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Abstract. Today, Multi-View Stereo techniques can reconstruct robust
and detailed 3D models, especially when starting from high-resolution
images. However, there are cases in which the resolution of input images
is relatively low, for instance, when dealing with old photos or when
hardware constrains the amount of data acquired. This paper shows how
increasing the resolution of such input images through Super-Resolution
techniques reflects in quality improvements of the reconstructed 3D mod-
els. We show that applying a Super-Resolution step before recovering the
depth maps leads to a better 3D model both in the case of patchmatch
and deep learning Multi-View Stereo algorithms. In detail, the use of
Super-Resolution improves the average f1 score of reconstructed mod-
els. It turns out to be particularly effective in the case of scenes rich in
texture, such as outdoor landscapes.

Keywords: Multi-View Stereo - Super-Resolution * Single-Image
Super-Resolution - 3D reconstruction

1 Introduction

Recovering the 3D model of a scene captured by images is a relevant problem in a
wide variety of scenarios, e.g., city mapping, archaeological heritage preservation,
autonomous driving, and robot localization. In the Computer Vision community,
this task goes under the name of Multi-View Stereo (MVS), and it aims to
reconstruct 3D models as accurately and completely as possible.

Currently, the most successful workflow to perform such reconstructions
starts from a Structure from Motion algorithm that estimates camera parame-
ters such as their positions and orientations [18]. Then, it follows the depth maps
estimation step, for which the most common approaches rely on patchmatch [1]
or deep learning [24] techniques. The former approaches lead to very accurate
results, while the latter produce more complete models, even if they still suffer
scalability issues. As the last step, depth maps are projected on 3D space and
fused together, obtaining a dense point cloud.

Under controlled scenarios, in which the hardware adopted to collect the
images is not subject to particular constraints, it is relatively easy to acquire
high-resolution images and obtain a high-quality reconstruction of the scene.
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However, in several cases, the input of an MVS method consists of low-resolution
images. For instance, when power consumption constrains the hardware, e.g.,
with drones or telescopes, or when processing images taken in low-resolution
such as with old photos.

In these cases, the recovered 3D model most likely lacks details or is incom-
plete, regardless of the adopted MVS algorithm. We claim that algorithmically
increasing input images resolution can overcome this issue by enhancing their
information content and quality. This is possible via Super-Resolution techniques
that have recently reached impressive performance in many application fields
despite the possibility of generating some artefacts.

This paper shows the benefits for MVS pipelines of upscaling low-resolution
images through Single-Image Super-Resolution (SISR) techniques. In particu-
lar, we test SISR contribution over COLMAP [19] and CasMVSNet [6] MVS
pipelines, and validate it over ETH3D Low-resolution many-view [20] and Tanks
and Temples [10] benchmarks. Perceptive and numerical results demonstrate
that SISR improves the quality of the dense point clouds produced by MVS
algorithms by effectively balancing the increased amount of generated points
and their position in the space.

2 Related Work

In the literature, there are some attempts to exploit Super-Resolution (SR) with
the goal of improving the quality of 3D reconstructions. For instance, Goldliicke
et al. [5] proposed a variational method to improve 3D models appearance by
estimating textures with SR techniques. More recently, Li et al. [13] proposed a
novel model-based SR method that better exploits geometric features to enrich
the texture applied to a 3D model.

Other approaches exploiting SR in the 3D reconstruction realm aims to
increase depth maps resolution. Lei et al. [12] relied on bilinear interpolation
of multiple depth maps to increase the resolution of a single depth map. The
authors in [27] and [21] used high-resolution RGB images to guide a deep learning
model to increase depth maps resolution.

Differently from previous works, we aim at improving models geometry
instead of their texture appearance, by applying SR directly on input images. We
argue that SR can improve the reconstruction from low-resolution images, and
different stages of a 3D reconstruction pipeline could benefit from the availability
of SR images, e.g., camera calibration and mesh refinement. Surprisingly, to the
best of our knowledge, no paper has ever analyzed if and to what extent MVS 3D
reconstruction pipelines can benefit from input images enhanced through SR.
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2.1 Single-Image Super-Resolution

Single-Tmage Super-Resolution (SISR) aims at recovering a high-resolution
image from a single low-resolution image [23]. In the last few years, we have seen
how modern deep learning pipelines overtook non-learning-based algorithms,
such as nearest-neighbours and bicubic interpolation.

As first attempt, Dong et al. [4] proposed a convolutional neural network to
map low- to high-resolution images. This network architecture has been extended
with a combination of new layers, and skip-connections by Kim et al. [9]. Sub-
sequently, other methods have exploited different combinations of residual and
dense connections [15,26].

Recent works show that networks with novel feedback mechanisms further
improve the quality of the SR images. For instance, Li et al. [14] combine a
feedback block with curriculum learning. In their most recent work, Haris et
al. released the Deep Back-Projection Network architecture [7]. The idea is to
generate numerous degraded and high-resolution hypothesis images that the net-
work uses to improve the output result. In the last revision, the authors have
implemented dense connections, adversarial loss and recurrent layers, making
the entire architecture more scalable and performing. Chen et al. [3] proposed
a self-supervised encoding network based on their implicit neural representation
technique to learn continuous mappings for super-resolution.

2.2 Multi-View Stereo

MVS aims at recovering a dense 3D representation of a scene perceived by a
set of calibrated cameras. The main step adopted by the most successful MVS
methods is depth maps estimation, i.e., the process of computing the depth of
each pixel belonging to each image. Once computed, these maps are fused into
a dense point cloud or a volumetric representation.

The most performing depth estimation approaches are based on the patch-
match algorithm [1], which relies on the idea of choosing for each pixel a random
guess of the depth and then propagating the most likely estimates to its neigh-
bourhood. The work proposed by Schonberger et al. [19], named COLMAP,
can be considered the cornerstone of modern patchmatch-based algorithms. It
is a robust framework able to process high-quality images and jointly estimate
pixel-wise camera visibility, as well depth and normal maps for each view. Since
this method heavily relies on the Bilateral NCC Photometric-Consistency, it
often fails in recovering areas with low texture. Recently, to compensate for this,
TAPA-MVS [17] proposed to explicitly handle textureless regions by propagat-
ing in a planar-wise fashion the valid depth estimates to neighbouring texture-
less areas. Kuhn et al. [11] extended this method with a hierarchical approach
improving the robustness of the estimation process.

Another family of MVS algorithms relies on deep learning. DeepMVS [§]
and MVSNet [24] were the first approaches proposing an effective MVS pipeline
based on DNNs. For each camera, both the approaches build a cost volume by
projecting nearby images on planes at different depths, then they classify [8] or
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regress [24] the best depth for each pixel. Yao et al. [25] introduced an RNN to
regularize the cost volume, while Luo et al. [16] built a model to learn how to
aggregate the cost to compute a more robust depth estimate. MVS-CRF [22],
finally, refines the MVSNet estimate through Markov Random Field, and Point-
MVSNet [2] through a graph-based neural architecture. The huge limitation of
learning-based approaches relies on their computational complexity. Usually, it
is not feasible to handle high-resolution images as both memory and time costs
grow cubically as the volume resolution increases, causing a limitation on the
accuracy and completeness of the reconstructed models. The best attempt to
handle this problem is the work of Xiaodong et al. [6], named CasMVSNet,
in which they applied a coarse-to-fine approach that considerably improves the
scalability of MVSNet-based methods.

3 Methods

Our work aims to provide an overview of the effects of Single-Image Super-
Resolution (SISR) when applied in the head of Multi-View Stereo (MVS) algo-
rithms. In order to generalize this phenomenon, we chose two different SISR
algorithms to conduct our ablation studies. In particular, we identified the bicu-
bic interpolation algorithm as a candidate algorithm for a more traditional SISR
approach, while Deep Back-Projection Network (DBPN) by Haris et al. [7] to
investigate the effects of a more recent pipeline based on deep learning. It is
known in the literature that SR techniques are often prone to artifact genera-
tion, especially with the growth of the upscaling factor. In order to exploit both
the SISR algorithms at the best of their performance, we fixed it to 2. Concern-
ing DBPN we exploited the best set of weights provided by the authors for this
upscaling factor, i.e., “DBPN-RES-MR64-3”.

Regarding the MVS pipelines, we chose two different approaches based on
two different technologies. The first one is COLMAP [19], in which depth maps
estimation is heavily based on patchmatch. Moreover, it turns out to be one of
the most efficient algorithms of its family due to its parallel maps computation.
The second one is CasMVSNet, the deep learning architecture based on MVS-
Net developed by Xiaodong et al. [6]. With the addition of a new cost volume
technique, built upon a feature pyramid encoding geometry, it learns to estimate
the depth space of the scene at gradually finer scales. In detail, it narrows the
disparity range for every stage thanks to an iterative prediction made from the
previous stages. It then gradually increases the cost volume resolution to obtain
accurate outputs. This technique allowed us to exploit a deep learning approach,
even with datasets composed of numerous images and limited hardware capabil-
ities. For this algorithm, like for DBPN, we used the pre-trained model provided
by the authors in order to facilitate the experiments reproducibility.
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Table 1. F1 scores on the ETH3D low-resolution multi-view train set with COLMAP.
We compare scores starting from low-resolution images against the ones obtained from
bicubic interpolation and Deep Back-Projection Network Super-Resolution

7 (cm) | Overall Indoor Outdoor

Low-res | Bicubic | DBPN | Low-res | Bicubic | DBPN | Low-res | Bicubic | DBPN
35.80 39.85 40.00 |40.68 43.68 |43.42 |32.55 37.29 37.71

53.41 54.83 54.98 |56.15 57.37 |57.09 |51.59 53.14 53.58

72.16 72.58 72.64 | 74.35 |74.05 73.62 | 70.70 71.59 71.99

10 81.83 82.17 |82.13 |83.97 |83.24 82.69 |80.40 81.46 81.76
20 88.98 89.20 |89.14 |91.50 |90.55 90.11 | 87.30 88.30 88.50
50 95.29 95.70 |95.70 |97.33 |97.19 97.15 |93.93 94.71 94.75

Fig. 1. COLMAP disparity maps of a sample from storage_room_2 dataset (Indoor).
On the left side, the low-resolution estimation, on the right side, the one enhanced via
Deep Back-Projection Network.

4 Ablation Study

In order to calibrate the chosen algorithms, we have conducted an ablation study
over the training set of the ETH3D Low-resolution many-view benchmark [20],
which is composed of five gray-scale datasets split in indoor (two) and outdoor
(three). For this benchmark, the accuracy and completeness metrics are available
to compute the goodness of the reconstruction with respect to the ground truth.
In order to take both into account, we relied our analysis on their harmonic mean,
i.e., the 1 score. This section’s experiments have been executed on an Intel(R)
Xeon(R) CPU E5-2630 v4 @ 2.20 GHz with an Nvidia GTX 1080Ti GPU.

For each dataset, we computed its enhanced twins via bicubic interpolation
and DBPN. Then, we applied COLMAP and CasMVSNet pipelines on all these
datasets to obtain the dense point clouds. Finally, we evaluated the results with
respect to the ground truths. We compare, with different distance tolerances,
the performance of each dataset.

According to the literature, and after some preliminary trials, we noticed that
COLMAP achieves poor performance in indoor datasets despite their resolution.
This issue is related to its patchmatch algorithm heavily based on the Bilateral
Normalized Cross-Correlation Photometric-Consistency, which is translated into
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Table 2. F1 scores on the ETH3D low-resolution multi-view train set with CasMV'S-
Net. We compare scores starting from low-resolution images against the ones obtained
from bicubic interpolation and Deep Back-Projection Network Super-Resolution

7 (cm) | Overall Indoor Outdoor

Low-res | Bicubic | DBPN | Low-res | Bicubic | DBPN | Low-res | Bicubic | DBPN
38.28 39.58 39.59 |37.24 38.43 38.46 |38.97 40.34 40.35
49.00 49.65 49.66 |48.08 48.07 48.09 |49.61 50.70 50.71
60.58 61.17 |61.15 |61.10 |60.49 60.40 |60.25 61.63 61.65

10 67.59 68.43 | 68.37 |69.39 |69.25 69.10 |66.39 67.89 |67.89
20 74.00 74.93 | 74.84 |77.33 7744 | T77.25 |T71.79 73.26 | 73.23
50 82.60 83.59 83.61 |87.14 87.31 |87.31 |79.56 81.10 81.14

artifacts and poor estimates in textureless regions, e.g., monochromatic and reflec-
tive surfaces. In order to cope with this unwanted behavior, we modified COLMAP
parameters when dealing with Indoor scenes by increasing the robustness of the
depth estimates and thus trading-off with a higher computational cost. Specifi-
cally, we reduce the minimum NCC threshold and increase the window radius by
2. Then we filter the resulting depth maps with a speckle filter algorithm before
fusing them. For this widely used filter, we have chosen a max depth range equal
to 5 and set the maximum speckle size to 1% of the depth map dimension. These
parameters have been tuned to maximize the average performance over both low-
resolution datasets and their versions enhanced via SR.

Table1 shows the results of this first set of experiments computed via
COLMAP. On average, both SR techniques lead to noticeable improvements in
the quality of the reconstructed models. This improvement tends to be more evi-
dent when tolerances are computed concerning little points neighborhoods. It is
also observable a different behavior between indoor and outdoor scenes: in the first
case, we observe good synergies between SR and the MVS algorithms concerning
small tolerances, while the effects turn out to degrade the performance by consid-
ering more flexible evaluation criteria. As can be seen in the disparity map example
displayed in Fig. 1, on the one hand, the effect of DBPN is translated into less noisy
depth estimations, on the other, it erases the small number of points belonging to
the textureless regions such as the inner part of the bricks or doors.

In the second case, the advantages of applying SISR are spread with evidence
among the tolerances, reaching remarkable {1 score improvements (+5.16% for
7 = 1cm). An example of the benefits can be visually appreciated in the disparity
maps comparison in Fig. 2. In this case, it is evident how COLMAP is able to
exploit the increased amount of input information, on the one hand, to identify
pieces of bushes in the foreground, on the other, to better perceive the image
depth and produce a more detailed disparity map.

In Table2 are instead summarized the results obtained by carrying out the
same set of experiments with CasMVSNet as MSV algorithm. In general, the
behavior of this algorithm when its input is enhanced with SR is coherent with
the one demonstrated by COLMAP. In fact, also in this case, it is evident a
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Fig. 2. COLMAP disparity maps of a sample from forest dataset (Outdoor). On the
left side, the low-resolution estimation, on the right side, the one enhanced via Deep
Back-Projection Network.

Table 3. F1, accuracy and completeness scores over ETH3D low-resolution multi-
view benchmark. We compare the presented models grouped in many subsets with a
tolerance 7 = 1cm

Model Overall Indoor Outdoor

F1 |Acc |Comp|F1 |Acc Comp|F1 |Acc |Comp
COLMAP 36.6 |40.7|33.8 |34.4 38.1 31.7 |38.0 |42.4|35.1
COLMAP (DBPN) |40.6 |37.2 |45.8 |36.5|35.7 | 38.2 |43.3|38.2 50.8
CasMVSNet 36.8 |42.434.3 |27.8 136.0 |23.7 |42.7 |46.8|41.3
CasMVSNet (DBPN) | 37.7 |41.4 [36.9 |28.9|37.4/24.7 |43.6|44.0 45.0

generalized f1 score improvement, especially while considering the most restric-
tive tolerances.

We can thus argue that, in general, both patchmach and deep learning MSV
algorithms demonstrate on average to benefit from the presence of richer input
information. Moreover, from the results of this ablation study is possible to assert
that this is true regardless of the SR algorithm chosen.

5 Experiments and Results

After having calibrated the algorithms, we evaluated their performance in a
broader set of experiments. For this purpose, we executed two independent vali-
dation runs, both computed on an Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20 GHz
with an Nvidia GTX 1080Ti.

5.1 Evaluation over ETH3D Benchmark

We evaluated the proposed approach over the whole ETH3D Low-resolution
many-view benchmark [20], which is composed of ten gray-scale datasets split
into indoor (four) and outdoor (six).

We used DBPN as SR algorithm for these experiments and COLMAP and
CasMVSNet for the MVS pipeline. From Table 3 it is possible to summarize that,
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Table 4. F1, precision and recall scores over Tanks and Temples train benchmark.
We compare the downscaled version (low-res) with the SISR approaches (bicubic and
DBPN) and with a theoretical high-resolution version (high-res). All the reconstruc-
tions are computed via COLMAP.

Model Overall Indoor Outdoor

F1 Prec |Rec |F1 Prec |Rec |F1 Prec |Rec
Low-res (1x) | 9.56 |20.40 |6.47 |8.93 |18.97 |6.24 |10.02|21.47 |6.63
Bicubic (2x) |31.44 [37.96 |27.91 |26.24 |36.39 |21.86 |35.35|39.14 |32.46
DBPN (2x) |32.94/40.09|29.04 26.85|36.39 22.15 | 37.5 41.74|34.27
High-res (2x) | 37.65 |45.28 |33.19 |32.03 |42.63 | 26.57 | 41.87 47.27 |38.15

concerning the most significant evaluation criterion, i.e., 7 = 1 cm, the trade-off
represented by the f1 score is strongly raised up from the completeness metric.
Like in the ablation study, we can observe a general benefit brought about by
the SR usage, both in the case of patchmatch and deep learning MVS pipelines.

From these results and the visual comparison of reconstruction details is
shown in Fig.3, we argue that the improvement is related to the increased
amount of reconstructed points allowed by the increased amount of pixels in
input. In fact, the completeness boost means that there are many more points
close to ground truth points regarding the low-resolution case. On the other
hand, there are also many points that are far away from the ground truth, and
this is translated into an accuracy drop.

Given the obtained performance, we can argue that this trade-off brings
positive outcomes that are perceptively translated into denser reconstructions
and characterized by a reduction of texture holes.

5.2 Evaluation over Tanks and Temples Benchmark

Finally, we have conducted a further experiment over the Tanks and Temples
train benchmark [10], composed of 7 RGB high-resolution datasets split into
indoor (three) and outdoor (four).

Given its images good quality, we performed an evaluation test to estimate
the goodness of the SISR approaches with respect to theoretical high-resolution
data. In detail, we downscaled every dataset by a factor of 4, considering it as the
low-resolution benchmark. We did the same but with a factor of 2, considering
this as the high-resolution benchmark. Finally, starting from the low-resolution
datasets, we computed with bicubic interpolation and DBPN algorithms their
twins enhanced via SR with upscaling factor 2, and we compared all the results.
For these experiments, we have used COLMAP as MVS pipeline.

For this benchmark, the precision and recall metrics are available to compute
the goodness of the reconstruction with respect to the ground truth. In order to
compare these results with the ones of the previous experiments, these metrics
can be intended from the reconstructed points perspective (if ETH3D benchmark
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forest

COLMAP CasMVSNet CasMVSNet
(DBPN) (DBPN)

COLMAP

Fig. 3. Details of ETH3D low-res many-view benchmark 3D reconstructions. We com-
pare the same view for each proposed pipeline in both low-resolution and enhanced via
DBPN versions.
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completeness can be assumed as the accuracy of the reconstructed points with
respect to the nearest point of the ground truth, given a fixed tolerance, now
we are dealing with its precision and its recall). Also in this case, in order to
take both into account, we relied our analysis mainly on the f1 score. This time,
the tolerance is fixed and different for each dataset according to the authors
evaluation rules.

The results of this experiment are displayed in Table4. In this scenario, it is
evident how the SISR turns out to be very effective for every metric taken into
account. The reason behind such a remarkable improvement has to be addressed
to the shallow resolution of the low-res benchmark, which made very difficult for
COLMAP to estimate good depths and subsequently fuse them into accurate
dense point clouds. The most interesting result relies on comparing reconstruc-
tions from the benchmark enhanced via DBPN and the high-resolution one. In
fact, despite there is still a performance gap between them, this gap is much
lower than the one with the scores obtained starting from the low-resolution
benchmark.

Summarizing this result with the ones obtained from previous analysis, we
can conclude that SISR algorithms can help MVS techniques to produce better
and denser reconstructions when put on top of the pipeline. Despite the pres-
ence of artifacts, the results are qualitatively closer to high-resolution theoretical
reconstructions, and this approach can be applied both on MVS algorithms based
on patchmatch and deep learning.

6 Conclusions

In this paper, we presented a study on how to improve 3D reconstruction start-
ing from low-resolution images through the use of Single-Image Super-Resolution
techniques, demonstrating Super-Resolution effectiveness for Multi-View Stereo
algorithms based on both patchmatch and deep learning. Moreover, we have
demonstrated the existence of a strong correlation between starting images and
3D models qualities and that an increased amount of input information pro-
vided by Super-Resolution is effectively translated into more robust and dense
representations in the 3D space by Multi-View Stereo pipelines. Despite the
Super-Resolution algorithm chosen, we have shown how the 3D models obtained
results to benefit from the Single-Image Super-Resolution improvement of the
input images the more they do not have a starting high-resolution.
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