∂XE
︸ ︷︷ ︸

=0

+ TE TA′ BA
′

︸ ︷︷ ︸
=0

∂

∂XE

{
g�AQNQBA

}
+ g�AQNQBA TE TA′

∂BA
′

∂XE
+ BE ∂

∂XE

{
g�AQNQBA

}

= TE ∂

∂XE

{
g�AQNQTA

}
+ g�AQNQBA TE TA′

∂BA
′

∂XE
+ BE ∂

∂XE

{
g�AQNQBA

}
(48)

(ii) Another expression frequently entering the virtual work contributions over the boundary surface is
the following:

[M‖]BS
∂

∂XB

{
g�AQNQ

‖F−TN‖2

}
NA (49)

Recalling that g�AQ ≡ grs
(
F−1

)A
r

(
F−1

)Q
s

and g�AQNQNA = ‖F−TN‖2, by the product rule one can
write

[M‖]BS
∂

∂XB

{
grs
(
F−1

)A
r

(
F−1

)Q
s

NQ

‖F−TN‖2

}

NA =

= [M‖]BS
1

‖F−TN‖2
grs
(
F−1

)Q
s

NQNA
∂

∂XB

(
F−1

)A
r

+ [M‖]BS
1

‖F−TN‖2
grs
(
F−1

)A
r

NANQ
∂

∂XB

(
F−1

)Q
s

+ [M‖]BS
1

‖F−TN‖2
grs
(
F−1

)A
r

(
F−1

)Q
s

NA
∂NQ

∂XB

+ grs
(
F−1

)A
r

(
F−1

)Q
s

NANQ [M‖]BS
∂

∂XB

(
1

‖F−TN‖2

)
(50)

Hence, exploiting the symmetry of the metric tensor one obtains

= 2 [M‖]BS
1

‖F−TN‖2
grs
(
F−1

)Q
s

NQNA
∂

∂XB

(
F−1

)A
r

+ [M‖]BS
1

‖F−TN‖2
grs
(
F−1

)A
r

(
F−1

)Q
s

NA
∂NQ

∂XB

+ grs
(
F−1

)A
r

(
F−1

)Q
s

NANQ [M‖]BS
∂

∂XB

(
1

‖F−TN‖2

)

︸ ︷︷ ︸
=(�)

(51)

The last addend can be developed as follows:

(�) = grs
(
F−1

)A
r

(
F−1

)Q
s

NANQ

⎛

⎜
⎝− 1

[
glm (F−1)L

l (F−1)M
m NLNM

]2

⎞

⎟
⎠
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× 2 gfq
(
F−1

)F
f

NF [M‖]BS
∂

∂XB

((
F−1

)G
q

NG

)

= − 1

glm (F−1)L
l (F−1)M

m NLNM

{
2 gfq

(
F−1

)F
f

NF [M‖]BS
∂

∂XB

((
F−1

)G
q

NG

)}

= − 1
‖F−TN‖2

{
2 gfq

(
F−1

)F
f

NF NG [M‖]BS
∂

∂XB

(
F−1

)G
q

}

− 1
‖F−TN‖2

{
2 gfq

(
F−1

)F
f

(
F−1

)G
q

NF [M‖]BS
∂NG

∂XB

}
; (52)

Hence, the expression (�) cancels out the first two addends in the last equality of Eq. 50, which finally
becomes

= −[M‖]BS
1

‖F−TN‖2
grs
(
F−1

)A
r

(
F−1

)Q
s

NA
∂NQ

∂XB
= − 1

‖F−TN‖2
g�AQ NA

∂NQ

∂XS
; (53)

Appendix B. The divergence theorem for submanifolds with boundary

An important achievement in differential geometry concerns the extension of the divergence theorem
to vector fields defined over Riemannian submanifolds with boundary, in particular those defined over
bidimensional surfaces or along unidimensional curves embedded in a three-dimensional ambient space,
see e.g. [61,62]. The formulation outlined herein makes reference to the Lagrangian configuration, but the
result equally holds for the Eulerian configuration. Firstly, let us consider the boundary surface Σ� ⊂ R3,
and let L� = ∂Σ� denote its border edge, with the unit normal vector indicated by symbol B. At each
point of this surface, a tangential projector [M‖]CA can be defined, whose basic properties were outlined in
the “Appendix A”: such a linear operator projects orthogonally onto the local tangent space any vector
of the space environment. Moreover, the tangential surface projector allows one to express the surface
divergence operator with respect to the coordinates of the space environment, avoiding any intrinsic
representation of the surface. Let WB be a vector field defined over the curved face Σ�. Under such
assumptions, the following equality holds:

∫

Σ�

[M‖]CA
∂

∂XC

(
[M‖]ABWB

)
dΣ� =

∫

L�

[M‖]BAWABB dL� (54)

It is worth noting that at the LHS the outer tangential projector has one valence contracted with the
partial derivative, and the other valence contracted with the inner projector within the parentheses. The
integrand at LHS has the meaning of surface divergence of a tangential vector field, namely DIV‖

(
W‖

)
.

In the case of a simple, compact curve L� ⊂ R3, the differential border ∂L� of such a unidimensional
submanifold is a discrete set constituted of its two ends, say Pw� R and Pw� S (in the order consistent
with the curve orientation), and the normal to its border, denoted above by symbol B, is provided by the
tangent vector evaluated at the ends, oriented outwards with respect to the interior domain. Accordingly,
the tangential projector along the curve can be expressed as [ML ‖]CA = TCTA, while the normal space
at each point possesses dimension two, see “Appendix A”. By formulae, one has

∫

L�

[ML� ‖]CA
∂

∂XC

(
[ML ‖]ABWB

)
dL� =

∫

∂L�

[ML ‖]BAWABB d∂L� = [WATA]Pw� S

Pw� R
; (55)

Well-known symbol [WATA]Pw� S

Pw� R
≡ (

WATA

) |Pw� S
− (WATA

) |Pw� R
emanates from the fundamental

theorem of integral calculus.
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Appendix C. Transformation formulae for the edge vectors

Herein, some basic formulae are recalled, apt to transform Lagrangian edge vectors into their Eulerian
counterparts. It is worth emphasizing that such relationships not always are available in a closed form,
turn out to be not necessarily unique, and are different for the covariant and contravariant components
of the same tensor. In any case, the metric tensor can be used for raising or lowering the indices.
(i) The following Eulerian–Lagrangian transformation formula holds for the contravariant tangent vector:

tr =
F r

RTR

‖FT‖ = F r
RTR‖F−1t‖ ;

(
tr = grst

s = grs
F s

RTR

‖FT‖ = grs
F s

RgRSTS

‖FT‖
)

(56)

The above formula exploits the relationship between the tangent vector to a curve drawn over a surface
in the material configuration, and the tangent to its image through the placement map, at corresponding
points, in the Eulerian configuration.
(ii) Another widely adopted transport formula concerns the covariant normal vector to the face (see e.g.
[4,58]), namely

nr =

(
F−1

)R
r

NR

‖F−TN‖ =
(
F−1

)R
r

NR‖FTn‖ ;
(

nr = grsns = grs
(
F−1

)R
r

gRSNS 1
‖F−TN‖ ;

)
(57)

This equation can be derived by expressing the normal to a surface in the Eulerian configuration as
the wedge (cross) product of two independent (Eulerian) tangent vectors, which in turn are images of
two independent Lagrangian tangent vectors, and exploiting the well-known relationship between matrix
cofactors and determinant. By formulae

n =
xu ∧ xv

‖xu ∧ xv‖ =
FXU ∧ FXV

‖FXU ∧ FXV ‖ =
J F−T (XU ∧ XV )

‖J F−T (XU ∧ XV ) ‖ =
F−TN

‖F−TN‖ ; (58)

It is worth noting that u and v are related to the local parametric representation of the surface in the
Eulerian configuration, i.e., x = x(u, v), so that xu and xv constitute the local tangent basis vectors.
Uppercase symbols U and V play the same role for the material configuration.
(iii) The following transport formulae, proposed in [4,9], hold for the contravariant and covariant edge
normal components

br =
{
(
F−1

)R
r

BR − 〈F−TB,F−TN〉g

〈F−TN,F−TN〉g

(
F−1

)R
r

NR

} ‖F−TN‖
‖J−1FT‖ ;

br =
{

F r
RBR − 〈FB,FT〉g

〈FT,FT〉g
F r

RTR

} ‖FT‖
‖JF−TN‖ ; (59)

being as usual brb
r = 1. These formulae are derived by assuming affine relationships as ansatz, and

prescribing the orthogonality conditions brt
r = 1 and brn

r = 1. Moreover, they can be regarded as
the results of Gram–Schmidt orthogonalization procedures: in fact, although the tangent operator F
transforms material tangent vectors into spatial tangent vectors, the orthogonality between FB and FT
is not guaranteed.
(iv) Substituting in the relationship grsbr = bs the above transformation formulae for the edge normals
and multiplying both the sides by

(
F−1

)S
s

one obtains

grs

{
(
F−1

)S
s

(
F−1

)R
r

BR − 〈F−TB,F−TN〉g

〈F−TN,F−TN〉g

(
F−1

)S
s

(
F−1

)R
r

NR

}
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=
{

BS − 〈FB,FT〉g

〈FT,FT〉g
TS

}
J−2 ‖FT‖2

‖F−TN‖2
; (60)

Hence, introducing the pullback metric tensor in contravariant form, i.e., g� RS = grs
(
F−1

)S
s

(
F−1

)R
r
,

and multiplying both the sides of the above equation by TS , the following relationship is found

g� RSBRTS − 〈F−TB,F−TN〉g

〈F−TN,F−TN〉g
g� RSNRTS = −〈FB,FT〉g

〈FT,FT〉g
J−2 ‖FT‖2

‖F−TN‖2
; (61)

Exploiting the equality 〈FT,FT〉 = ‖FT‖2, one can write

〈F−TB,F−TT〉g − 〈F−TB,F−TN〉g

〈F−TN,F−TN〉g
〈F−TN,F−TT〉g = −J−2 〈FB,FT〉g

〈F−TN,F−TN〉g
; (62)

or equivalently

〈F−TB,F−TT〉g〈F−TN,F−TN〉g − 〈F−TB,F−TN〉g〈F−TN,F−TT〉g = −J−2 〈FB,FT〉g ; (63)

Starting from this last equation, by permuting the edge vectors further relationships can be generated,
namely

〈F−TT,F−TN〉g〈F−TB,F−TB〉g − 〈F−TT,F−TB〉g〈F−TB,F−TN〉g = −J−2 〈FT,FN〉g ; (64)

〈F−TB,F−TN〉g〈F−TT,F−TT〉g − 〈F−TB,F−TT〉g〈F−TT,F−TN〉g = −J−2 〈FB,FN〉g ; (65)

Analogous relationships can be generated by considering the transpose inverse tangent map, hence sub-
stituting F with F−T , F−T with F and J with J−1.
(v) It is worth noting that, if we differentiate the squared norm NANA = 1, we obtain

∂NA

∂XE
NA = 0 ; (66)

As well known, the directional derivative of the face normal along the normal direction vanishes, namely

∂NA

∂XE
NE = 0 ; (67)

Moreover, if we prolong smoothly the vector fields T, B and N defined along a border edge within a
tubular neighborhood, we obtain

∂BA

∂XE
NE = 0 ;

∂BA

∂XE
BE = 0 ;

∂TA

∂XE
NE = 0 ;

∂TA

∂XE
BE = 0 ; (68)

(vi) By describing the evolution of Frenet–Serret and Darboux frame vectors along a curve drawn over a
surface (such frames differ in a rigid rotation around the edge tangent axis), one obtains

dT
ds

· T = 0 ;
dB
ds

· B = 0 ;
dN
ds

· N = 0 ; (69)

where s denotes as usual the curvilinear abscissa of the edge (intrinsic representation) and symbol a ·b ≡
〈a,b〉 indicates the conventional scalar product in the ambient space R3, with the usual Euclidean metrics.
If we consider the first relationship, we can write it equivalently as

TA ∂TE

∂XA
TE = [ML ‖]AE

∂TE

∂XA
= 0 ; (70)

where the total derivative with respect to the abscissa s was expressed as the directional derivative
along the tangent in the ambient space R3. Of course, for the existence of the gradient of T a smooth
prolongation of the tangent T in an open neighborhood of the curve is required.
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