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We present NeRTA (Next Release Time Analysis), a technique to enable dynamic software updates for low-level
control software of mobile robots. Dynamic software updates enable software correction and evolution during
system operation. In mobile robotics, they are crucial to resolve software defects without interrupting system
operation or to enable on-the-fly extensions. Low-level control software for mobile robots, however, is time
sensitive and runs on resource-constrained hardware with no operating system support. To minimize the
impact of the update process, NeRTA safely schedules updates during times when the computing unit would
otherwise be idle. It does so by utilizing information from the existing scheduling algorithm without impacting
its operation. As such, NeRTA works orthogonal to the existing scheduler, retaining the existing platform-
specific optimizations and fine-tuning, and may simply operate as a plug-in component. To enable larger
dynamic updates, we further conceive an additional mechanism called bounded reactive control and applymixed
criticality concepts. The former cautiously reduces the overall control frequency, whereas the latter excludes
less critical tasks from NeRTA processing. Their use increases the available idle times. We combine real-world
experiments on embedded hardware with simulations to evaluate NeRTA. Our experimental evaluation shows
that the difference between NeRTA’s estimated idle times and the measured idle times is less than 15% in more
than three-quarters of the samples. The combined effect of bounded reactive control and mixed-criticality
concepts results in a 150+% increase in available idle times. We also show that the processing overhead of
NeRTA and of the additional mechanisms is essentially negligible.
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1 INTRODUCTION
Dynamic software updates are performed without interrupting the software execution [9]. They
are useful for applications that require frequent updates but must operate continuously, with
no perceivable downtime. In mobile robotics, dynamic software updates are useful for resolving
software defects that may endanger the robot or its surroundings [27] and to extend the robot’s
capabilities by adding new features.
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Fig. 1. Low-level and high-level robot control loops. Yellow indicates sensors. Pink indicates the high-level
control loop. Blue indicates the low-level control loop. The lines indicate the data flow between different
components. Note that in reality, data flows out of each sensor individually.

Mobile robotics. Consider aerial drones as an example. Fixed-wing drones [4] may fly for hours
while performing search-and-rescue missions. During this time, the need to patch the running
software or to deploy new functionality may arise in response to unforeseen situations. For example,
adjustments to the flight control software may become necessary or bugs may be discovered during
the flight1 2 3, which can endanger the drone and the environment if left unresolved. The regular
update procedure would require landing, updating the software, rebooting, and taking off again,
disrupting the mission and wasting energy due to the necessary detour [29]. Dynamic software
updates allow the system to continue a mission uninterrupted, saving energy and prolonging the
system lifetime.

Mobile robots commonly feature a two-level control system [11], shown in Fig. 1. The low-level
control loop is responsible for direct control of the robot and primarily relies on two inputs: the
desired trajectory in the form of inertial and angular velocities, and sensor data that determine robot
attitude. The high-level control loop is responsible for advanced functionality such as localization
andmapping [16]. Unlike the high-level control loop, the operation of the low-level loop is extremely
time sensitive. Most existing systems employ custom implementations of the low-level loop running
on resource-constrained hardware with no operating system [15, 20].
Problem and idea. Several aspects are to be considered when performing dynamic software
updates [24]. These include, for example, what fraction of the software is replaced, from the entire
program to individual instructions; determining whether different parts of the program that are
updated separately are possibly dependent on each other; and how to transfer and/or modify state
from the older to the newer version. Orthogonal to these concerns is the time of the update, that is,
when to perform the update while the system continues to run. We focus on how to perform the
latter operation safely as it is crucial in low-level robot controllers [11]. The other operations we
mention must also be performed safely, however, doing so depends on what is performed during
and after the update process.

We specifically tackle the problem of when to perform a dynamic update of the low-level control
loop. Unlike the high-level control loop, if the low-level control loop is unresponsive or delays
the execution of crucial tasks, the robot loses control because its actuators receive late values
1https://github.com/ArduPilot/ardupilot/commit/6ebefbdb1680b61efc30d74ebcd95861f8adf02a
2https://github.com/ArduPilot/ardupilot/commit/8e37c93e7d7716885f97addd941fa0df3b47040d
3https://github.com/ArduPilot/ardupilot/commit/48881eeb5517d2804f929aa3d56b68f958f73772
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Fig. 2. An example of a schedule with two jobs, T1 and T2 (yellow), and two possible updates, a schedule-
invariant update U1 (green) and a schedule-invariant update U2 (red). The schedule is divided into 4 time
intervals indicated on top. Overlapping jobs indicate a scheduling conflict where one must be chosen, not
parallel execution.

compared to the robot state and desired set points [27]. Therefore, updating the low-level control
loop dynamically, which is the focus of our work, is significantly more challenging than updating
the high-level one.

We define schedule-invariance as a property that can guarantee the update process is performed
at a safe time. Schedule-invariance states that the update must begin and end its execution without
affecting when the robot’s tasks execute. Schedule-invariance is linked to safety because deadline
misses degrade the control loop’s performance significantly and possibly cause situations that
eventually lead to unsafe behaviors [34]. Schedule-invariance ensures the exact same schedule as if
the update is not performed. Doing so ensures that the robot’s physical behavior during the update
process is identical to the behavior if the update had not been performed with respect to the timing
properties.
Our fundamental idea is that the update can be made schedule-invariant by scheduling it com-

pletely when the computing unit running the low-level control loop would otherwise be idle, that
is, when no tasks are running. We consider an update to be a time-bound task, whose worst-case
execution time is known. Worst-case timing analysis [22] can be used to determine the worst-case
execution time of the update, given that the necessary operations are known. Fig. 2 shows two
possible updates. Update U1 starts and completes when no tasks are running, and is, therefore,
schedule-invariant. Update U2 extends into the portion of time when T1 is to execute. Therefore,
U2 necessarily delays the start of T1. Therefore, U2 is not schedule-invariant. The availability of
idle time is due to the scheduler leaving the interval between times one and two empty, which we
utilize to perform a schedule-invariant update U1. Fig. 2 also demonstrates why the update must be
time-bound, since otherwise it would be impossible to determine when the update completes, and
therefore whether it extends into the time interval when a task was scheduled to run.
NeRTA. To perform schedule-invariant dynamic software updates we develop NeRTA (Next Release
Time Analysis), a technique that dynamically and safely estimates the available idle times. We
use the estimated idle time to check for the schedulability of the update, that is, it is schedule-
invariant. We schedule an update using NeRTA only if the time taken to perform the update is
less than or equal to the NeRTA estimate. These estimates are conservative, that is, we guarantee
they represent a lower bound compared to the actual idle times. This feature is essential to ensure
that the time required for the update does not exceed the actual idle time available, thus remains
schedule-invariant.
We conceive NeRTA to enable dynamic software updates in existing software, in contrast to

designing software from the ground up that incorporates dynamic updates as a native function-
ality, which is a related but entirely different problem. In this sense, schedule-invariant updating
represents a fundamental and intentional design choice. The alternative would be, for example,
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to embed software updates as an additional task in the original scheduler design, allowing the
system to adjust its application-level behavior to accommodate updates. Doing so would change the
timing behavior of existing tasks, greatly complicating implementation, testing, and verification.
In contrast, NeRTA operates orthogonal to the existing scheduler, retaining the extensive testing,
platform-specific optimization, and fine-tuning of the existing scheduler. As long as the necessary
information is available from the existing scheduler, as explained in Sec. 3, NeRTA operates as a
plug-in component in existing systems to schedule updates while meeting schedule-invariance.
Increasing idle times. Low-level control loops ofmobile robots typically utilize resource-constrained
hardware and run several tasks at high frequencies, up to hundreds of hertz [11]. Therefore, the
available idle time may be limited. We measure the idle times in the open-source drone autopilot
Hackflight [20] and find that no more than 3ms are available, which might be insufficient for larger
updates. Sec. 4 provides additional details on these measurements.

We explore two optimizations to increase the size of the update that can be accommodated within
idle times by relaxing the schedule-invariant condition, as explained in Sec. 5. Instead of being
schedule-invariant, the optimizations must maintain robust operation of the robot. Robustness is
defined as the system’s ability to withstand disturbances while meeting performance goals [14].
A robust robot meets a set of platform-specific requirements within well-defined environmental
conditions that allow the low-level controller to retain controllability of the robot. An example
where this does not happen is an aerial drone no longer capable of hovering at a fixed position
after an update [8].

The first such optimization, called bounded reactive control (BRC), cautiously reduces the overall
control loop frequency, which yields a corresponding increase in the idle times available. Further,
we apply mixed criticality concepts and identify the safety-critical tasks that are mandated to keep
running at the original frequency, while excluding the others from NeRTA’s computations. Doing
so reduces the number of tasks NeRTA takes into account when finding the time to schedule an
update, thus again increasing the idle times available.
Prototype and performance. While the design of NeRTA is orthogonal to the existing task
scheduler, its implementation must be properly customized to the specific flight controller. We
create a real-world prototype, described in Sec. 6, by integrating NeRTA in the task scheduler of
Hackflight, an open-source aerial drone flight controller [20]. We build a custom drone running
Hackflight and use that, combined with a physics-accurate drone simulator [19], for evaluation.
Our experiments, reported in Sec. 7, reveal that NeRTA estimates, while being conservative,

are close to the actual idle times. The difference between NeRTA’s estimated idle times and the
measured idle times is less than 15% in more than three-quarters of the samples. All idle times
larger than 0.6ms show differences less than 15%. Moreover, our investigation reveals interesting
insights into the combined use of BRC and mixed-criticality concepts, which together result in a
150+% increase in available idle times, without endangering the robust drone operation. We also
demonstrate that the price to pay, represented as processing overhead, is negligible. We publish a
replication package for our experiments 4 that may be instrumental to build upon our work.
We conclude the paper in Sec. 8 by articulating threats to validity and limitations in our work,

and with brief concluding remarks in Sec. 9. Before moving on to the technical matter, Sec. 2
provides a brief survey of related work.

2 RELATEDWORK
To decide when to schedule an update, quiescent points should be identified and classified. Quiescent
points are intervals in time when an update can be safely performed. Quiescent points can either

4https://github.com/ahmadadam96/NeRTA-TECS-replication-package
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be inserted into the program by the programmer, by the compiler, or automatically identified at
runtime [35, 37]. NeRTA combines both approaches by inserting potential update points at the
end of each job, then automatically computing whether the update point is valid, that is, there is
sufficient time to perform the update before the next job runs. Further, unlike the work of Wahler
et al. [35], NeRTA provides estimates of how much idle time is actually available.

Dynamic update solutions based on selecting safe update points are explored in several studies [13,
23, 37]. Cazzola and Jalili [13] claim that the safety of an update point can be determined if i) the
state of the running application is available, ii) the type of changes is known, and iii) it is possible
to predict the impact of the change during the dynamic update. Their work focuses on the safety of
the update point based on source code information, rather than on the capability of the update
process to meet real-time requirements. Zhao et al. [37] elicit two requirements for update points, i)
timeliness, meaning that an update point is eventually reachable, and ii) correctness, meaning that
the program should behave correctly after the update. Unlike what we do, they do not explore the
impact of the update process while the update is performed. Lounas et al. [23] focus on verifying
that update points satisfy three objectives: being deadlock-free, activeness safety, and liveness.
They use model checking to verify those properties for different update points. Their work is
complementary to ours. While those properties are important, they do not ensure that the update
is performed at a time that ensures real-time requirements are met.

Seifzadeh et al. [30] split approaches determining the time of the update into two types: immediate
and delayed. Immediate approaches apply the update as soon as it arrives. Delayed approaches
postpone it until a suitable time. NeRTA is a delayed approach. They further split the delayed
approaches into two type: techniques that determine an appropriate time, and techniques that
modify the behavior of the program to make the time appropriate. NeRTA is of the first type,
however, the optimizations in Sec. 5 are of the second type.

Rommel et al. [28]’s work considers multithreaded systems and distinguishes between global and
local quiescence. Global quiescence is when all threads are inactive while local quiescence is when
a thread is inactive. They propose updating different threads separately utilizing local quiescence.
NeRTA targets single-threaded systems, and therefore, does not benefit from a local quiescence
approach. However, NeRTA considers more than lack of active operation when determining whether
an update point is safe. It also considers real-time requirements, which are key for mobile robotics.
Holmbacka et al. [17] target specifically runtime updating of embedded systems. Their work

is compatible with FreeRTOS. They update tasks by creating a new FreeRTOS task with updated
code and deleting the old task. This approach works because the tasks are compiled to be position
independent and relocatable. They use a state transfer algorithm from [35]. Their work is comple-
mentary to ours. It focuses on the first three fundamental aspects of dynamic software updates,
while our work focuses on the last aspect, the time of the update.

Most work on dynamic software updates do not analyze the possible vulnerabilities that may
be introduced by implementing dynamic software updating. Security is studied in more depth
with traditional (non-dynamic) over-the-air software updates. As an example, Nilsson et al. [25]
identified and secured two stages of the update process where security may be compromised: i)
downloading a maliciously modified binary, and ii) maliciously modifying a binary after download.
Their work aims at updating vehicle ECUs that are connected to a central portal that performs
the downloading, storage and transmission of the binary. This is analogous to the typical mobile
robot architecture, where the central portal is the processor running the high-level control loop,
and the ECU is the processor running the low-level control loop. Their work assumes the attacker
has gained access to the portal but not to the ECUs, which is a fair assumption in our case too,
since the low-level control loop’s only communication with the outside is through radio, while the
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high-level control loop is usually connected through the mobile network. Therefore, the methods
they propose can be reused in our context as well.

NeRTA has the explicit goal of scheduling updates while meeting schedule-invariance. Doing so
results in the update process having no impact on the real-time requirements, because all tasks run
when they would have with no update.

3 NeRTA: NEXT RELEASE TIME ANALYSIS
We describe the design of NeRTA (Next Release Time Analysis), a technique to estimate the duration
of idle times in an existing schedule and use it to schedule an update.

3.1 Target Systems
With NeRTA we focus on enabling dynamic updates for preexisting software over the alternative
problem, that is, designing software with built-in update functionality. Therefore, we prioritize
wide compatibility and ease of integration and, therefore, we have limited ability to change the
existing task scheduling algorithm. When tackling the alternative problem, the additional flexibility
may be used, for example, to design a new task scheduling algorithm that meets both the real-time
requirements and also guarantees that updates are scheduled quickly.
We target systems implemented with a fixed number of tasks, each of which is responsible for

executing an unbounded number of computation jobs. The system is equipped with a basic task
scheduler with a task scheduling algorithm that provides sufficient information to compute the
release time of each upcoming job. The release time is the earliest time a job can start executing.
The time between the end of one job and the start of a next job, when no task is running, is defined
as idle time. To compute the length of the idle time, we must forecast when the next job of any task
starts. A job is guaranteed not to execute before its release time. The release time is computed by
the task scheduling algorithm. How the computation of the release time is achieved depends on the
task scheduling algorithm. NeRTA is in principle orthogonal to such scheduling algorithm, as long
as the release times are available. Moreover, NeRTA is a runtime technique in that it computes idle
times as the software executes. Therefore, it is applicable to both dynamic and static (time-triggered)
scheduling algorithms.
Task scheduling algorithms where release time information is available are commonly found

in mobile robots and other embedded systems, due to the reliance on sensors that have fixed
refresh rates and control loops that run at fixed frequencies [3, 20]. Therefore, NeRTA enjoys wide
applicability, especially in mobile robotics. For example, to compute the release time of a job in a
rate-monotonic scheduled system [18], the arrival time of the previously completed job is added to
the period of the task the job belongs to [31]. Tasks may have scheduling dependencies and do not
have to be independent. Task dependencies in NeRTA can be modeled using release times. If task
T2 cannot execute prior to task T1, then the release time of T2 can be set to the maximum of the
release time of T1 and the arrival time of T2.

NeRTA is not applicable to task scheduling algorithms without guaranteed inter-arrival delays.
In these cases, a release time that is larger than the current time cannot be provided. For example,
systems that use interrupts do not have guaranteed inter-arrival delays for tasks invoked by an
interrupt. Therefore, they do not have guaranteed intervals of idle periods because an interrupt
may fire at any moment. Another example is a scheduler where the job’s release time depends
solely on the availability of required inputs, rather than on time. Without knowledge of when these
inputs are available, a release time cannot be computed.
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3.2 Update Model
We consider an update to be one or multiple aperiodic tasks where each task maps to a stage in
the update process. Each task in the update must have a known worst-case execution time. All
tasks in the update are non-preemptive. Only tasks that use up execution time on the low-level
controller need to be scheduled with NeRTA before they are performed to ensure the update
process is scheduling-invariant. The number, choice, and order of stages is a decision we leave to
the update developer. We require that the system must be considered correct both before and after
each individual stage is applied, and that by conducting all the stages, the program will be updated.
For example, we may categorize the update into a loading stage and an applying stage. The

loading stage obtains the update files from an external source, and the applying stage applies the
update. This is a valid categorization because the system operates correctly between the two stages.
Therefore, the stages can be applied separately. An invalid categorization is, for example, splitting
the update into a machine code update stage and a state update stage. If the stages are performed
separately, the system may find itself in an invalid state because the new machine code may not be
compatible with the old program state.
In the rest of the paper, without loss of generality, we consider a specific (valid) update model,

shown in Fig. 3 and representative of a vast class of mobile robotics platforms [5–7]. We consider
this model as a concrete example that meets the requirements we state while being suited for the
type of architecture mobile robots have.

A diff file is generated externally including the necessary changes to convert the original version
of the software to the new version. The changes are made on a block level. Each block represents a
contiguous memory region. Each entry in the diff file specifies the starting memory address of the
block to be replaced, the size of the block, and the new content of the block. By replacing all the
blocks in the diff file, the machine code and program state are updated. How the diff file itself is
actually created, and how it is processed is orthogonal to our work. The machine code portion of
the diff file may be created by comparing the binaries of both versions. The program state portion
of the diff file is more complex, and requires state transfer mechanisms [38].
The downloading stage transfers the diff file and is performed on a companion computer, for

example, through a cellular connection. The loading stage loads the diff file onto the low-level
controller using DMA (Direct Memory Access). Once loading is complete, NeRTA is invoked
to ensure that the last stage in the process, which updates machine code and program state, is
schedule-invariant. We update the entire machine code and program state in one go to simplify the
verification process, since updating parts of the software means each intermediate version must be
verified to meet a range of application-specific requirements. Both the downloading stage, since it
is performed on a companion computer, and the loading stage, since it uses DMA, are performed in
parallel with the regular execution and do not require scheduling with NeRTA. Only the final stage
uses execution time on the low-level controller and therefore can impact the control tasks. This is
the only stage scheduled with NeRTA.
Ensuring that the diff file the companion computer receives is a legitimate one represents an

orthogonal problem that may be addressed, for example, using a public/private key encryption
schema to check authenticity and checksums to check integrity. The companion computer performs
these operations before the diff file is loaded on the low-level controller; therefore, they do not
impact scheduling the update.

3.3 NeRTA
We start with an example to provide the basic intuition behind NeRTA and describe its generalization
next.
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Fig. 3. Update stages (blue) with NeRTA used to schedule the Applying update stage. Green represents the
update database located externally. Red represents the powerful computer located on the device. Yellow
represents the low-level controller being updated. Blue represents stages of the update model. A solid line is
on device communication, and a dashed line is off device communication.
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Example. Fig. 4 exemplifies NeRTA’s design. We consider three tasks, T1, T2, and T3. In a low-
level control loop for drones, for example, T1 is the sensor task that gathers data from the IMU
(Inertial Measurement Unit), T2 is the flight control task, and T3 is the receiver task processing
commands from a remote controller. As in existing low-level robot controllers [1, 15, 20], tasks are
not preemptable. Each job has a release time that is computed by adding a fixed number of time
units to the time the prior job of the same task starts its execution.

For simplicity, we assume that whichever job reaches its release time executes immediately, unless
either another job is running already or two or more jobs reached their release times simultaneously,
in which case one is randomly chosen to execute. To compute the release time of the T1 jobs, we
add three time units to the time the previous job of T1 starts, we add five time units for T2’s jobs,
and seven time units for T3’s jobs. These numbers are for illustration purposes. If the time units
used are milliseconds, then these numbers accurately represent typical times observed in drone
autopilots such as Hackflight. In this example, we are currently at time four in Fig. 4, therefore one
job of each task has been executed.
Fig. 5 shows the actual execution of the system as observed until time nine. At time five, the

task scheduler randomly chooses T1’s second job over T2’s second job due to the overlap in release
times. When T1’s second job completes its execution, the task scheduler computes the release time
of T1’s third job by adding three time units to when its second job starts, resulting in a new release
time of eight. At time seven, T2’s second job then executes because neither T1’s third job nor T3’s
second job reach their release times. The scheduler computes a release time for T2’s third job after
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Fig. 5. The system of Fig. 4 after the execution of the second job of all tasks. Current time is nine. The colors
mean the same as Fig. 4.
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Fig. 6. Interface between NeRTA and the task scheduler. Steps taken by NeRTA are orange. The task scheduler
is green. The solid line indicates data-flow. The dashed line indicates control-flow when the task scheduler
calls NeRTA, which returns to the task scheduler.

its second job executes. At time eight, the release times of T1’s third job and T3’s second job align.
The scheduler randomly executes T3’s second job over T1’s third job.

Fig. 5 shows an idle time worth one time unit between time four and five. This happens as the
earliest release time of any task in Fig. 4 is at time five. Between the current time and the earliest
release time, no jobs can possibly execute: the computing unit is guaranteed to be idle. This is a
perfect time to perform an update job that does not take more than one time unit to complete, as
none of the preexisting jobs would be affected. Updates performed during are schedule-invariant
by construction. NeRTA generalizes this reasoning, as explained next.
General case. Fig. 6 shows how NeRTA interfaces with the task scheduler. NeRTA requires two
inputs, an update job with a specified worst case execution time, and the release times of the earliest
unexecuted job of each task in the system. We have an infinite number of jobs, because tasks repeat
indefinitely. However, tasks have a guaranteed inter-arrival time between one job and the next. We
only need the release times of the earliest job of each task, which is guaranteed to be smaller than
the release time of latter jobs of the same tasks.
The task scheduling algorithm computes the release time of each job at the appropriate time

and sends it to NeRTA. Once NeRTA has up-to-date release times for all jobs, it can estimate the
available idle time. If an update job is waiting to be scheduled, the task scheduler calls NeRTA
after any job completes its execution. Calling NeRTA after the execution of a job simplifies the
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computation of idle times because only the release time of upcoming jobs is needed to determine
the idle time. NeRTA computes the estimated idle time by subtracting the current time from the
smallest release time of any job. The current time is measured immediately prior to the subtraction
to obtain the most accurate estimate possible. For an update job to be scheduled successfully, the
estimated idle time must be greater than the time needed to perform the update. If the update
cannot be scheduled right now, the task scheduler waits until the next job completes and calls
NeRTA again with updated release time information. In Sec. 7.4 we find the overhead of NeRTA
to be negligible, and since we measure the current time immediately prior to computing the idle
time, NeRTA’s overhead is already incorporated into the estimated idle time. To schedule updates
composed of several jobs, NeRTA is invoked sequentially for each job that needs execution time
from the low-level controller. Once the first job is scheduled successfully, the second job waits to
be scheduled.
The idle time NeRTA computes is a conservative estimate of the actual idle time, meaning that

NeRTA estimates cannot be after the actual idle time. This is because release times indicate the
earliest time a task can start executing a job, which cannot be larger than the time the execution
actually starts.
Fig. 7a shows one job of task T2 with a release time of five, which we observe from time two.

Because the release time indicates the earliest time a job can execute, the time the job actually
executes may be different if the task scheduler delays its execution. Fig. 7b and Fig. 7c demonstrate
two possible executions observed from time eight, with one execution starting at time five, and
another at time six. Despite the differences in the executions, using the release time to compute
the idle time provides a guaranteed idle time of at least three time units, computed at time two,
because it is impossible for the job to execute prior to time five.
As long as the release times provided are correct, the idle time computed from those release

times is necessarily conservative. The conservative nature of NeRTA estimates is fundamental
because if the estimated idle time is larger than the actual idle time, performing the update in this
time span may postpone the execution of jobs, and therefore is no longer schedule-invariant.

4 IDLE TIME EMPIRICAL EVALUATION
NeRTA conservatively estimates the available idle times in an existing task schedule. Whether an
update may be completed in the available idle time is an orthogonal question that deserves further
investigation and motivates our work in Sec. 5 towards increasing the available idle times. We
provide a quantitative basis to reason upon in this section.

4.1 Idle Times in Hackflight
We run experiments to determine the idle times available on Hackflight [20], a low-level flight
controller for aerial drones running on embedded resource-constrained hardware [36]. Using an
existing autopilot implementation and real hardware, we can measure the idle times that are present
in a real-world mobile robot platform. We run the experiment on a stationary but armed drone,
that is, the motors are spinning as they would normally do but the propellers are removed so the
drone does not lift off.
By instrumenting the code, we record every time a task begins its execution and every time

a task ends its execution. By aligning the traces obtained this way over time, we can derive the
available idle times post-facto. Fig. 8 shows an aggregate view on the results we obtained across
17,345 samples of idle time. The largest idle time we observe is just under 3.0ms, yet only about
1.8% of the samples show idle times larger than 2.7ms. On the other hand, 46.1% of the samples are
larger than 1.0ms. Overall, we find a median idle time of 0.8ms and an average of 0.9ms.
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Fig. 8. Idle times in Hackflight; note the prevalence of idle times between 0.6ms and 1.6ms.

Note that in Fig. 8 the size of the bins is not homogeneous. In the 0-0.1 ms interval, we obtain
numerous small samples because two or more jobs have overlapping release times, and therefore
can execute one right after the other.
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Fig. 9. Time taken to transfer different numbers of words from Flash to SRAM as one block. A linear model
approximates the data well. The equation for the linear model along with the coefficient of determination are
displayed in the figure. The figure includes the average, upper, and lower bounds of the measurements.

4.2 Update Time Durations
Idle times may not be meaningful per se; it is rather what update we can fit within those times
that matters. The time taken for performing an update is dominated by operations on non-volatile
memory to change the machine code. We run experiments to relate the idle times above with the
size of the memory operations to perform an update.
We consider the STM32L432KC MCU [33], a 32-bit ARM Cortex M processor as used by the

hardware platform running Hackflight [36]. It uses Flash as the non-volatile memory and SRAM as
the volatile memory. To update the program, both the state stored in the data memory, SRAM in
our case, and the machine code in program memory, using Flash, must be updated. We perform a
memory benchmark to gauge the time required to update the program.

4.2.1 State updates. We evaluate the time needed to update the state. We assume that the update
is a diff file that is composed of a series of commands. Each command states to replace block X
with block Y, blocks X and Y have size W. Block X is found in data memory starting at memory
address Z while block Y is found in the diff file stored in the Flash. Each command in the diff file
contains the necessary changes that must be made in SRAM to convert the old version to the new
version. The diff file already contains all necessary changes to the program state and therefore
the update process only has to execute the commands to transfer blocks from the diff file to the
specified location in the SRAM. The diff file is given. Therefore, determining how the diff file is
created is outside the scope of this work.

To estimate how long an update to SRAM takes we measure the amount of time taken to transfer
blocks of various sizes with Flash as the source, and SRAM as the destination. We measure the
time to transfer one block of increasing sizes from 4 words (4 bytes in each word) to 5000 words, as
shown in Fig. 9. We perform the measurements six times and plot the average, upper, and lower
bounds. Note that we plot the number of words transferred on a logarithmic scale.
Fig. 9 demonstrates that we can transfer 5000 words in around 430 microseconds. We also

observe that the transfer time follows a linear relation as shown in Fig. 9. We use the equation to
calculate that the time to update 256 words, corresponding to 1 kilobyte, in the SRAM is around
28 µs, and that we can overwrite the entire SRAM of a typical embedded microcontroller like the
STM32L432KC [33] in 1.4ms, which is feasible in the idle time we show in Fig. 8.
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Scheduling Dynamic Software Updates in Mobile Robots 13

Table 1. Update time required for different kinds of updates to Hackflight.

Code modification Words changed Time (ms)
Modify input to PID controller 1 0.00025
Modify one PID computation 2 0.0005
Remove an entire PID controller 20,209 5.05
Modify formula for computing Euler angles 7,882 1.97

We also found no significant difference in the total time taken between writing to locations in
the SRAM that are contiguous, such as one large block of words, or writing to locations that are not
contiguous, such as several small blocks of words with different destinations. Therefore, the time
to update is only impacted by how many words must be copied, and not by whether the words are
copied to contiguous locations in memory.

4.2.2 Machine code updates. Next we evaluate the time required to update the program memory,
that is, the machine code stored in non-volatile memory. We originally consider Flash memory
as non-volatile memory because it is prevalent among microcontrollers used for mobile robots.
However, we find Flash memory to be too slow for the task at hand, due to the necessity to erase
an entire page to only modify a single word in the same page. The datasheet for STM32L432KC
processor, used to run Hackflight, mentions that the time to erase a page of size 2 kB (512 words) is
22.02ms and the time to write an entire page is 20.91ms [33]. Therefore, updating a previously
programmed page takes 42.93ms. Considering we have a maximum 2.9ms of idle time, it means
we would need roughly 20 times the idle time we currently have to update just one page.

An alternative form of non-volatile storage is Ferroelectric RAM (FRAM), which does not require
an erase procedure to overwrite data. The only microcontroller family available with onboard
FRAM is the MSP430FR family, which sports a 16-bit computing unit able to write a 16-bit word in
125 ns [2]. We estimate that an onboard FRAM with a 32-bit processor would be able to write a
32-bit word in double the time, which is 250 ns. To determine how many words must be modified
for different updates, we compile Hackflight for the ARM Cortex M4F processor using the GNU
Arm Embedded Toolchain. We apply different updates to Hackflight and recompile. We use the
machine code produced by compiling the unmodified Hackflight source as the default, and compare
all other binaries with it. We measure the number of the words that we must modify to convert
the default machine code to the updated machine code. The comparison is made at address-level.
For example, if address 12 contains the one-word integer 100 before the update, and contains the
one-word integer 200 after the update, we consider the word in that address as modified.

We consider selected modifications to the Hackflight codebase, summarized in Tab. 1. We select
these modifications to include both minor and major changes. We also choose them to model
realistic updates for a drone autopilot. The first one models parameter adjustments. The second
and fourth model bug fixes. The third one models a feature removal intended to improve execution
time. Using these modifications enables us to observe the variation across update times.

Compared to the idle times available in Hackflight, shown in Fig. 8, the first two modifications are
easily accommodated. The third update needs to modify a large number of words, due code shifting
location in memory: it is unfeasible in the available idle times. The fourth update also results in
code shifting, however the total number of words that must be overwritten is significantly smaller
than the third update. The fourth update can be performed in the idle time available, provided that
the update to the state does not exceed one millisecond.

To summarize, performing both a large state update, needing 1.4ms, and a small machine code
update, needing as much as 0.5 µs is doable within the available idle times. Performing the same large
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state update and a medium-sized machine code update, needing 1.97ms, is not doable. Performing
the medium-sized machine code update is doable provided the state update does not exceed one
millisecond. These results motivate developing further solutions to increase the available idle times,
increasing the chances that larger updates may be accommodated.

5 INCREASING IDLE TIMES
Depending on the number and nature of changes to be performed, it may not be possible to
schedule large updates. With NeRTA, we target updating preexisting software and therefore
prioritize maintaining the application-level behavior by schedule-invariant updates. For larger
updates, this approach is no longer sufficient. Therefore, we develop optimizations (separate from
NeRTA) that increase the available idle times. They do so by relaxing schedule-invariance and
instead require that software updates only maintain the robust operation of the robot.
To increase available times, in Sec. 5.1 we apply mixed criticality concepts [12], which retain

the schedule-invariant properties only for critical tasks. Next, in Sec. 5.2 we present a notion of
Bounded Reactive Control (BRC) [11], which judiciously reduces the frequencies of the control
loop.

5.1 Mixed Criticality
Mixed criticality is an approach to recognize that not all tasks are of equal criticality in a time-
sensitive system, where criticality refers to the task’s importance to maintain robust operation [12].
We apply this concept to the low-level robot controllers by defining two criticality levels, high and
low. The former includes tasks that are necessary to maintain the robust operation of the mobile
robot; low criticality tasks are all others.
The classification of low and high criticality is application-specific. However, it needs to take

into account the environment as well as the capability of the software. A task would be deemed
low criticality only if the robot is able to operate for an extended period of time in the given
environment without it.
Consider a low-level robot controller with three different tasks, a communication task that

receives control inputs from a ground station, a mobility control task that controls the robot’s
actuators based on control inputs, and a task to update values of on-board sensors. The sensor
task and the mobility control task are of high criticality. The former ensures that the robot detects
significant changes in its orientation and in the surrounding environment, for example, unintended
angle changes detected by the robot’s accelerometer, whereas the mobility control task is needed
to react to those changes, for example, ensuring that the robot can rebalance itself.
On the other hand, the communication task can be assigned a low criticality provided certain

requirements are met. In the absence of newer control inputs, the robot controller may default to
specific setpoints, for example, to retain the current position. The communication task is of low
criticality if the drone is capable of retaining the current position safely for an extended period
of time without user input, and the environment does not endanger a stationary drone. Say for
example birds may be flying around the drone, then a stationary drone with no automated collision
avoidance would not hover safely in this environment. In that case, the communication task is of
high criticality because the pilot should intervene to counteract the situation.
By classifying tasks into two distinct criticality levels, we increase the amount of idle time

available to perform an update by only taking into account high criticality tasks when running
NeRTA. Therefore, mixed criticality is not schedule-invariant towards low criticality tasks, but
is towards high criticality tasks. Therefore, a low criticality task may be delayed in its execution
because of an update. This is considered acceptable because, by definition, the robot can safely
operate in the current environment without the low criticality task.
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Scheduling Dynamic Software Updates in Mobile Robots 15

After the update is complete, it is possible that some low-criticality jobs are past their release
time, since they are delayed by the update. Therefore, we must ensure that these jobs do not
further delay the high criticality tasks. To do so, we require the worst-case execution time of all
low criticality tasks. Once the update is applied, we disable all released low criticality tasks. We add
new stages to our update model from Fig. 3, one for each disabled low criticality task, which are to
be scheduled by NeRTA, called re-enabling low criticality tasks. After each job executes, we use
NeRTA to compute the idle time taking into account only enabled tasks. We utilize the idle time to
schedule as many ready and disabled low criticality jobs as can fit during the idle time based on
worst-case execution time information. The ones that execute are then re-enabled. Over time, all
low-criticality tasks are re-enabled without delaying high-criticality tasks, and the update process
is finally considered complete. We assume that the system was schedulable prior to disabling the
low criticality tasks. Therefore, the capacity to re-enable the low criticality tasks is guaranteed.

5.2 Bounded Reactive Control
A complementary approach is to adapt a technique called Reactive Control [11] tomake it compatible
with NeRTA. We call this Bounded Reactive Control (BRC).
Reactive control. Bregu et al. [11] present a technique to dynamically modify the frequency of the
low-level control loop in mobile robots. Techniques that modify the control loop’s frequency are
not schedule-invariant. Bregu et al. [11]’s fundamental insight is that the outputs of the low-level
robot control loop should change more often when the environment surrounding the robot is more
dynamic, whereas they may be updated less often in calm conditions. The specific situation is
determined by the amount of change in the values of on-board sensors from one measurement to
the next [11], which is taken as indication of how dynamic is the environment.

Using reactive control as-is would not work with NeRTA, as the latter requires a release time for
each task as input. Conversely, at any given time instant, reactive control dynamically determines
whether the low-level robot control loop should run, based on sensor changes [11]. Therefore, we
would not know whether the control loop actually runs until the very moment we perform the
reactive control computation, and therefore cannot compute release times.
We adopt the same principles of reactive control, that is, that the low-level robot control loop

should run at high frequencies in difficult conditions and at low frequencies in calm conditions.
Instead of determining on the spot whether the control loop should run, we change the frequency of
the control loop among a limited set of candidate settings, depending on the robot and environment
dynamics. By setting a frequency for the control loop beforehand rather than dynamically, the task
scheduler can compute release times for the relevant tasks and use them as input to NeRTA.
Bounded reactive control.We perform a training phase to determine the boundary conditions
that ensure (or do not ensure) robust robot operation, as a function of the frequency of low-level
control. The boundary conditions are constants that are compared with the values of on-board
sensors to choose a control frequency for which the robot is robust. For three frequency settings
based on one sensor’s readings, for example, there are two boundary conditions: one for crossing
from the lowest to the middle frequency, and one for crossing from the middle to the highest
frequency.

Our training phase consists of a series of tests with specific mobility patterns while checking the
robot’s capability to meet a specific level of robustness. The goal is to determine parameter ranges
to attain robust behavior at a specific control loop frequency, and thereby determine the boundary
conditions for the chosen frequency settings. As an example, using a certain control loop frequency,
we program a ground robot to move along a straight line at a given speed and check whether it
can avoid an obstacle in front of it. The outcome of the experiment tells us whether the specific
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Table 2. The maximum speed where hovering is achieved for different control frequencies

Control frequency (Hz) Maximum speed (m/s)
100 1
200 16
300 otherwise

combination of speed setting and control frequency is within (or outside) the parameter range of
robust operation. This information is then used at runtime, whereby the robot dynamically selects
the lowest control loop frequency that retains robust operation as a function of current speed.
Training. We consider aerial drones as a proof of concept. The robustness requirement is that the
drone can stabilize in a hovering configuration, that is, slow down within a limited speed interval
and eventually maintain a given position, all within a set amount of time. We perform training on a
physics-accurate drone simulator called MultiCopterSim [19] using the implementation described
in Sec. 6. The simulator is based on a detailed drone model [10]. The drone simulated is a DJI
Phantom. It weighs 1.38 kg and has a frame length of 35 cm.
We start with a control frequency of 100Hz, which is a third of the default control frequency,

thus significantly increasing the time between one job and the next. We fly the drone to an altitude
of twenty meters, then externally apply full roll until we reach a set speed. The roll setpoint is reset,
and we wait for the drone to reach a hovering state, that is, speed is between 0 and 0.5m/s. If this
happens in less than 15 seconds, we consider control frequency robust for the set speed. The speed
we use is the magnitude of the velocities in the x, y, and z directions.

We perform experiments in MultiCopterSim by using a script that introduces small timing
variations through the different steps of the simulation, providing a degree of non-determinism in
the training that models real-world flight dynamics. We repeat each experiment fifty times and
only consider a frequency robust when the drone can successfully hover in every such repetition.
Outcomes. Tab. 2 shows the results, which we use to program BRC to set the control frequency to
100Hz when the drone’s speed is within 1m/s, to 200Hz when the speed is between 1m/s and
16m/s, and to 300Hz when the speed is higher than 16m/s. BRC utilizes incremental reduction
and instantaneous increase of the control loop frequency. A decrease of the control frequency due
to a low speed steps down from 300Hz to 200Hz first, then to 100Hz. An increase of the control
frequency due to a high speed instantly steps from 100Hz to 300Hz. This ensures prompt reactions.
Note we also use BRC to modify the execution frequency of the sensor tasks as well, since

they are upper-bound by the control frequency. If BRC reduces the control frequency, we can
correspondingly lower the sensor’s frequency too.
Generality.We only use the drone’s speed to determine the boundary conditions as a trade-off
between training complexity and versatility. Using the speed as a boundary condition is an obvious
choice since a larger speed means a larger distance covered in the same time period and, therefore, a
larger distance per iteration of the control loop. This can be counteracted by increasing the control
frequency at larger speeds, which is what BRC does.
We can use more metrics to improve the drone’s robustness such as its altitude, orientation,

acceleration, and angular velocity. In casemultiplemetrics are used, BRC should choose its frequency
based on the metric that results in the highest control frequency. We should repeat the training
phase for each metric independently. For angular velocity, we can induce an angular velocity in
one direction, and then measure the time to reach a stable hovering configuration, and ensure the
required time is below a specific value. The process can be repeated for other directions as well.
Alternatively, we can combine different metrics together, such as speed and altitude.
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Fig. 10. Custom drone with Ladybug flight controller.

In addition to additional metrics, more frequencies can be used in training to enable finer control
of frequency and idle times. The drone may also use GPS coordinates to determine its environment
and choose from a set of preprogrammed configurations. For example, a drone operating in a city
may err on the side of caution and switch to a higher frequency at lower speeds than a drone
operating in an open field.

6 PROTOTYPE
We demonstrate the operation of NeRTA in a system used for low-level control of aerial drones.
We describe next the existing autopilot platform and the corresponding NeRTA implementation.
Autopilots. A drone autopilot is an embedded software library that includes the functionality
needed for low-level control of an aerial drone. To control a drone while airborne, drone autopilots
implement a control loop that uses as input data from on-board sensors, and produces as output
specific motor settings. The control loop must run at high enough frequencies, otherwise, the drone
would react to changes too slowly and may destabilize or even crash.

Autopilots are generally written in low-level languages such as C [15] and C++ [1, 20] due to the
limited computational resources available on typical flight controller hardware and the presence of
strict real-time deadlines [26]. A large number of autopilots [1, 15, 20] are developed as open-source
software through a collaborative process.

Flight control is typically implemented through the use of Proportional-Integral-Derivative (PID)
controllers that control the drone’s motors depending on data from the sensors and the pilot’s
setpoints, which are sent through a radio control (RC) transmitter. Advanced autopilots such as
Ardupilot [1] include flight modes, which provide varying amounts of automatic control, ranging
from keeping the drone steady and stable to fully autonomous navigation.
Communication between the drone and the pilot is typically performed through radio trans-

mission. A radio receiver is connected to the flight control hardware and is paired with a radio
transmitter used by the pilot. RC protocols such as SBUS and CPPM [21] are used in drone autopilots.
Autopilots run on resource-constrained hardware, and therefore prioritize efficiency to meet

real-time deadlines. An example is the Ladybug flight controller, featuring a 32-bit STM32L432KC
microcontroller with an 80MHz single-core ARM M4F processor, 64 KB of SRAM, and 256 KB of
non-volatile Flash memory [36]. The ARM M4F processor comes with an onboard floating-point
unit (FPU), which is particularly important for autopilots due to the prevalence of floating-point
operations. We use the Ladybug with a custom drone we build, shown in Fig. 10.
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Fig. 11. Hackflight’s scheduling logic demonstrating how Hackflight chooses which task to execute. Yellow
indicates the executed action and green indicates a binary decision to be taken.

Hackflight.We use Hackflight [20] as a concrete instance of low-level robot controller. Hackflight
is a C++ based autopilot developed by Levy [20] that is designed to be well-structured, powerful,
and extensible. It is composed of at least three tasks: receiver, PID, and sensors. The receiver task
processes data received through RC transmission and updates the drone’s setpoints based on this.
The PID task performs three different steps: it obtains the receiver setpoints; it runs the setpoints
through all the PID controllers; then it sends the setpoints generated by the final PID controller to
the mixer, which converts the setpoints to individual motor speeds and sends them to the motors.
Each sensor in Hackflight has its own task used to obtain data from it.

Fig. 11 shows task scheduling in Hackflight. Tasks are ordered, which means the scheduler checks
whether they can run in a specific order, which is receiver, then PID, then the sensor tasks. First, the
scheduler checks if the current receiver job is released, and if so, computes an updated release time.
Job release times in Hackflight are computed similarly to the example in Sec. 3.3, by adding a fixed
value to the time the prior job of that task started execution or was blocked. Blocking occurs when
a task is refused to execute for reasons other than the task not being released. For example, the
receiver task is blocked if there is no new frame received. No other tasks have blocking conditions.
After updating the release time, the scheduler checks if the job is blocked. If the job is not blocked,
then it executes. Then the scheduler repeats the same process with the PID task, then the sensor
tasks. Once all the sensor tasks have gone through the process, a scheduling cycle is complete and
the next cycle begins with the receiver task again.
NeRTA. Our implementation of NeRTA gathers necessary information about each task from
Hackflight, that is, the time the previous job of the task started executing, the inter-arrival delay,
the next release time, which is computed at runtime by summing the former two, and the task’s
criticality.
When implementing BRC, a key parameter is the number of possible frequencies. We strike a

balance between a quick training procedure and a reactive system with three possible frequencies,
defined as high, medium, and low. The high frequency is equal to the frequency of the control loop
without BRC and is thus not part of the training. The medium and low frequencies are defined
using the training procedure.

A key aspect is how to choose which optimization to apply. The procedure to do so is shown in
Fig. 12 and is repeated after the execution of each job, until the update is successfully scheduled.
Initially, our implementation attempts to schedule the update with no optimizations. If scheduling
fails, we attempt to schedule the update by only applying mixed criticality settings and only consider
high criticality tasks. If scheduling fails again, we switch to BRC, which is used in the next cycle.
BRC adjusts the frequency of the control loop depending on the speed of the drone. It starts off

, Vol. 1, No. 1, Article . Publication date: September 2023.

Page 18 of 27Transactions on Embedded Computing Systems

https://mc.manuscriptcentral.com/tecs



Scheduling Dynamic Software Updates in Mobile Robots 19

NeRTA 
with no 

optimization

Sufficient 
time for 
update?

Update

Yes

NeRTA with 
mixed 

criticality

Switch on 
BRC

No

Sufficient 
time for 
update?

Scheduling 
failed

Yes

No

BRC is on?

Run BRC 
Loop

Yes

No

Fig. 12. Choice of optimization to apply. The color choices are the same as in Fig. 11 with the addition of red
for the final action taken whether to schedule the update.

with the high frequency setting for robustness reasons, and reduces the frequency if the speed is
sufficiently low. Cycles with BRC enabled begin slightly differently by invoking the BRC loop that
updates the frequencies and computes new release times for the control loop and sensor tasks.

7 EVALUATION
Our evaluation is four-pronged. Sec. 7.1 compares NeRTA conservative estimates of idle time
with actual executions. Sec. 7.2 quantifies the impact of the additional mechanisms we design to
increase available idle times, whereas Sec. 7.3 investigates their impact on robust robot operation.
We measure NeRTA’s run-time overhead in Sec. 7.4.

The results we obtain lead to five key conclusions:

(1) The difference between NeRTA’s estimates and actual idle times is less than 15% in more
than 75% of the samples;

(2) All idle times larger than 0.6ms exhibit differences less than 15%;
(3) Applying mixed-criticality concepts and BRC more than doubles the available idle times;
(4) The impact of these mechanisms on the robust robot operation is limited;
(5) The run-time overhead of NeRTA is essentially negligible compared to the dynamics at stake.

Our methodology combines real-world experiments on embedded hardware and simulations.
We use our NeRTA prototype, described in Sec. 6, that embeds NeRTA in the aerial drone flight
controller Hackflight, and MultiCopterSim described in Sec. 5.2.

7.1 NeRTA Estimates
We quantitatively determine how conservative are NeRTA estimations by comparing the idle time
NeRTA computes with the idle time we measure during actual execution.
Setup. As in Sec. 4, we use the prototype of Sec. 6 while the drone is stationary but armed. We
instrument our implementation to gain information on the actual task scheduling in the absence of
non-deterministic environment influence, using Hackflight’s default parameters for task scheduling.

We capture 4,881 samples of NeRTA estimates and of actual idle times. We compute the difference
between corresponding samples as a measure of error. We exclude 571 samples from the analysis
because they represent cases when one of the next release times is lower than the current time,
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Fig. 14. Min, max, and average differences between ac-
tual idle times andNeRTA predicted idle times, grouped
by actual idle times; note decreasing differences as idle
times increase.

and hence idle time is zero. At run-time, these situations are readily detected and only affect how
many iterations of NeRTA we need before an update is scheduled successfully.
Results. Fig. 13 shows the results of the experiment. We vary the size of the bins to highlight key
results, namely the sample with the largest error has an error of 98.75%; 1,633 of the 4,310 samples
that are left have an error of less than 5%.; three-quarters of the samples have an error of less than
15%. The largest difference in idle times is 86 µs.

The experiment demonstrates that, despite the conservative nature of NeRTA estimates, its
measures of available idle times are close to the actual idle times. Fig. 14 shows that large percentage-
wise differences are observed only for small idle times. All idle times larger than 0.6ms show
differences below 15%.

Generally, it is more important to be accurate for larger idle times to schedule larger updates, than
to be accurate for small idle times that are not that useful per se, even if predicted accurately. This
justifies our design choices and makes NeRTA an accurate estimator of idle times. Its conservative
nature allows NeRTA to be schedule-invariant by design.

7.2 Impact of Additional Mechanisms
We measure the impact of applying mixed-criticality concepts and of BRC on available idle times.
Setup.We use the same setup as in the previous experiment. We emulate the deployment of an
update 5 seconds after boot and provide NeRTA with a maximum of 60 seconds to find idle times
sufficient to schedule the update. We repeat the experiment by varying the time required by the
update stepwise by 0.1ms. We repeat the experiment until we reach an update that cannot be
scheduled within 60 seconds. We experimentally verify that increasing this time would not lead to
different results. For each configuration, we record the largest available idle time NeRTA estimates.
Results. Fig. 15 depicts the results. It shows that using only mixed criticality concepts yields no
improvement in the maximum available idle time compared with the regular configuration. BRC
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Fig. 15. The maximum available idle times with different additional mechanisms; MC refers to the application
of mixed-criticality concepts. BRC refers to bounded reactive control.

yields an improvement of around 14%. Applying both optimizations yields a significant improvement
of around 155% over the regular configuration.
The reason for the results with mixed-criticality concepts is that the idle times are dominated

by the task for the orientation sensor, which runs at 330Hz. The receiver task is the only task
affected by applying mixed-criticality concepts. It runs at 300Hz, which is less than the 330Hz
of the orientation sensor. The idle times are generally determined by the task with the highest
frequency because that task places an upper bound on the idle time equal to the interval between
two of its jobs, which is shorter with higher frequency. Therefore, excluding the receiver task does
not increase the idle times significantly because it is not the one that ultimately determines them.

BRC reduces the frequency of the orientation sensor task and of the control task, so the highest
frequency task now becomes the receiver task. It has a frequency of 300Hz, which is lower than
the highest frequency task when applying only mixed-criticality concepts, which was 330Hz for
the orientation sensor task. This explains the slight improvement in the available idle times.
When we apply both optimizations, applying mixed-criticality concepts excludes the receiver

task from NeRTA estimates, while the orientation sensor task and the control tasks are set to the
low frequency of 100Hz. The receiver task still runs at 330Hz, but NeRTA does not account for
that anymore. Therefore, the highest frequency task taken into account now has a frequency of
100Hz, which explains the significant improvement when we apply both mechanisms.

7.3 Impact of BRC on Robustness
We run experiments to determine the effect of BRC on robustness. Applying-mixed criticality
concepts is robust by design, if the choice of less critical tasks is judicious.
Setup. We use the physics-accurate drone simulator MultiCopterSim [19], enabling controlled
experiments that involve applying external forces to the drone. The drone simulated is a DJI
Phantom, which is used in the BRC training phase in Sec. 5.2. We fly the drone in the simulator to
an altitude of 20 meters. We apply an external roll force for one second at 20 seconds after the start
of the simulation. The product of the roll force and arm length, which is constant, is the torque.
Since the arm length is constant, the torque is proportional to the force applied. We sample the
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Fig. 17. Different frequency configurations showing the effect of a 20N force applied at the 20-second mark.

drone speed 250 times per second as it attempts to hover and return to a speed of zero and record
how reactive control behaves at various points in time. The speed is the magnitude of the velocities
in x, y, and z directions.

We increase the intensity of the roll force by 1N if the drone successfully hovers without crashing
in an experiment, and keep doing so until the drone fails to hover. We call maximum roll force
the largest force the drone successfully counteracts, eventually reaching a hovering configuration.
We compare the maximum roll force between different configurations, including BRC, the default
Hackflight static frequency of 300Hz, and a static frequency of 100Hz. Note that 300Hz and 100Hz
are the upper and lower bounds of BRC’s (dynamic) frequency range, respectively.
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The force we apply models an intense pressure gradient differential [8] caused by the rotors
on one side of the drone producing more thrust than on the other side, due to a difference in the
air density. In practice, a pressure gradient would produce a smaller force than what we apply;
our experimental setting provides a worst-case estimate of the control capabilities of BRC. The
force applied is large but is only applied for one second, which is short enough that the drone can
recover from, provided the control loop is fast enough.
Results. Fig. 16 shows the results of these experiments. It demonstrates that BRC can successfully
hover from a maximum roll force close to the maximum roll force that the static 300Hz setting can
hover from.

Fig. 17 provides a deeper insight into the system behavior by showing the drone speeds observed
when applying a 20N roll force, which is the largest roll force that all three configurations success-
fully manage. Fig. 17a demonstrates that the drone experiences significant oscillations when using
a 100Hz control frequency, meaning that it is close to the limit in terms of handling the roll force
to re-gain a hovering configuration. Fig. 17b and Fig. 17c, on the other hand, are very similar to
each other, showing that BRC has robustness similar to the static 300Hz configuration, but can
throttle down tasks when possible.

Fig. 17d indeed demonstrates that with BRC the drone spends a significant amount of time using
the 100Hz frequency. Comparing Fig. 17b with Fig. 17d, it is possible to note that the periods
running at 100Hz frequency correspond to the lowest drone speeds, indeed, when a higher control
frequency is not needed. Therefore, BRC allows NeRTA to find significantly larger idle times with
a limited impact on robustness.

7.4 Overhead
NeRTA’s implementation has two components. The first component computes release times and
runs at the start of each task regardless of whether an update is pending. By doing so, NeRTA can
attempt to schedule the update in the first iteration right after we issue the update. The second
component is the update scheduling portion that runs at the end of each task only when there is
an update pending.
Both components have a performance impact on Hackflight because they require processing

time. We measure how large is this processing time and compare that with the idle time estimates of
NeRTA, to make sure the overhead does not significantly reduce the idle time. For similar reasons,
we also measure the processing time of the reactive control loop, which dynamically chooses a
control frequency for the current environment, and the mitigation to ensure low criticality tasks
are re-enabled safely.

NeRTA’s processing overhead, indeed, is essentially subtracted from the idle times and therefore
detrimental to the ability to accommodate updates. It should consequently be as low as possible.
Setup. We use the same setup as Sec. 7.1. Without mixed criticality, we schedule updates that
take 1.5ms to complete. We choose 1.5ms because such an update can be performed without
any additional mechanisms. For the rest of the measures, we schedule updates that take 4ms to
complete. We choose 4ms because such an update requires both BRC and mixed-criticality concepts
to be applied, allowing us to measure the performance impact of the additional mechanisms. We
measure the overhead of the mixed criticality mitigation when it re-enables a low criticality task
(the receiver task), and when it does not (due to insufficient idle time to execute it).
Results. Tab. 3 reports the average, max processing times, and the number of measured samples
for each component. In the absence of additional mechanisms, most idle times are in the 0.6ms to
1.6ms range as indicated in Fig. 8. The table demonstrates that the maximum time overhead of
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Table 3. Time required for different stages of the update scheduling process.

Stage of update scheduling process Average time (µs) Max time (µs) Samples
Release time update 1.76 27 212,328
NeRTA scheduling without mixed criticality 2.53 14 21,914
NeRTA scheduling with mixed criticality 8.71 24 88,057
Reactive control loop 7.42 29 126,221
Reactive control changing state 4.43 16 104,222
MC mitigation turning receiver task on 2.16 14 34,979
MC mitigation keeping receiver task off 2.20 28 35,024

all stages is around two orders of magnitude smaller than the common idle times. Based on these
results, we conclude that the processing overhead of NeRTA is arguably negligible.

As expected, the results show that the overhead is negligible. The operations needed for different
steps within NeRTA are extremely simple even for a microcontroller. Updating the release time is a
simple addition, plus reading the current time if necessary. Scheduling without mixed criticality
reads the release time of each task to find the smallest one, subtracts the current time from the
minimum value and compares the result with the update time required. Scheduling with mixed
criticality takes a little longer because it actually checks twice, once taking into account all tasks,
and once taking into account only the high-criticality ones. The reactive control loop performs a
square root to compute the drone’s speed, which is fast due to the floating point unit on the target
microcontroller. Then it compares the speed with predefined values. Changing the state computes
and updates task frequencies using multiplications and divisions of floating point numbers, which
is fast due to the floating point unit. The mixed criticality mitigation performs similar operations
to the NeRTA scheduling, and has similar overhead.

8 VALIDITY, THREATS, AND LIMITATIONS
We outline key considerations and limitations of our design and methodology.
Simulation for BRC training and robustness. We perform the evaluation in the same envi-
ronment where BRC is trained. This is in line with the original design of reactive control, where
the training procedure happens online rather than offline. The training procedure must accurately
reflect the features of the target environment [11]. As with the original reactive control, our results
do not demonstrate how well BRC behaves in environments it was not trained for.
Our training procedure is simple with only three possible frequency settings and only one

parameter, that is, speed, that determines the frequency. A more complex training procedure can
help in case the training approach presented here is ineffective. For example, one may increase
the number of possible frequencies and include additional parameters to determine the frequency
setting.

The simulator models the drone’s dynamics and the environment. However, the simulator does
not simulate the drone’s computing capabilities. The control tasks are executed on the machine
running the simulator, which is significantly more powerful than the microcontroller aboard the
drone. Therefore, task execution times in the simulation are significantly smaller than in reality. This
is not a significant threat to our results, since the impact of the BRC execution times is negligible
even on the drone microcontroller.

Moreover, it is worth noting is that the robustness experiment only evaluates the impact of BRC,
not of NeRTA as a whole or of the application of mixed criticality concepts. The former is not a
significant limitation since the runtime overhead of NeRTA is negligible, and therefore, the effect
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of NeRTA’s operations on task scheduling is negligible as well. The latter is not an acute issue
either, since the application of mixed criticality concepts only affects the receiver task in our setting,
which by the definition of low-criticality tasks is not needed for robust operation.
Hackflight. Focusing on Hackflight for the experimental evaluation may, in principle, limit the
generality of our results. The results for the accuracy of the NeRTA’s idle times depend on the
length of time between the release time of a job and on when the job begins its execution. In
scheduling techniques where the entire schedule is determined statically, however, the release time
and start of execution time are equal. Therefore, NeRTA’s idle times would be more accurate in
this case than for a dynamic schedule, such as Hackflight’s.
In other dynamic scheduling techniques, such as earliest deadline first, the differences in idle

times depend on the system utilization. Hackflight shows a fairly low system utilization, so tasks
often execute close to their release time. The same applies to other systems where the system
utilization is low, provided the scheduling algorithm is priority-based. A priority-based scheduler
with low system utilization likely has few tasks released at the same time [32] and therefore, the
response time of the tasks is low. The release times are then close to the start of execution times.
The validity of our results extend to these systems too.

In contrast, we expect our results not to apply to systems with high utilization. In these cases, the
idle times are expected to be so small that scheduling updates in idle times is unfeasible regardless.
Our results do not generalize to time-slice-based schedulers such as round-robin scheduling either:
as we mention in Sec. 3.1, NeRTA is not applicable to algorithms that do not provide guaranteed
inter-arrival times. Round-robin scheduling can provide a release time for tasks outside the current
time slice but it cannot do so for the task inside the current time slice.
Update model. We do not perform an actual update during our evaluation. Instead, we model the
update as a time-bound task whose worst-case execution time is known. Since our focus is when to
schedule the update, rather than performing the update itself, this approach does not restrict the
validity of our results.

We only schedule single stage updates in the evaluation. In Sec. 3.2, nonetheless, we discuss
how an update can be split into multiple stages if the system meets a set of application-specific
requirements between each stage. Because scheduling multi-stage updates simply uses the same
scheduling process for each stage, if the scheduling process is schedule-invariant for one stage,
then it is schedule-invariant for more than one.

9 CONCLUSIONS
NeRTA estimates the available idle times in existing task schedules of low-level robot controllers
to accommodate schedule-invariant dynamic software updates. Its operation is orthogonal to the
existing scheduler, retaining the existing platform-specific optimizations and fine-tuning, while its
estimates are cautiously conservative. To accommodate larger updates, we apply mixed-criticality
concepts and develop additional mechanisms, such as BRC. Our evaluation shows that the difference
between NeRTA’s estimated idle times and the measured idle times is less than 15% in more than
three-quarters of the samples, while the combined effect of BRC and mixed-criticality concepts
yields a 150+% increase in available idle times. We also show that the processing overhead of our
techniques is essentially negligible.
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