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Abstract

The continuum model related to the Winterbottom problem, i.e., the problem of deter-
mining the equilibrium shape of crystalline drops resting on a substrate, is derived
in dimension two by means of a rigorous discrete-to-continuum passage by I'-
convergence of atomistic models taking into consideration the atomic interactions
of the drop particles both among themselves and with the fixed substrate atoms. As
a byproduct of the analysis, effective expressions for the drop surface anisotropy and
the drop/substrate adhesion parameter appearing in the continuum model are char-
acterized in terms of the atomistic potentials, which are chosen of Heitmann—Radin
sticky-disk type. Furthermore, a threshold condition only depending on such potentials
is determined distinguishing the wetting regime, where discrete minimizers are explic-
itly characterized as configurations contained in an infinitesimally thick layer, i.e., the
wetting layer, on the substrate, from the dewetting regime. In the latter regime, also
in view of a proven conservation of mass in the limit as the number of atoms tends
to infinity, proper scalings of the minimizers of the atomistic models converge (up
to extracting a subsequence and performing translations on the substrate surface) to
a bounded minimizer of the Winterbottom continuum model satisfying the volume
constraint.
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1 Introduction

The problem of determining the equilibrium shape formed by crystalline drops resting
upon a rigid substrate possibly of a different material is long standing in materials
science and applied mathematics. The first phenomenological prediction of such shape
for flat substrates is due to Winterbottom, who in (1967) designed what is now referred
to as the Winterbottom construction (see Fig. 1) to minimize the drop surface energy
in which both the drop anisotropy at the free surface and the drop wettability at
the contact region with the substrate were taken into account (see (1)). The interplay
between the drop material properties of anisotropy and wettability can induce different
morphologies ranging from the spreading of the drops in a infinitesimally thick wetting
layer covering the substrate, which is exploited, e.g., in the design of film coatings,
to the nucleation of dewetted islands, that are solid-state clusters of atoms leaving
the substrate exposed among them, which find other applications, such as for sensor
devices and as catalysts for the growth of carbon and semiconductor nanowires (Jiang
etal. 2016, 2017).

In this work, we introduce a discrete setting dependent on the atomistic interactions
of drop particles both among themselves and with the substrate particles, and we
characterize in terms of the parameters of the potentials governing such atomistic
interactions the regime associated with the wetting layer, referred to in the following
as the wetting regime. For the complementary parameter range, i.e., the dewetting
regime, we microscopically justify the formation of solid-state dewetted islands by
performing a rigorous discrete-to-continuum passage by means of showing the I'-
convergence of the atomistic energies to the energy considered in Jiang et al. (2016),
Jiang et al. (2017) and by Winterbottom (1967).

In the continuum setting, the Winterbottom problem in Winterbottom (1967) essen-
tially consists in an optimization problem based on an a priori knowledge of the
surface anisotropy I' of the resting crystalline drop with the surrounding vapor, and of
the adhesivity o related to the contact interface between the drop and the substrate. In
the modern mathematical formulation in R? for d > 1, the energy associated with an
admissible region D C R?\ S occupied by the drop material, which is assumed to be
a set of finite perimeter outside a fixed smooth substrate region S C R¢, is given by

E(D) = f FwE)dH &) + oH (0*D N 3S), 1)
9*D\0S

where 9* D is the reduced boundary of D, v is the exterior normal vector of D, and
H9=! the (d — 1)-dimensional measure. The Winterbottom shape Wr , introduced in
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Winterbottom (1967) is defined as depicted in Fig. 1 by
Wro :=WrN{xeRY : x4 > —0)
where Wr is the Wulff shape, i.e.,
Wr ={x € RY . x.v <TI'(v) foreveryv e Sd_l}.

The Wulff shape Wr is named after Wulff, who provided in (1901) its first phe-
nomenological construction as the equilibrium shape for a free-standing crystal with
anisotropy I' in the space (in the absence of a substrate or any other crystalline materi-
als), and was afterward in Fonseca (1991) and Fonseca and Miiller (1991) rigorously
proved to be the unique minimum of (1) when S = ¢ in the presence of a volume
constraint and after a proper scaling to adjust its volume (see also Taylor 1974, 1975).

The emergence of the Wulff and Winterbottom shapes has been already justified
starting from discrete models in the context of statistical mechanics and the Ising
model. We refer to the review (Dobrushin et al. 1992) (see also Ioffe and Schonmann
1998; Kotecky and Pfister 1994) for the 2-dimensional derivation of the Wulff shape in
the scaling limit at low-temperature and to Bodineau et al. (2001), Pfister and Velenik
(1996) and Pfister and Velenik (1997) for the setting related to the Winterbottom
shape. More recently, the microscopical justification of the Wulff shape in the con-
text of atomistic models depending on Heitmann—Radin sticky-disk type potentials
(Heitmann and Radin 1980) has been addressed for d = 2 and the triangular lattice
in Au Yeung et al. (2012) by performing a rigorous discrete-to-continuum analysis
by means of I'-convergence. Subsequently, the deviation of discrete ground states in
the triangular lattice from the asymptotic Wulff shape has been sharply quantified in
Schmidt (2013) by introducing the n3/* law (see also Davoli et al. 2017), which has
been then extended to the square lattice in Mainini et al. (2014a,b), to the hexagonal
lattice for graphene nanoflakes in Davoli et al. (2016), and to higher dimensions in
Mainini et al. (2019) and Mainini and Schmidt (2020).

We intend here to generalize the analysis of Au Yeung et al. (2012) for d = 2 to
the situation of S being a half-plane by taking into account at the discrete level also
the atomic interactions of the particles of the crystalline drops with the particles of
the substrate, which we allow to possibly belong to a different species of particles,
and we suppose occupying all sites of a fixed reference lattice Lg C S. Film atoms
are instead let free to move in a lattice L chosen to be triangular and contained in
R%\ S, so that admissible configurations of crystalline drops with n € N film atoms are
D, = {x1,...,x,} C LF (see Fig. 2). By adding the contribution Eg : (R?\S)" —
R U {00} to the energy of Au Yeung et al. (2012) to include atomic interactions of
film atoms with substrate atoms, the overall energy V,, of an admissible configuration
D, :={x1,...,x,} is given by

Va(Dy) = Vi(x1, ..., xy) := Ep(Dy) + Es(Dy),
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Fig. 1 Winterbottom construction for the minimizer of £, on the left for ¢ > 0 and on the right foro < 0
(see Winterbottom 1967)

where Er : (R2\S)" — RU{oo} represents the contribution of the atomic interactions
among film atoms. More precisely, Ef and Eg are defined by

Ep(Dy) = Ep(x1, ..., %) i= Y vpr(lxi — x)])
i#]

and

n

Es(Dy) = Es(x1,..., %) == ) > wes(lxi —sl),

i=1 SEES

respectively, where vp, for « = F, S are Heitmann—Radin sticky-disk two-body
potentials attaining their minimum values —cy at epy > 0, where epr = e is the
distance between nearest neighbors in £ and epg is the distance between the lattices
Lr and Lg (see Fig.2 and Sect. 8 for a discussion on the positioning of the reference
lattices). We recall that even with Heitmann—Radin potentials the crystallization of
the minimizers of V,, has been shown so far only in the case with § = ¢ in Heitmann
and Radin (1980) by showing that the minimizers of Er are subset of a triangular
lattice. The rigidity assumption of prescribing reference lattices L and Lg, besides
imposing the non-interpenetration for the film and substrate species of atoms, which
remain separated by a.5, also entails that the elastic energy associated with the mis-
match between the optimal crystalline lattices of the two materials of the drop and the
substrate at equilibrium is supposed to be all released by means of the periodic dislo-
cations of the global reference lattice £ := L U Lg prescribed at the film—substrate
interface 0.

A study in which the complementary situation where elastic deformations of a
homogeneous reference lattice £ without dislocations between the film and the sub-
strate are considered is available in Kreutz and Piovano (2019), where the linear-elastic
models for epitaxially strained thin films introduced in Davoli and Piovano (2020),
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Davoli and Piovano (2019), Fonseca et al. (2007), Spencer (1999), and Spencer and
Tersoff (1997) are derived from nonlinear elastic atomistic energies.

In our setting due to the periodic dislocations created at the interface between Lr
and Lg, the substrate interactions included in Eg are in general non-constant (if not
when e is a multiple of eg) and may result in periodic oscillations between null and
negative contributions to the overall energy, referred to in the following as periodic
adhesion deficit. The presence of such oscillations induces differences with the anal-
ysis carried out in Au Yeung et al. (2012) and could substantiate the employment of
homogenization techniques for periodic structures (see Alberti and De Simone 2005
for the continuum setting). However, it then turns out that homogenization techniques
are not needed as the “homogenized” limit actually coincides with the average in our
setting (and in Caffarelli and Mellet 2007 for the continuum setting). Moreover, the
periodic adhesion deficit at the drop/substrate region induces a lack of compactness
for (the properly scaled) energy-equi-bounded sequences (even up to uniform trans-
lations), which is not treatable with only adopting local arguments at the substrate
surface similar to the one employed in Au Yeung et al. (2012). In order to balance up
the deficit, we subdivide drop configurations in strips vertical to the substrate so that
enough boundary particles not adhering with the substrate (and so without deficit) are
counted. Then, summing up all the strips allows to determine a global lower bound
to the overall surface contribution and to recover compactness in a proper subclass of
admissible configurations, i.e., almost-connected configurations (see Sect. 2.4), that
are configurations which are unions of connected components positioned at “substrate
bond” distance. Such limitation is then overcome by means of ensuring that mass does
not escape on the infinite substrate surface.

Another reason for the lack of compactness with substrate interactions is the pos-
sibility for minimizing drop configurations to spread out on the infinite substrate
surface forming an infinitesimal wetting layer, which for Eg # 0 can be actually
favored. Therefore, a peculiar aspect of our analysis resides in distinguishing such
wetting regime from the dewetting regime. More precisely, we characterize a dewet-
ting threshold in terms of the interatomic potentials vpr and vrg, namely

cs < 4cp if e is a multiple of eg, @)

cs < 6¢cp otherwise,

under which the emergence of the minimizers of (1) with full R?>-Lebesgue measure
is shown.

The results of the paper are threefold (see Sect. 7): The first result, Theorem 2.2, is
a crystallization result for wetting configurations achieved by induction arguments in
which the dewetting threshold condition (2) is singled out by treating separately the
situation of constant and non-constant substrate contributions. In this regard, notice
that the characterization of the dewetting regime coming from continuum theories
(see, e.g., Baer 2015) does not represent in general a good prediction for the discrete
setting due to the deficit averaging effects taking place in the passage from discrete to
continuum. More precisely, as described in Baer (2015) (with the extra presence of a
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gravity term perturbation of &) the condition
o > —T'(vs) 3)

is the natural requirement in the continuum “ensuring that it is not energetically
preferred for minimizers to spread out into an infinitesimally thin sheet”. However,
condition (3) coincides with the dewetting-threshold condition of the discrete setting
only when ef is a multiple of er (see 5 and 6), being otherwise the latter condition
more restrictive.

The second result, Theorem 2.3, provides a conservation of mass for the solutions
of the discrete minimum problems

min V, (D) 4
D,CLFp

as the number n of atoms tends to infinity, which is crucial to overcome the lack of
compactness outside the class of almost-connected sequences of energy-equibounded
minimizers. In particular, it consists in proving that it is enough to select a con-
nected component among those with largest cardinality for each solution of (4). This
is achieved by proving compactness for almost-connected energy minimizers and then
by defining a proper transformation 7 of configurations (based on iterated translations
of connected components as detailed in Definition 2.1), which always allows to pass
to an almost-connected sequence of minimizers.

The last result, Theorem 2.4, relates to the convergence of the minimizers of (4) as
n — oo to a minimizer of (1) in the family of crystalline drop regions

D, ={D C RZ\S . set of finite perimeter, bounded and such that |[D| = 1/p},

whose existence follows also from the proof, where p is the atom density in Ly per
unit area.

Such convergence is obtained (up to extracting a subsequence and performing
horizontal translations on the substrate ) as a direct consequence of the conservation
of mass provided by Theorem 2.3 and of a I'-convergence result for properly defined
versions of V,, and € in the space M (R?) of Radon measures on R? with respect to
the weak™* convergence of measures as the number # of film atoms tends to infinity.

More precisely, we consider the one-to-one correspondence between drop con-
figurations D, C L and their associated empirical measures pp, € M(R3?) (see
definition at (14)), introduce an energy I, defined on M (R?) such that

In (MD,;) = Vn (Dn)s
and prove the I"-convergence of proper scalings E,, of I, namely
Ey :=n" (I, + 6cpn),
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with respect to the weak™* convergence of measures, to a functional I, defined in such
a way that

Ioo (pxp) = E(D),

for every set of finite perimeter D C R?\S with |D| = 1/p and for specific effective
expressions of the surface tension I" and of the adhesivity o appearing in the definition
(1) of £ in terms of the interatomic potentials vy g and vgg. In particular, we obtain
that

o= ZCF—C—S, (5)

q

where ¢ relates to the proportion between ey and eg (see 13), and I"(v(+)) is found to
be the 7 /3-periodic function such that

F(v(p)) = 2cr <vz(<ﬂ) - ”5?) ©6)

for every

v(p) = (Z?snf)
with ¢ € [0, 7/3].

A crucial difference with respect to Au Yeung et al. (2012) in the proof of the
lower and upper bound of such I'-convergence result is that the adhesion term in
(1) can be negative and originates in view of the averaging of the periodic adhesion
deficit related to the dislocations at the film—substrate interface. In particular, it is the
limit of the adhesion portion of the boundary of auxiliary sets H,, associated with the
configurations D,, (see Definition 55 based on lattice Voronoi cells) in the oscillatory
sets O,, (see Fig. 2). We notice that for such averaging arguments extra care is needed,
as the results available from the continuum theories cannot directly be applied to the
auxiliary sets H, when e is not a multiple of es, e.g., with respect to Baer (2015) (see
also Caffarelli and Mellet 2007) because of the non-constant deficit, and with respect
to Alberti and De Simone (2005) when 4cr < cs < 6¢F because of the discrepancy
between the continuum and the discrete dewetting conditions.

All the results presented in the manuscript are obtained under the restrictive assump-
tion of a fixed specific positioning of the film lattice £ with respect to the substrate
lattice Ly, i.e., the closest atoms of L to Lg are positioned at a distance from at most
one substrate atom given exactly by the constant at which the atomistic interaction
potential between a film and a substrate atom attains its minimum, namely ergs. This
might be indeed not the optimal positioning in some situations, and in both (Piovano
and Velci¢ 2021) and the forthcoming paper (Piovano and Vel¢i€ in preparation) we
relax such assumption, both by showing how some other settings can be reduced to
the model considered in this manuscript, and by introducing a few similar models
(that will be shown to be treated with similar strategies to the ones presented in this
manuscript) to which the missing situations can be reduced. We begin this analysis
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in the last section of the manuscript by listing some examples (see Examples 8.4, 8.5
and 8.6) of different relevant positioning of the reference lattices £y and Lg that we
show can be reduced to the model introduced in Sect. 2 thus, allowing us by Propo-
sition 8.3 to recover all the main results of the manuscript, i.e., Theorems 2.2, 2.3,
and 2.4 for such examples as well (and an example where we discuss the optimality
of the positioning chosen in the model introduced in Sect. 2 for a particular choice of
the lattice and atomistic parameters).

1.1 Paper Organization

In Sect. 2, we introduce the mathematical setting with the discrete models (expressed
both with respect to lattice configurations and to Radon measures) and the continuum
model, and the three main theorems of the paper. In Sect. 3, we treat the wetting regime
and prove Theorem 2.2. In Sect. 4, we establish the compactness result for energy-
E,-equibounded almost-connected sequences. In Sect. 5 we prove the lower bound of
the I"-convergence result. In Sect. 6, we prove the upper bound of the I"-convergence
result. In Sect. 7, we study the convergence of almost-connected transformations of
minimizers and present the proofs of both Theorems 2.3 and 2.4. In Sect. 8, we present
some other positioning of Lr and Lg that can be reduced to the setting introduced in
Sect. 2.

2 Mathematical Setting and Main Results

In this section, we rigorously introduce the discrete and continuous models, the nota-
tion, and definitions used throughout the paper, and the main results.

2.1 Setting with Lattice Configurations

We begin by introducing a reference set £ C R? for the atoms of the substrate and of
the film, which we assume to remain separate. We define £ := LsUL g, where L5 C S
denotes the reference lattice for the substrate atoms, S := R x {r e R : r < 0} is
referred to as the substrate region, and Lr C R?\S is the reference lattice for the film
atoms.

More precisely, we consider the substrate lattice as a fixed lattice, i.e., every lattice
site in Lg is occupied by a substrate atom, such that

ALs = LsN{(r,0): r e R} = {5 := (kes,0) : k € Z}

for a positive lattice constant eg, and we refer to dLg as to the substrate surface
(or wall). For the film lattice L£g, we choose a triangular lattice with parameter ef
normalized to 1, namely

Lr:={xp+kiti +kyty : ki € Z and kp € NU {0}} (7)
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where
XF = (0, er) (8)

for a constant epg > 0,

t = <(1)>, and £ = %(%)

We denote by d L the lower boundary of the film lattice, i.e.,
0Lp :={xp + kit : ki € Z}

and by dLFgs the collection of sites in the lower boundary of the film lattice at a
distance of epg from an atom in 9Lg, i.e.,

0Lps :=0Lp N (0Ls + epst3)

=)
3=
(see Fig. 2).

We refer to Sect. 8 for examples of other positioning of the reference lattices Lr
and Lg, which can be reduced to the one addressed in this mathematical setting. The
sites of the film lattice are not assumed to be completely filled and we refer to a set
of n € Nsites x1, ..., x, € LF occupied by film atoms as a crystalline configuration
denoted by D, := {x1,...,x,} C LF. Notice that the labels for the elements of a
configuration D, are uniquely determined by increasingly assigning them with respect
to a chosen fixed order on the lattice sites of £p. With a slight abuse of notation, we
refer to x € D, as an atom in D, (or in LF). We denote the family of crystalline
configurations with n atoms by C,.. Furthermore, given a set A C R2, its cardinality
is indicated by #A, so that

where

C,:={ACLp : #A =n}.

For every atom x € L, we take into account both its atomistic interactions with
other film atoms and with the substrate atoms, by considering the two-body atomistic
potentials vpr and vrg, respectively. We restrict to first-neighbor interactions and we
define vpy fora := F, S as

+oo ifr < epq,
VFe(r) := | —cq ifr =epq, )
0 ifr > epgy,

withcy > O0and epp :=ep = 1.
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Fig.2 A portion of the lattices L and Lg is depicted with the respective lattice sites in light and dark blue
crosses, respectively. The lattice Lg is fully occupied by substrate atoms represented by dark blue balls,
while only some sites of £ are occupied by film atoms represented by light blue balls. The “interface”
9L consists of all the lattice sites on the light-blue line, while the “interface” d.L g consists of all the lattice
sites on the dark-blue line. In yellow, we can see the oscillatory set related to the lattice sites in dL g,
which is introduced in Sect. 5

In the following, we refer to film and substrate neighbors of an atom x in a con-
figuration D, as to those atoms in D, at distance 1 from x, and to those atoms in
Lgs at distance es from x, respectively. Analogously, we refer to film and substrate
bonds of an atom x in a configuration D,, as to those segments connecting x to its film
and substrate neighbors, respectively. We also refer to the union of the closures of all
film bonds of atoms in a configuration D, as the bonding graph of D,,, and we say
that a crystalline configuration D, is connected if every x and y in D, are connected
through a path in the bonding graph of D,, i.e., there exist £ < n and x; € D,, for
k :=1,..., £ such that |[xy — xx—1] = 1, x;1 = x, and x;, = y. Moreover, we define
the boundary of a configuration D,, € C, as the set 3D, of atoms of D, with less
than 6 film neighbors. We notice here that with a slight abuse of notation, given a set
A C R? the notation A will also denote the topological boundary of a set A C R>
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(which we intend to be always the way to interpret the notation when applied not to
configurations in C,, or to lattices, such as for dLs, 0LF, and dLFs).

The energy V,, of a configuration D, := {x1, ..., x,} C L of n particles is defined
by

Va(Dp) = Vo (x1, .o x) = Y vrp(xi = xj) + Es(xi....x)  (10)
i#]

where Eg : (R?\S)" — R U {00} represents the overall contribution of the substrate
interactions defined as

Es(Dy) = Es(x1,..., %) = ) v'(x), (1D
i=1

where the one-body potential v is defined by

v' () ==Y vrs(x —s)) (12)

seLls

forany x € R x {r € R : r > 0}. Notice that from the definition of vrg and x ¢ for
any x € Lr the sum in (12) is finite and

vl (x) € {0, —cs).

In the following, we will always focus on the case
es =1 (13)
p

for some p, g € N without common factors, since the case of eg = refr for some
r € R\Q is simpler, as the contribution of Eg is negligible (namely, in this case
#3dLps = 1). More precisely, for es = rep with r € R\Q the same analysis (or the
one in Au Yeung et al. (2012) applies, and, up to rigid transformations, minimizers
converge to a Wulff shape in R?\ § with the Wulff-shape boundary intersecting 9§ at
least in a point.

2.2 Setting with Radon Measures

The I'-convergence result is established for a version of the previously described
discrete model expressed in terms of empirical measures since it is obtained with
respect to the weak™* topology of Radon measures (Ambrosio et al. 2000). We denote
the space of Radon measures on R2 by M(R?), and we write Un A W to denote the
convergence of a sequence {u,} C M(R?) to a measure e M(R?) with respect to
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the weak* convergence of measures. The empirical measure wp, associated with a

configuration Dy, := {x1, ..., xp} € C, is defined by
1 n
==Y 8y, 14
i, = ; 5 (14)

where 8. represents the Dirac measure concentrated at a point z € R?, and the family
of empirical measures related to configurations in C, is denoted by M, i.e.,

M, ={un e M(R?) : there exists D, € C, such that W =pup,} (15)

The functional 7, associated with the configurational energy V), and expressed in
terms of Radon measures is given by

Je\5)2\diag W VFF (021X = yDdp(x) @ dp(y) if we My,
L(n) = +fR2\§nvl(n1/2x)d/L(x) (16)
+00 otherwise,
where
diag := {(y1, y2) € R? : y; = ).
We notice that the two versions of the discrete model are equivalent, since
Va(Dn) = In(up,) (17)
for every configuration D, € C,, where up, € M, is defined by (14), and that D,

minimizes V,, among crystalline configurations in C, if and only if u p, minimizes I,
among Radon measures of M (RR?).

2.3 Local and Strip Energies

We define a local energy Ejo per site x € Lr with respect to a configuration D, by

2 ven\x} VFF(X = y) + 6¢cp if x € Dy,

Elpe(x) == {O ifx ¢ Dy, (18)

which corresponds in the case of an atom x € D, to the number of missing film
bonds of x. We also refer to deficiency Eger(x) of a site x € Lp with respect to a
configuration D,, as to the quantity

Eloc ! if x € Dy,
Eqer(x) = {O‘ ) + v ;Q;D (19)
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9. 9.
xT_ Ty
9.
T
0.7) —_ Q.T Q.’E 4

YMm

X
X

Fig. 3 Strip S(x) centered at an atom x € dLpg of a crystalline configuration D,, is depicted as an
example of a strip containing all the elements x, x+, X, X4 with the possibility of the strip center x and
the strip top x to coincide if yy; = efg. The sites indicated by crossed atoms are sites of the planar lattice
{xp +kit1 + katy : ki, ko € Z} that surely are not in D), by definition of Lz and S(x)

Furthermore, we define the strip S(x) associated to any lattice site x := (x', ers) €
D, N 0L ps with x; € R as the collection of atoms

S(-x) ZSDn(x) = {xsx:tsisii}ml)l’l (20)
where x4, X, and x4 are defined by

X4 = x k1,

X = (xl,yM) where yp := max{y >0 : (xl,y)eDn},
X4 =X+ 17,

X_ =X+t —t

(see Fig. 3).

In the following, we refer to x as the strip center of S(x), to x4 as the strip lower
(right and left) sides, to X as the strip top, and to X as the strip above (right and left)
sides. Note that x and x coincide if yy; = eFs.
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We define the strip energy associated with a strip S(x) by
Estrip(x) = Estrip,below(x) + Estrip,above(x)v (21)
where
1 1
Estrip,below(x) =FEjoc(x) + EEloc(x+) + zEloc(x—) —Cs (22)

in the case ¢ # 1, while

1 1 1
Estrip,below(x) :ZEEIOC(-X) + ZEloc(x+) + ZEloc(xf) —Cs (23)

in the case ¢ = 1, and

— JEoc(X) + wi(X) Eloc(¥4) + w—(X) Eloc(x-) if X # x,
Estrip,above(x) = - ~ - ~ e~ (24)
W4 (X) Ejoc(X4) + w_(X) Ejoc(x-) ifx =x
with weights wy (x) € {1/2, 1} given by
1 ifxs ¢ DyNOLps or Fx # (x4),
we® =1, L F # DnNOLps o Xe # (x1)z (25)
3 if xyeD, N0Lps and X4 = (xi):F‘

2.4 Almost-Connected Configurations

We recall from Sect. 2.1 that a configuration D,, is said to be connected if every x and
yin D,, are connected through a path in the bonding graph of D,,, i.e., there exist £ < n
and x; € D, fork :=1,..., ¢ such that |xy — x4—1| = 1, x; = x,and x; = y, and
we refer to maximal bonding subgraphs of D,, connected through a path as connected
components of Dy,.

In order to treat the situation when g # 1, we need to introduce also a weaker
notion of connectedness of configurations, which depends on eg: We say that a con-
figuration D,, is almost connected if it is connected when ¢ = 1, and, if there exists an
enumeration of its k := kp, connected components, say Dfl, i =1,...,k, such that
each Dfl is separated by at most g from Uf;} Dfl foreveryi =2,...,n,whenq # 1.

We say that a family of connected components of D,, form an almost-connected
component of D, if their union is almost connected and, if ¢ # 1, it is distant from
all other components of D,, by more than g.

Definition 2.1 Given a configuration D,, € C,, we define the transformed configura-
tion T (D,,) € C, of D, as

T (Dy) = T(T1(Dn)),

where 77(D,,) is the configuration resulting by iterating the following procedure,
starting from D,,:
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— If there are connected components without any activated bond with an atom of
dLg, then select one of those components with lowest distance from 9 Lg;

— Translate the component selected at the previous step of a vector in direction
—t» till either a bond with another connected component or with the substrate is
activated.

(notice that the procedure ends when all connected components of 7;(D,,) have at
least a bond with d Lg), and 75(71(D,)) is the configuration resulting by iterating the
following procedure, starting from 7 (Dy,):

— If there are more than one almost-connected component, then select the almost-
connected component whose leftmost bond with dLg is the second (when
compared with the other almost-connected components) starting from the left;

— Translate the almost-connected component selected at the previous step of a vector
—kqt; for some k € N till, if g = 1, a bond with another connected component is
activated, or, if ¢ # 1, the distance with another almost-connected component is
less or equal to g;

(notice that the procedure ends when 7, (D,,) is almost connected).

We notice that the transformed configuration 7 (D,,) of a configuration D, € C,
satisfies the following properties:

(i) 7 (D) is almost connected;
(i1) Each connected component of 7 (D,,) includes at least an atom bonded to dLg;
(iii) V,(7(Dy)) < V,(Dy) (as no active bond of D, is deactivated by performing the

transformations 7 and 75);

and, if D,, is a minimizer of V,, in C,, then

(iv) T1(Dy) = Dy;
(v) 7 consists of translations of the almost-connected components of D,, with respect
to a vector (depending on the component) in the direction —#; with norm in NU{0}.

Finally, we also observe that the definitions of 77, 7, and 7 are independent from
n.

2.5 Continuum Setting

For every set of finite perimeter D C R?\S, we define its anisotropic surface energy
£ by
cs

E(D) = / T(vp)dH' + (20F - —> H'(3*DNDS) (26)
3*D\dS q

where 9*D denotes the reduced boundary of D and the anisotropic surface tension
I : S' — R is the function such that it holds

F(v(g)) = 2cr <v2(§0) - "5?) @7)
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for every

__ [ —sing . T
v(cp)_< cos ¢ )eS with (pEI:O,S:I,

and I' o v is extended periodically on R as a 7/3-periodic function. Notice that
I'(£¢3) = 2cF. By extending I" by homogeneity we obtain a convex function, and in
particular a Finsler norm on RZ.

We also use the following auxiliary surface energy depending on n in the proofs

E,(D) = / C(vp)dH' + <2cF — C—S) HYO*D NS,  (28)
3* DN(R2\S,) q

where ¢
S, =8+ 134, (29)
n

2.6 Main Results
In this section, the rigorous statements of the main theorems of the paper are presented.

We begin with the following result that characterizes the wetting regime in terms of a
condition only depending on vrr and vrg, and the minimizers in such regime.

Theorem 2.2 (Wetting regime) Let D} := {wy, ..., w,} C 0LFs be any configura-
tion such that, if ¢ = 1,

Wit1 = w; + 1 (30)
foreveryi =1,...,n and every n € N. It holds that D)) satisfies the following two

assertions for every n € N:

(1) Vn(Dy‘;V) = min Vn(Dn):

(ii) V(D)) < V,(Dy) for every crystalline configuration D, with D,\0Lfrs #
(and, for the case q = 1, also for every configuration D,, with Dy\0Lrs = {/
and for which (30) does not hold),

if and only if

€1y

cs = 6cp ifq #1,
cs > 4cr ifqg=1

In particular, for the necessity of (31) it is enough assertion (i), and more specif-
ically that there exists an increasing subsequence (ny)ixeN such that Vy, (D,‘:Vk) =
min Vy,, (Dy, ) holds for every n.

We refer to (31) as a wetting condition or as the wetting regime, and to the opposite
condition, namely

{cs<6cF ifg #1, 32)

cs <dcp ifg=1,
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as the dewetting condition or the dewetting regime. The following result shows that
connected components with the largest cardinality of minimizers incorporate the whole
mass in the limit.

Theorem 2.3 (Mass conservation) Assume (32). If 5n are minimizers of V,, among all
crystalline configurations in Cy, i.e.,

Va(Dy) = min V,(Dy),
D, eC,

andwe select for every D,, a connected component D,, | C D, with largest cardinality,
then

ngngouﬁ,,(Dn,l) =1,

where up - are the empirical measure associated with 5,, defined by (14).

We rigorously prove by I'-convergence that the discrete models converge to the
continuum model, and in view of the previous result (even in the lack of a direct com-
pactness result for general sequences of minimizers, possibly not almost connected),
we prove convergence (up to passing to a subsequence and up to translations) of the
minimizers of the discrete models to a bounded minimizer of the continuum model,
which in turn it is also proven to exist. We do not discuss here further the minimal-
ity property of the Winterbottom shape for the energy £ and the uniqueness of the
minimizers of I, in M.

Theorem 2.4 (Convergence of Minimizers) Assume (32). The following statements
hold:

1. The functional
E, :=n Y2, + 6cFn), (33)

where I, is defined by (16), I'-converges with respect to the weak* convergence
of measures to the functional I, defined by

E(Dy), ifthere exists D, C R2\S set of finite perimeter
Ino () :== with D, | = 1/p such that p = PXD, > (34)

+00, otherwise,

for every u € M(R?), where p :=2/+/3.

2. The functional 1, admits a minimizer in
My = {u e M(R?» : 3D C RZ\S set of finite perimeter, bounded

1
with |D| = —, and such that u = ,OXD}- (35)
P

@ Springer



32 Page 18 0of 55 Journal of Nonlinear Science (2022) 32:32

3. Every sequence |, € M, of minimizers of E, admits, up to translation in the
direction ty (i.e., up to replacing [, with ,(- + cut1) for chosen fixed integers
¢y € 7), a subsequence converging with respect to the weak* convergence of
measures to a minimizer of I in Myy.

Notice that the parameter p := 2/+/3 in the definition of My is related to the fact
that we chose the triangular lattice for L, as p is the density of atoms per unit volume
of such lattice.

3 Wetting Regime

In this section, we single out conditions that entail wetting, i.e., the situation in which
it is more convenient for film atoms to spread on the infinite substrate surface instead
of accumulating in clusters, or islands, on top of it. In the following we refer to
crystalline configurations D)Y C dLfrs as wetting configurations. We first consider
the case g # 1.

Proposition3.1 Let ¢ # 1 and n € N. Any wetting configuration D)’ :=
{wy, ..., w,} C dLFs satisfies the following two assertions:

(1) Vn(D;‘;V = min Vi (Dy),
(ii) V(D)) < Vi (Dy) for any crystalline configuration D,, with D,\0LFs # 0,

if and only if
cs > 6¢F. (36)

Remark 3.2 Notice from the proof of Proposition 3.1 that for the necessity of (36) it
is enough assertion (i) or, more precisely, it is enough that there exists an increasing
subsequence (n;)xeN such that (i) holds for every k € N. (36) is sufficient for (i) and
(ii), for every n € N.

Proof We begin by proving the sufficiency of (36) for the assertions (i) and (ii). Note
that (i) easily follows from (ii) and the fact that any wetting configuration D}" has the
same energy given by

V(DY) = —csn. (37)

In order to prove (ii) we proceed by induction on n. We first notice that (ii) is trivial
for n = 1. Then, we assume that (ii) holds true for every k = 1, ..., n — 1 and prove
that it holds also for n. Let D,, be a crystalline configuration such that D,\dLps # 0.
If D, N (R x {r > ers}) = @, we can easily see that the energy of D,, is higher than
the energy of D}¥ at least by cg — 2c, which is positive by (36), since the elements
in D,\0LFs # ¥ have at most two film bonds and no substrate bonds. Therefore, we
can assume that D, N (R x {r > ers}) # 0. Let L be the last line in R x {r > 0}
parallel to ¢; that intersects D, by moving upwards from R X {erg} (which exists
since D,, has a finite number of atoms).
We claim that

Vo (Dy) = Vat(Dp\L) — 6cp (€ — 1) — 4cp, (38)
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where £ := #(D, N L). We order the elements of D,, N L with increasing indexes with
respect to £1, i.e., D, N L = {x1, ..., x¢}, and observe that x| has at most 3 bonds
with film atoms in D,, by construction, since x is the leftmost element in D, N L. We
notice that in the same way, if £ > 1, every x; has at most 3 bonds with film atoms in
Dy\{x1,...,xj—1} foreveryi =2, ..., ¢ — 1. Therefore, we obtain that

Vi(Dy) = Vu1(Dy—1\{x1}) —6cF > Vi (Dp—i\{x1,...,x;}) — 6¢CFi
> Vi—w—1)y(Du\{x1, ..., x¢1}) —6cp (€ — 1)
> Vue(Dy\L) — 6cp(£ — 1) — 4cF,

which in turns is (38), where in the last inequality we used that x, has only at most 2
bonds with film atoms in D, \ L, since x is the rightmost element in D, N L.
From (38), it follows that

Vi (Dy) Vi—e(Dp\L) — 6¢cp(£ — 1) —dcp > Vy_¢(Dy\L) — 6¢cpt

>
> —cs(n — L) — 6¢cpl > —csn,

where we used the induction and (37) in the third inequality, and (36) in the last
inequality.

To prove the necessity of (36), notice that the Wulff configuration in R x {r > erg}
has energy equal to —6¢ pn+C 4/n for some constant C > 0. Therefore, from assertion
(i1) and (37) it follows

—csn < —6¢pn + C/n.

After dividing by n and letting n — oo we obtain cg > 6¢F. O

We now address the case ¢ = 1 for which we notice that 9Lpg = L F.

Proposition 3.3 Let g = 1 and n € N. Any configuration D)’ = {w1, ..., w,} C
0L ps such that

Wit1 = w; + 1 (39
foreveryi = 1,...,n, satisfies the following two assertions:

(1) Va(Dy) = min V, (D),
(ii) V(D)) < V,(Dy) for any crystalline configuration D, such that either
D, \0LFs # ¥ or not satisfying (39),

if and only if

cs > 4CF. (40)
Proof The proof is based on the same arguments employed for Proposition 3.1 and
on the following observations. Any wetting configuration D)’ satisfying (39) has the

same energy given by
Vu(D)) = —csn —2cp(n — 1). 41)

In order to prove the sufficiency of (40) for assertion (ii) (assertion (i) follows in view
of (41)), we can restrict also in this case without loss of generality to configurations
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D, N (R x {r > ers}) # ¥, since any wetting configuration that does not satisfy
(39) has energy obviously higher than (41) (because n — 1 is the maximum number
of bonds in 0L ).

In order to prove the necessity of (40) for assertions (i) and (ii), we again consider
the Wulff shape with n atoms in R x {r > epgs} which has energy —6¢gn + C+/n for
some constant C > 0, and observe that

—csn —2cp(n—1) < —6¢pn + C/n

by assertion (ii) and (41). O

We refer to (36) and (40) as wetting conditions. Condition (40) is weaker than (36)
because if ¢ = 1, then film atoms of wetting configurations can be bonded to the two
film atoms at their sides in d Lpg (if filled) besides to their corresponding substrate
atom, and Proposition 3.3 shows that such configuration are preferable.

Proof of Theorem 2.2 The assertion directly follows from Propositions 3.1 and 3.3 for
the case g # 1 and the case g = 1, respectively. O

4 Compactness

In the remaining part of the paper, we work in the dewetting regime, i.e., under the
assumption (32). We begin by establishing a lower bound in terms of ¢ and cg of
the strip energy Eyyip(x) uniform for every x € D, N dLF. To this aim, we need to
distinguish the case ¢ = 1 from g # 1 as already done in Sect. 3 because of different
contributions in Egyp(x) of the substrate interactions.

Lemma 4.1 We have that
Estrip(x) = Agrip

with
6cp —cys, | 1,
Agsip :={ roces fa# (42)

dep —cs, ifg=1,
foreveryx € D, NALF.

Proof Fix x € D, N dLFr. We begin by observing that the strip center x surely misses
the bonds with the atoms missing at the 2 positions x — ¢, + kt1 for k = 0, 1 as
shown in Fig. 3. Furthermore, either x misses the bond with x_ or x_ € D, and x_
misses the bonds with the 2 positions x — ¢, + kt| for k = —1, 0 (which in the strip
energy are counted with half weights). We can reason similarly for x_ . Therefore, by
the definition of energy of the low strip Egip,belows

dep —cs, ifqg # 1,
2cp —cs, ifg=1,

Estrip,below =

@ Springer



Journal of Nonlinear Science (2022) 32:32 Page 21 of 55 32

We analyze Egrip above- There are several possibilities:

(1) neither of x4 and x_ belongs to D,;;
(2) exactly one of x; and X_ belongs to D,;
(3) both x4 and X_ belong to D,,.

In case of (1) we have the contribution of 2¢f since X misses two bonds (in the case
when X = x this contribution comes additionally in Ejoc(x), i.€., Eguip,below)- In case
of (3) each of X4 and X_ misses at least one bond (namely with x 4 2¢, — ¢{ which is
not in D, due to the definition of x). If X+ # (/)C:E/)]F we have the energy contribution

of at least 2c. On the other hand if it is valid that X3 = (x), we have the energy
contribution of cr due to the missing bond with X + 2¢5 — ¢ and each of X1 misses
one more bond (namely with X + 2¢> and X + 2¢, — 2¢1, which in this case do not

—

belong to Dj). The similar analysis can be made if X; = (x4)_ or x_ = (x_),.
Thus, we have again energy deficiency of 2¢ . Finally in the case of (2) without loss
of generality we assume that x; € D,,. x is already missing one bond (one ¢ ), which
is again in the case X = x counted in Ejoc(x), i.€., Esgip, below- And again one bond of
X4 1s mlssmg since X + 2¢ — 1 is notin in D,,. Again, this bond is counted as one cf,
if X4 # (x+) and as cp /2, if x4 = (x+) In this case one more ¢y /2 we obtain
since X is missing one bond with X + 2¢£;.

Therefore, in the strip energy Egyip the terms related to the triple X, X1, and X_ give
a contribution of at least 2cp. O

We now observe that the energy V,(D,) of any crystalline configuration D,, is
bounded below by —6¢rn plus a positive deficit due to the boundary of D, where
atoms have less than 6 film bonds and could have a bond with the substrate.

Lemma 4.2 If (32) holds, then there exists A > 0 such that
Vu(Dyp) = —6cpn + A#9D, 43)

for every crystalline configuration D,, C Lp. Furthermore, the following two asser-
tions are equivalent:

(i) There exists a constant C > 0 such that #3D,, < C/n for everyn € N,
(i) There exists a constant C' > 0 such that E,(up,) < C' for everyn € N.

Proof We begin by observing that from (18) and (21) it follows that

6crn + Vy(Dy)

Z Z vrr(lx —y) +6¢cr | + Zvl(x)

xeDy \yeDy\{x} x€Dy

= Y Eoe® + Y '@
xeDy, xeDy

> Y Ewip) + Y Enc(x), (44)
xeD,NILFs xeD,\S(LFs)
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where
S(LFps) =Sp,(0LFs) :={y € Sx) : x € D, N ILFs}, (45)

because v!(x) = 0 for every x € D,\dLFs and the careful choice of the weights
in (22), (23), and (24) with (25). More precisely, we notice that for every point in
D,, NdLFs the local energy Ejoc(x) is counted at most once. The weights w (x4 )are
instead chosen so that the local energy of x. is fully counted if X+ do not belong to
the next strip and only half in the other case. Thus, these weights are also at most one.
We now observe that

> Eic(x) = cp#@D\SOLES)) (46)
xeD\S(OLFs)

because Ejoc(x) = O for every point x € D,\S(dLFgs) that does not belong to 9 D,,

where at least one bond is missing by definition.
Therefore, by (44), (46), and Lemma 4.1 we obtain that

6crn + Va(Dp) = Y Eaip(t) + Y Eie(®),

XEDnﬂaﬁFS XED,I\S(GEFS)
= Astrip#(Dn NILFs) + cr#(0D,\S(0LFs))
A
> min{ z”p,cF} #3D,, (47)

where in the last inequality we used that #S(0LFs) < 6#D,, N dLFs. The assertion
now easily follows from (47) by choosing

A .
A= min{ S6mp,cF} > 0,

where we used (32).
To prove the last assertion, we observe that assertion (i) implies (ii) since by (17)
and (33)

\/EEn(/iDn) = Vu(Dy) + 6¢cpn < 6¢p#d Dy,
where in the last equality we used the definition of d D,,. Furthermore, also by (43),
A#IDy, < Vy(Dy) + 6cpn = \/;En(MDn)
and hence, assertion (ii) implies (i). O
In view of the previous lower bound for the energy of a configuration D,,, we are
now able to prove a compactness results. We notice that to achieve compactness the
negative contribution coming at the boundary from the interaction with the substrate

needs to be compensated. This is not trivial, e.g., in the case 6¢cr > cs > 4cp, where
atoms x of configurations on d Lrg have one bond with a substrate atom and at least
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two bonds with film atoms missing. A way to solve the issue is to look for extra positive
contributions from other atoms in the boundary. However, just looking for neighboring
atoms might be not enough, e.g., in the case with epg = es = 2 or eps = eg = %
The issue is solved in the proof of the following compactness result by introducing a
new non-local argument called the strip argument that involve looking at the whole
strip S(x).

We conclude the section with compactness results for sequences of almost-
connected configuration (see Sect.2.4 for the definition). We remind the reader that
by the transformation defined in Definition 2.1 for any configuration D,, there exists
the almost-connected configuration 5,, such that V,, (5,,) < Vu(Dp).

Proposition 4.3 Assume that (32) holds. Let D,, € C,, be almost-connected configura-
tions such that
V(D) < —6¢cpn 4 Cn!/? (48)

for a constant C > 0. Then, there exist an increasing sequence n,, r € N, and a

measure 1 € M(R?) with > 0 and w(R?) = 1 such that i, A w in M(R?),
where W, := [Ap, (-+a,,) fOr some translations a, € R? (see 14 for the definition of
the empirical measures wp, ). Moreover; if D, € Cy are minimizers of V,, in C,, then
we can choose a,, = t,t| for integers t, € 7.

Proof We follow the approach of Au Yeung et al. (2012, Proposition 3.2) with the
necessary modification to include almost-connected configurations, which are not
necessarily connected. In the following we denote by B(x, R) an open ball of radius
R > 0 centered at x € R? and we define B(R) := B(o, R) where o is the origin in R2.
We want to show that there exists R > 0 such that D,, C B(R) (up to a translation)
for every n.

To this aim we denote for any D,, its k := kp, connected components by D!, for
i =1,...,k. We define the sets

Q; = U Vrune (X),

xeDi,
fori =1, ..., k, where
Virune (X) 1= v(x) N B(x, q)

with ¢ defined in _(13) and v(x) denoting the (closed) Voronoi cell associated with x
with respect to D}, i.e.,

v(x):={y eR? : |y —x| < |y — x| forallx’ € D \{x}}, (49)
and we observe that by construction and the convexity of v(x),
[0Vgrune (X)| < 2g7. (50)
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We claim that 2; are connected. Indeed, if x, y € D, are such that [x — y| = 1, then
it is easily seen that the midpoint on the line that connects x and y belongs to both
v(x) Nv(y) and B(x,q) N B(y, q). The second inclusion easily follows from (13)
while the first inclusion follows from the triangular inequality (it is impossible that
for some z € D, itis valid

xX+y
- — 1/2
z 2 <1/

since then by the triangular inequality z would be distant from both x and y less than
one).
We now claim that also

= U Virune (%)

xeDy,

is connected. This follows by showing that €2; and U;;{Ql are connected for i =
2, ..., k, which in turns is a consequence of the fact that by definition D}, is separated
by at most ¢ from Uf;]l Dfl fori =2, ..., k.In fact, by the same reasoning used in the
previous claim applied this time to two points x € Di and y € Uf_} Dl chosen such
that |x — y| = dlst(D’ U’ 1Dl ), where dist(A, B) with respect to two subsets A and
B of R? denotes the dlstance between them, we can deduce that (x 4+ y)/2 belongs to
both v(x) Nv(y) and B(x q) N B(y, q), which yields the claim. Since the interior of
the set €2, denoted by < is open, connected, of finite measure, and satisfies Ql=Q,
where Q! denotes the set of points in R? of density one for €2 (Ambrosio et al. 2000),
we have that (see Dayrens et al. 2019, Remark 2.2 and Lemma 2.13)

1
diam(Q2) < §|8§2|.
Therefore, we have that

1
diam(D,) := max |x—y| < diam(Q) < —|asz| <= ) 3vune(x)| < Tg#ID,
x,y€Dy 2
xedD,

(51
where diam(A) of a set A is the diameter of A and we used that €2 is connected in the
second inequality, that if x € D, has 6 film neighbors, then by elementary geometric
observations Viync (x) N 32 = ¥ in the third inequality, and (50) in the last inequality.

Finally, from (48), (51) and Lemma 4.2 we obtain that

C
diam(D,) < % n'/?

and hence, by (14) there exist translations w, of wp, such that suppu, C B(R) for
some R > Cmq/2A and for every n. Therefore, since |up, |(R?) = 1 for every n,
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by Ambrosio et al. (2000, Theorem 1.59) there exist a subsequence (n,), € N and a
measure € M(R?) such that i, A w in M(R?). Furthermore, i > 0 and

w(R?) < lim p, (R = 1.

In order to conclude the proof it suffices to prove that £ (R?) = 1, and this directly
follows from the fact that the support of s, are contained in a compact set of R?. The
last claim follows from the fact that if D,, € C, is a minimizer of V,, then we have that
T1(Dy) = Dy, i.e., all connected components of D, are connected with the substrate
and D, is almost-connected. O

The following compactness result is the analogous of Au Yeung et al. (2012, The-
orem 1.1) in our setting with substrate interactions.

Theorem 4.4 (Compactness) Assume (32). Let D,, € C, be configurations satisfying
(48) and let 1y, := 7 (p,) be the empirical measures associated with the transformed
configurations T (D) € C, associated with D, by Definition 2.1. Then, up to trans-
lations (i.e., up to replacing i, by i, (- + ay) for some a, € R?) and a passage to a
non-relabeled subsequence, |1, converges weakly * in M(R?) to a measure ;1 € My,
where My is defined in (35). Furthermore, if D,, € C, are minimizers of V, in C,,
then we can choose a, = t,t for integers t, € Z.

Proof We begin by observing that the transformed configurations 7 (D,,) of the config-
urations D, are almost-connected configurations in C, since they result from applying
transformation 75, and that

V(T (Dy)) < Va(Dn), (52)

since no active bond of D,, is deactivated by performing the transformations 77 and 7,
(see Definition 2.1 for the definition of 71 and 7). Therefore, in view of Proposition 4.3
by (48) and (52) we obtain that, up to a non-relabeled subsequence, there exist a,, € R2
and a measure pu € M(R?) with u > 0and ,u(]Rz) = 1 such that

WT (D) (- + an) ="

in M(R?). We can then conclude that . € My by directly applying the arguments
in the proof of Au Yeung et al. (2012, Theorem 1.1). O

We notice that, if the sequence D, € C, is a sequence of almost-connected con-
figurations, then Theorem 4.4 directly holds for D, without the need to pass to the
associated transformed configurations 7 (D,,) given by Definition 2.1.
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5 Lower Bound

We denote by / »3(x) the interior part of the Voronoi cell associated with every
x € Lr with respectto L, i.e.,

By @) i={y e Ry — x| < |y =¥/ forall ' € £p\(x)]

that is an open hexagon of radius 1/+/3, and by v(x) its scaling in Lr/Jn,ie.
(53)

Given a configuration D,,, we consider the auxiliary set H,, associated with D,, which
was introduced in Au Yeung et al. (2012) and defined by

Hy = | o). (54)

xeD,

The boundary of H, is given by the union of a number M € N (depending on D,,) of

closed polygonal boundaries P, ..., Py. For k = 1 , M we denote the m; € N
vertices of Py by v]f, e, vk and we set vkarl = v] , SO that
mg

Py = U[vlk-i-]’ vf]

i=1

where [a, b] denotes the closed segment with endpoints a, b € R2. Notice that each
my, is even and that we can always order the vertices so that

1
vlz(l- € VZF = ( [(tl +t) + \/_E )

and

1
k o
v2l—l EF <3f( 1 — 2) ﬁ F)

(see Fig. 4). To avoid the atomic-scale oscillations in d H, between the two sets of
vertices V and V£ , we introduce another auxiliary set denoted by H,, where such
oscﬂlatlons are removed by considering only the vertices in one of the two sets, say
VLF as depicted in Fig.4. More precisely, the set H, C R? is defined as the unique

set with D, C H,, such that

M
ol = J /. (55)
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0Ls
\/ﬁ

Fig.4 A configuration D, /+/n is depicted with scaled Voronoi cells v(x) for every x € D,,. The boundary
of Hy, which in this example consists of two polygonal lines (one “internal” and one “external”), is indicated
with a dashed black line while the boundary of H,, with a continuous red line

o . .

where

my /2
r Kok
Pli= [ 15ips 5l
i=1

It easily follows from the construction of the auxiliary sets H, and H,, associated
with the configuration D,, that

#0D,,
8nv/3’

|Hy AH,| < (56)

and
#3D
HYBH,) — HYOH))| < 2V/3 ﬁ". (57)
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In the following we use the notation

" 0L s n LF
a[,FS = 7, 8£F = W

For every point y € 9L’ we denote its left and right half-open intervals with length

1/(2y/n) by

If = |:y,y+%) and I := (y—ﬁ,y],
respectively, and we associate with y € 9L, the set
0} =0, uoT,
where O,f’i, fory € L% is
O,f’i = {I;E xR:yedllf}
The oscillatory set O, (see Fig. 2) is defined as

o= |J oi (58)
YEILs

Here O, is the oscillatory set that consists of union of stripes of width 1/,/n and
infinite length that correspond to the possible positions of film atoms at the place
Xy = "’Lj that are at distance eLj from some of substrate atoms. v H) is a normal at the

Vn NG

boundary.

The following lemma will help in the proof of the lower-semicontinuity result. It is
a simplified version of the proof of Au Yeung et al. (2012, Theorem 1.1) and we give
it for the sake of completeness. We recall that p := 2/+/3.

Lemma 5.1 Let D, € C, be suchthat E,(up,) is bounded, where up, is the empirical
measure associated with D,,. Let H,’l be defined as above. Then, we have that (up, —

*
pxu, — 0.
Proof 1Tt is easy to see that

*

up, = pxu, = 0.

Namely, for ¢ € Cy (R?%), where Co(IR?) denotes the set of continuous functions with
compact support in R?, we have that

/wdﬂDn_f PXH,Ydx
R2 R2

<23 s (e - = |
= =

xeD, xeD,

— 0,
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as n — oo. From estimate (56) and Lemma 4.2 we have that pxn, — pxu; — 0
strongly in L', from which we have the claim. O

Before proving the lower-semicontinuity result we give one simple lemma.

Lemma5.2 Let Q@ C R be an open set. Let k, and , be two sequences of finite
(positive) Borel measures on the o-algebra on 2 denoted by B(R2) such that:

(1) sup,en(un(£2) + Kkn(2)) < 00,
(1) (kp)n is uniformly absolutely continuous with respect to (iy),, i.e., for every
& > 0 there exists 5§ > 0 such that

un(A) <8 = Ky(A) <e,

forevery A € B(R2) andn € N.

k *
If there exist Borel measures k and p on B(S2) such that k,, = k and p, — [, then
Kk is absolutely continuous with respect to (L.

Proof Take A C € such that u(A) = 0. Since « is a regular Borel measure it is
enough to prove that k(K) = O for every K C A, K compact. Take an arbitrary
K C A compact and ¢ > 0. By regularity of u there exists U C X open such that
A C U and u(U) < 8, where § is given by (ii). For every x € K we find a ball of
radius r, such that u(dB(x, ry)) = 0and B(x,ry) C U. Since K is compact we can
find a finite number of balls (B(x;, ry;))i=1,....» that cover K and we define an open
setVCUasV := U?ZIB(xi, ry;). Obviously n(dV) = 0. We have that u(V) < 6
and u, (V) — w(V). Thus, there exists ng € N such that u, (V) < §, Vn > ng. But
then we have that «, (V) < ¢, Vn > ng. By the definition of weak star convergence
we also have that

k(K) <«(V) <liminfk,(V) < e.
n—oQ

The claim follows by the arbitrariness of ¢. O

The following lower-semicontinuity result for the discrete energies E, is based on
adapting some ideas used in Alberti and De Simone (2005) and Fonseca and Miiller
(1993).

Theorem 5.3 If{D, } is a sequence of configurations such that

*

KD, — PXD
weakly* with respect to the convergence of measures, where [Lp, are the associated
empirical measures of D, and D C R?\S is a set of finite perimeter with |D| = 1/p,
then

liminf E, (11p,) = E(D). (59)
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Proof Let{D,} C C, be a sequence of configurations such that jtp, A pxp weakly*
with respect to the convergence of measures, for a set D C R?\S of finite perimeter
with | D| = +/3/2. We focus on the case g # 1 only, since the other case is simpler.
Without loss of generality, we can assume that the limit in the left hand side of (59)
is reached and it is finite, and hence there exists C > 0 such that E,(up,) < C for
every n € N. Then, by the second assertion of Lemma 4.2 there exists C’ > 0 such
that #0 D, < C'+/n for every n € N, from which it follows that there exists a constant

C” > 0 such that
- s H'@H)) < C" (60)

for every n € N. Therefore, up to a non-relabeled subsequence, pxp; weakly
converges in BV]OC(Rz) to a function g € BVloc(R2). Since, up to extracting an

extra non-relabeled subsequence, up, — pxu; X 0as proved in Lemma 5.1 and

* . *
Up, — pxp by hypothesis, then g := pxp and pxu; — pxD-
We observe that by (17), (33), and (55) we have that

1
En(up,) =2crH' (9H,) — csM!' (aH,; N {yz = % — w_} N 0n> . (61)
n

where O, is the oscillation set defined in (58). To check the validity of the above for-
mula, one easily sees that the second term comes from those atoms that are connected
with substrate atoms (for each such atom a € D, the set H, contains the segment

v(a) N {yz = % - #ﬁ] of length 1/4/n, see Fig. 4). For any other atom a € D,
one needs to see which neighboring atoms are missing. For example if all six neighbors
are missing, then d H,, contains the triangle with sizes 1/4/n contained in v(a), whose
sides are parallel to vectors ¢1, £2, t2 — t1, and on their unit normals the function I"
takes the maximal value 2c . If the atom a € D,, is missing the neighbor a — #;, but
neighbor a + (¢1 — ¢2) belongs to D,,, then 8H,’, contains the segment of size 1/4/n in
v(a — t7), parallel to the vector £ — ¢>. We associate one half of such segment to the
atom a, while the other half to the atom a + (¢ — ¢»), who is also missing a neighbor.
The value of the function I' is also 2c¢y on the unit normal to the vector £ — £2. On
the other hand, if @ € D,, is missing both of its neighbors a — ¢», a + (¢1 — t»), then
9 H, certainly contains the segment of size 1/,/n that belongs to v(a) and is parallel
to the vector #1. Therefore, the value of the function I" is 2cf on the unit normal to
the vector #1.

Fix § > 0 and consider in this proof the notation y := (yi, y2) € R? for the
coordinate of a point y € R%. From (61), it easily follows that

En(up,) = 2crH (3H, N {y2 > 8}) + 2crH (BH, N {0 < y2 < 8})

ers 1
—esH ' [0H Ny, = =22 — no
“ ( " {” Jn 2¢3n} )
- / [ ug)dH + 2eH OH] 010 < 32 < 8))
IH!N{yy>5) !

1
—cH1<aH,’m{ =eis——}mo>,
S P 2]
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where in the second equality we used the definition of I" (see (27)) to see that

t1+to tr — 2t
C(*t) =T[4+ =T+ = 2crF.
=) < 73 ) ( NG ) °r

By Reshetnyak’s lower semicontinuity (Ambrosio et al. 2000, Theorem 2.38), we
obtain that

lim inf f I'(vy)dH' > liminf / Ty )dH'
=00 JyH! N {x;>6) " =00 JoyH NB(R)N{x2>8) "
2/1 I (vp)dH!',
0* DNB(R)N{xy>6}

for every ball B(R) centered at the origin and with radius R > 0, since xp; converges
weakly* in B Vi (R?) (and thus strongly in Llloc) to xp, and hence, by letting R — oo,

n—o0

lim inf / F(vg)dH' > / T'(vp)dH'. (62)
IH!N{xy>8) " 3* DN{x2>8)

We claim that for all § > 0 small enough

lim inf [ZC’FHl(aH,/l N{0 <y <68)) — cgH! (aH,/, n {yz _ers 1 } n 0,1)}
n—
z(%p—ﬁ)nkwumba=m> 63)
q

and we notice that from (62) and (63) we obtain

liminf E,(up,) > /
n—oo

I'(p)dH' + (2cF — C—S) H'(9*D N {xy = 0}),
9* DN{xp>8} q

from which (59) directly follows by letting 6 — 0. To prove the claim (63), we fix
8 > 0, we introduce the Borel measures k1 ,, k2 ,, and «, defined by

K12(B) :=H'(@H,N{0 <y, <8} NB),

1
2.0 (B :=H1<8H’ﬂ{ =€LS——}00 mB),
2,n() n y2 \/ﬁ 2@ n

kn(B) := 2cpK1,4(B) — cska n(B),

forevery B € B (R?%), where B(A) for a set A denotes the Borel o-algebra on A, and
we consider the sets

Om: =[-M,M]x[0,8], Oum:=(—M, M) x[0,8], and
0% = R x[0,8D\Qum.
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We divide the proof in three steps:
Step 1. In this step we prove that for every M > 0 we have that

liminfx, (Qn) = Cep — Cq—S)Hl(a*D N{x2=0}NOwn). (64)

By (60) we conclude that, up to extracting a non-relabeled sub-subsequence (for an
arbitrary a priori chosen subsequence in n), for fixed M > 0, there exist Borel measures

M M KoM X oM X
k1" and k5" such that k1 »|g,, k1" and k2.0l k5" . Consequently, k,|g,,
2cpk! — s . By uM, we denote the measure

M) =H' {y2 = ers/v/n—1/2¥3m)) N QN >-).

By using Lemma 5.2 (applied to measures Ké”n and u,’:” ), we conclude that Kﬁ” is
absolutely continuous with respect to the Borel measure

pMO =H ({2 =01n0nN") (65)
and we denote its density with respect to u™ by §2M . The measure « {V’ might not be
absolutely continuous with respect to 1ty . We denote the density of its absolutely

continuous part with respect to u™ by §1M . To conclude the proof of (64) we need to
show

C o
2epc (1) — est (1) = 2cp — ES for (y1,0) € 3*D N O, (66)
2ercM (1) — eseM(y1) = 0, for H' ace. (y1,0) € (3S\d*D)N Oy (67)
We begin by showing (66). Take y" = (y],0) € 3*D N O and denote by Q. (') the

square centered at y’ with edges of size ¢ parallel to the coordinate axes and QF (y) :=

0:(y) N {y2 > 0}. We assume ¢ > 0 is small enough such that 0} (') C QM. By
standard properties (see, e.g., Ambrosio et al. 2000, Example 3.68) we conclude that

. 1
lim —/ Ixp(z) — 1|dz = 0.
0 ()
Since xy; — xp asn — ooin Ll(Qj(y/)) for £ > 0 fixed we conclude that

1 1
lim lim —2/ | X (z) — 1lldz = lim—/ xp(z) — 1|dz = 0.
07 () e 07 ()

e—>0n—>0o0 g 0 82

Thus, for every 0 < o < 1 there exists 0 < g9 < % such that

liminf |[H N QF ()| = %82, Ve < go.

n—o0

@ Springer



Journal of Nonlinear Science (2022) 32:32 Page330of55 32

Next we define the sets Q%(y) := Q. (") N {y2 = 0}. We have that
timinf 7' ((1,0) € Q20 : () x RN H, £ 0)) z . (68)
We look at the “lower polygonal curve” ¢, of H, defined by:

Con ‘= U pé,n(x)y

’
X€H,

where py , = (pc} 2 (), pg 2 (X)) € 9 H, is the projection function given by

p},n(x) = X1, p?ﬁn(x) ==inf{ys > 0: (x1, y2) € H,}

for every x = (x1,x2) € H,. Then, {(y1,0) € Q2() : ({y1} x RT) N H,, # ¥} =
w1 (cen)N Qg(y’), where 71 is the projection of points of R2 onto {y2 = 0} and hence,
by (68)

timinf 7' (1 (cen) 1 Q2)) = e (69)

Furthermore, notice that ¢, is a union of segments of length 1/4/n, each of them

associated with an atom belonging to D,,. In the cube Q. (y’) there are k (n), ki (n) <
rafne

1, horizontal segments of size 1/4/n that both belong to ¢, and correspond to an

atom of D,, bonded with a substrate atom. Thus, they contribute by ! (”) < ffg'| \1[

to the length of 71 (c¢n) N Qo(y ). We have that lim,,_, |'*/>8 £. We denote

&=
by ka(n) the number of segments in ¢y, of size 1/4/n that are not computed in the
k1(n) segments. From (69) it follows that

hmmf/c,,(Qg(y ) > hmlnf <I%(2 CcF —cs) + i;;)ZcF)

= (1/qQcr —cs) + (@ — 1/g)2cF) &. (70)

Next we take a sequence in (¢), still denoted by (e) such that for each member of
the sequence we have x1(3Q:(¥")) = k2(3Q:(y")) = 0. By the standard properties
of measures (see Evans and Gariepy 2015, Section 1.6.1, Theorem 1) and (70) we
have

M Ny M l
ché'lM(y/) _ CSCQM()’/) — IER) ZCFKl (Q:(y")) CSky (Q:(y")

&

0 (Qe(y")
e—~>0n—o00 &
> 1/qQcr —cs) + (@ — 1/q)2cF.
By letting « — 1 we have (66).
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It remains to show (67). Let y' = (y],0) € Owm\0*D. Notice that by standard
properties of BV functions H! a.e. (y;, 0) that does not belong to 3* E, belongs to the
set of density zero for D (see Ambrosio et al. 2000, Theorem 3.61), i.e.,

e—>0n—00 g e—0 82

1 1
0¥ () 0+ ()

Thus, for each a > 0 there exits g9 > 0 such that

limsup |H, N O (y)| < ag?, Ve < g. (71)

n—oo

We need to pay attention to the atoms y’ that are bonded with substrate atoms, whose
deficiency contribution (recall 19) can be negative and as low as 2cr — cg.

The proof consists in showing that for n large enough the total “energy deficiency”
on the cube Q. (y’) is actually positive, since there is “not much of set D” in the cube
Q:(y"). We define

oL D,
Kne(y) = ﬁ N Q)N NG

Fix agp € Kp.¢(y") and denote by a_; and a; the closest points to ag in dLp//n
on the left and on the right of ag, respectively. We consider the set

a0 ._ 40,1
op = |J o,
i=—1,0,1

where 027! .= 02t 0@l .= 08~ and 090 := 0%, and we denote its
projection onto 35 by P°. Notice that H! (Py°) = 2//n. We claim that

lim sup H! U Pl | < l6ae

n—oo ~
ao€Kn,e (')
where
Roe(y) = {ao € Kno(y) : 3i € {—1,0, 1} such that [0 N H! N Q. ()| > i}
8y/n
Indeed, as a consequence of (71) we have

#K, . (v) < 8ae/n+ 1 (72)
and hence, by (72) we have

~ 1

M a
> k(0P = —[2cr — cs|(8ae/n + ])W' (73)

aOEEn,e(}'/)
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We now fix ag € Kn,g(y’)\f{dn,g(y/) such that ag is neither the first left nor the last

right atom in K, .(y’) and show by a simple analysis of the atoms a;, i = —1,0, 1
that 3
H'(OH, N Qe(y) N Of) = —= (74)
Jn

which immediately in}Plies that for ap € K, ()’ )\I? n.e(y') the energy contribution
of the strip Q¢ (y") N Oy° for every ¢ > 0 is positive and so,

#(Kne O\Kne ()
NG >

> kM (O) = (6cr — cs) 0. (79

a0€Kn e (V)N\Kne (V)

To prove (74), we analyze the three possible cases:

(1) both of the strips 0%~ and 5,70’“ have empty intersection with H,;
(2) one of the strips 0%~ and 0%*! has empty intersection with H, ;
(3) none of the strips O,‘fo’*] and 0,‘110’+1 has empty intersection with H,;

In the first case we have that ap does not have neighbors and hence, there is a part
of dH,, of length 3//n (perimeter of the equilateral triangle with side of size 1/y/n)
that surrounds ao, i.e., belongs to v(ag) N dH,. This proves (74) in the case of (1).
For the second case we suppose without loss of generality that the interior of the
strip of 5,’:0’_1 has empty intersection with H,,. We take the atom x{ that belongs to

D,N/n 0% T thatis the lowest and neighbor of ag and the atom x5 € D, Nyn ot
that does not have at least one of the two of his upper neighbors. If the first atom does
not exist it is easy to see that (74) is satisfied, and the second one exists by the fact that
ap € Kn,s(y/)\lgn,g(y’). It is easy to see that (74) is satisfied also in this case since
we have contribution of 2/./n from v(ag) N d H,,, where v is defined in (53), and at
least 1/(24/n) from

() Uv (xf — t2) Uv (3} + (1 — £2))) N O N g H,,

and at least 1/(24/n) from v(x}) N 5,?°’+1 N dH,; in the case when x| = x} we have
the contribution of at least 1/4/n from

(v U (x] — £2) Uv (x] + (¢ — £2))) N O~ N H),.

In a similar way in the third case, we find atoms x{, xé € D, N n ’OV,?O’H and

x{, x5 € DyNn 5,70’“ for which there exist contribution of 1/4/n coming from
v(ag) NdH,, 1/4/n coming from

[(v(xf) Uv (xf — t2) Uv (xf + (t) — tz))) 05;‘0""1 N 8H,/l]

U @) N o+ naH)),
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and 1/4/n coming from

|: (v(xi) Uv (x{ - t2) Uv <xi + (t) — t2)>) n 5,‘,‘0’_1 N BH;]
U (u(xh) n 0%~ naH)).

The rest of the energy deficiency that is inside the strip is positive. From (73) and (75),
we conclude that

2ercM(Qe () — esc(Q: ()
&
e (07
= lim lim ——~~
g—~>0n—00 &

> —8|2cF — csla.

2ereM(y) — ese () = 812)1})

By letting « — 0, (67) follows.

Step 2. In this step, we deduce (63) from the inequalities (66) and (67) proved in
Step 1. It suffices to show that for every ¢ > 0 there exist My > 0 and ng € N such
that

kn(QYy) = —¢ (76)
for every M > My, n > ng.To establish (76) fix ¢ > 0 and choose My > 0 and

large enough so that the following three assertions hold:

(1) 1D N Q%] < 75559

) |(D N Qu)AH, N Omty)| < z55:88, Yn = no,

(3) |HyAHy| < g5=28,n = ng.

Notice that such M and n exist since (1) is trivial for large My, (2) follows from the

BVjoc-convergence of pxy, to pxp , and (3) is a consequence of (56). By (2) and (3)
and the fact that

V3
|Hal = D] = -,
we have that :
|H, N QY| < ——e8, YM > My, Vn > ny. (77)
16¢g
We define

aEFS D,
K = nos,N—.
n,M \/,; QM ﬁ
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Following the same idea of the previous step the proof consists in using the fact that
“there is not much of the set D outside Q" and hence, the energy deficiency outside
QO 1s small, for n large enough.

From (77), it follows that the set I?,,, m defined by

~ ~ )
Koy = {a € Ky m : 3o € {—1, 41} such that |OF* ﬂH,’l N (R x [0, §])] > V}
n

is such that
~ 1
#Ky oy < —/ne + 2,
2cs

and hence

H | U <a—La+L> <2 (78)
= 2\/71’ Zﬁ s

aekK, m

for every n > ng. Since following the same argumentation of the previous step the
energy deficiency associated with points in K, M\I? n.M 1s shown to be positive, from
(78) we easily conclude (76) for every M > My and n > ny.

Step 3. Claim (63) is an easy consequence of Step 1 and Step 2. More precisely,
from Step 1 and Step 2 we have that for every & > 0 there exists My > 0 such that

lim inf &, (Rz) > liminf k, (Qum) + liminf «, (QY,)
n—oo n—o0 n—o00
> (ch _ C—S> H'G*E N {2 = 0} N Q) — ¢
q

for any M > My, where we used (64) and (76). By letting M — oo and using
arbitrariness of £ > 0 we obtain (63).

6 Upper Bound

The proof of the upper bound follows from the arguments of Au Yeung et al. (2012)
by paying extra care to the contact with the substrate.

Theorem 6.1 For every set D C R?\S of finite perimeter such that |D| = 1/p, there
exists a sequence of configurations D,, € C, such that the corresponding associated
empirical measures | p, weakly* converge to pxp and I,(up,) — E(D).

Proof The proof is divided in 5 steps.

Step 1 (Approximation by bounded smooth sets). In this step we claim that: If
E C R2\S is a set of finite perimeter with |E| = 1/p, then there exists a sequence of
sets (E;) jen with E; C RZ\S for j € N such that the following assertions hold:
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) |Ejl=1/p;
(ii) E; are bounded; B
(iii) there exist sets E ; C R2 of class C™ such that E i =E } N R2\S);
(iv) |[E;AE| — Oas j — oo;
) |Dxe;|(R*\S) — [Dxg|(R*\S) as j — oo
(vi)
/ F(ij)d7'-(1 — I‘(\)E)dHl as j — oo; (79)
*E;N(R2\S) 9* EN(R2\S)
(vii)
HYI*E; N3S) — HY(D*ENJS) as j — oo. (80)

We now construct the sequence of sets (£ ;) jen that satisfy (ii)—(vii) and observe that
then (i) is easily obtained by scaling. Let E’ C R? be the set determined from E by
reflection over 9 and note that

HY(B*E' N 3S) = 0. (81)

By Maggi (2012, Theorem 13.8 and Remark 13.9) we find smooth bounded open sets
E; C R? that satisfy |E;AE'| — 0and

IDxe |(R?) — | Dypr|(R?). (82)

We define E; := E ; N (R?\S) and we claim that the sets E ; satisfy (ii)-(vii).
We begin by noticing that (ii)-(iv) are trivial. To prove assertion (v) we begin to
observe that

IDxe/|(R2\S) < liminf [ Dy |(R*\S), (83)
J—>0o0
|Dxe|(8) < liminf [Dyr [(S). (84)
Jj—>00 J
|Dxer(8S) = 0 < lim inf | Dy |(3S). (85)
Jj—00 J

where we used (81) and (82), and hence,

IDxe |(R?) = |Dyxp/|(RP\S) + |Dxe|(S) + |Dxer|(3S)
< liminf |D g |(R*\S) + liminf | D x| (S) + lim inf [ Dz |(35)
J— 00 J Jj—>00 J J—00 J

< liminf Dy |(R?) = | Dyp|(R?).
Jj—o00 J
Since this can be done on an arbitrary subsequence we have

IDXEI®A\S) = |Dye|(B\S) = lim [Dyp; |(R\S) = lim Dy, |(R\S).
(86)
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since by the definition of E’ and E; we have that Dxz(A) = Dxg(A) and
Dxpi (A) = Dy, (A) forevery A € B(R2\S).

Assertion (vi) is a direct consequence of the Reshetnyak continuity theorem
(Ambrosio et al. 2000, Theorem 2.39).

To prove assertion (vii) we will first claim that for almost every M > 0

HI(BEJ- N (=M, M) x {0}) - H' (3*E N (=M, M) x {0}). (87)
To prove claim (87) we observe that for almost every M > 0 we have
IDxer | ({=M} x R) U ({M} x R)) =0.

In fact the set of M > 0 where this condition is not satisfied is at most countable. As
in the proof of (v), we conclude that for all such M > 0 we have

|DxE;| (=00, =M) x RT) — [Dyg| ((—o0, —M) x RY), (88)
IDxEg;| (M, +00) x RT) — |Dxg| (M, +00) x RT), (89)
|DxEe;| (=M, M) x R") — |Dxg| (—M. M) x R"). (90)

We then notice that (87) is a consequence of continuity of traces and (90).
We now make the second claim that

lim lim H' (9E; N (=00, —M) x {0}) =0, 1)
M—00 j—00
lim lim H' (3E; N (M, +00) x {0}) =0, (92)

M—00 j—00

where the limitin M is taken over sequence of M that satisfy (88)—(90), which together
with (87) yields (vii) since

H'B*EN3S) = Jim H'D*E N (=M, M) x {0})
—00
= lim lim H'(3E; N (=M, M) x {0})
M—o00 j—o0

= lim H'(DE; Nd5S).

Jj—o00
We prove only (91), since (92) goes in an analogous way. It is enough to show that

H' (E; N (=00, —=M) x {0}) < |Dyg,|((—o0, —M) x RY), (93)
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and apply (88). Estimate (93) can be seen by taking ¢ € C.(R?), ¢ = t3 on some
open set F such that E; N (—o0, —M) x R* CC F, in the identity

/ (VE;n(=00,—M)xR+> P)dX :/(DXEjﬁ((—oo,—M)XR+)v(p>dx
d(EjN(—o0,—M)xR+) F

= /FXE,ﬂ((foo,fM)xR*-)diVQDdx =0.

From this it follows that

/ (VE;N(—00,— M) xR+ t3)dH!
3(EjN(—00,— M) xR+) Ny >0}

=H" (3 (E; N (=00, —M) x RT) N {xp = 0}),

94
where we used the fact that
VE;N(—00,—M)xR+ = —I3, H' almost everywhere on x, = 0.
Therefore, by (94) and since
VE;N(~c0,—M)xR+ = L1, H' almost everywhere on x; = —M.
we obtain
H' (3 (E; N (=00, —M) x RT) N {x2 = 0})
<H' (3 (E; N (—00, —M) x RY) N (=00, —M) x RY). (95)

Notice that
3 (Ej N ((—o0, =M) x RT))N (=00, —=M) xR* = 0E;N(—00, —M) xR, (96)

which together with (95) implies (91), since

H' (8 (Ej N (=00, =M) x RT) N (=00, =M) x RT) = [Dxg,|((—o0, —M) x RT),

see (Ambrosio et al. (2000), Chapter 3.3). This concludes the proof of (vii).

Step 2 (Approximation by polygons). By Step 1, we can assume that E CC B(R)
is smooth and bounded. Furthermore, for such £ we can construct a sequence of
approximating polygons P; by choosing the vertices of each P; on the boundary of
E in such a way that |P;AE| — 0,

f I'(vp)dH' — / C(ve)dH',
dP;N(R2\S) IEN(R2\S)
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and
HY(@P; N3S) - H'(IENDS),

so that
E(Pj) — E(E). 97

Step 3 (Approximation by polygons with vertices on the lattice). In view of previous
steps and the metrizability of the unit ball of measures (where the norm is given by
total variation) induced by the weak* convergence, by employing a standard diagonal
argument and (97), we can assume, without loss of generality, that E has polygonal
boundary. We now approximate such polygonal set E, whose number of vertices
we denote by m € N with a sequence of polygons E, characterized by m vertices
belonging to

1
L’fl: = EEF

More precisely, let E,, be the polygon with vertices the set of m points in \/iﬁﬁ F

closest in the Euclidean norm to the m vertices of E. Notice that the angles at the
vertices of E, approximate the angles at the vertices of E, |E,AE| — 0,

f T(vg,)dH' — / I'(vg)dH!
AE,N(R2\S,) IEN(R2\S)

and
HYDE,N3S,) — HY(DENDS).
where S, is defined in (29). Therefore,
En(Ep) — E(E), (98)
where &, is defined in (28). Furthermore, there exist o, N\, 0 and B, N\, O such that

V3
|Enl = —-

S |=on and [H Y (DE,) — H'(DE)| = Bn. (99)

We can assume that d E,, N 35, is a union of segments of length strictly greater than
zero. Obviously, their number is bounded, independently on 7.

Step 4 (Discrete recovery sequence). Let us now consider the sequence of crys-
talline configurations D, := /n (LN E,), and notice that KB, weakly* converges
to p xg. Furthermore, from the definition of scaled Voronoi cells v(x) of x (see (53))
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it follows that

#5n—n=%2|v<x>|—n=% > |v(x>|—n+% > el

xeD, xeD,\dD, xedD,

and hence, since for every x € 5n we have |v(x)| = V3 /(2n),

~ 2 ~
|#D, — n| < —aun +#3D,

3

< %ann + C(H'E) + B)vn (100)

for some constant C > 0, where in the last inequality we used (99).
We now claim that

Vn(ﬁn) + 6CF#5n
Jn

=&n(Ep) +o(1), (101)

where 17,1 is the generalization of V,, (see 10) to configurations with a number of atoms
different than n, i.e.,

k
Va(Dy) := Y vrr(di —djl) + Y v'(d),

i#j i=1
for every configuration Dy := {dy, ..., dr} € Ci. The claim easily follows from the
observation that each side S , of E,, k = 1, ..., m, for n large enough, intersects

\N/ﬁ(F(vskyn)/cF)’IN-ll(Sk_n)—i—O(l)segments suchthat |z —z2| = 1/4/nand (z1, 22) €
D, /s/n X (LE\(Dn/ »/n)) and from the observation that

Y vl = -SRI GE, N85S, + (1) (102)
xeJn#D, 1

To see the first observation, we begin by considering a segment L = (x, y) with
endpoints x, y € Lr. We denote the unit tangential and normal vector to L by ¢; and
VL, respectively. Obviously y = x + ¢ for the vector ¢ := HYU L)t = kit + kato
defined for some ki, kp € Z. We restrict to the case in which k1, kp € Ny since the
remaining case can be treated analogously. Let T" be the function such that T'(¢7) =

I'(vp)/cr,ie.,
_ 2
C(t):=2 (tlL + %)
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for

t
t; = 2 )
tL

and extend T by homogeneity. Notice that
T(kit)) =2ki  and  T(katy) = 2k>. (103)

Let Py, be the parallelogram with sides the vectors x + k¢ and x +k»¢,. Furthermore,
let PZr and P; the open triangles in which L divides Pr. Notice that inside Py we
have k; lines parallel to k»t;, ko lines parallel to k1#1, and k1 4+ k> — 1 lines with
varying length that are parallel to the vector £, — ¢;. Since x + ¢ intersects each of
these last lines (and each line intersects L one time), we have that L exactly intersects

2kt + k) =1 =T(kit1) + Tlkat2) =1 =T(t) — 1
H'(L)
F

=H'(DT(t) - 1= C(v)—1

Cc

lines and hence, L intersects HI(L)F(UL)/CF segments [z1, za] suchthat|z1—z2| = 1,
z1€ LFpN (P UL),andzy € LF N P .

Therefore, if we denote the m vertices of E, by vt , fork = 1,...,m and let
Um+1,n = V1,5, then, forn large enough, eachside Sx ,, = [k, Vk+1.2] Of E,, intersects
\/ﬁ([’(vgkvn)/cF)Hl(Sk,n) + O(1) segments such that |z] — z2| = \/lﬁ and (z1, 22) €

5,, X (\/LEE F\5n), where the contribution O (1) takes into account that the endpoints

of Sk, might have a different numbers of neighbors in 5,,. However, such disturbance
is of the order O (1) since the angles of E,, at the segment are approximately the same
for all n. In the end, (102) easily follows from the fact that dE, N 3.5, is a union of
segments of length strictly greater than zero whose number is bounded, independently
on n.

Step 5 (Final recovery sequence). Finally, we variate the configuration D,, to obtain
configurations D, such that # D, = n. It can be easily seen that for every m € N there
exists a configuration F(m) that satisfies #F (m) = m, E,,(LFm)) = O (y/m) and
F(m) is a subset of a thomb with side lengths [/m ].

If #5n < n,weletm :=n— #5n, properly translate F(m) so that it does not
intersect 5,,, and we define

D, := D, U F(m).

By (100), there exists a constant C > 0 such that

Va(Dy) +6cr#Dy V(D) +6cpn| _ I#Dn —n|

NG NG < NG — 0. (104)
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Similarly, if #D, > n, by (100) for n large enough we can define a configuration
Dy, satisfying (104) by taking away m = #D, — n atoms from D, for example, we
can define D, := D,\ F(m), for F(m) translated in a way that it and all its neighbors
belong to the interior of E,. Since wp, weakly* converges to pxg, the assertion
follows from (101) and (104). O

7 Proof of the Main Theorems in the Dewetting Regime

We begin the section by stating a I'-convergence results that is a direct consequence
of Sects. 5 and 6. Recall that p := 2/4/3.

Theorem 7.1 (I"-convergence) Assume (32). The functional
E, :=n"'2(I, + 6cpn), (105)

where 1, is defined by (16), I'-converges with respect to the weak* convergence of
measures to the functional 1 defined by

E(Dy), ifAD, C R2\S set of finite perimeter
Ioo(p) := with | Dy, = 2 such that . = 2, (106)

+o00, otherwise,

for every u € M(R?).

Proof In view of the definition of I'-convergence the assertion directly follows from
the lower and upper bound provided by Theorems 5.3 and 6.1, respectively. O

We notice that Theorem 7.1 is not enough to conclude Assertion 3. of Theorem 2.4.
In fact, the compactness provided for energy equi-bounded sequences D,, € C, by
Theorem 4.4 of Sect. 4 holds only for almost-connected configurations D,,. Therefore,
as detailed in the following result, we can deduce the convergence of a subsequence
of minimizers only after performing (for example) the transformation 7 given by
Definition 2.1, which does not change the property of being a minimizer.

Corollary 7.2 Assume (32). For every sequence of minimizers 1, € M,, of E,, there
exists a ( possibly different) sequence of minimizers i, € My of E, that admits a
subsequence converging with respect to the weakly *convergence of measures to a
minimizer of I in

My = {M € M(R?) : 3D c R?\S set of finite perimeter, bounded,

1
with |D| = —, and such that u = ,OXD}~
P
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Proof Let i1, € M, be minimizers of E,. By (15), (16), and (105) there exist con-
figurations D, € C, such that u, := up,. Let 7(D,) € C, be the transformed
configurations associated with D,, by Definition 2.1. We notice that the sequence of
measures

fn = WT (D)

is also a sequence of minimizers of E,, since by Definition 2.1 and (17) we have that

En(ﬁn) < Ey ().

Therefore, by Theorems 7.1 and 4.4 we obtain that there exist a sequence of vectors
an = tyt] for t, € Z, an increasing sequence ng, k € N, and a measure © € My
(being a minimizer of /) such that ft,,, —~*u in M(R?), where

fn := Wn (- + an).
This concludes the proof. O

In view of Theorem 2.3, we can improve the previous result and in turns, prove
the convergence of minimizers (up to a subsequence) directly without passing to an
auxiliary sequence of minimizers obtained by performing the transformation 7 given
by Definition 2.1. In fact, Theorem 2.3 allows to exclude the possibility that a sequence
of (not almost-connected) minimizers u,, € M, loses mass in the limit.

Proof of Theorem 2.3 Let 5;1 be such that

V(D) = min V, (D),

n€ln

and select for every D, a connected component 5,, | C D, with largest cardinality.
We assume by contradiction that

liminf u5 (Do) < 1,
n—00 n
and we select a subsequence ny such that
klgr;ouﬁnk (Dpy,1) = liminf pup (Dp1) < 1. (107)

By Corollary 7.2, there exists a (possibly different) sequence of minimizers [, €
M, of E,, that (up to passing to a non-relabeled subsequence) converge with respect
to the weak* convergence of measures to a minimizer © € My of I. Therefore,
there exists a bounded set D C R2\S of finite perimeter with |D| = 1/p such that
u = pxp and [i,, converge with respect to the weak* convergence to p xp.
We claim that
mg := E(D) > 0, (108)
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and observe that (108) follows from
/ C(vp)dH' = 2cpH ("D N {x2 = 0}). (109)
93* DN{x2 >0}
In order to prove (109), we first show that
/ vpdH' =0, (110)
9*D

by taking ¢; € CCl (R%: R?), @; = t; on some open set F' such that D CC F, for
i = 1, 3, in the identity

/ (vp, (p,-)dHl = —/ divp;dx = —/ divt;dx =0,
3*D D D

where we used the definition of reduced boundary and the generalized Gauss—Green
formula (Ambrosio et al. 2000, Theorem 3.36) for sets of finite perimeter. Then, from
(110) it follows that

/ vpdH' = H'(3*D N {x2 = O))t3
0* DN{xp >0}

and hence, since I" is convex and homogeneous, by Jensen’s inequality and the fact
that I'(¢3) = 2cf we conclude that

1
/ C(vp)dH' > LT (—/ deH1> =2crH "D N {x2 = 0}),
3* DN{x2>0} L Jy+pnfx,>0

where L := H'(0*D N {x, > 0}), which is (109).
We claim that there exist configurations D, € C,, defined by
By, = D\, U D2

ng’

where 5,1 , and 5,21k are configurations such that:
(i) supp 1 C B(xy, Ry) and supp upi C B(x2, Rp) for some x, x2 € R? and
ny 3
R, Ry > 0 with B(x1, R;) N B(x2, Ry) =1,
(i1) the energy is preserved, i.e.,
Vnk(ﬁnk) = Vnk (ﬁnk)a

(iii) the following inequalities hold:

L. - ~1 .. - ~)
hkn_l)géf 1B, (D,,) >0 and lkn_l)ggf 1B, (D) > 0.
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Under the further assumption that

lim w5 (Dn1) > 0, (111)
k—00 nk

we can explicitly define 51 = T(ﬁnk\ﬁnk 1) and 52 = Bnk 1 +tqt; for some
large t € Z (see (13) for the deﬁn1t10n of ¢). In fact, the conﬁguratlons D1 and D2
are bounded because by Definition 2.1 they are almost connected and hence property
(1) is satisfied provided that ¢t € Z is chosen large enough. Furthermore, again by
Definition 2.1 (and the translation of l/)\nk,l of g-multiples) property (ii) is verified.
Finally, property (iii) directly follows from (107) and (111).

If condition (111) is not satisfied, the definition of 51 and 52 is more involved.
We choose an order among the connected components of D, i other than an 1, say

Dy, ¢ for £ > 2 with the conventlon that Dn ¢ := 9 for £ larger than the number of
connected components of an, and we observe that

0 < lim maxu~ (D < lim us (D =0,
= Ao ma Man( nk,l) = k»ooMD”k( nk,l)

so that
lim max Up, (an ¢) =0. (112)

k—o0 leN

Furthermore, from (112) and the fact that

B, <U 5nk,e> =1, (113)
14

it follows that there exist J; > 2 such that

Jr—1 Jk
Zl 1B, (Dne)) < 5 and lel«ﬁnk(an,ej) >3 (114)
J= J=

We define
Dy, =T || JDu. | and Dy =T | D\ | | Dupt; | | +7'at1

for a large ' € N. As in the previous case properties (i) and (ii) directly follow from
Definition 2.1 and the choice of the #-translation by a ¢-multiple ¢’ € N large enough,
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where ¢ is defined in (13). Finally, property (iii) is also satisfied since

.. - ~9
fm inf 145, (D7)

Jr—1
> . > = o - = . _ . . =
z kli,n;o Dy, <H\1 an,e) h,fi S;ip 1B, (U Dy ¢ kli?;o 145, (Dni. i)
€
2
3

zl—limsupuﬁnk Uﬁnk,fj —-0=>

k—o00

where we used (113) and (112). Therefore, the claim is verified.
By such claim and the same arguments used in Theorem 4.4, we deduce that (up to
a non-relabeled subsequence)

1

*
PRORIIL \ G — .
MD}{,{ |D]|XDJ

in M(R2) for j =1, 2, with DJ disjoint bounded sets of finite perimeter such that
D' =D'uD?,
where D’ is a minimizer of £. Therefore, if with 1 := |D/|, then

3
,\1+x2=|D/|=*/7_ (115)

with both A1 > 0 and A, > 0, respectively, because of (i) and (iii) above. Finally, by
scaling arguments we conclude

[ 2

— — 1 AR
mog=E(D)=E(D")+ED) = ﬁ<\/k1mo+\/k2m0)
and hence, by (108) and (115) we obtain

\/E+\/)T=v*/§/ = VAl + A,

which implies A = 0 or A, = 0 that is a contradiction. O
We are now ready to prove Theorem 2.4.
Proof of Theorem 2.4 Assertions 1. and 2. directly follow from Theorem 7.1 and Corol-

lary 7.2, respectively. It remains to show Assertion 3. to which the rest of the proof is
devoted.
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Let u, € M, be minimizers of E,. By Corollary 7.2, there exist another sequence
of minimizers i, € M, of E,, an increasing sequence ny for k € N, and a measure
u € My minimizing I, such that

Tl —* 1t (116)
in M (R?). In particular, from the proof of Corollary 7.2 we observe that

Hn = 11 (D, (- + tat1)

for some integers #, € Z, and for configurations D, € C, such that u, := up,,
where 7 (D) := T2(71(Dy)) (see Definition 2.1). Furthermore, by (16) and (105)
the configurations D,, are minimizers of V, in C, and hence, 71(D,) = D, and by
Theorem 2.3 we have that, up to a non-relabeled subsequence,

lim pwp, (Dp1) =1, (117)
k—o00

where D, 1 is a connected component of D,,, (with the largest cardinality). We also
observe that the transformation 7, consists in translations of the connected components
of D,, with respect to a vector in the direction —#; with norm (depending on the
component) in N U {0}. Let 7, . € N U {0} be the norm of the vector for the connected
component D, 1. From (116) and (117), it follows that

1D, (- + (tng — 1, 08— 1

and hence, we can choose ¢y, = ty, — 1, € Z. O

8 Examples of Other Positioning of Reference Lattices

The analysis presented in this manuscript is to be intended as a first attempt to model
crystalline drops on rigid substrates without the ambition of directly provide a compre-
hensive treatment. We aim at introducing a specific mathematical setting, which could
be a reference for further developments and already incorporates techniques useful for
more general cases. In particular, the results presented in the previous sections relate
to a particular positioning of the film and the substrate reference lattice that depends
on the definition of xr in (7) chosen to be equal to

X0 i= (0, ers)
by (8). Such positioning might not be energetically optimal in certain situations, mean-
ing for example that at the discrete level for specific choices of the vector of parameters
used in the mathematical setting introduced in Sect. 2, which we denote in the follow-
ing as

0
A" = (ef,eFs, es,CF, Cs),
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the same drop configurations could have a lower energy for some other choices of
XF € RZ\E.

We do not intend to address here the general case of all possible positionings for a
fixed reference film lattice, as this requires a too lengthy and involved treatment, which
is the subject of Piovano and Vel¢i¢ (2021) and of the forthcoming paper (Piovano and
VelCi¢ in preparation). However, we would like to mention that the model considered
in this current paper will be one of the very few necessary settings to which the
greater generality of positionings of film and substrate reference lattices considered
in Piovano and Velci¢ (2021) and Piovano and Vel¢i¢ (in preparation) is reduced, and
we conclude the paper by presenting in this section some relevant settings where the
optimal positioning is different, but can be easily reduced to the model of Sect. 2.

To this end, we denote in the following by M (xF) the model analogous to the
model introduced in Sect. 2 where xr := (xF,1, xF,2) referred to as the center of the
film lattice is free to be fixed in any point in R?\'S and A is any admissible vector of
parameters, i.e.,

. / / AN /
A = (ep, €pg, €, Cp, Cg).

More precisely, we make explicit the dependence on xr := (xf 1, XF2) and A in the
choice of

ﬁF,A(xF) ={xr + kit +koty : ki € Z and k, € NU {0}},
0Ls p = {sk 1= (kes,0) : k € Z},
and the related family of configurations
Cn,A(xF) ={A C »CF’A()CF) : #A =n}
and denote the discrete energy of any configuration D, € C, a(xF) by Vi A xp (D)
(for vy defined as in (9) with respect to the parameters in A).

We observe that the specific model defined in Sect. 2 corresponds to the model
M po (x%) (with A? := (e, ers, es, cF, cs) for which we recall that e was normal-
ized to 1) with family of configurations C,, xo (xOF), which we indicate for simplicity
in the following with

MO = Mo (x%).

For M we keep on using the same notation of previous sections for the family of
configurations and the discrete energy related to M, namely

. 0
Cn = n,AO (.XF)
and
V= 0
n n,AO,xF
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in C,, respectively. We also recall that ¢ and p are the natural numbers as defined in
(13) such that

4q
eg = —.
p

We now introduce the notion of equivalent configurations to M° among the con-
figurations in the various families C, A (xr) defined for different xr € ]RZ\S .

Definition 8.1 Given M, (xr) and a vector of parameter A := (¢, eg, €%, ¢, €5),
we say that DS is the associated configuration in C,? of a configuration D,, € Cp A (XF)
if and only if

D,(l) =D, —xf +on.
Furthermore, we say that the model M 5 (xr) is equivalent to MO if
Vn,A,xF (Dn) = Vn(DS)

for every D, € Cy a(XF).

The following definition allows to compare two models M (xp) with different
centers xr of the film lattice and vectors of parameters A.

Definition 8.2 For k = 1,2 let x’f, € R2\§ and let A¥ be admissible vectors of
parameters. We denote MK := MAk(x];), Cf, = G, pk (x',%), and V,f = Vn’Ak’x;,

and say that the model M has a (energetically) better positioning of the reference
lattices than the model M? if

vi(D,) < VXD, — x} +x%)

for every D, € C! and there exists D}, € C! such that V,}(D}) < VX(D}, —x} +x%).
If neither of M! and M? have a better positioning, then we say that M! and M? are
not comparable.

With the following proposition, we recover the same results obtained for M for
every model equivalent to M.

Proposition 8.3 For every model M (xF) equivalent to M©O in the sense of Defini-
tion 8.1 for some xp € R?\S, and vector of parameters A all the main results of
Sect. 7, i.e., Theorems 2.2, 2.3, and 2.4, remain valid for M x (x ).

Proof The assertion follows by simply observing that all results of Sect. 7 are valid for
the family of associated configurations D?, of the configurations D, € C, A (xF), and
that V,, A x. (D) =V, (D,?) since M 5 (xr) is equivalent to M. Therefore, the same
wetting condition (31), the corresponding dewetting condition (32), and the same form
(26) for the limiting energy £ are obtained also for M (xF). O
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We now list some relevant examples of models M (xr) for A := (e, €. €,
¢p, c) and xp € R\ that are equivalent to M) in the sense of Definition 8.1.

We begin with an example in which the positioning of x allows each film atom in
9L A (xF) tobe connected with exactly two (neighboring) substrate atoms, providing
an optimal positioning for film atoms, that is equivalent to M and hence, for which
Proposition 8.3 holds.

Example8.4 1f ¢ = 1 and es = ers = 1/ p, then the model My (xr) defined for
v im S (1V3).

with e, ¢ = € 1= es, ¢} := cp, and ¢ := 2cs, is equivalent to MO.

The following is an example of a model in which every substrate atom can be
bonded to two film atoms that has a better positioning than the corresponding model
with same vector of parameters and center in xOF, but that can also be reduced to MP.

Example 8.5 If g = p = 1 and es = eps = 1, then the model MA(x}) defined with
| 1
xp =5 (1, \/15),

ey = epg =2, ¢ = cp, and ¢ := cg is equivalent to MO, We notice that every
film atom in 0L F A (x}p) is connected with exactly one substrate atom and that every
substrate atom is bonded with exactly two film atoms in dLF A (x},). Regarding the
optimality among lattice positioning of M A(xlF) we can observe that M A(x},) has,
e.g., a better positioning than /\/lA(xOF), but that there is a model /\/lA(x%) which is
not comparable with My (x ;), e.g., choose

x% = (1, \/§),

despite the fact that in the model M A(x%) every second atom of dLF A (x%) can be
bonded with two substrate atoms. Notice also that the model M, (x%) defined in the
previous example represents a case in which the configurations in C,, s (x%) with finite
energy V, 2 need to have every second lattice site in 0L p (x%) free of atoms (see

the discussion after Example 8.6 for further aspects of M p (x%)).

We discuss one more example that is equivalent to model M for which we have
the particular situation in which every substrate atom can be bonded with exactly one
film atom apart from periodically each third of them, which cannot be bonded with
film atoms.

Example 8.6 If g = p = 1 and eps5 = e5 = 1, then the model M A(x}) defined with
1
L.t
Xp = 6< 1,v15),
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ey = epg 1= 2/3, ¢ := cr, and ¢ := cg is equivalent to M?Y. Every film atom in
OLF A(x },) is bonded with exactly one substrate atom, and every substrate atom can be
bonded with exactly one film atom apart from periodically each third of them, which
cannot be bonded with film atoms. We notice that this model has a better positioning
than the model M, (x%) and is not comparable with the model M 5 (x%), where

x% :=%(1,\/§>,

despite the fact that in the model M A(x%) every second atom of 9L A (x%) can be
bonded with two substrate atoms, since it is also a case in which the configurations in
Cn.A (x%) with finite energy Vn,A’xle need to have every second lattice sitein 0 L o (x%)
free of atoms.

We notice that Examples 8.5 and 8.6 also shows that models in which certain sites
of the lower border of the film lattice are prevented for configurations with finite
energy (i.e., the settings denoted by M A(x%) in both examples) do not present in
principle a better positioning than models equivalent to MO, despite that the other
(allowed) film atoms on the film-lattice border have two bonds with substrate atoms.
For these settings which cannot be reduced to M we prove in the forthcoming paper
(Piovano and Vel&i¢ in preparation) by considering a modification of the model M°
that analogous results to the ones contained in Sect. 7 hold true, but with different
wetting condition and adhesivity parameter o for the limiting energy of the type (26).

Also the model M, (xf) defined by

Xp = é (—l, \/g) ,

e = €py = 3/4, ¢l = 1, and by any admissible ¢}, and c, will be reduced
in Piovano and VelCié¢ (in preparation) to a modification of MO for which similar
arguments allow us to prove analogous results to the ones contained in Sect. 7, but
with wetting condition replaced by ¢ > 5¢/, and adhesivity parameter in the limiting
energy (26) given by

/ /
o =2y — =cCk.
F 3S

Such amodel is interesting since every third film atomin d L A (x ) cannot be bonded
with any substrate atom and every other film atom in dLF A (xF) is connected with
exactly one substrate atom. Furthermore, there exist substrate atoms in dLs_A that are
not connected with any film atoms. We also notice that this model has better positioning
than the model M A(x%) since in the period of three film atoms in dLF A (xF) two
neighboring film atoms are connected with one substrate atom, while in dLFp A (x%)
only one.
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