
Autonomous Robots (2022) 46:483–498
https://doi.org/10.1007/s10514-022-10034-z

Continuous control actions learning and adaptation for robotic
manipulation through reinforcement learning

Asad Ali Shahid1,2 · Dario Piga1 · Francesco Braghin2 · Loris Roveda1

Received: 23 November 2020 / Accepted: 20 January 2022 / Published online: 9 February 2022
© The Author(s) 2022

Abstract
This paper presents a learning-basedmethod that uses simulation data to learn an objectmanipulation task using twomodel-free
reinforcement learning (RL) algorithms. The learning performance is compared across on-policy and off-policy algorithms:
Proximal Policy Optimization (PPO) and Soft Actor-Critic (SAC). In order to accelerate the learning process, the fine-tuning
procedure is proposed that demonstrates the continuous adaptation of on-policy RL to new environments, allowing the learned
policy to adapt and execute the (partially) modified task. A dense reward function is designed for the task to enable an efficient
learning of the agent. A grasping task involving a Franka Emika Panda manipulator is considered as the reference task
to be learned. The learned control policy is demonstrated to be generalizable across multiple object geometries and initial
robot/parts configurations. The approach is finally tested on a real Franka Emika Panda robot, showing the possibility to
transfer the learned behavior from simulation. Experimental results show 100% of successful grasping tasks, making the
proposed approach applicable to real applications.

Keywords Reinforcement learning · Continuous control · Robotic grasping · Policy optimization

1 Introduction

1.1 Context

Robots are being increasingly used in different applications,
where the operating scene is not anymore fixed, pre-defined
and well-known, and such need is demanded by all appli-
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cation areas, such as autonomous driving, industrial robots,
assistive robots (Seif and Hu 2016; Tsarouchi et al. 2016;
Kearney et al. 2018). Focusing on the industrial field, the new
paradigm of Industry 4.0 (Lasi et al. 2014) requires robots
to achieve smart behaviors in dynamic and flexible environ-
ments. In fact, production plants are going to be transformed
into digital work-places, interconnecting machine systems,
humans, products, etc., to re-configure the production on the
basis of the current needs. This new paradigm creates the
necessity for the robot manipulator to self-adapt its behav-
ior for the assigned ever-changing tasks. It is, therefore, not
anymore possible to pre-program all the possible scenarios.
Thus, intelligence has to be embedded into the robotic sys-
tem, to sense and analyze the working-scene and to take
decisions for the correct task execution, facing safety, per-
formance and production issues. Artificial intelligence and
machine learning approaches find, therefore, a huge space in
the robotics domain to achieve such ambitious goals (Rajan
and Saffiotti 2017; Van Roy et al. 2020). The main contribu-
tion of the paper is to propose an efficient learning approach
for the robot to learn a target task in a simulation environ-
ment, and transferring such knowledge to the real robot for
the real task execution. In this way, the robot is able to safely
learn and execute a specific application, being able to gen-
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eralize and rapidly adapt its behavior to new tasks. In the
following, the state of the art related to the proposed context,
together with the objectives of the current study are detailed.

1.2 Related works

In literature, there are mainly two learning approaches for
robots to accomplish tasks: (i) Learning fromDemonstration
(LfD) or Imitation Learning, and (ii) Reinforcement Learn-
ing (RL). Themain distinction between these approaches lies
around the fact that whether or not human demonstrations in
any form are exploited for learning behaviors. LfD aims to
learn tasks based on demonstrated trajectories, whereas RL
discovers the optimal behavior for a task through trial and
error, employing a reward function that encourages desired
behavior. Another approach involves the combination of both
approaches to learn a task from human provided demonstra-
tions and improve the behavior with RL. In Silver et al.
(2016), an algorithm was able to master the game of Go
by first learning the competitive Go policy from an expert’s
demonstrations, and then improving that policy through rein-
forcement learning. Considering (i), LfD methods have been
used to learn control commands for a robot from raw sen-
sory signals (Rahmatizadeh et al. 2018), extracting a reward
function from demonstrations (Boularias et al. 2011), also
known as inverse reinforcement learning. Considering (ii),
RLmethods have been successfully applied in a wide variety
of contexts, ranging from playing games (Mnih et al. 2015),
natural language processing (Cui et al. 2020), to robotic loco-
motion (Heess et al. 2017). In robotics, RLhas enabled robots
to learn tasks, such as playing table tennis (Mülling et al.
2013), flipping a pancake (Kormushev et al. 2010), aero-
batic helicopter maneuvers (Abbeel et al. 2007), and general
manipulation skills (Kalakrishnan et al. 2011). Earlier RL
methods used low dimensional representation techniques,
such asmovement primitives, to solve control problems (Kor-
mushev et al. 2010; Pastor et al. 2011). Recently, RL has been
used by exploiting the function approximation power of deep
neural networks (Lillicrap et al. 2015; Schulman et al. 2015b;
Duan et al. 2016). Such techniques, named as deep reinforce-
ment learning, leverage the capabilities of neural networks
in learning representations from high dimensional input data,
thusmaking it possible to learn control in end-to-endmanner.

Recent works have seen emerging use of deep reinforce-
ment learning techniques for robot manipulation (Gu et al.
2017; Rajeswaran et al. 2017). Notably, guided policy search,
a model-based approach, is used to train visuomotor (coor-
dination between vision and control) policies directly from
raw images (Levine et al. 2016). While this method achieves
impressive results on real world manipulation tasks, sig-
nificant human involvement is required for data collection
process (Levine et al. 2015). Model-based RL approaches
generally learn dynamic models from data that generate tra-

jectories to subsequently aid policy learning (Deisenroth
et al. 2013). They aim to learn either a smooth global model
(Deisenroth and Rasmussen 2011) or local time varying lin-
ear dynamics models (Levine and Abbeel 2014; Levine et al.
2015). In both cases, these methods struggle to learn poli-
cies in tasks that have inherently discontinuous dynamics and
rewards as demonstrated by Chebotar et al. (2017). Another
idea is to use large-scale data collection to learn control in a
self-supervised manner (Levine et al. 2018), or through RL
(Kalashnikov et al. 2018). However, such kind of data collec-
tion is not economically feasible, requiring multiple robots
and months to collect. Some other recent works exploit sim-
ulation data to learn RL-based visuomotor policies (Quillen
et al. 2018; Martín-Martín et al. 2019; Gu et al. 2017). Due
to unrealistic rendering capabilities of simulation engines,
visuomotor policies learned in simulation demand additional
sim-to-real techniques (Tobin et al. 2017) to perform in real
world settings. However, state space without a vision compo-
nent serves as sufficient representation of common industrial
tasks where part locations are generally pre-defined. There-
fore, RL policies trained on kinematic state information
alleviate the problem of transfer to the real world in such con-
ditions, since the simulated environment can roughly match
the real robot kinematics and part positions.

Besides RL, other successful approaches for grasping
involvemodular pipelines and open-loop control of a planned
grasp, e.g., first detecting grasping candidates (Lenz et al.
2015) to predict the best grasping contact points and then
using motion planning to reach the location (ten Pas et al.
2017; Mahler et al. 2017). These approaches, however
require precise calibration between sensing and control
(Morrison et al. 2018). Some other techniques focus on
closed-loop grasp execution through visual servoing mod-
els trained using synthetic data in simulation (Viereck et al.
2017). However, these approaches constrain the state and/or
action space to make the learning problem tractable resulting
in policies that learn simple strategies and fail to generalize
to significant variations of the environment without exten-
sive retraining. Another idea to speed-up the learning process
and handle novel configurations is to include human pro-
vided demonstrations (Song et al. 2020) but this requires
specialized hardware to collect demonstrations. In contrast,
RL provides a general framework for dynamic closed loop
control with long horizon reasoning during the task exe-
cution. This allows RL methods to autonomously acquire
generalizable strategies for completing the task and adapt to
different environment conditions in very few iterations.

The main challenge with the current RL methods is that
typically each task is learned in isolation from scratch result-
ing in a poor sample efficiency, while, the common approach
in other machine learning domains is to fine-tune the model
previously trained on a similar task resulting in a much better
sample efficiency (Kornblith et al. 2019). Adapting policies
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in robotics remains largely unexplored area. Some recent
works have studied the problem of adapting RL policies in
robotics focusing on off-policy settings (Smith et al. 2021;
Julian et al. 2020). Unlike these works, this paper aims to
address the problem of adapting policies in on-policy RL
setting based purely on simulated data.

1.3 Paper contribution

In this paper, model-free RL algorithms are used that lever-
age simulation data and proprioceptive state information to
learn robotmanipulation tasks.Anon-policyRLalgorithm—
Proximal Policy Optimization (PPO)—is elected first to train
the robot controller. The task is then also learned using an off-
policy RL algorithm—Soft Actor-Critic (SAC)—to compare
the learning performance. In both cases, the control actions
(i.e., joint command signals and gripper command signal) are
learned in continuous space on the basis of a designed reward
function. To improve the sample efficiency in (partially) new
task settings, a fine-tuning procedure is proposed to initial-
ize the target task policy with the learned base policy, thus,
reducing the required number of episodes, i.e., speeding up
the training. In particular, the base policy is first pre-trained
by taking into account the success of the task. The base policy
is then used to initialize the new task’s policy that includes
additional performance objectives. The main objectives of
the proposed reward function are: success in grasping and
lifting of the target object, robot’s redundancy management
to avoid reaching the joint limits, avoiding collisions with
the obstacles in the scene and smoothing control actions for
an implementation of the learned controller on a real robot.
The learned behavior is then transferred to the real robot, to
execute the target task.

In summary, the main contributions of this work are:

– A fine-tuning method for the learned skill adaptation to
(partially) modified task settings;

– Simultaneous learning of a source task along with the
sequence of secondary sub-tasks;

– Demonstrating that a robot with non-constrained action
space can learn a target task in simulation and transfer to
reality making the proposed approach more general w.r.t.
other works that constrain the robot’s action space.

The proposed approach is evaluated on a grasping task
involving a Franka Emika Panda manipulator. The task
requires the robot to reach the part (nominal part: cube of 6 cm
length), grasp it, and lift it off the contact surface. The pro-
posed approach is demonstrated to be generalizable across
multiple object geometries and initial robot/parts configura-
tions. Despite the training performed only on a single cube
with no prior knowledge, the learning is able to generalize
across different geometric shapes and sizes,minor changes in

the position of the object to bemanipulated, and acrossmulti-
ple initial configurations of the robot. The proposed approach
is finally tested on a real Franka Emika Panda robot, showing
the possibility to transfer the learned behavior from simula-
tion (zero-shot transfer). Experimental results show 100%
of successful grasping tasks, making the proposed approach
applicable to real applications. The developed software and a
video for the evaluation of the proposed approach (in which
both learning in simulation and knowledge transfer to the
real robot are shown) are available at the GitHub repository
(Shahid 2020).

2 Problem formulation

The primary objective of this contribution is twofold: (1) to
autonomously learn the robot control actions for new tasks
execution without requiring any real data, and (2) to improve
the training efficiency inmodified task conditions by re-using
the learned policy. The acquired knowledge can then be trans-
ferred to the real robot, to execute the target task and to
quickly adapt the learnedbehaviorwhenoperating conditions
change. To address the first objective, large data is generated
in simulation, learning to map observed states directly to
commanded joint velocities.As real-world robotics problems
are best represented as continuous state and action spaces, the
learning of the control actions is performed in continuous
spaces. Two model-free reinforcement learning algorithms
are employed and learning performance is compared. On-
policy algorithm, Proximal Policy Optimization (PPO), and
off-policy algorithm, Soft Actor-Critic (SAC), are proposed
to train the robot controller. Both these algorithms aim to
learn the stochastic policies. To address the second objec-
tive, the learned base task is modified by including additional
performance objectives and the target task policy is initial-
ized with the pre-trained policy during the fine-tuning phase.
The reward function is designed to guide the learning, tak-
ing into account the task success/failure, performance, and
safety issues. The block-diagram describing the proposed
approaches is shown in Fig. 1, and highlighting the imple-
mented PPO and SAC algorithms and their connection with
the simulation environment for learning purposes.

3 Methodology

3.1 Preliminaries

In this paper, a RL framework is considered, where an agent
interacts with the environment in discrete time steps. The
RL problem is modeled as discrete time continuous Markov
decision process (MDP) (Sutton and Barto 2018), consisting
of (S,A,P,R,©), where S is continuous state space, A is
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Fig. 1 The proposed learning schema exploiting PPO/SAC algorithm

continuous action space,P is environment transition dynam-
ics defining the state transition probabilities for a given action
p(st+1|st , at ), R is a reward function R(st , at ) = rt ∈ R,
γ ∈ [0, 1] is a discount factor determining the importance
of future rewards relative to immediate reward. A policy π

is a stochastic map from states to distribution over actions
S → A. The objective of an agent is to learn a policyπ(at |st )
that maximizes expected returns E[∑H

t=0 γ rt ], where H is
the target horizon. In deep reinforcement learning, the policy
is represented by a non-linear function approximator, a neu-
ral network parameterized by θ . The main goal then reduces
to optimizing θ , such that the optimal behavior is achieved.

3.2 Task description

The aim of this paper is to implement the approach proposed
in Fig. 1 to autonomously learn a grasping task. The task
consists of a robot interacting with a cube of nominal size 6
cm placed on a table. The goal of the robot is to successfully
position its grip site around the cube, grasp it, and then finally
lift it off the contact surface. In order to evaluate the proposed
approach on a grasping task learning, Franka Emika Panda, a
7-DoF torque-controlled robot, is used as a robotic platform.

3.3 Baseline reward shaping

In order to guide policy learning and provide frequent feed-
back to the agent on appropriate behaviors, the proposed
approach exploits the dense reward function. The task is split
into two main phases of reaching and lifting, with distinct
reward for each phase. The robot learns both of these phases
simultaneously (i.e., in a single iteration of a simulated task).

Considering the reaching phase, the reward given at time
step t is composed of three contributions:

rt,reach = wdrd + wvrv + wgrg, (1)

where rd is the distance reward computed using relative posi-
tion of gripper site and object (the gripper site is the ref.
frame located between the fingers of the gripper to define
the gripping area), rv is the velocity reward computed using
end-effector velocity vector, and rg is gripper open reward
depending upon the action of gripper. In particular, rv and
rg encourage the robot end-effector to approach cube with
small velocity and open gripper. All the three contributions
rd , rv, rg are weighted with respective weights wd = 0.6,
wv = 0.3, wg = 0.1 and defined as:

rd = 1 − tanh(| pgrip − pcube |),

rv =
⎧
⎨

⎩

1 − tanh

(∑n
i=1 | vee(i) |

n

)

if rd < 8 cm

0 otherwise,

rg =
{

| agrip | if agrip < 0

0 otherwise,

(2)

where pgrip and pcube denote the position vectors of gripper
site and cube in world reference frame each containing 3 ele-
ments specifying the spatial positions, vee is the end effector
velocity vector containing both linear and angular compo-
nents with n equal to 6 (i.e., the number of Cartesian degrees
of freedom), i selects the i th Cartesian degree of freedom,
and agrip specifies the action of gripper with negative values
indicating that gripper is opening.

When the robot’s grip site is in close proximity to the
cube, the lifting phase is initiated. The distance threshold
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Fig. 2 Franka Emika Panda Robot grasping the cube while avoiding
collision with the obstacles in the modified scene

for switching is set to 2.5 cm. This is because nominal cube
measures as 6 cm and the robot should be able to grasp the
cube when it’s grip site is within cube’s boundary. Consid-
ering the lifting phase, the reward is computed considering
five contributions:

rt,lift = rd + rv + wgrg + rc + rs, (3)

where rd and rv are the same as in (1). rg is reversed now
to provide reward for closing the gripper and it is weighted
by wg = 0.1. In addition, rc is given if both fingers of the
gripper are in contact with cube. rs rewards for successful
completion of the task. Success is determined by examining
if the gripper holds the cube above certain height. rg, rc, rs
in lifting case are defined as:

rg =
{

| agrip | if agrip > 0

0 otherwise,

rc =
{
0.5 if fingers in contact

0 otherwise,

rs =
{
2 if zcube > 0.1 + zcubeinitial
0 otherwise.

(4)

The final reward rt is then computed as the accumulated sum
of rt,reach in (1) and rt,lift in (3).

3.4 Embedded performance specifications for the
learned task adaptation

Because the RL methods are data intensive, the policy is first
trained taking into account only the success of the task. In
the second phase, the pre-trained grasping policy is further

fine-tuned considering additional performance objectives in
a modified environment. For fine-tuning, the target task pol-
icy is initialized with the parameters of the base policy. In
order to test the adaptation capability of control policy to
new modified task conditions, the following performance
specifications are successively included into the reward rt
in re-training conditions:

– Robot redundancy management: a penalty pred is added
to the reward function rt in the case that joint positions
come close to the joint limits. In such a way, the robot
needs to manage its redundancy in order to avoid (if pos-
sible) reaching the joint limits. pred is defined as:

pred =
n j∑

i=1

pred(i)

pred(i) =
{

−1 if | eq(i) |< tol | qlim(i) |
0 otherwise,

(5)

where eq(i) = qlim(i) − q(i), n j = 7 is the number of
robot joints, qlim is the joint limits vector, i selects the i th
joint, and tol specifies the tolerance and it is set to 15%;

– Smoothing the control actions: a penalty psm is added to
the reward function rt in the case that joint accelerations
exceed a specified threshold. In such a way, the learned
controller is capable to achieve smooth control signals
avoiding jerky behaviors. psm is defined as:

psm = −tanh

(∑n j
i=1 | q̈(i) |

n j

)

, (6)

where q̈ is the joint acceleration vector and i selects the
i th joint;

– Avoiding collisionswith obstacles in the operating scene:
a penalty poa is added to the reward function rt in the
case that the robot collides with obstacles. In such a way,
the learned behavior is capable to avoid collisions in the
operating scene while reaching its target. poa is defined
as:

poa =
{

−5 if collision occurs

0 otherwise.
(7)

In this case, the contact collision is checked between the
robot, the cube and the cylindrical objects. If the robot
comes in contact with the cylinders, the penalty is given.
The agent is also penalized if the robot lifts the cube and
then touches the cylinder with the cube. In this way, the
agent needs to learn the appropriate actions to grasp and
lift the cube while avoiding the contact with the cylin-
ders simultaneously. This performance objective is more
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Grasping
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initialize

Redundancy
Management

initialize

Smoothing
Control
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Obstacle
Avoidance
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Fine-tuning

Fig. 3 Schematic of Adaptation framework. The base policy πbase is
pre-trained on a grasping task and then fine-tuned on sequence of mod-
ified tasks by successively introducing new performance objectives

difficult because of the narrow space between the two
cylinders, leaving just enough room for the hand to posi-
tion itself and lift the cubewithout coming in contact with
the cylinders. The modified scene is shown in Fig. 2.

It is important to note that the adaptation process is per-
formed in a continual-learning manner, as it is shown in
Fig. 3. First, the pre-trained base grasping policy is fine-
tuned to satisfy the redundancy management objective, then
this adapted policy is fine-tuned on smoothing control actions
objective not the previous base policy. Finally, the newly
adapted policy is further fine-tuned on collision avoidance
objective. The final policy successfully completes the target
task while satisfying all 3 performance objectives.

4 Implementation settings

4.1 Learning environment

The proposed learning environment is developed based
on Fan et al. (2018), exploiting MuJoCo physics engine
(Todorov et al. 2012) to simulate the physical system.
MuJoCo enables fast and accurate simulation with contacts.
The simulation environment is shown in Fig. 4.

Fig. 4 Franka Emika Panda Robot in MuJoCo simulation environment

4.1.1 States and actions

Both the state space and the action space used in the pro-
posed evaluation are continuous. State of the system consists
of two main input modalities: robot proprioception informa-
tion and object information. The proprioceptive data contains
joint positions, velocities, gripper joint position and end-
effector pose and velocity, thus making a 36-dimensional
vector. Object information is 10-dimensional and includes
cube’s pose and a relative position vector of cube and grip
site. The state of the environment is:

S = [
Sprop Sobj

] ∈ R46

Sprop = [
q Pq qgrip pee qee vee !ee

] ∈ R36

Sobj = [
ppart qpart prel

] ∈ R10

(8)

Actions are 8-dimensional and correspond to reference
joint velocities and gripper position. The robot is consid-
ered to be equipped with torque control compensating for
the manipulator dynamics (Siciliano and Villani 2000):

τ = B(q)τ learn + τ f (q̇) + C(q, q̇) + g(q), (9)

where B(q) is the robot inertia matrix, C(q, q̇) is the robot
Coriolis vector, g(q) is the robot gravitational vector, τ f (q̇)

is the robot joint friction vector, q is the current joint position
vector, and τ is the control torque vector. τ learn is the learned
task-related control torque vectormapping the reference joint
velocities to joint torques for the target task execution:

τ learn = kv(q̇d − q̇), (10)

where q̇d and q̇ are the reference (i.e., the objective of the
learning) and current joint velocities respectively, and

kv = diag(8, 7, 6, 4, 2, 0.5, 0.1)
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Fig. 5 PPO training results. The plot depicts the progression of mean
accumulated reward for episodes

is a diagonal matrix of fixed proportional gains for joint
trajectory-tracking purposes. Such control gains have to be
tuned to allow the robot to track the reference joint velocities
q̇d . The here defined values have been selected on the basis
ofMartín-Martín et al. (2019), resulting in accurate trajectory
tracking performance. If needed, such control gains can be
either learned or experimentally tuned to improve trajectory
tracking performance Roveda et al. (2020).

4.1.2 Control parameters

An important parameter that affects the trade-off between
computational time and accuracy of the simulated task in
MuJoCo is the simulation time step. The default value of
2 ms is used, ensuring a good trade-off between simulation
accuracy and stability. The controller of the Franka Robot
operates at 500 Hz. Different values of the policy frequency
(the rate at which policy outputs actions) have been tested
(500 Hz, 250 Hz, 100 Hz), resulting in the best setting of
250 Hz. Since the robot controller generates commands at
higher frequency than the policy, a linear interpolation is
performed between each successive policy action.

5 Evaluation

In this Section, the PPO algorithm for the training of the tar-
get task is evaluated. Results related to training performance
considering the baseline reward, to fine-tuning with an addi-
tional performance specifications, and to knowledge transfer
from simulation to real application are given.

5.1 Training results: baseline reward function

The proposed approach is applied to the grasping and lift-
ing task of the cube above a certain height, considering the

Fig. 6 PPO training results. The plot depicts the number of episode
steps with success

Table 1 Evaluation trials for fixed positions

Test Object Success rate

1. Nominal cube 10/10

2. Smaller cube 10/10

3. Cylinder 10/10

4. Screw-driver 10/10

baseline reward function. The policy is trained for a total of
10 million time steps where each episode lasts for 600 steps,
giving an agent approximately 2.5 s to accomplish the task.
At the beginning of each episode, initial configuration of the
robot and the cube is reset to the fixed position. The simu-
lation has been roughly sped-up 2000 x faster than real-time
in order to train faster (requiring approximately 4 and a half
hours of wall-clock time). The results of training are shown
in Figs. 5 and 6 (depicting the evolution of the mean accu-
mulated reward and the evolution of the mean episode steps
with success, respectively during the training), suggesting
that the agent has learned to perform the task successfully
after 5 million steps.

The generalisation capabilities and robustness of the
learned neural network policy have been tested, considering
the nominal cube and different geometries to be grasped:

– Nominal cube with size 6 cm;
– Smaller cube with size 4 cm;
– Cylinder with size 3 cm radius and 3 cm height;
– Screw-driver.

10 test trials have been run and results are summarised
w.r.t. successful completion of the task in Table 1. The pro-
posedmodel shows the success rate of 100% in all four cases.
In the last two tests, the policy’s ability to grasp new shapes
is assessed by replacing the cube with a cylinder and a screw-
driver placed nearly at the cube’s original position.

123



490 Autonomous Robots (2022) 46:483–498

Table 2 Evaluation trials for varied positions

Variable Amount Success rate (%)

Robot position Max 2% 80

Cube position ±8 cm 70

Table 2 shows the results in which the original position
of the robot and/or of the cube have been changed. In the
first case, a small random noise is added to the initial robot
joint positions at the beginning of each episode. The robot
can still grasp and lift the cube in most cases, while 2 failures
have been registered due to the impossibility to position the
gripper around the cube. For the second case, the nominal
position of the cube has been modified by ±8 cm in order to
test the policy’s robustness to variation in part’s position. This
test is required to verify the robustness of grasping policies in
the real manipulation tasks, where the position of the part is
identified by a vision system (exploiting object localization
algorithms) with some uncertainty in the measurement (and
in the computation related to the used algorithms). Gener-
ally the vision systems have measurement uncertainty in the
range of fewmillimeters (Roveda et al. 2021). Therefore, the
considered variability in position of the target part makes the
proposed approach robust in real conditions. For this specific
case, 20 trials are performed, 10 for each direction. The task
is completed successfully in most of the test runs. In failures
situations, the robot either grasped the cube at the edges,
resulting in an unstable grasping, or collided its gripper with
the cube, not being able to grasp it successfully.

In Table 3, the policy adaptation results on the modified
task conditions are presented. In the first two tests, the nomi-
nal positionof the cubehas beenmodifiedby10cmand20cm
respectively and the learned task’s policy is evaluated on its
adaptation capability. Re-training the learned policy for an
additional 30 min, the resulting performance achieves 100%
success. The last test considers the dynamic environment
where the cube is moving with some velocity (to simulate
the real industrial settings where the robot might be required
to grasp objects placed on a moving conveyor belt). In this
dynamic setting, the static grasping policy is not able to grasp
the moving cube. However, when this pre-trained policy is
fine-tuned for an additional hour, the robot learns to adapt
its performance and lift the moving cube with 100% suc-
cess, indicating the quick adaptation of learned behavior to
perform in modified task settings.

5.2 Performance specifications-based fine-tuning

In this section, the baseline reward function is modified with
additional objectives (i.e., considering all the three speci-
fied objectives in Sect. 3.4) in order to test the potential

of the proposed fine-tuning approach in improving the pre-
viously learned behavior with less data requirements, and
to test additional scenarios with higher difficulty level of
the task. The fine-tuning procedure involves initializing the
parameters of the target task networks (policy network and
value network) with the pre-trained baseline networks. For
all three specifications, the state space, the action space and
the hypermarameters remain unchanged and only additional
performance objectives are included successively.

5.2.1 Redundancy management specification

Under the baseline policy, the robot took actions that resulted
in one or more joints reaching the limits. In order to encour-
age the robot to not take actions near joint limits, redundancy
management objective in (5) is included in the reward func-
tion and the task is trained for half a million steps (roughly
corresponding to 30min of training). Figure 7 shows the per-
formance comparison of an adapted policy with the baseline
policy for 10 test trials. The results are reported as percent-
age of episode steps where the robot configuration exceeds
the set threshold of joint limits. As hypothesized for the case
of joint limits penalty, the robot joint configurations satisfy
the set tolerance of 15% in all episode steps, confirming the
quick behavior adaptation.

5.2.2 Smoothing control action specification

The goal of smoothing performance objective is to limit the
change in acceleration of the robot’s joints in order to min-
imize the jerky movements. To achieve this, the agent is
penalized for taking actions that generate excessive joint’s
accelerations with the penalty defined in (6), and the results
are compared against the baseline model. The velocities of
all joints are plotted against time for the baseline case and
the case with acceleration penalty in Fig. 9. It is evident that
the behavior is improved with the addition of acceleration
penalty, yielding a smooth change in velocities throughout
the episode, particularly for joints 1 and 3. The commanded
joint torques for both cases are plotted in Fig. 8. The differ-
ence is more evident for the torque commands sent to the
robot joints with much smoother torque commands for the
penalized case (Fig. 8).

5.2.3 Obstacles avoidance specification

Considering the collision avoidance objective, the working
scene is modified by adding other objects in the working
space of the robot. Specifically, two cylindrical objects of
2 cm radius and 8 cm height are placed on the left and right
side of the cube to be grasped. In themodified scene, the base-
line policy successfully lifts the cube, but at the expense of
colliding with cylinders. The aim of this performance spec-
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Table 3 Evaluation trials for
policy adaptation

Variable Amount Re-train time Success rate

Base policy (%) Adapted policy (%)

Cube position +10 cm 30 min 20 100

Cube position +20 cm 30 min 0 100

Cube velocity 100 mm/s 60 min 0 100

Fig. 7 Adaptation results—Percentage of episode stepswith joint limits
reached for baseline and q-limits penalty scenarios

Fig. 8 Adaptation results—Commanded joint torques for baseline and
acceleration penalty scenarios

Fig. 9 Adaptation results—Joint velocities for baseline and accelera-
tion penalty scenarios

ification is to significantly penalize the robot actions that
result in collisions with the cylinders. By adding the objec-
tive defined in (7) into the reward function and training for
half a million steps, the resulting behavior has been adapted
and the robot successfully navigates the cylindrical obstacles
to lift the cube.

5.3 One-shot learning

In the last experiment, the base task has been trained from
scratch by including all 3 performance specifications speci-
fied in the Sect. 3.4 in order to evaluate the performance of
one-shot learning. The policy is trained for a total of 11.5
million steps (equivalent duration as the combined training
of base task and adaptation process). The final learned pol-
icy, however, failed to accomplish the complete task while
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Fig. 10 Training comparison—Mean accumulated reward for first 2M
time steps

satisfying all the performance objectives. After training for
11.5 million steps, the robot only learned to reach the cube
and command smooth joint velocities proving the difficulty
of learning in the presence of multiple objectives.

5.4 Experimental results

The learned behaviors (from the training including the per-
formance specifications into the reward function) have been
transferred to the real Franka Emika Panda robot in order
to evaluate the effectiveness of the proposed approach.
Two scenarios have been considered: (i) no obstacles in
the operating scene, (ii) obstacles in the operating scene
(same scenario as in obstacles avoidance performance spec-
ifications in Sect. 5.2.3). Each scenario has been tested 10
times. The learned reference joint velocities q̇d have been
re-sampled from 250 Hz to 1000 Hz (i.e., to the robot con-
trol frequency). Exploiting the performed learning, the real
Franka Emika Panda robot has been able to complete the
target tasks with a success rate of 100%, highlighting the
feasibility of the proposed approach to be transferred from
simulation to real applications. Videos showing the results
achieved by the proposed PPO-based approach is also avail-
able at theGitHub repository (Shahid2020).The repository is
updated on the basis of the work-in-progress software devel-
opment, new achieved results and experiments.

6 The comparison of PPO and SAC

In order to compare the performance of the on-policy
based PPO algorithm with the performance of an off-policy
algorithm, the baseline scenario is further trained using the
SAC algorithm described in Sect. 1. An off-policy algorithm
could improve the sample efficiency during the training,
speeding up (i.e., reducing the required episodes) the learn-
ing process. In fact, since SAC is an off-policy algorithm that

Fig. 11 Training comparison—Number of episode steps with success
for first 2M time steps

makes use of past transitions data stored in a replay buffer, it
should learn the task faster in terms of required episodes.
In order to validate this hypothesis, training performance
achieved by the SAC algorithm is compared against the one
achieved by the PPO algorithm for the analyzed grasping
task. The mean reward and number of episode steps with
success is plotted for the first 2M time steps for the two
algorithms and comparison is shown in Figs. 10 and 11.
Confirming the hypothesis, the SACalgorithm learns to accu-
mulatemuchhigher average reward thanPPO, and also learns
to achieve the task success in just 2M time steps (about
3300 episodes), whereas PPO shows no success in terms
of task completion for the same number of episodes. How-
ever, analyzing themean reward and number of episode steps
with success plotted against wall time in Figs. 12 and 13,
the results are quite opposite for both algorithms. Because
SAC has to process large amount of past data stored in a
replay buffer, it needs higher computation power to perform
each update iteration of networks. Considering computation
power, SAC is less efficient than PPO and learns to accu-
mulate lower average reward than PPO (800 vs. 1200) in
the same time as evident from Fig. 12. Off-policy updates
of SAC accumulate lower reward on each update iteration
than the on-policy updates of PPO as shown in Fig. 14 (for
the reward) and in Fig. 15 (for the number of episodes steps
with success). Although each update of networks in PPO
is performed after collecting 3 episodes vs. 1 episode for
SAC, the reward and the number of episode success steps in
each of the update for SAC is lower than the ones of PPO.
Thus, when trained on the same hardware configuration for
roughly 2 and a half hours of wall-clock time, the accumu-
latedmean reward and the success achieved bySACare lower
than the one achieved by PPO. Moreover, the SAC training
curve shows more significant non-monotonic behavior with
high variance in results. The resulting behavior of two algo-
rithms can be explained considering the general nature of
on-policy algorithms in requiringmore experience to explore
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Fig. 12 Training comparison—Mean accumulated reward vs. wall time

Fig. 13 Training comparison—Number of episode steps with success
against wall time

the environment than off-policy algorithms. In the analyzed
task, thework space of the robot is unconstrained, demanding
appropriate exploration to learn the target task. Therefore, the
trade-off between on-policy and off-policy algorithms is not
so straightforward, but instead is dependant on the specific
situation. Off-policy methods like SAC might be preferred
if the new experience is costly to obtain and computation
power is not an issue. On the other hand, on-policy methods
like PPO could achieve better results in situations with less-
costly data collection, e.g., in simulation.On-policymethods,
due to the exploratory nature of learned ultimate policy, can
also adapt the learned behavior quite quickly as demonstrated
in Sect. 5.2

7 Discussion and current/future works

In this paper, an intelligent task learning has been for-
mulated in the form of a RL problem, demonstrating the
possibility of learning low-level continuous control actions
purely from gathered experience in a simulated environment.
Results show that it is possible to train continuous con-
trol actions based only on the kinematic state information,
and in a reasonable amount of interaction time. It has been

Fig. 14 Training comparison—Mean accumulated reward against
update iterations of networks

Fig. 15 Training comparison—Number of episode steps with success
against update iterations of networks

shown that the on-policy fine-tuning procedure substantially
improves sample efficiency and allows the learned policy
to adapt and execute partially modified task. The perfor-
mance specifications have been embedded into the learning
in order tomanage the redundancy of the robot, to smooth the
learned control actions, and to avoid obstacles in the operat-
ing scene. Achieved results highlight that the learned policy
performs well to new situations, and it can also adapt its
learning (retraining the robot behavior on the basis of previ-
ous training) to significant variations of the environment with
slight amount of additional training, exploiting the previ-
ously learned networkmodels. In contrast, one-shot learning,
struggled to achieve the same performance and learn the
complete task. The rigorous comparison of one-shot learn-
ing with fine-tuning based adaptation should, however, be
treated in the future. An on-policy algorithm (PPO) and an
off-policy algorithm (SAC) have been compared in terms of
learning performance, highlighting the faster learning pro-
cess by exploiting the SAC algorithm in terms of required
episodes, while being slower in terms of wall time (consid-
ering the same adopted hardware). The learned task has been
successfully transferred to a real robot, making it able to
execute the target grasping task. Although, the fine-tuning
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process has shown to improve sample efficiency by allow-
ing the policy to adapt in less iterations, there exist a gap to
apply such methods for direct learning in real world without
the use of simulators. Some of the techniques for addressing
the sample efficiency issue could be to use fine-tuning on
model-based methods for first learning the dynamics model
and then adapting thatmodel through some online interaction
on a different performance objective. Model-based methods
are generally more efficient than model-free counterparts.
Another idea could be to consider Meta-RL setting to learn
variety of tasks in order to efficiently learn new tasks.

In the future work, more dynamic environments will
be considered. In fact, having the robot able to behave
in the presence of moving obstacles/targets while avoiding
dynamic obstacles is a challenging application. In addition,
safety rules for the robot motion-adaptation in the presence
of humans will be considered. Another interesting direction
is to extend the approach to modular configurations and use
multi-agent framework to learn the task in decentralisedman-
ner as done in Shahid et al. (2021), in which, however, the
coordination between the agents is still a challenging prob-
lem that needs to be further investigated. Furthermore, the
ability to adapt to more novel environments can be consid-
ered, including the usage of vision systems to model/update
the operating environment in the training environment.
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Appendix A: Method implementation details

RL methods fall in to 3 main categories: value-based, policy
search and actor-critic (Konda and Tsitsiklis 2000). Value-
based methods learn a value function that implicitly derives
a policy. Policy search methods, instead, use parameterized
policy and directly search for optimal policy parameters. The
key idea of actor-critic approaches is to learn both the value
function and the policy. The role of critic is, on the basis
of the learned value function, to critique the actions taken
by an actor, which then updates it’s policy parameters based
on critic’s feedback (Lazaric et al. 2008). Actor-critic meth-

ods have been used in control tasks for learning deterministic
policies (Yang et al. 2018) and stochastic policies (Peters and
Schaal 2008; Wei et al. 2020). In this paper, the proposed
approach follows the actor-critic style and learns both the
parameters of stochastic policy and value function approxi-
mator.

RL algorithms can further be classified into on-policy and
off-policymethods, based on how they generate and use expe-
rience data. On-policy methods evaluate the same policy that
is used to select actions, whereas, off-policy methods learn
the target policy that is different from the behavioral pol-
icy used to generate experience. Because on-policy methods
use the most updated policy to take decisions, they have
better online performance (Sutton and Barto 2018). The on-
policy agent learns not the optimal policy but instead the
best exploratory policy, i.e., the policy that still explores.
Off-policy methods, on the other hand, make efficient use of
data and are not restricted to learning from data generated by
execution of a specific policy, instead, data can be generated
from any arbitrary policy. In off-policy algorithms, the tem-
poral difference (TD) error (Sutton 1988) is computed using
the policy that may act more greedily. The general scheme
of on-policy and off-policy approaches for actor-critic algo-
rithms is shown in Fig. 16.

A.1 Algorithms

A.1.1 Proximal policy optimization (PPO)

In this paper, a model-free RL approach has been used as it
eliminates the need for accurate dynamics model, which is
often difficult to learn for discontinuous problems. Primar-
ily, the policy is trained with Proximal Policy Optimization
(PPO) (Schulman et al. 2017). PPO is one of the most suc-
cessful on-policy RL algorithms. It requires training two
neural networks to simultaneously optimize stochastic pol-
icy and approximation of value function. The policy network
maps states to Gaussian distribution over actions, while the
value network estimates the discounted sumof future rewards
expected in a given state. The PPO algorithm is an approx-
imate version of trust-region policy optimization (TRPO)
(Schulman et al. 2015a) with first order gradients. The opti-
mization objective in PPO is performed on the surrogate loss
function LPPO:

LPPO = E
[
min

(
arg1, arg2

)]
,

arg1 = πθ (at |st )
πθold(at |st )

ÂGAE
t ,

arg2 = clip

(
πθ (at |st )

πθold(at |st )
, 1 − ε, 1 + ε

)

ÂGAE
t ,

(11)
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Fig. 16 Two different classes of RLmethods. aOn-policy. bOff-policy

where πθ (at |st )
πθold (at |st ) is an importance sampling term that denotes

the probability ratio between the given action under cur-
rent policy πθ and the same action under old behavioral
policy πθold that was used to generate trajectory. ÂGAE

t is
the advantage estimate computed using generalized advan-
tage estimation (GAE) (Schulman et al. 2015b), and ε is
a clipping hyperparameter. With importance sampling, the
PPO algorithm tries to improve the sample efficiency of on-
policy learning by performing multiple steps of optimization
using the same trajectory. A small entropy bonus S[πθ ](st ),
weighted by a coefficient c2, is further added to the PPO loss
in order to ensure sufficient exploration of the environment.
The pseudo-code of selected PPO algorithm is shown in 1.

A.1.2 Soft actor-critic (SAC)

Soft Actor-Critic Haarnoja et al. (2018b, a) is a model-free
RL algorithm based on maximum entropy RL framework.
SAC follows an off-policy way to optimize a stochastic pol-
icy. The optimization objective in SAC considers an expected
return and the entropy to encourage exploration. This objec-
tive is equivalent to adding a bonus reward at each time step
proportional to the entropy of the policy at that step Achiam
(2018), i.e., the agent is incentivized to successfully com-

plete the task while also acting as randomly as possible. The
SAC optimization objective is described as:

E(st ,at )∼π

[
∑

t

γR(st , at ) + αH(π(.|st ))
]

(12)

where H(P) = Ex∼P [− log P(x)] denotes the entropy of
a random variable x computed from its distribution P(x)
and α is a temperature parameter. In this paper, the auto-
matic adjustment of α is used to match a target entropy set
to −dim(A). Since SAC is an off-policy algorithm, it stores
the past experience data in to a replay buffer and reuses it for
sample-efficient training.

Algorithm 1 Proximal Policy Optimization (PPO) (adapted
from Schulman et al. 2017).
1: Randomly initialize policy parameters θ

2: Initialize replay buffer B
3: for iteration = 1, . . . , N do
4: for episode = 1, . . . , M do
5: Generate a rollout following policy πθ until H timesteps
6: Store transitions(st , at , rt ) in B
7: Compute advantages ÂGAE

t with GAE
8: end for
9: for epochs = 1, . . . , K do
10: Sample mini-batch of Nb transitions from B
11: Optimize surrogate loss LPPO w.r.t. θ
12: θold ← θ

13: end for
14: clear B
15: end for

Table 4 Hyperparameters used for PPO and SAC

Hyperparameter Value

Hardware configuration 1 NVIDIA GPU + 12 CPU cores

Discount factor γ 0.99

Generalized Advantages Estimation λ0.95

PPO clipping parameter ε 0.2

Optimizer Adam Kingma and Ba (2014)

Actor’s learning rate 3 × 10−4

Critic’s learning rate 3 × 10−4

Mini-batch size 512

Number of epochs 60

Value loss weight 0.5

Entropy loss coefficient c2 1 ×10−4

Replay buffer size PPO (episodes n.) 3

Replay buffer size SAC (episodes n.) 1 × 105

SAC reward scale 1

SAC entropy target −8
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A.2 Training details

Both the policy and value networks are encoded by multi-
layer perceptron (MLP). The policy network is a 3-layer
MLP with hidden layer size of 64 and Rectified Linear Unit
(ReLU) non-linearity. The output layer of a policy network
produces the mean and the standard deviation for each action
dimension. After sampling each action from the Gaussian
distribution, tanh activation function is applied to enforce
action bounds in range of [−1, 1]. The value network is repre-
sented as a 3-layerMLP that outputs a scalar value specifying
the corresponding value of a state. The value network uses a
hidden layer size of 128 units with ReLU non-linearity. All
inputs fed to the policy and value network are normalized
with running estimates of mean and variance. The library
employed for training the agents is Pytorch (Paszke et al.

(a)

(b)

Fig. 17 Neural Networks architecture. a the policy network with con-
sidered 46-dim input (states), 64-dim hidden layers and 16-dim output,
and b the value network with considered 46-dim input (states), 128-dim
hidden layers and 1-dim output

2019).More detailed training parameters for both algorithms
are given inTable 4with somehyperparameters settings taken
from Lee et al. (2019) (Fig. 17).
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