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Abstract
The continuum model related to theWinterbottom problem, i.e., the problem of deter-
mining the equilibrium shape of crystalline drops resting on a substrate, is derived
in dimension two by means of a rigorous discrete-to-continuum passage by �-
convergence of atomistic models taking into consideration the atomic interactions
of the drop particles both among themselves and with the fixed substrate atoms. As
a byproduct of the analysis, effective expressions for the drop surface anisotropy and
the drop/substrate adhesion parameter appearing in the continuum model are char-
acterized in terms of the atomistic potentials, which are chosen of Heitmann–Radin
sticky-disk type. Furthermore, a threshold condition only depending on such potentials
is determined distinguishing the wetting regime, where discreteminimizers are explic-
itly characterized as configurations contained in an infinitesimally thick layer, i.e., the
wetting layer, on the substrate, from the dewetting regime. In the latter regime, also
in view of a proven conservation of mass in the limit as the number of atoms tends
to infinity, proper scalings of the minimizers of the atomistic models converge (up
to extracting a subsequence and performing translations on the substrate surface) to
a bounded minimizer of the Winterbottom continuum model satisfying the volume
constraint.
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1 Introduction

The problem of determining the equilibrium shape formed by crystalline drops resting
upon a rigid substrate possibly of a different material is long standing in materials
science and appliedmathematics. The first phenomenological prediction of such shape
for flat substrates is due toWinterbottom, who in (1967) designed what is now referred
to as the Winterbottom construction (see Fig. 1) to minimize the drop surface energy
in which both the drop anisotropy at the free surface and the drop wettability at
the contact region with the substrate were taken into account (see (1)). The interplay
between the dropmaterial properties of anisotropy andwettability can induce different
morphologies ranging from the spreading of the drops in a infinitesimally thickwetting
layer covering the substrate, which is exploited, e.g., in the design of film coatings,
to the nucleation of dewetted islands, that are solid-state clusters of atoms leaving
the substrate exposed among them, which find other applications, such as for sensor
devices and as catalysts for the growth of carbon and semiconductor nanowires (Jiang
et al. 2016, 2017).

In this work, we introduce a discrete setting dependent on the atomistic interactions
of drop particles both among themselves and with the substrate particles, and we
characterize in terms of the parameters of the potentials governing such atomistic
interactions the regime associated with the wetting layer, referred to in the following
as the wetting regime. For the complementary parameter range, i.e., the dewetting
regime, we microscopically justify the formation of solid-state dewetted islands by
performing a rigorous discrete-to-continuum passage by means of showing the �-
convergence of the atomistic energies to the energy considered in Jiang et al. (2016),
Jiang et al. (2017) and by Winterbottom (1967).

In the continuum setting, theWinterbottom problem inWinterbottom (1967) essen-
tially consists in an optimization problem based on an a priori knowledge of the
surface anisotropy � of the resting crystalline drop with the surrounding vapor, and of
the adhesivity σ related to the contact interface between the drop and the substrate. In
the modern mathematical formulation in R

d for d > 1, the energy associated with an
admissible region D ⊂ R

d\S occupied by the drop material, which is assumed to be
a set of finite perimeter outside a fixed smooth substrate region S ⊂ R

d , is given by

E(D) :=
∫

∂∗D\∂S
�(ν(ξ)) dHd−1(ξ) + σH1(∂∗D ∩ ∂S), (1)

where ∂∗D is the reduced boundary of D, ν is the exterior normal vector of D, and
Hd−1 the (d − 1)-dimensional measure. The Winterbottom shapeW�,σ introduced in
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Winterbottom (1967) is defined as depicted in Fig. 1 by

W�,σ := W� ∩ {x ∈ R
d : xd ≥ −σ }

where W� is theWulff shape, i.e.,

W� := {x ∈ R
d : x · ν ≤ �(ν) for every ν ∈ Sd−1}.

The Wulff shape W� is named after Wulff, who provided in (1901) its first phe-
nomenological construction as the equilibrium shape for a free-standing crystal with
anisotropy � in the space (in the absence of a substrate or any other crystalline materi-
als), and was afterward in Fonseca (1991) and Fonseca and Müller (1991) rigorously
proved to be the unique minimum of (1) when S = ∅ in the presence of a volume
constraint and after a proper scaling to adjust its volume (see also Taylor 1974, 1975).

The emergence of the Wulff and Winterbottom shapes has been already justified
starting from discrete models in the context of statistical mechanics and the Ising
model. We refer to the review (Dobrushin et al. 1992) (see also Ioffe and Schonmann
1998; Kotecký and Pfister 1994) for the 2-dimensional derivation of theWulff shape in
the scaling limit at low-temperature and to Bodineau et al. (2001), Pfister and Velenik
(1996) and Pfister and Velenik (1997) for the setting related to the Winterbottom
shape. More recently, the microscopical justification of the Wulff shape in the con-
text of atomistic models depending on Heitmann–Radin sticky-disk type potentials
(Heitmann and Radin 1980) has been addressed for d = 2 and the triangular lattice
in Au Yeung et al. (2012) by performing a rigorous discrete-to-continuum analysis
by means of �-convergence. Subsequently, the deviation of discrete ground states in
the triangular lattice from the asymptotic Wulff shape has been sharply quantified in
Schmidt (2013) by introducing the n3/4 law (see also Davoli et al. 2017), which has
been then extended to the square lattice in Mainini et al. (2014a, b), to the hexagonal
lattice for graphene nanoflakes in Davoli et al. (2016), and to higher dimensions in
Mainini et al. (2019) and Mainini and Schmidt (2020).

We intend here to generalize the analysis of Au Yeung et al. (2012) for d = 2 to
the situation of S being a half-plane by taking into account at the discrete level also
the atomic interactions of the particles of the crystalline drops with the particles of
the substrate, which we allow to possibly belong to a different species of particles,
and we suppose occupying all sites of a fixed reference lattice LS ⊂ S. Film atoms
are instead let free to move in a lattice LF chosen to be triangular and contained in
R
2\S, so that admissible configurations of crystalline drops with n ∈ N film atoms are

Dn := {x1, . . . , xn} ⊂ LF (see Fig. 2). By adding the contribution ES : (R2\S)n →
R ∪ {∞} to the energy of Au Yeung et al. (2012) to include atomic interactions of
film atoms with substrate atoms, the overall energy Vn of an admissible configuration
Dn := {x1, . . . , xn} is given by

Vn(Dn) = Vn(x1, . . . , xn) := EF (Dn) + ES(Dn),
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Fig. 1 Winterbottom construction for the minimizer of E , on the left for σ > 0 and on the right for σ < 0
(see Winterbottom 1967)

where EF : (R2\S)n → R∪{∞} represents the contribution of the atomic interactions
among film atoms. More precisely, EF and ES are defined by

EF (Dn) = EF (x1, . . . , xn) :=
∑
i �= j

vFF (|xi − x j |)

and

ES(Dn) = ES(x1, . . . , xn) :=
n∑

i=1

∑
s∈LS

vFS(|xi − s|),

respectively, where vFα for α = F, S are Heitmann–Radin sticky-disk two-body
potentials attaining their minimum values −cα at eFα > 0, where eFF ≡ eF is the
distance between nearest neighbors in LF and eFS is the distance between the lattices
LF and LS (see Fig. 2 and Sect. 8 for a discussion on the positioning of the reference
lattices). We recall that even with Heitmann–Radin potentials the crystallization of
the minimizers of Vn has been shown so far only in the case with S = ∅ in Heitmann
and Radin (1980) by showing that the minimizers of EF are subset of a triangular
lattice. The rigidity assumption of prescribing reference lattices LF and LS , besides
imposing the non-interpenetration for the film and substrate species of atoms, which
remain separated by ∂S, also entails that the elastic energy associated with the mis-
match between the optimal crystalline lattices of the two materials of the drop and the
substrate at equilibrium is supposed to be all released by means of the periodic dislo-
cations of the global reference lattice L := LF ∪ LS prescribed at the film–substrate
interface ∂S.

A study in which the complementary situation where elastic deformations of a
homogeneous reference lattice L without dislocations between the film and the sub-
strate are considered is available inKreutz and Piovano (2019), where the linear-elastic
models for epitaxially strained thin films introduced in Davoli and Piovano (2020),
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Davoli and Piovano (2019), Fonseca et al. (2007), Spencer (1999), and Spencer and
Tersoff (1997) are derived from nonlinear elastic atomistic energies.

In our setting due to the periodic dislocations created at the interface between LF

and LS , the substrate interactions included in ES are in general non-constant (if not
when eF is a multiple of eS) and may result in periodic oscillations between null and
negative contributions to the overall energy, referred to in the following as periodic
adhesion deficit. The presence of such oscillations induces differences with the anal-
ysis carried out in Au Yeung et al. (2012) and could substantiate the employment of
homogenization techniques for periodic structures (see Alberti and De Simone 2005
for the continuum setting). However, it then turns out that homogenization techniques
are not needed as the “homogenized” limit actually coincides with the average in our
setting (and in Caffarelli and Mellet 2007 for the continuum setting). Moreover, the
periodic adhesion deficit at the drop/substrate region induces a lack of compactness
for (the properly scaled) energy-equi-bounded sequences (even up to uniform trans-
lations), which is not treatable with only adopting local arguments at the substrate
surface similar to the one employed in Au Yeung et al. (2012). In order to balance up
the deficit, we subdivide drop configurations in strips vertical to the substrate so that
enough boundary particles not adhering with the substrate (and so without deficit) are
counted. Then, summing up all the strips allows to determine a global lower bound
to the overall surface contribution and to recover compactness in a proper subclass of
admissible configurations, i.e., almost-connected configurations (see Sect. 2.4), that
are configurations which are unions of connected components positioned at “substrate
bond” distance. Such limitation is then overcome by means of ensuring that mass does
not escape on the infinite substrate surface.

Another reason for the lack of compactness with substrate interactions is the pos-
sibility for minimizing drop configurations to spread out on the infinite substrate
surface forming an infinitesimal wetting layer, which for ES �≡ 0 can be actually
favored. Therefore, a peculiar aspect of our analysis resides in distinguishing such
wetting regime from the dewetting regime. More precisely, we characterize a dewet-
ting threshold in terms of the interatomic potentials vFF and vFS , namely

{
cS < 4cF if eF is a multiple of eS,

cS < 6cF otherwise,
(2)

under which the emergence of the minimizers of (1) with full R
2-Lebesgue measure

is shown.
The results of the paper are threefold (see Sect. 7): The first result, Theorem 2.2, is

a crystallization result for wetting configurations achieved by induction arguments in
which the dewetting threshold condition (2) is singled out by treating separately the
situation of constant and non-constant substrate contributions. In this regard, notice
that the characterization of the dewetting regime coming from continuum theories
(see, e.g., Baer 2015) does not represent in general a good prediction for the discrete
setting due to the deficit averaging effects taking place in the passage from discrete to
continuum. More precisely, as described in Baer (2015) (with the extra presence of a
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gravity term perturbation of E) the condition

σ > −�(νS) (3)

is the natural requirement in the continuum “ensuring that it is not energetically
preferred for minimizers to spread out into an infinitesimally thin sheet”. However,
condition (3) coincides with the dewetting-threshold condition of the discrete setting
only when eF is a multiple of eF (see 5 and 6), being otherwise the latter condition
more restrictive.

The second result, Theorem 2.3, provides a conservation of mass for the solutions
of the discrete minimum problems

min
Dn⊂LF

Vn(Dn) (4)

as the number n of atoms tends to infinity, which is crucial to overcome the lack of
compactness outside the class of almost-connected sequences of energy-equibounded
minimizers. In particular, it consists in proving that it is enough to select a con-
nected component among those with largest cardinality for each solution of (4). This
is achieved by proving compactness for almost-connected energy minimizers and then
by defining a proper transformation T of configurations (based on iterated translations
of connected components as detailed in Definition 2.1), which always allows to pass
to an almost-connected sequence of minimizers.

The last result, Theorem 2.4, relates to the convergence of the minimizers of (4) as
n → ∞ to a minimizer of (1) in the family of crystalline drop regions

Dρ := {D ⊂ R
2\S : set of finite perimeter, bounded and such that |D| = 1/ρ},

whose existence follows also from the proof, where ρ is the atom density in LF per
unit area.

Such convergence is obtained (up to extracting a subsequence and performing
horizontal translations on the substrate S) as a direct consequence of the conservation
of mass provided by Theorem 2.3 and of a �-convergence result for properly defined
versions of Vn and E in the space M(R2) of Radon measures on R

2 with respect to
the weak* convergence of measures as the number n of film atoms tends to infinity.

More precisely, we consider the one-to-one correspondence between drop con-
figurations Dn ⊂ LF and their associated empirical measures μDn ∈ M(R2) (see
definition at (14)), introduce an energy In defined onM(R2) such that

In(μDn ) = Vn(Dn),

and prove the �-convergence of proper scalings En of In , namely

En := n−1/2(In + 6cFn),
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with respect to the weak* convergence of measures, to a functional I∞ defined in such
a way that

I∞ (ρχD) = E(D),

for every set of finite perimeter D ⊂ R
2\S with |D| = 1/ρ and for specific effective

expressions of the surface tension � and of the adhesivity σ appearing in the definition
(1) of E in terms of the interatomic potentials vFF and vFS . In particular, we obtain
that

σ := 2cF − cS
q

, (5)

where q relates to the proportion between eF and eS (see 13), and �(ν(·)) is found to
be the π/3-periodic function such that

�(ν(ϕ)) := 2cF

(
ν2(ϕ) − ν1(ϕ)√

3

)
(6)

for every

ν(ϕ) =
(− sin ϕ

cosϕ

)

with ϕ ∈ [0, π/3].
A crucial difference with respect to Au Yeung et al. (2012) in the proof of the

lower and upper bound of such �-convergence result is that the adhesion term in
(1) can be negative and originates in view of the averaging of the periodic adhesion
deficit related to the dislocations at the film–substrate interface. In particular, it is the
limit of the adhesion portion of the boundary of auxiliary sets H ′

n associated with the
configurations Dn (see Definition 55 based on lattice Voronoi cells) in the oscillatory
sets On (see Fig. 2). We notice that for such averaging arguments extra care is needed,
as the results available from the continuum theories cannot directly be applied to the
auxiliary sets H ′

n when eF is not a multiple of eS , e.g., with respect to Baer (2015) (see
also Caffarelli and Mellet 2007) because of the non-constant deficit, and with respect
to Alberti and De Simone (2005) when 4cF ≤ cS < 6cF because of the discrepancy
between the continuum and the discrete dewetting conditions.

All the results presented in themanuscript are obtained under the restrictive assump-
tion of a fixed specific positioning of the film lattice LF with respect to the substrate
lattice LS , i.e., the closest atoms of LF to LS are positioned at a distance from at most
one substrate atom given exactly by the constant at which the atomistic interaction
potential between a film and a substrate atom attains its minimum, namely eFS . This
might be indeed not the optimal positioning in some situations, and in both (Piovano
and Velčić 2021) and the forthcoming paper (Piovano and Velčić in preparation) we
relax such assumption, both by showing how some other settings can be reduced to
the model considered in this manuscript, and by introducing a few similar models
(that will be shown to be treated with similar strategies to the ones presented in this
manuscript) to which the missing situations can be reduced. We begin this analysis
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in the last section of the manuscript by listing some examples (see Examples 8.4, 8.5
and 8.6) of different relevant positioning of the reference lattices LF and LS that we
show can be reduced to the model introduced in Sect. 2 thus, allowing us by Propo-
sition 8.3 to recover all the main results of the manuscript, i.e., Theorems 2.2, 2.3,
and 2.4 for such examples as well (and an example where we discuss the optimality
of the positioning chosen in the model introduced in Sect. 2 for a particular choice of
the lattice and atomistic parameters).

1.1 Paper Organization

In Sect. 2, we introduce the mathematical setting with the discrete models (expressed
both with respect to lattice configurations and to Radon measures) and the continuum
model, and the threemain theorems of the paper. In Sect. 3, we treat the wetting regime
and prove Theorem 2.2. In Sect. 4, we establish the compactness result for energy-
En-equibounded almost-connected sequences. In Sect. 5 we prove the lower bound of
the �-convergence result. In Sect. 6, we prove the upper bound of the �-convergence
result. In Sect. 7, we study the convergence of almost-connected transformations of
minimizers and present the proofs of both Theorems 2.3 and 2.4. In Sect. 8, we present
some other positioning of LF and LS that can be reduced to the setting introduced in
Sect. 2.

2 Mathematical Setting andMain Results

In this section, we rigorously introduce the discrete and continuous models, the nota-
tion, and definitions used throughout the paper, and the main results.

2.1 Setting with Lattice Configurations

We begin by introducing a reference set L ⊂ R
2 for the atoms of the substrate and of

the film,whichwe assume to remain separate.We defineL := LS∪LF , whereLS ⊂ S
denotes the reference lattice for the substrate atoms, S := R × {r ∈ R : r < 0} is
referred to as the substrate region, and LF ⊂ R

2\S is the reference lattice for the film
atoms.

More precisely, we consider the substrate lattice as a fixed lattice, i.e., every lattice
site in LS is occupied by a substrate atom, such that

∂LS := LS ∩ {(r , 0) : r ∈ R } = {sk := (keS, 0) : k ∈ Z}

for a positive lattice constant eS , and we refer to ∂LS as to the substrate surface
(or wall). For the film lattice LF , we choose a triangular lattice with parameter eF
normalized to 1, namely

LF := {xF + k1 t1 + k2 t2 : k1 ∈ Z and k2 ∈ N ∪ {0}} (7)
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where
xF := (0, eFS) (8)

for a constant eFS > 0,

t1 :=
(
1

0

)
, and t2 := 1

2

(
1√
3

)
.

We denote by ∂LF the lower boundary of the film lattice, i.e.,

∂LF := {xF + k1 t1 : k1 ∈ Z}

and by ∂LFS the collection of sites in the lower boundary of the film lattice at a
distance of eFS from an atom in ∂LS , i.e.,

∂LFS := ∂LF ∩ (∂LS + eFS t3)

where

t3 :=
(
0

1

)

(see Fig. 2).
We refer to Sect. 8 for examples of other positioning of the reference lattices LF

and LS , which can be reduced to the one addressed in this mathematical setting. The
sites of the film lattice are not assumed to be completely filled and we refer to a set
of n ∈ N sites x1, . . . , xn ∈ LF occupied by film atoms as a crystalline configuration
denoted by Dn := {x1, . . . , xn} ⊂ LF . Notice that the labels for the elements of a
configuration Dn are uniquely determined by increasingly assigning themwith respect
to a chosen fixed order on the lattice sites of LF . With a slight abuse of notation, we
refer to x ∈ Dn as an atom in Dn (or in LF ). We denote the family of crystalline
configurations with n atoms by Cn . Furthermore, given a set A ⊂ R

2, its cardinality
is indicated by #A, so that

Cn := {A ⊂ LF : #A = n}.

For every atom x ∈ LF , we take into account both its atomistic interactions with
other film atoms and with the substrate atoms, by considering the two-body atomistic
potentials vFF and vFS , respectively. We restrict to first-neighbor interactions and we
define vFα for α := F, S as

vFα(r) :=

⎧⎪⎨
⎪⎩

+∞ if r < eFα,

−cα if r = eFα,

0 if r > eFα,

(9)

with cα > 0 and eFF := eF = 1.
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LEVROGIDNAONAVOIPOLOAP ČIĆ

eF

∂LF

∂LS

e F
S

eS

xF

(0, 0)

√
n

(
I−
xF

∪ I+
xF

)

t1

t2

Fig. 2 A portion of the latticesLF andLS is depicted with the respective lattice sites in light and dark blue
crosses, respectively. The lattice LS is fully occupied by substrate atoms represented by dark blue balls,
while only some sites of LF are occupied by film atoms represented by light blue balls. The “interface”
∂LF consists of all the lattice sites on the light-blue line, while the “interface” ∂LS consists of all the lattice
sites on the dark-blue line. In yellow, we can see the oscillatory set related to the lattice sites in ∂LFS ,
which is introduced in Sect. 5

In the following, we refer to film and substrate neighbors of an atom x in a con-
figuration Dn as to those atoms in Dn at distance 1 from x , and to those atoms in
LS at distance eS from x , respectively. Analogously, we refer to film and substrate
bonds of an atom x in a configuration Dn as to those segments connecting x to its film
and substrate neighbors, respectively. We also refer to the union of the closures of all
film bonds of atoms in a configuration Dn as the bonding graph of Dn , and we say
that a crystalline configuration Dn is connected if every x and y in Dn are connected
through a path in the bonding graph of Dn , i.e., there exist � ≤ n and xk ∈ Dn for
k := 1, . . . , � such that |xk − xk−1| = 1, x1 = x , and x� = y. Moreover, we define
the boundary of a configuration Dn ∈ Cn as the set ∂Dn of atoms of Dn with less
than 6 film neighbors. We notice here that with a slight abuse of notation, given a set
A ⊂ R

2 the notation ∂A will also denote the topological boundary of a set A ⊂ R
2
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(which we intend to be always the way to interpret the notation when applied not to
configurations in Cn , or to lattices, such as for ∂LS , ∂LF , and ∂LFS).

The energy Vn of a configuration Dn := {x1, . . . , xn} ⊂ LF of n particles is defined
by

Vn(Dn) = Vn(x1, . . . , xn) :=
∑
i �= j

vFF (|xi − x j |) + ES(x1, . . . , xn) (10)

where ES : (R2\S)n → R ∪ {∞} represents the overall contribution of the substrate
interactions defined as

ES(Dn) = ES(x1, . . . , xn) :=
n∑

i=1

v1(xi ), (11)

where the one-body potential v1 is defined by

v1(x) :=
∑
s∈LS

vFS(|x − s|) (12)

for any x ∈ R × {r ∈ R : r > 0}. Notice that from the definition of vFS and xF for
any x ∈ LF the sum in (12) is finite and

v1(x) ∈ {0,−cS}.

In the following, we will always focus on the case

eS := q

p
(13)

for some p, q ∈ N without common factors, since the case of eS = reF for some
r ∈ R\Q is simpler, as the contribution of ES is negligible (namely, in this case
#∂LFS = 1). More precisely, for eS = reF with r ∈ R\Q the same analysis (or the
one in Au Yeung et al. (2012) applies, and, up to rigid transformations, minimizers
converge to a Wulff shape in R

2\S with the Wulff-shape boundary intersecting ∂S at
least in a point.

2.2 Setting with RadonMeasures

The �-convergence result is established for a version of the previously described
discrete model expressed in terms of empirical measures since it is obtained with
respect to the weak* topology of Radon measures (Ambrosio et al. 2000). We denote

the space of Radon measures on R
2 by M(R2), and we write μn

∗
⇀ μ to denote the

convergence of a sequence {μn} ⊂ M(R2) to a measure μ ∈ M(R2) with respect to

123



32 Page 12 of 55 Journal of Nonlinear Science (2022) 32 :32

the weak* convergence of measures. The empirical measure μDn associated with a
configuration Dn := {x1, . . . , xn} ∈ Cn is defined by

μDn := 1

n

n∑
i=1

δ xi√
n
, (14)

where δz represents the Dirac measure concentrated at a point z ∈ R
2, and the family

of empirical measures related to configurations in Cn is denoted by Mn , i.e.,

Mn := {μ ∈ M(R2) : there exists Dn ∈ Cn such that μ = μDn }. (15)

The functional In associated with the configurational energy Vn and expressed in
terms of Radon measures is given by

In(μ) :=
⎧⎨
⎩

∫
(R2\S)2\diag n

2vFF (n1/2|x − y|)dμ(x) ⊗ dμ(y) if μ ∈ Mn,

+ ∫
R2\S nv1(n1/2x)dμ(x)

+∞ otherwise,
(16)

where

diag := {(y1, y2) ∈ R
2 : y1 = y2}.

We notice that the two versions of the discrete model are equivalent, since

Vn(Dn) = In(μDn ) (17)

for every configuration Dn ∈ Cn , where μDn ∈ Mn is defined by (14), and that Dn

minimizes Vn among crystalline configurations in Cn if and only if μDn minimizes In
among Radon measures of M(R2).

2.3 Local and Strip Energies

We define a local energy Eloc per site x ∈ LF with respect to a configuration Dn , by

Eloc(x) :=
{∑

y∈Dn\{x} vFF (|x − y|) + 6cF if x ∈ Dn,

0 if x /∈ Dn,
(18)

which corresponds in the case of an atom x ∈ Dn to the number of missing film
bonds of x . We also refer to deficiency Edef(x) of a site x ∈ LF with respect to a
configuration Dn as to the quantity

Edef(x) :=
{
Eloc(x) + v1(x) if x ∈ Dn,

0 if x /∈ Dn .
(19)
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LEVROGIDNAONAVOIPOLOAP ČIĆ

x x+x−

x̃

x̃+x̃−

S(x)

e F
S

y M

Fig. 3 Strip S(x) centered at an atom x ∈ ∂LFS of a crystalline configuration Dn is depicted as an
example of a strip containing all the elements x, x±, x̃, x̃± with the possibility of the strip center x and
the strip top x̃ to coincide if yM = eFS . The sites indicated by crossed atoms are sites of the planar lattice
{xF + k1 t1 + k2 t2 : k1, k2 ∈ Z} that surely are not in Dn by definition of LF and S(x)

Furthermore, we define the strip S(x) associated to any lattice site x := (x1, eFS) ∈
Dn ∩ ∂LFS with x1 ∈ R as the collection of atoms

S(x) = SDn (x) := {x, x±, x̃, x̃±} ∩ Dn (20)

where x±, x̃ , and x̃± are defined by

x± := x ± t1,

x̃ := (x1, yM ) where yM := max{y ≥ 0 : (x1, y) ∈ Dn},
x̃+ := x̃ + t2,

x̃− := x̃ + t2 − t1

(see Fig. 3).
In the following, we refer to x as the strip center of S(x), to x± as the strip lower

(right and left) sides, to x̃ as the strip top, and to x̃± as the strip above (right and left)
sides. Note that x and x̃ coincide if yM = eFS .
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We define the strip energy associated with a strip S(x) by

Estrip(x) := Estrip,below(x) + Estrip,above(x), (21)

where

Estrip,below(x) :=Eloc(x) + 1

2
Eloc(x+) + 1

2
Eloc(x−) − cS (22)

in the case q �= 1, while

Estrip,below(x) :=1

2
Eloc(x) + 1

4
Eloc(x+) + 1

4
Eloc(x−) − cS (23)

in the case q = 1, and

Estrip,above(x) :=
{
Eloc(x̃) + w+(x̃)Eloc(x̃+) + w−(x̃)Eloc(x̃−) if x̃ �= x,

w+(x̃)Eloc(x̃+) + w−(x̃)Eloc(x̃−) if x̃ = x
(24)

with weights w±(x̃) ∈ {1/2, 1} given by

w±(x̃) :=
{
1 if x± /∈ Dn ∩ ∂LFS or x̃± �= (̃x±)∓,
1
2 if x±∈Dn ∩ ∂LFS and x̃± = (̃x±)∓.

(25)

2.4 Almost-Connected Configurations

We recall from Sect. 2.1 that a configuration Dn is said to be connected if every x and
y in Dn are connected through a path in the bonding graph of Dn , i.e., there exist � ≤ n
and xk ∈ Dn for k := 1, . . . , � such that |xk − xk−1| = 1, x1 = x , and x� = y, and
we refer to maximal bonding subgraphs of Dn connected through a path as connected
components of Dn .

In order to treat the situation when q �= 1, we need to introduce also a weaker
notion of connectedness of configurations, which depends on eS : We say that a con-
figuration Dn is almost connected if it is connected when q = 1, and, if there exists an
enumeration of its k := kDn connected components, say Di

n , i = 1, . . . , k, such that
each Di

n is separated by at most q from ∪i−1
l=1D

l
n for every i = 2, . . . , n, when q �= 1.

We say that a family of connected components of Dn form an almost-connected
component of Dn if their union is almost connected and, if q �= 1, it is distant from
all other components of Dn by more than q.

Definition 2.1 Given a configuration Dn ∈ Cn , we define the transformed configura-
tion T (Dn) ∈ Cn of Dn as

T (Dn) := T2(T1(Dn)),

where T1(Dn) is the configuration resulting by iterating the following procedure,
starting from Dn :

123



Journal of Nonlinear Science (2022) 32 :32 Page 15 of 55 32

– If there are connected components without any activated bond with an atom of
∂LS , then select one of those components with lowest distance from ∂LS ;

– Translate the component selected at the previous step of a vector in direction
−t2 till either a bond with another connected component or with the substrate is
activated.

(notice that the procedure ends when all connected components of T1(Dn) have at
least a bond with ∂LS), and T2(T1(Dn)) is the configuration resulting by iterating the
following procedure, starting from T1(Dn):

– If there are more than one almost-connected component, then select the almost-
connected component whose leftmost bond with ∂LS is the second (when
compared with the other almost-connected components) starting from the left;

– Translate the almost-connected component selected at the previous step of a vector
−kq t1 for some k ∈ N till, if q = 1, a bond with another connected component is
activated, or, if q �= 1, the distance with another almost-connected component is
less or equal to q;

(notice that the procedure ends when T2(Dn) is almost connected).

We notice that the transformed configuration T (Dn) of a configuration Dn ∈ Cn
satisfies the following properties:

(i) T (Dn) is almost connected;
(ii) Each connected component of T (Dn) includes at least an atom bonded to ∂LS ;
(iii) Vn(T (Dn)) ≤ Vn(Dn) (as no active bond of Dn is deactivated by performing the

transformations T1 and T2);

and, if Dn is a minimizer of Vn in Cn , then

(iv) T1(Dn) = Dn ;
(v) T consists of translations of the almost-connected components of Dn with respect

to a vector (depending on the component) in the direction−t1 with norm inN∪{0}.
Finally, we also observe that the definitions of T1, T2, and T are independent from

n.

2.5 Continuum Setting

For every set of finite perimeter D ⊂ R
2\S, we define its anisotropic surface energy

E by

E(D) :=
∫

∂∗D\∂S
�(νD)dH1 +

(
2cF − cS

q

)
H1(∂∗D ∩ ∂S) (26)

where ∂∗D denotes the reduced boundary of D and the anisotropic surface tension
� : S

1 → R is the function such that it holds

�(ν(ϕ)) = 2cF

(
ν2(ϕ) − ν1(ϕ)√

3

)
(27)
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for every

ν(ϕ) =
(− sin ϕ

cosϕ

)
∈ S

1 with ϕ ∈
[
0,

π

3

]
,

and � ◦ ν is extended periodically on R as a π/3-periodic function. Notice that
�(±t3) = 2cF . By extending � by homogeneity we obtain a convex function, and in
particular a Finsler norm on R

2.
We also use the following auxiliary surface energy depending on n in the proofs

En(D) :=
∫

∂∗D∩(R2\Sn)
�(νD)dH1 +

(
2cF − cS

q

)
H1(∂∗D ∩ ∂Sn) (28)

where
Sn := S + eFS√

n
t3. (29)

2.6 Main Results

In this section, the rigorous statements of themain theorems of the paper are presented.
We begin with the following result that characterizes the wetting regime in terms of a
condition only depending on vFF and vFS , and the minimizers in such regime.

Theorem 2.2 (Wetting regime) Let Dw
n := {w1, . . . , wn} ⊂ ∂LFS be any configura-

tion such that, if q = 1,
wi+1 := wi + t1 (30)

for every i = 1, . . . , n and every n ∈ N. It holds that Dw
n satisfies the following two

assertions for every n ∈ N:

(i) Vn(Dw
n ) = min Vn(Dn),

(ii) Vn(Dw
n ) < Vn(Dn) for every crystalline configuration Dn with Dn\∂LFS �= ∅

(and, for the case q = 1, also for every configuration Dn with Dn\∂LFS = ∅
and for which (30) does not hold),

if and only if {
cS ≥ 6cF if q �= 1,

cS ≥ 4cF if q = 1.
(31)

In particular, for the necessity of (31) it is enough assertion (i), and more specif-
ically that there exists an increasing subsequence (nk)k∈N such that Vnk (D

w
nk ) =

min Vnk (Dnk ) holds for every nk.

We refer to (31) as a wetting condition or as the wetting regime, and to the opposite
condition, namely {

cS < 6cF if q �= 1,

cS < 4cF if q = 1,
(32)
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as the dewetting condition or the dewetting regime. The following result shows that
connected componentswith the largest cardinality ofminimizers incorporate thewhole
mass in the limit.

Theorem 2.3 (Mass conservation) Assume (32). If D̂n are minimizers of Vn among all
crystalline configurations in Cn, i.e.,

Vn(D̂n) = min
Dn∈Cn

Vn(Dn),

andwe select for every D̂n a connected component D̂n,1 ⊂ D̂n with largest cardinality,
then

lim
n→∞ μD̂n

(D̂n,1) = 1,

where μD̂n
are the empirical measure associated with D̂n defined by (14).

We rigorously prove by �-convergence that the discrete models converge to the
continuum model, and in view of the previous result (even in the lack of a direct com-
pactness result for general sequences of minimizers, possibly not almost connected),
we prove convergence (up to passing to a subsequence and up to translations) of the
minimizers of the discrete models to a bounded minimizer of the continuum model,
which in turn it is also proven to exist. We do not discuss here further the minimal-
ity property of the Winterbottom shape for the energy E and the uniqueness of the
minimizers of I∞ inMW .

Theorem 2.4 (Convergence of Minimizers) Assume (32). The following statements
hold:

1. The functional
En := n−1/2(In + 6cFn), (33)

where In is defined by (16), �-converges with respect to the weak* convergence
of measures to the functional I∞ defined by

I∞(μ) :=

⎧⎪⎨
⎪⎩
E(Dμ), if there exists Dμ ⊂ R

2\S set of finite perimeter

with Dμ| = 1/ρ such that μ = ρχDμ,

+∞, otherwise,

(34)

for every μ ∈ M(R2), where ρ := 2/
√
3.

2. The functional I∞ admits a minimizer in

MW :=
{
μ ∈ M(R2) : ∃D ⊂ R

2\S set of finite perimeter, bounded

with |D| = 1

ρ
, and such that μ = ρχD

}
. (35)
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3. Every sequence μn ∈ Mn of minimizers of En admits, up to translation in the
direction t1 (i.e., up to replacing μn with μn(· + cn t1) for chosen fixed integers
cn ∈ Z), a subsequence converging with respect to the weak* convergence of
measures to a minimizer of I∞ inMW .

Notice that the parameter ρ := 2/
√
3 in the definition of MW is related to the fact

that we chose the triangular lattice forLF , as ρ is the density of atoms per unit volume
of such lattice.

3 Wetting Regime

In this section, we single out conditions that entail wetting, i.e., the situation in which
it is more convenient for film atoms to spread on the infinite substrate surface instead
of accumulating in clusters, or islands, on top of it. In the following we refer to
crystalline configurations Dw

n ⊂ ∂LFS as wetting configurations. We first consider
the case q �= 1.

Proposition 3.1 Let q �= 1 and n ∈ N. Any wetting configuration Dw
n :=

{w1, . . . , wn} ⊂ ∂LFS satisfies the following two assertions:

(i) Vn(Dw
n ) = min Vn(Dn),

(ii) Vn(Dw
n ) < Vn(Dn) for any crystalline configuration Dn with Dn\∂LFS �= ∅,

if and only if
cS ≥ 6cF . (36)

Remark 3.2 Notice from the proof of Proposition 3.1 that for the necessity of (36) it
is enough assertion (i) or, more precisely, it is enough that there exists an increasing
subsequence (nk)k∈N such that (i) holds for every k ∈ N. (36) is sufficient for (i) and
(ii), for every n ∈ N.

Proof We begin by proving the sufficiency of (36) for the assertions (i) and (ii). Note
that (i) easily follows from (ii) and the fact that any wetting configuration Dw

n has the
same energy given by

Vn(D
w
n ) = −cSn. (37)

In order to prove (ii) we proceed by induction on n. We first notice that (ii) is trivial
for n = 1. Then, we assume that (ii) holds true for every k = 1, . . . , n − 1 and prove
that it holds also for n. Let Dn be a crystalline configuration such that Dn\∂LFS �= ∅.
If Dn ∩ (R × {r > eFS}) = ∅, we can easily see that the energy of Dn is higher than
the energy of Dw

n at least by cS − 2cF , which is positive by (36), since the elements
in Dn\∂LFS �= ∅ have at most two film bonds and no substrate bonds. Therefore, we
can assume that Dn ∩ (R × {r > eFS}) �= ∅. Let L be the last line in R × {r > 0}
parallel to t1 that intersects Dn by moving upwards from R × {eFS} (which exists
since Dn has a finite number of atoms).

We claim that

Vn(Dn) ≥ Vn−�(Dn\L) − 6cF (� − 1) − 4cF , (38)
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where � := #(Dn ∩ L). We order the elements of Dn ∩ L with increasing indexes with
respect to t1, i.e., Dn ∩ L = {x1, . . . , x�}, and observe that x1 has at most 3 bonds
with film atoms in Dn by construction, since x1 is the leftmost element in Dn ∩ L . We
notice that in the same way, if � > 1, every xi has at most 3 bonds with film atoms in
Dn\{x1, . . . , xi−1} for every i = 2, . . . , � − 1. Therefore, we obtain that

Vn(Dn) ≥ Vn−1(Dn−1\{x1}) − 6cF ≥ Vn−i (Dn−i\{x1, . . . , xi }) − 6cF i

≥ Vn−(�−1)(Dn\{x1, . . . , x�−1}) − 6cF (� − 1)

≥ Vn−�(Dn\L) − 6cF (� − 1) − 4cF ,

which in turns is (38), where in the last inequality we used that x� has only at most 2
bonds with film atoms in Dn\L , since x� is the rightmost element in Dn ∩ L .

From (38), it follows that

Vn(Dn) ≥ Vn−�(Dn\L) − 6cF (� − 1) − 4cF > Vn−�(Dn\L) − 6cF�

≥ −cS(n − �) − 6cF� ≥ −cSn,

where we used the induction and (37) in the third inequality, and (36) in the last
inequality.

To prove the necessity of (36), notice that theWulff configuration inR×{r > eFS}
has energy equal to−6cFn+C

√
n for some constantC > 0. Therefore, from assertion

(ii) and (37) it follows

−cSn < −6cFn + C
√
n.

After dividing by n and letting n → ∞ we obtain cS ≥ 6cF . ��
We now address the case q = 1 for which we notice that ∂LFS = ∂LF .

Proposition 3.3 Let q = 1 and n ∈ N. Any configuration Dw
n := {w1, . . . , wn} ⊂

∂LFS such that
wi+1 := wi + t1 (39)

for every i = 1, . . . , n, satisfies the following two assertions:

(i) Vn(Dw
n ) = min Vn(Dn),

(ii) Vn(Dw
n ) < Vn(Dn) for any crystalline configuration Dn such that either

Dn\∂LFS �= ∅ or not satisfying (39),

if and only if
cS ≥ 4cF . (40)

Proof The proof is based on the same arguments employed for Proposition 3.1 and
on the following observations. Any wetting configuration Dw

n satisfying (39) has the
same energy given by

Vn(D
w
n ) = −cSn − 2cF (n − 1). (41)

In order to prove the sufficiency of (40) for assertion (ii) (assertion (i) follows in view
of (41)), we can restrict also in this case without loss of generality to configurations
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Dn ∩ (R × {r > eFS}) �= ∅, since any wetting configuration that does not satisfy
(39) has energy obviously higher than (41) (because n − 1 is the maximum number
of bonds in ∂LF ).

In order to prove the necessity of (40) for assertions (i) and (ii), we again consider
the Wulff shape with n atoms in R × {r > eFS} which has energy −6cFn +C

√
n for

some constant C > 0, and observe that

−cSn − 2cF (n − 1) < −6cFn + C
√
n

by assertion (ii) and (41). ��
We refer to (36) and (40) as wetting conditions. Condition (40) is weaker than (36)

because if q = 1, then film atoms of wetting configurations can be bonded to the two
film atoms at their sides in ∂LFS (if filled) besides to their corresponding substrate
atom, and Proposition 3.3 shows that such configuration are preferable.

Proof of Theorem 2.2 The assertion directly follows from Propositions 3.1 and 3.3 for
the case q �= 1 and the case q = 1, respectively. ��

4 Compactness

In the remaining part of the paper, we work in the dewetting regime, i.e., under the
assumption (32). We begin by establishing a lower bound in terms of cF and cS of
the strip energy Estrip(x) uniform for every x ∈ Dn ∩ ∂LF . To this aim, we need to
distinguish the case q = 1 from q �= 1 as already done in Sect. 3 because of different
contributions in Estrip(x) of the substrate interactions.

Lemma 4.1 We have that

Estrip(x) ≥ �strip

with

�strip :=
{
6cF − cS, if q �= 1,

4cF − cS, if q = 1,
(42)

for every x ∈ Dn ∩ ∂LF .

Proof Fix x ∈ Dn ∩ ∂LF . We begin by observing that the strip center x surely misses
the bonds with the atoms missing at the 2 positions x − t2 + k t1 for k = 0, 1 as
shown in Fig. 3. Furthermore, either x misses the bond with x− or x− ∈ Dn and x−
misses the bonds with the 2 positions x − t2 + k t1 for k = −1, 0 (which in the strip
energy are counted with half weights). We can reason similarly for x+. Therefore, by
the definition of energy of the low strip Estrip,below,

Estrip,below ≥
{
4cF − cS, if q �= 1,

2cF − cS, if q = 1,
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We analyze Estrip,above. There are several possibilities:

(1) neither of x̃+ and x̃− belongs to Dn ;
(2) exactly one of x̃+ and x̃− belongs to Dn ;
(3) both x̃+ and x̃− belong to Dn .

In case of (1) we have the contribution of 2cF since x̃ misses two bonds (in the case
when x̃ = x this contribution comes additionally in Eloc(x), i.e., Estrip,below). In case
of (3) each of x̃+ and x̃− misses at least one bond (namely with x̃ + 2t2 − t1 which is
not in Dn due to the definition of x̃). If x̃± �= (̃x±)∓ we have the energy contribution

of at least 2cF . On the other hand if it is valid that x̃± = (̃x±)∓, we have the energy
contribution of cF due to the missing bond with x̃ + 2t2 − t1 and each of x̃± misses
one more bond (namely with x̃ + 2t2 and x̃ + 2t2 − 2t1, which in this case do not
belong to Dn). The similar analysis can be made if x̃+ = (̃x+)− or x̃− = (̃x−)+.
Thus, we have again energy deficiency of 2cF . Finally in the case of (2) without loss
of generality we assume that x̃+ ∈ Dn . x̃ is already missing one bond (one cF ), which
is again in the case x̃ = x counted in Eloc(x), i.e., Estrip,below. And again one bond of
x̃+ is missing since x̃ + 2t2 − t1 is not in Dn . Again, this bond is counted as one cF ,
if x̃+ �= (̃x+)− and as cF/2, if x̃+ = (̃x+)−. In this case one more cF/2 we obtain
since x̃+ is missing one bond with x̃ + 2t2.

Therefore, in the strip energy Estrip the terms related to the triple x̃ , x̃+, and x̃− give
a contribution of at least 2cF . ��

We now observe that the energy Vn(Dn) of any crystalline configuration Dn is
bounded below by −6cFn plus a positive deficit due to the boundary of Dn where
atoms have less than 6 film bonds and could have a bond with the substrate.

Lemma 4.2 If (32) holds, then there exists � > 0 such that

Vn(Dn) ≥ −6cFn + �#∂Dn (43)

for every crystalline configuration Dn ⊂ LF . Furthermore, the following two asser-
tions are equivalent:

(i) There exists a constant C > 0 such that #∂Dn ≤ C
√
n for every n ∈ N,

(ii) There exists a constant C ′ > 0 such that En(μDn ) ≤ C ′ for every n ∈ N.

Proof We begin by observing that from (18) and (21) it follows that

6cFn + Vn(Dn) =
∑
x∈Dn

⎛
⎝ ∑

y∈Dn\{x}
vFF (|x − y|) + 6cF

⎞
⎠ +

∑
x∈Dn

v1(x)

=
∑
x∈Dn

Eloc(x) +
∑
x∈Dn

v1(x)

≥
∑

x∈Dn∩∂LFS

Estrip(x) +
∑

x∈Dn\S(∂LFS)

Eloc(x), (44)
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where
S(∂LFS) = SDn (∂LFS) := {y ∈ S(x) : x ∈ Dn ∩ ∂LFS}, (45)

because v1(x) = 0 for every x ∈ Dn\∂LFS and the careful choice of the weights
in (22), (23), and (24) with (25). More precisely, we notice that for every point in
Dn ∩ ∂LFS the local energy Eloc(x) is counted at most once. The weights w±(x̃±)are
instead chosen so that the local energy of x̃± is fully counted if x̃± do not belong to
the next strip and only half in the other case. Thus, these weights are also at most one.
We now observe that

∑
x∈Dn\S(∂LFS)

Eloc(x) ≥ cF#(∂Dn\S(∂LFS)) (46)

because Eloc(x) = 0 for every point x ∈ Dn\S(∂LFS) that does not belong to ∂Dn

where at least one bond is missing by definition.
Therefore, by (44), (46), and Lemma 4.1 we obtain that

6cFn + Vn(Dn) ≥
∑

x∈Dn∩∂LFS

Estrip(x) +
∑

x∈Dn\S(∂LFS)

Eloc(x),

≥ �strip#(Dn ∩ ∂LFS) + cF#(∂Dn\S(∂LFS))

≥ min

{
�strip

6
, cF

}
#∂Dn (47)

where in the last inequality we used that #S(∂LFS) ≤ 6#Dn ∩ ∂LFS . The assertion
now easily follows from (47) by choosing

� := min

{
�strip

6
, cF

}
> 0,

where we used (32).
To prove the last assertion, we observe that assertion (i) implies (ii) since by (17)

and (33)

√
nEn(μDn ) = Vn(Dn) + 6cFn ≤ 6cF#∂Dn,

where in the last equality we used the definition of ∂Dn . Furthermore, also by (43),

�#∂Dn ≤ Vn(Dn) + 6cFn = √
nEn(μDn )

and hence, assertion (ii) implies (i). ��
In view of the previous lower bound for the energy of a configuration Dn , we are

now able to prove a compactness results. We notice that to achieve compactness the
negative contribution coming at the boundary from the interaction with the substrate
needs to be compensated. This is not trivial, e.g., in the case 6cF > cS > 4cF , where
atoms x of configurations on ∂LFS have one bond with a substrate atom and at least
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two bondswith film atomsmissing. Away to solve the issue is to look for extra positive
contributions from other atoms in the boundary. However, just looking for neighboring
atoms might be not enough, e.g., in the case with eFS = eS = 2 or eFS = eS = 2

3 .
The issue is solved in the proof of the following compactness result by introducing a
new non-local argument called the strip argument that involve looking at the whole
strip S(x).

We conclude the section with compactness results for sequences of almost-
connected configuration (see Sect. 2.4 for the definition). We remind the reader that
by the transformation defined in Definition 2.1 for any configuration Dn there exists
the almost-connected configuration D̃n such that Vn(D̃n) ≤ Vn(Dn).

Proposition 4.3 Assume that (32) holds. Let Dn ∈ Cn be almost-connected configura-
tions such that

Vn(Dn) ≤ −6cFn + Cn1/2 (48)

for a constant C > 0. Then, there exist an increasing sequence nr , r ∈ N, and a

measure μ ∈ M(R2) with μ ≥ 0 and μ(R2) = 1 such that μr
∗
⇀ μ in M(R2),

where μr := μDnr ( · +anr ) for some translations an ∈ R
2 (see 14 for the definition of

the empirical measures μDnr
). Moreover, if Dn ∈ Cn are minimizers of Vn in Cn, then

we can choose an = tn t1 for integers tn ∈ Z.

Proof We follow the approach of Au Yeung et al. (2012, Proposition 3.2) with the
necessary modification to include almost-connected configurations, which are not
necessarily connected. In the following we denote by B(x, R) an open ball of radius
R > 0 centered at x ∈ R

2 and we define B(R) := B(o, R)where o is the origin inR
2.

We want to show that there exists R > 0 such that Dn ⊂ B(R) (up to a translation)
for every n.

To this aim we denote for any Dn its k := kDn connected components by Di
n for

i = 1, . . . , k. We define the sets

�i :=
⋃
x∈Di

n

νtrunc(x),

for i = 1, . . . , k, where

νtrunc(x) := ν(x) ∩ B(x, q)

with q defined in (13) and ν(x) denoting the (closed) Voronoi cell associated with x
with respect to Di

n , i.e.,

ν(x) := {y ∈ R
2 : |y − x | ≤ |y − x ′| for all x ′ ∈ Di

n\{x}}, (49)

and we observe that by construction and the convexity of ν(x),

|∂νtrunc(x)| ≤ 2qπ. (50)
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We claim that �i are connected. Indeed, if x, y ∈ Dn are such that |x − y| = 1, then
it is easily seen that the midpoint on the line that connects x and y belongs to both
ν(x) ∩ ν(y) and B(x, q) ∩ B(y, q). The second inclusion easily follows from (13)
while the first inclusion follows from the triangular inequality (it is impossible that
for some z ∈ Dn it is valid

∣∣∣∣z − x + y

2

∣∣∣∣ < 1/2

since then by the triangular inequality z would be distant from both x and y less than
one).

We now claim that also

� :=
⋃
x∈Dn

νtrunc(x),

is connected. This follows by showing that �i and ∪i−1
i=1�l are connected for i =

2, . . . , k, which in turns is a consequence of the fact that by definition Di
n is separated

by at most q from ∪i−1
l=1D

l
n for i = 2, . . . , k. In fact, by the same reasoning used in the

previous claim applied this time to two points x ∈ Di
n and y ∈ ∪i−1

l=1D
l
n chosen such

that |x − y| = dist(Di
n,∪i−1

l=1D
l
n), where dist(A, B) with respect to two subsets A and

B of R
2 denotes the distance between them, we can deduce that (x + y)/2 belongs to

both ν(x) ∩ ν(y) and B(x, q) ∩ B(y, q), which yields the claim. Since the interior of
the set �, denoted by �̊ is open, connected, of finite measure, and satisfies �̊1 = �̊,
where �̊1 denotes the set of points in R

2 of density one for �̊ (Ambrosio et al. 2000),
we have that (see Dayrens et al. 2019, Remark 2.2 and Lemma 2.13)

diam(�) ≤ 1

2
|∂�|.

Therefore, we have that

diam(Dn) := max
x,y∈Dn

|x− y| ≤ diam(�) ≤ 1

2
|∂�| ≤ 1

2

∑
x∈∂Dn

|∂νtrunc(x)| ≤ πq#∂Dn

(51)
where diam(A) of a set A is the diameter of A and we used that � is connected in the
second inequality, that if x ∈ Dn has 6 film neighbors, then by elementary geometric
observations νtrunc(x) ∩ ∂� = ∅ in the third inequality, and (50) in the last inequality.

Finally, from (48), (51) and Lemma 4.2 we obtain that

diam(Dn) ≤ Cπq

�
n1/2

and hence, by (14) there exist translations μn of μDn such that suppμn ⊂ B(R) for
some R > Cπq/2� and for every n. Therefore, since |μDn |(R2) = 1 for every n,
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by Ambrosio et al. (2000, Theorem 1.59) there exist a subsequence (nr )r ∈ N and a

measure μ ∈ M(R2) such that μr
∗
⇀ μ inM(R2). Furthermore, μ ≥ 0 and

μ(R2) ≤ lim
r→∞ μr (R

2) = 1.

In order to conclude the proof it suffices to prove that μ(R2) = 1, and this directly
follows from the fact that the support of μr are contained in a compact set of R

2. The
last claim follows from the fact that if Dn ∈ Cn is a minimizer of Vn then we have that
T1(Dn) = Dn , i.e., all connected components of Dn are connected with the substrate
and Dn is almost-connected. ��

The following compactness result is the analogous ofAu Yeung et al. (2012, The-
orem 1.1) in our setting with substrate interactions.

Theorem 4.4 (Compactness) Assume (32). Let Dn ∈ Cn be configurations satisfying
(48) and letμn := μT (Dn) be the empirical measures associated with the transformed
configurations T (Dn) ∈ Cn associated with Dn by Definition 2.1. Then, up to trans-
lations (i.e., up to replacing μn by μn(· + an) for some an ∈ R

2) and a passage to a
non-relabeled subsequence,μn converges weakly * inM(R2) to a measureμ ∈ MW ,
where MW is defined in (35). Furthermore, if Dn ∈ Cn are minimizers of Vn in Cn,
then we can choose an = tn t1 for integers tn ∈ Z.

Proof Webegin by observing that the transformed configurations T (Dn) of the config-
urations Dn are almost-connected configurations in Cn since they result from applying
transformation T2, and that

Vn(T (Dn)) ≤ Vn(Dn), (52)

since no active bond of Dn is deactivated by performing the transformations T1 and T2
(seeDefinition 2.1 for the definition ofT1 andT2). Therefore, in viewof Proposition 4.3
by (48) and (52) we obtain that, up to a non-relabeled subsequence, there exist an ∈ R

2

and a measure μ ∈ M(R2) with μ ≥ 0 and μ(R2) = 1 such that

μT (Dn)(· + an)⇀
∗μ

in M(R2). We can then conclude that μ ∈ MW by directly applying the arguments
in the proof of Au Yeung et al. (2012, Theorem 1.1). ��

We notice that, if the sequence Dn ∈ Cn is a sequence of almost-connected con-
figurations, then Theorem 4.4 directly holds for Dn without the need to pass to the
associated transformed configurations T (Dn) given by Definition 2.1.

123



32 Page 26 of 55 Journal of Nonlinear Science (2022) 32 :32

5 Lower Bound

We denote by h1/
√
3(x) the interior part of the Voronoi cell associated with every

x ∈ LF with respect to LF , i.e.,

h1/
√
3(x) :=

{
y ∈ R

2 : |y − x | < |y − x ′| for all x ′ ∈ LF\{x}
}

that is an open hexagon of radius 1/
√
3, and by v(x) its scaling in LF/

√
n, i.e.

v(x) := h1/
√
3(x)√
n

. (53)

Given a configuration Dn , we consider the auxiliary set Hn associated with Dn which
was introduced in Au Yeung et al. (2012) and defined by

Hn =
⋃
x∈Dn

v(x). (54)

The boundary of Hn is given by the union of a number M ∈ N (depending on Dn) of
closed polygonal boundaries P1, . . . , PM . For k = 1, . . . , M we denote the mk ∈ N

vertices of Pk by vk1, . . . , v
k
mk

and we set vkmk+1 := vk1, so that

Pk :=
mk⋃
i=1

[vki+1, v
k
i ]

where [a, b] denotes the closed segment with endpoints a, b ∈ R
2. Notice that each

mk is even and that we can always order the vertices so that

vk2i ∈ V e
LF

:=
(

1

3
√
n
(t1 + t2) + 1√

n
LF

)

and

vk2i−1 ∈ V o
LF

:=
(

1

3
√
n
(2t1 − t2) + 1√

n
LF

)

(see Fig. 4). To avoid the atomic-scale oscillations in ∂Hn between the two sets of
vertices V e

LF
and V o

LF
, we introduce another auxiliary set denoted by H ′

n where such
oscillations are removed, by considering only the vertices in one of the two sets, say
V o
LF

as depicted in Fig. 4. More precisely, the set H ′
n ⊂ R

2 is defined as the unique
set with Dn ⊂ H ′

n such that

∂H ′
n :=

M⋃
k=1

P ′
k, (55)
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H ′
n

∂LS√
n

e F
S

√
n

2
√
3
n

Fig. 4 A configuration Dn/
√
n is depicted with scaled Voronoi cells v(x) for every x ∈ Dn . The boundary

of Hn , which in this example consists of two polygonal lines (one “internal” and one “external”), is indicated
with a dashed black line while the boundary of H ′

n with a continuous red line

where

P ′
k :=

mk/2⋃
i=1

[vk2i−1, v
k
2i+1].

It easily follows from the construction of the auxiliary sets Hn and H ′
n associated

with the configuration Dn that

|Hn�H ′
n| ≤ #∂Dn

8n
√
3
, (56)

and ∣∣∣H1(∂Hn) − H1(∂H ′
n)

∣∣∣ ≤ 2
√
3
#∂Dn√

n
. (57)
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In the following we use the notation

∂Ln
FS := ∂LFS√

n
, ∂Ln

F := ∂LF√
n

.

For every point y ∈ ∂Ln
F we denote its left and right half-open intervals with length

1/(2
√
n) by

I+
y :=

[
y, y + 1

2
√
n

)
and I−

y :=
(
y − 1

2
√
n
, y

]
,

respectively, and we associate with y ∈ ∂Ln
F the set

Oy
n := Oy,−

n ∪ Oy,+
n ,

where Oy,±
n , for y ∈ ∂Ln

F is

Oy,±
n := {I±

y × R : y ∈ ∂Ln
F }.

The oscillatory set On (see Fig. 2) is defined as

On :=
⋃

y∈∂Ln
FS

Oy
n . (58)

Here On is the oscillatory set that consists of union of stripes of width 1/
√
n and

infinite length that correspond to the possible positions of film atoms at the place
x2 = eFS√

n
that are at distance eFS√

n
from some of substrate atoms. νH ′

n
is a normal at the

boundary.
The following lemma will help in the proof of the lower-semicontinuity result. It is

a simplified version of the proof of Au Yeung et al. (2012, Theorem 1.1) and we give
it for the sake of completeness. We recall that ρ := 2/

√
3.

Lemma 5.1 Let Dn ∈ Cn be such that En(μDn ) is bounded, whereμDn is the empirical
measure associated with Dn. Let H ′

n be defined as above. Then, we have that μDn −
ρχH ′

n

∗
⇀ 0.

Proof It is easy to see that

μDn − ρχHn

∗
⇀ 0.

Namely, for ψ ∈ C0(R
2), where C0(R

2) denotes the set of continuous functions with
compact support in R

2, we have that

∣∣∣∣
∫
R2

ψdμDn −
∫
R2

ρχHnψdx

∣∣∣∣ ≤ 1

n

∑
x∈Dn

sup
x∈Dn

{
|ψ(x) − ψ(y)| : |x − y| ≤ 1√

3n

}

→ 0,
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as n → ∞. From estimate (56) and Lemma 4.2 we have that ρχHn − ρχH ′
n

→ 0
strongly in L1, from which we have the claim. ��
Before proving the lower-semicontinuity result we give one simple lemma.

Lemma 5.2 Let � ⊂ R
d be an open set. Let κn and μn be two sequences of finite

(positive) Borel measures on the σ -algebra on � denoted by B(�) such that:

(i) supn∈N(μn(�) + κn(�)) < ∞,
(ii) (κn)n is uniformly absolutely continuous with respect to (μn)n, i.e., for every

ε > 0 there exists δ > 0 such that

μn(A) < δ �⇒ κn(A) < ε,

for every A ∈ B(�) and n ∈ N.

If there exist Borel measures κ and μ on B(�) such that κn
∗
⇀ κ and μn

∗
⇀ μ, then

κ is absolutely continuous with respect to μ.

Proof Take A ⊂ � such that μ(A) = 0. Since κ is a regular Borel measure it is
enough to prove that κ(K ) = 0 for every K ⊂ A, K compact. Take an arbitrary
K ⊂ A compact and ε > 0. By regularity of μ there exists U ⊂ X open such that
A ⊂ U and μ(U ) < δ, where δ is given by (ii). For every x ∈ K we find a ball of
radius rx such that μ(∂B(x, rx )) = 0 and B(x, rx ) ⊂ U . Since K is compact we can
find a finite number of balls (B(xi , rxi ))i=1,...,n that cover K and we define an open
set V ⊂ U as V := ∪n

i=1B(xi , rxi ). Obviously μ(∂V ) = 0. We have that μ(V ) < δ

and μn(V ) → μ(V ). Thus, there exists n0 ∈ N such that μn(V ) < δ, ∀n ≥ n0. But
then we have that κn(V ) < ε, ∀n ≥ n0. By the definition of weak star convergence
we also have that

κ(K ) ≤ κ(V ) ≤ lim inf
n→∞ κn(V ) < ε.

The claim follows by the arbitrariness of ε. ��
The following lower-semicontinuity result for the discrete energies En is based on

adapting some ideas used in Alberti and De Simone (2005) and Fonseca and Müller
(1993).

Theorem 5.3 If {Dn} is a sequence of configurations such that

μDn

∗
⇀ ρχD

weakly* with respect to the convergence of measures, where μDn are the associated
empirical measures of Dn and D ⊂ R

2\S is a set of finite perimeter with |D| = 1/ρ,
then

lim inf
n→∞ En(μDn ) ≥ E(D). (59)
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Proof Let {Dn} ⊂ Cn be a sequence of configurations such that μDn

∗
⇀ ρχD weakly*

with respect to the convergence of measures, for a set D ⊂ R
2\S of finite perimeter

with |D| = √
3/2. We focus on the case q �= 1 only, since the other case is simpler.

Without loss of generality, we can assume that the limit in the left hand side of (59)
is reached and it is finite, and hence there exists C > 0 such that En(μDn ) ≤ C for
every n ∈ N. Then, by the second assertion of Lemma 4.2 there exists C ′ > 0 such
that #∂Dn ≤ C ′√n for every n ∈ N, from which it follows that there exists a constant
C ′′ > 0 such that H1(∂H ′

n) < C ′′ (60)

for every n ∈ N. Therefore, up to a non-relabeled subsequence, ρχH ′
n
weakly

converges in BVloc(R2) to a function g ∈ BVloc(R2). Since, up to extracting an

extra non-relabeled subsequence, μDn − ρχH ′
n

∗
⇀ 0 as proved in Lemma 5.1 and

μDn

∗
⇀ ρχD by hypothesis, then g := ρχD and ρχH ′

n

∗
⇀ ρχD .

We observe that by (17), (33), and (55) we have that

En(μDn ) = 2cFH1(∂H ′
n) − cSH1

(
∂H ′

n ∩
{
y2 = eFS√

n
− 1

2
√
3n

}
∩ On

)
, (61)

where On is the oscillation set defined in (58). To check the validity of the above for-
mula, one easily sees that the second term comes from those atoms that are connected
with substrate atoms (for each such atom a ∈ Dn the set H ′

n contains the segment

v(a) ∩
{
y2 = eFS√

n
− 1

2
√
3n

}
of length 1/

√
n, see Fig. 4). For any other atom a ∈ Dn

one needs to seewhich neighboring atoms aremissing. For example if all six neighbors
are missing, then ∂H ′

n contains the triangle with sizes 1/
√
n contained in v(a), whose

sides are parallel to vectors t1, t2, t2 − t1, and on their unit normals the function �

takes the maximal value 2cF . If the atom a ∈ Dn is missing the neighbor a − t2, but
neighbor a+ (t1 − t2) belongs to Dn , then ∂H ′

n contains the segment of size 1/
√
n in

v(a − t2), parallel to the vector t1 − t2. We associate one half of such segment to the
atom a, while the other half to the atom a + (t1 − t2), who is also missing a neighbor.
The value of the function � is also 2cF on the unit normal to the vector t1 − t2. On
the other hand, if a ∈ Dn is missing both of its neighbors a − t2, a + (t1 − t2), then
∂H ′

n certainly contains the segment of size 1/
√
n that belongs to v(a) and is parallel

to the vector t1. Therefore, the value of the function � is 2cF on the unit normal to
the vector t1.

Fix δ > 0 and consider in this proof the notation y := (y1, y2) ∈ R
2 for the

coordinate of a point y ∈ R
2. From (61), it easily follows that

En(μDn ) = 2cFH1(∂H ′
n ∩ {y2 > δ}) + 2cFH1(∂H ′

n ∩ {0 ≤ y2 ≤ δ})
−cSH1

(
∂H ′

n ∩
{
y2 = eFS√

n
− 1

2
√
3n

}
∩ On

)

=
∫

∂H ′
n∩{y2>δ}

�(νH ′
n
)dH1 + 2cFH1(∂H ′

n ∩ {0 ≤ y2 ≤ δ})

−cSH1
(

∂H ′
n ∩

{
y2 = eFS√

n
− 1

2
√
3n

}
∩ On

)
,
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where in the second equality we used the definition of � (see (27)) to see that

�(±t3) = �

(
± t1 + t2√

3

)
= �

(
± t2 − 2t1√

3

)
= 2cF .

By Reshetnyak’s lower semicontinuity (Ambrosio et al. 2000, Theorem 2.38), we
obtain that

lim inf
n→∞

∫
∂H ′

n∩{x2>δ}
�(νH ′

n
)dH1 ≥ lim inf

n→∞

∫
∂H ′

n∩B(R)∩{x2>δ}
�(νH ′

n
)dH1

≥
∫

∂∗D∩B(R)∩{x2>δ}
�(νE )dH1,

for every ball B(R) centered at the origin and with radius R > 0, since χH ′
n
converges

weakly* in BVloc(R2) (and thus strongly in L1
loc) toχD , and hence, by letting R → ∞,

lim inf
n→∞

∫
∂H ′

n∩{x2>δ}
�(νH ′

n
)dH1 ≥

∫
∂∗D∩{x2>δ}

�(νD)dH1. (62)

We claim that for all δ > 0 small enough

lim inf
n→∞

[
2cFH1(∂H ′

n ∩ {0 ≤ y2 ≤ δ}) − cSH1
(

∂H ′
n ∩

{
y2 = eFS√

n
− 1

2
√
3n

}
∩ On

)]

≥
(
2cF − cS

q

)
H1(∂∗D ∩ {y2 = 0}) (63)

and we notice that from (62) and (63) we obtain

lim inf
n→∞ En(μDn ) ≥

∫
∂∗D∩{x2>δ}

�(νD)dH1 +
(
2cF − cS

q

)
H1(∂∗D ∩ {x2 = 0}),

from which (59) directly follows by letting δ → 0. To prove the claim (63), we fix
δ > 0, we introduce the Borel measures κ1,n, κ2,n , and κn defined by

κ1,n(B) := H1(∂H ′
n ∩ {0 ≤ y2 ≤ δ} ∩ B),

κ2,n(B) := H1
(

∂H ′
n ∩

{
y2 = eFS√

n
− 1

2
√
3n

}
∩ On ∩ B

)
,

κn(B) := 2cFκ1,n(B) − cSκ2,n(B),

for every B ∈ B(R2), where B(A) for a set A denotes the Borel σ -algebra on A, and
we consider the sets

QM : = [−M, M] × [0, δ], Q̊M := (−M, M) × [0, δ], and

Qc
M := (R × [0, δ])\QM .
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We divide the proof in three steps:
Step 1. In this step we prove that for every M > 0 we have that

lim inf
n→∞ κn(QM ) ≥ (2cF − cS

q
)H1(∂∗D ∩ {x2 = 0} ∩ QM ). (64)

By (60) we conclude that, up to extracting a non-relabeled sub-subsequence (for an
arbitrary a priori chosen subsequence in n), for fixedM > 0, there exist Borelmeasures

κM
1 and κM

2 such that κ1,n|QM

∗
⇀ κM

1 and κ2,n|QM

∗
⇀ κM

2 . Consequently, κn|QM

∗
⇀

2cFκM
1 − cSκM

2 . By μM
n , we denote the measure

μM
n (·) = H1({y2 = eFS/

√
n − 1/(2

√
3n)} ∩ QM ∩ ·).

By using Lemma 5.2 (applied to measures κM
2,n and μM

n ), we conclude that κM
2 is

absolutely continuous with respect to the Borel measure

μM (·) = H1({y2 = 0} ∩ QM ∩ ·) (65)

and we denote its density with respect to μM by ζ M
2 . The measure κM

1 might not be
absolutely continuous with respect to μM . We denote the density of its absolutely
continuous part with respect to μM by ζ M

1 . To conclude the proof of (64) we need to
show

2cFζ M
1 (y1) − cSζ

M
2 (y1) ≥ 2cF − cS

q
, for (y1, 0) ∈ ∂∗D ∩ Q̊M , (66)

2cFζ M
1 (y1) − cSζ

M
2 (y1) ≥ 0, forH1 a.e. (y1, 0) ∈ (∂S\∂∗D) ∩ Q̊M . (67)

We begin by showing (66). Take y′ = (y′
1, 0) ∈ ∂∗D ∩ Q̊M and denote by Qε(y′) the

square centered at y′ with edges of size ε parallel to the coordinate axes and Q+
ε (y′) :=

Qε(y′) ∩ {y2 > 0}. We assume ε > 0 is small enough such that Q+
ε (y′) ⊂ Q̊M . By

standard properties (see, e.g., Ambrosio et al. 2000, Example 3.68) we conclude that

lim
ε→0

1

ε2

∫
Q+

ε (y′)
|χD(z) − 1|dz = 0.

Since χH ′
n

→ χD as n → ∞ in L1(Q+
ε (y′)) for ε > 0 fixed we conclude that

lim
ε→0

lim
n→∞

1

ε2

∫
Q+

ε (y′)
|χH ′

n
(z) − 1|dz = lim

ε→0

1

ε2

∫
Q+

ε (y′)
|χD(z) − 1|dz = 0.

Thus, for every 0 < α < 1 there exists 0 < ε0 < δ
2 such that

lim inf
n→∞ |H ′

n ∩ Q+
ε (y′)| ≥ α

2
ε2, ∀ε < ε0.

123



Journal of Nonlinear Science (2022) 32 :32 Page 33 of 55 32

Next we define the sets Q0
ε(y

′) := Qε(y′) ∩ {y2 = 0}. We have that

lim inf
n→∞ H1

(
{(y1, 0) ∈ Q0

ε(y
′) : ({y1} × R

+) ∩ H ′
n �= ∅}

)
≥ εα. (68)

We look at the “lower polygonal curve” c�,n of H ′
n defined by:

c�,n :=
⋃
x∈H ′

n

p�,n(x),

where p�,n := (p1�,n(x), p
2
�,n(x)) ∈ ∂H ′

n is the projection function given by

p1�,n(x) := x1, p2�,n(x) := inf{y2 > 0 : (x1, y2) ∈ H ′
n}

for every x = (x1, x2) ∈ H ′
n . Then, {(y1, 0) ∈ Q0

ε(y
′) : ({y1} × R

+) ∩ H ′
n �= ∅} =

π1(c�,n)∩Q0
ε(y

′), where π1 is the projection of points ofR
2 onto {y2 = 0} and hence,

by (68)

lim inf
n→∞ H1

(
π1(c�,n) ∩ Q0

ε(y
′)
)

≥ εα. (69)

Furthermore, notice that c�,n is a union of segments of length 1/
√
n, each of them

associated with an atom belonging to Dn . In the cube Qε(y′) there are k1(n), k1(n) ≤
�

√
nε
q �, horizontal segments of size 1/

√
n that both belong to c�,n and correspond to an

atom of Dn bonded with a substrate atom. Thus, they contribute by k1(n)√
n

≤ �
√
nε
q � 1√

n

to the length of π1(c�,n) ∩ Q0
ε(y

′). We have that limn→∞�
√
nε
q � 1√

n
= ε

q . We denote

by k2(n) the number of segments in c�,n of size 1/
√
n that are not computed in the

k1(n) segments. From (69) it follows that

lim inf
n→∞ κn(Qε(y

′)) ≥ lim inf
n→∞

(
k1(n)√

n
(2cF − cS) + k2(n)√

n
2cF

)

≥ (1/q(2cF − cS) + (α − 1/q)2cF ) ε. (70)

Next we take a sequence in (ε), still denoted by (ε) such that for each member of
the sequence we have κ1(∂Qε(y′)) = κ2(∂Qε(y′)) = 0 . By the standard properties
of measures (see Evans and Gariepy 2015, Section 1.6.1, Theorem 1) and (70) we
have

2cFζ M
1 (y′) − cSζ

M
2 (y′) = lim

ε→0

2cFκM
1 (Qε(y′)) − cSκM

2 (Qε(y′))
ε

= lim
ε→0

lim
n→∞

κn(Qε(y′))
ε

≥ 1/q(2cF − cS) + (α − 1/q)2cF .

By letting α → 1 we have (66).

123



32 Page 34 of 55 Journal of Nonlinear Science (2022) 32 :32

It remains to show (67). Let y′ = (y′
1, 0) ∈ Q̊M\∂∗D. Notice that by standard

properties of BV functionsH1 a.e. (y1, 0) that does not belong to ∂∗E , belongs to the
set of density zero for D (see Ambrosio et al. 2000, Theorem 3.61), i.e.,

lim
ε→0

lim
n→∞

1

ε2

∫
Q+

ε (y′)
χH ′

n
(y)dy = lim

ε→0

1

ε2

∫
Q+

ε (y′)
χD(y)dy = 0.

Thus, for each α > 0 there exits ε0 > 0 such that

lim sup
n→∞

|H ′
n ∩ Q+

ε (y′)| ≤ αε2, ∀ε < ε0. (71)

We need to pay attention to the atoms y′ that are bonded with substrate atoms, whose
deficiency contribution (recall 19) can be negative and as low as 2cF − cS .

The proof consists in showing that for n large enough the total “energy deficiency”
on the cube Qε(y′) is actually positive, since there is “not much of set D” in the cube
Qε(y′). We define

Kn,ε(y
′) := ∂LFS√

n
∩ Qε(y

′) ∩ Dn√
n

Fix a0 ∈ Kn,ε(y′) and denote by a−1 and a1 the closest points to a0 in ∂LF/
√
n

on the left and on the right of a0, respectively. We consider the set

Õa0
n :=

⋃
i=−1,0,1

Õa0,i
n ,

where Õa0,−1
n := Oa−1,+

n , Õa0,1
n := Oa1,−

n , and Õa0,0
n := Oa0

n , and we denote its
projection onto ∂S by Pa0

n . Notice that H1(Pa0
n ) = 2/

√
n. We claim that

lim sup
n→∞

H1

⎛
⎝ ⋃

a0∈K̃n,ε(y′)

Pa0
n

⎞
⎠ ≤ 16αε

where

K̃n,ε(y
′) :=

{
a0 ∈ Kn,ε(y

′) : ∃i ∈ {−1, 0, 1} such that |Õa0,i
n ∩ H ′

n ∩ Qε(y
′)| >

ε

8
√
n

}
.

Indeed, as a consequence of (71) we have

#K̃n,ε(y
′) ≤ 8αε

√
n + 1 (72)

and hence, by (72) we have

∑
a0∈K̃n,ε(y′)

κM
n (Õa0

n ) ≥ −|2cF − cS|(8αε
√
n + 1)

1√
n
. (73)
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We now fix a0 ∈ Kn,ε(y′)\K̃n,ε(y′) such that a0 is neither the first left nor the last
right atom in Kn,ε(y′) and show by a simple analysis of the atoms ai , i = −1, 0, 1
that

H1(∂H ′
n ∩ Qε(y

′) ∩ Õa0
n ) ≥ 3√

n
(74)

which immediately implies that for a0 ∈ Kn,ε(y′)\K̃n,ε(y′) the energy contribution
of the strip Qε(y′) ∩ Õa0

n for every ε > 0 is positive and so,

∑
a0∈Kn,ε(y′)\K̃n,ε(y′)

κM
n (Õa0

n ) ≥ (6cF − cS)
#(Kn,ε(y′)\K̃n,ε(y′))√

n
≥ 0. (75)

To prove (74), we analyze the three possible cases:

(1) both of the strips Õa0,−1
n and Õa0,+1

n have empty intersection with H ′
n ;

(2) one of the strips Õa0,−1
n and Õa0+1

n has empty intersection with H ′
n ;

(3) none of the strips Õa0,−1
n and Õa0,+1

n has empty intersection with H ′
n ;

In the first case we have that a0 does not have neighbors and hence, there is a part
of ∂H ′

n of length 3/
√
n (perimeter of the equilateral triangle with side of size 1/

√
n)

that surrounds a0, i.e., belongs to v(a0) ∩ ∂H ′
n . This proves (74) in the case of (1).

For the second case we suppose without loss of generality that the interior of the
strip of Õa0,−1

n has empty intersection with H ′
n . We take the atom xr1 that belongs to

Dn∩√
nÕa0,+1

n that is the lowest and neighbor of a0 and the atom xr2 ∈ Dn∩√
nÕa0,+1

n
that does not have at least one of the two of his upper neighbors. If the first atom does
not exist it is easy to see that (74) is satisfied, and the second one exists by the fact that
a0 ∈ Kn,ε(y′)\K̃n,ε(y′). It is easy to see that (74) is satisfied also in this case since
we have contribution of 2/

√
n from v(a0) ∩ ∂H ′

n , where v is defined in (53), and at
least 1/(2

√
n) from

(
v(xr1) ∪ v

(
xr1 − t2

) ∪ v
(
xr1 + (t1 − t2)

)) ∩ Õa0,+1
n ∩ ∂H ′

n,

and at least 1/(2
√
n) from v(xr2) ∩ Õa0,+1

n ∩ ∂H ′
n ; in the case when xr1 = xr2 we have

the contribution of at least 1/
√
n from

(
v(xr1) ∪ v

(
xr1 − t2

) ∪ v
(
xr1 + (t1 − t2)

)) ∩ Õa0,−1
n ∩ ∂H ′

n .

In a similar way in the third case, we find atoms xl1, x
l
2 ∈ Dn ∩ √

nÕa0,+1
n and

xr1, x
r
2 ∈ Dn ∩ √

nÕa0,+1
n for which there exist contribution of 1/

√
n coming from

v(a0) ∩ ∂H ′
n , 1/

√
n coming from

[ (
v(xr1) ∪ v

(
xr1 − t2

) ∪ v
(
xr1 + (t1 − t2)

))∩Õa0,+1
n ∩ ∂H ′

n

]

∪ (v(xr2) ∩ Õa0,+1
n ∩ ∂H ′

n),
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and 1/
√
n coming from

[ (
v(xl1) ∪ v

(
xl1 − t2

)
∪ v

(
xl1 + (t1 − t2)

))
∩ Õa0,−1

n ∩ ∂H ′
n

]

∪ (v(xl2) ∩ Õa0,−1
n ∩ ∂H ′

n).

The rest of the energy deficiency that is inside the strip is positive. From (73) and (75),
we conclude that

2cFζ M
1 (y′) − cSζ

M
2 (y′) = lim

ε→0

2cFκM
1 (Qε(y′)) − cSκM

2 (Qε(y′))
ε

= lim
ε→0

lim
n→∞

κn(Qε(y′))
ε

≥ −8|2cF − cS|α.

By letting α → 0, (67) follows.
Step 2. In this step, we deduce (63) from the inequalities (66) and (67) proved in

Step 1. It suffices to show that for every ε > 0 there exist M0 > 0 and n0 ∈ N such
that

κn(Q
c
M ) ≥ −ε (76)

for every M ≥ M0, n ≥ n0.To establish (76) fix ε > 0 and choose M0 > 0 and

n0 >
16

ε2c2S
+ 1

large enough so that the following three assertions hold:

(1) |D ∩ Qc
M0

| ≤ 1
48cS

εδ,

(2)
∣∣(D ∩ QM0)�(Hn ∩ QM0)

∣∣ ≤ 1
48cS

εδ, ∀n ≥ n0,

(3) |Hn�H ′
n| ≤ 1

48cS
εδ, ∀n ≥ n0.

Notice that such M0 and n0 exist since (1) is trivial for large M0, (2) follows from the
BVloc-convergence of ρχHn to ρχD , and (3) is a consequence of (56). By (2) and (3)
and the fact that

|Hn| = |D| =
√
3

2
,

we have that

|H ′
n ∩ Qc

M | ≤ 1

16cS
εδ, ∀M ≥ M0,∀n ≥ n0. (77)

We define

Kn,M := ∂LFS√
n

∩ Qc
M ∩ Dn√

n
.
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Following the same idea of the previous step the proof consists in using the fact that
“there is not much of the set D outside QM” and hence, the energy deficiency outside
QM is small, for n large enough.

From (77), it follows that the set K̃n,M defined by

K̃n,M :=
{
a ∈ Kn,M : ∃α ∈ {−1,+1} such that |Õa,α

n ∩ H ′
n ∩ (R × [0, δ])| >

δ

8
√
n

}

is such that

#K̃n,M ≤ 1

2cS

√
nε + 2,

and hence

H1

⎛
⎝ ⋃

a∈K̃n,M

(
a − 1

2
√
n
, a + 1

2
√
n

)⎞
⎠ ≤ ε

cS
(78)

for every n ≥ n0. Since following the same argumentation of the previous step the
energy deficiency associated with points in Kn,M\K̃n,M is shown to be positive, from
(78) we easily conclude (76) for every M ≥ M0 and n ≥ n0.

Step 3. Claim (63) is an easy consequence of Step 1 and Step 2. More precisely,
from Step 1 and Step 2 we have that for every ε > 0 there exists M0 > 0 such that

lim inf
n→∞ κn(R

2) ≥ lim inf
n→∞ κn(QM ) + lim inf

n→∞ κn(Q
c
M )

≥
(
2cF − cS

q

)
H1(∂∗E ∩ {x2 = 0} ∩ QM ) − ε

for any M ≥ M0, where we used (64) and (76). By letting M → ∞ and using
arbitrariness of ε > 0 we obtain (63).

6 Upper Bound

The proof of the upper bound follows from the arguments of Au Yeung et al. (2012)
by paying extra care to the contact with the substrate.

Theorem 6.1 For every set D ⊂ R
2\S of finite perimeter such that |D| = 1/ρ, there

exists a sequence of configurations Dn ∈ Cn such that the corresponding associated
empirical measures μDn weakly* converge to ρχD and In(μDn ) → E(D).

Proof The proof is divided in 5 steps.
Step 1 (Approximation by bounded smooth sets). In this step we claim that: If

E ⊂ R
2\S is a set of finite perimeter with |E | = 1/ρ, then there exists a sequence of

sets (E j ) j∈N with E j ⊂ R
2\S for j ∈ N such that the following assertions hold:
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(i) |E j | = 1/ρ;
(ii) E j are bounded;
(iii) there exist sets E ′

j ⊂ R
2 of class C∞ such that E j = E ′

j ∩ (R2\S̄);
(iv) |E j�E | → 0 as j → ∞;
(v) |DχE j |(R2\S̄) → |DχE |(R2\S) as j → ∞;
(vi) ∫

∂∗E j∩(R2\S̄)

�(νE j )dH1 →
∫

∂∗E∩(R2\S)

�(νE )dH1 as j → ∞; (79)

(vii)
H1(∂∗E j ∩ ∂S) → H1(∂∗E ∩ ∂S) as j → ∞. (80)

We now construct the sequence of sets (E j ) j∈N that satisfy (ii)–(vii) and observe that
then (i) is easily obtained by scaling. Let E ′ ⊂ R

2 be the set determined from E by
reflection over ∂S and note that

H1(∂∗E ′ ∩ ∂S) = 0. (81)

By Maggi (2012, Theorem 13.8 and Remark 13.9) we find smooth bounded open sets
E ′

j ⊂ R
2 that satisfy |E ′

j�E ′| → 0 and

|DχE ′
j
|(R2) → |DχE ′ |(R2). (82)

We define E j := E ′
j ∩ (R2\S̄) and we claim that the sets E j satisfy (ii)-(vii).

We begin by noticing that (ii)-(iv) are trivial. To prove assertion (v) we begin to
observe that

|DχE ′ |(R2\S) ≤ lim inf
j→∞ |DχE ′

j
|(R2\S), (83)

|DχE ′ |(S) ≤ lim inf
j→∞ |DχE ′

j
|(S), (84)

|DχE ′ |(∂S) = 0 ≤ lim inf
j→∞ |DχE ′

j
|(∂S), (85)

where we used (81) and (82), and hence,

|DχE ′ |(R2) = |DχE ′ |(R2\S) + |DχE ′ |(S) + |DχE ′ |(∂S)

≤ lim inf
j→∞ |DχE ′

j
|(R2\S) + lim inf

j→∞ |DχE ′
j
|(S) + lim inf

j→∞ |DχE ′
j
|(∂S)

≤ lim inf
j→∞ |DχE ′

j
|(R2) = |DχE ′ |(R2).

Since this can be done on an arbitrary subsequence we have

|DχE |(R2\S) = |DχE ′ |(R2\S) = lim
j→∞ |DχE ′

j
|(R2\S) = lim

j→∞ |DχE j |(R2\S),

(86)
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since by the definition of E ′ and E j we have that DχE ′(A) = DχE (A) and
DχE ′

j
(A) = DχE j (A) for every A ∈ B(R2\S).

Assertion (vi) is a direct consequence of the Reshetnyak continuity theorem
(Ambrosio et al. 2000, Theorem 2.39).

To prove assertion (vii) we will first claim that for almost every M > 0

H1(∂E j ∩ (−M, M) × {0}) → H1(∂∗E ∩ (−M, M) × {0}). (87)

To prove claim (87) we observe that for almost every M ≥ 0 we have

|DχE ′ | (({−M} × R) ∪ ({M} × R)) = 0.

In fact the set of M ≥ 0 where this condition is not satisfied is at most countable. As
in the proof of (v), we conclude that for all such M ≥ 0 we have

|DχE j |
(
(−∞,−M) × R

+) → |DχE | ((−∞,−M) × R
+)

, (88)

|DχE j |
(
(M,+∞) × R

+) → |DχE | ((M,+∞) × R
+)

, (89)

|DχE j |
(
(−M, M) × R

+) → |DχE | ((−M, M) × R
+)

. (90)

We then notice that (87) is a consequence of continuity of traces and (90).
We now make the second claim that

lim
M→∞ lim

j→∞H1 (∂E j ∩ (−∞,−M) × {0}) = 0, (91)

lim
M→∞ lim

j→∞H1 (∂E j ∩ (M,+∞) × {0}) = 0, (92)

where the limit inM is taken over sequence ofM that satisfy (88)–(90), which together
with (87) yields (vii) since

H1(∂∗E ∩ ∂S) = lim
M→∞H1(∂∗E ∩ (−M, M) × {0})

= lim
M→∞ lim

j→∞H1(∂E j ∩ (−M, M) × {0})
= lim

j→∞H1(∂E j ∩ ∂S).

We prove only (91), since (92) goes in an analogous way. It is enough to show that

H1 (∂E j ∩ (−∞,−M) × {0}) ≤ |DχE j |((−∞,−M) × R
+), (93)
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and apply (88). Estimate (93) can be seen by taking ϕ ∈ Cc(R
2), ϕ = t3 on some

open set F such that E j ∩ (−∞,−M) × R
+ ⊂⊂ F , in the identity

∫
∂(E j∩(−∞,−M)×R+)

〈νE j∩(−∞,−M)×R+ , ϕ〉dx =
∫
F
〈DχE j∩((−∞,−M)×R+), ϕ〉dx

=
∫
F

χE j∩((−∞,−M)×R+)divϕdx = 0.

From this it follows that
∫

∂(E j∩(−∞,−M)×R+)∩{x2>0}
〈νE j∩(−∞,−M)×R+ , t3〉dH1

= H1 (∂ (
E j ∩ (−∞,−M) × R

+) ∩ {x2 = 0}) ,

(94)

where we used the fact that

νE j∩(−∞,−M)×R+ = −t3, H1 almost everywhere on x2 = 0.

Therefore, by (94) and since

νE j∩(−∞,−M)×R+ = t1, H1 almost everywhere on x1 = −M .

we obtain

H1 (∂ (
E j ∩ (−∞,−M) × R

+) ∩ {x2 = 0})
≤ H1 (∂ (

E j ∩ (−∞,−M) × R
+) ∩ (−∞,−M) × R

+)
. (95)

Notice that

∂
(
E j ∩ ((−∞,−M) × R

+)
)∩(−∞,−M)×R

+ = ∂E j ∩(−∞,−M)×R
+, (96)

which together with (95) implies (91), since

H1 (∂ (
E j ∩ (−∞, −M) × R

+) ∩ (−∞, −M) × R
+) = |DχE j |((−∞, −M) × R

+),

see (Ambrosio et al. (2000), Chapter 3.3). This concludes the proof of (vii).
Step 2 (Approximation by polygons).By Step 1, we can assume that E ⊂⊂ B(R)

is smooth and bounded. Furthermore, for such E we can construct a sequence of
approximating polygons Pj by choosing the vertices of each Pj on the boundary of
E in such a way that |Pj�E | → 0,

∫
∂Pj∩(R2\S)

�(νPj )dH1 →
∫

∂E∩(R2\S)

�(νE )dH1,
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and

H1(∂Pj ∩ ∂S) → H1(∂E ∩ ∂S),

so that
E(Pj ) → E(E). (97)

Step 3 (Approximationbypolygonswith vertices on the lattice). In viewof previous
steps and the metrizability of the unit ball of measures (where the norm is given by
total variation) induced by the weak* convergence, by employing a standard diagonal
argument and (97), we can assume, without loss of generality, that E has polygonal
boundary. We now approximate such polygonal set E , whose number of vertices
we denote by m ∈ N with a sequence of polygons En characterized by m vertices
belonging to

Ln
F := 1√

n
LF .

More precisely, let En be the polygon with vertices the set of m points in 1√
n
LF

closest in the Euclidean norm to the m vertices of E . Notice that the angles at the
vertices of En approximate the angles at the vertices of E , |En�E | → 0,

∫
∂En∩(R2\Sn)

�(νEn )dH1 →
∫

∂E∩(R2\S)

�(νE )dH1

and

H1(∂En ∩ ∂Sn) → H1(∂E ∩ ∂S).

where Sn is defined in (29). Therefore,

En(En) → E(E), (98)

where En is defined in (28). Furthermore, there exist αn ↘ 0 and βn ↘ 0 such that

∣∣∣∣∣|En| −
√
3

2

∣∣∣∣∣ = αn and |H1(∂En) − H1(∂E)| = βn . (99)

We can assume that ∂En ∩ ∂Sn is a union of segments of length strictly greater than
zero. Obviously, their number is bounded, independently on n.

Step 4 (Discrete recovery sequence). Let us now consider the sequence of crys-
talline configurations D̃n := √

n(Ln
F ∩ En), and notice that μD̃n

weakly* converges
to ρχE . Furthermore, from the definition of scaled Voronoi cells v(x) of x (see (53))
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it follows that

#D̃n − n = 2n√
3

∑
x∈D̃n

|v(x)| − n = 2n√
3

∑
x∈D̃n\∂ D̃n

|v(x)| − n + 2n√
3

∑
x∈∂ D̃n

|v(x)|,

and hence, since for every x ∈ D̃n we have |v(x)| = √
3/(2n),

|#D̃n − n| ≤ 2√
3
αnn + #∂ D̃n

≤ 2√
3
αnn + C(H1(∂E) + βn)

√
n (100)

for some constant C > 0, where in the last inequality we used (99).
We now claim that

Ṽn(D̃n) + 6cF#D̃n√
n

= En(En) + o(1), (101)

where Ṽn is the generalization of Vn (see10) to configurations with a number of atoms
different than n, i.e.,

Ṽn(Dk) :=
∑
i �= j

vFF (|di − d j |) +
k∑

i=1

v1(di ),

for every configuration Dk := {d1, . . . , dk} ∈ Ck . The claim easily follows from the
observation that each side Sk,n of En , k = 1, . . . ,m, for n large enough, intersects√
n (�(νSk,n )/cF )H1(Sk,n)+O(1) segments such that |z1−z2| = 1/

√
n and (z1, z2) ∈

D̃n/
√
n × (Ln

F\(D̃n/
√
n)) and from the observation that

∑
x∈√

n#D̃n

v1(x) = −cS
q
H1(∂En ∩ ∂Sn) + o(1) (102)

To see the first observation, we begin by considering a segment L = (x, y) with
endpoints x, y ∈ LF . We denote the unit tangential and normal vector to L by tL and
νL , respectively. Obviously y = x + t for the vector t := H1(L)tL = k1 t1 + k2 t2
defined for some k1, k2 ∈ Z. We restrict to the case in which k1, k2 ∈ N0 since the
remaining case can be treated analogously. Let � be the function such that �(tL) =
�(νL)/cF , i.e.,

�(tL) := 2

(
t1L + t2L√

3

)
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for

tL :=
(
t1L
t2L

)
,

and extend � by homogeneity. Notice that

�(k1 t1) = 2k1 and �(k2 t2) = 2k2. (103)

Let PL be the parallelogramwith sides the vectors x+k1 t1 and x+k2 t2. Furthermore,
let P+

L and P−
L the open triangles in which L divides PL . Notice that inside PL we

have k1 lines parallel to k2 t2, k2 lines parallel to k1 t1, and k1 + k2 − 1 lines with
varying length that are parallel to the vector t2 − t1. Since x + t intersects each of
these last lines (and each line intersects L one time), we have that L exactly intersects

2(k1 + k2) − 1 = �(k1 t1) + �(k2 t2) − 1 = �(t) − 1

= H1(L)�(tL) − 1 = H1(L)

cF
�(νL) − 1

lines and hence, L intersectsH1(L)�(νL)/cF segments [z1, z2] such that |z1−z2| = 1,
z1 ∈ LF ∩ (P+

L ∪ L), and z2 ∈ LF ∩ P−
L .

Therefore, if we denote the m vertices of En by vk,n for k = 1, . . . ,m and let
vm+1,n = v1,n , then, forn large enough, each side Sk,n = [vk,n, vk+1,n]of En intersects√
n(�(νSk,n )/cF )H1(Sk,n) + O(1) segments such that |z1 − z2| = 1√

n
and (z1, z2) ∈

D̃n × ( 1√
n
LF\D̃n), where the contribution O(1) takes into account that the endpoints

of Sk,n might have a different numbers of neighbors in D̃n . However, such disturbance
is of the order O(1) since the angles of En at the segment are approximately the same
for all n. In the end, (102) easily follows from the fact that ∂En ∩ ∂Sn is a union of
segments of length strictly greater than zero whose number is bounded, independently
on n.

Step5 (Final recovery sequence).Finally,wevariate the configuration D̃n to obtain
configurations Dn such that #Dn = n. It can be easily seen that for every m ∈ N there
exists a configuration F(m) that satisfies #F(m) = m, Em(μF(m)) = O(

√
m) and

F(m) is a subset of a rhomb with side lengths �√m �.
If #D̃n < n, we let m := n − #D̃n , properly translate F(m) so that it does not

intersect D̃n , and we define

Dn := D̃n ∪ F(m).

By (100), there exists a constant C > 0 such that

∣∣∣∣ Ṽn(D̃n) + 6cF#D̃n√
n

− Ṽn(Dn) + 6cFn√
n

∣∣∣∣ ≤ C

√
|#D̃n − n|√

n
→ 0. (104)
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Similarly, if #D̃n > n, by (100) for n large enough we can define a configuration
Dn satisfying (104) by taking away m = #D̃n − n atoms from D̃n , for example, we
can define Dn := D̃n\F(m), for F(m) translated in a way that it and all its neighbors
belong to the interior of En . Since μDn weakly* converges to ρχE , the assertion
follows from (101) and (104). ��

7 Proof of theMain Theorems in the Dewetting Regime

We begin the section by stating a �-convergence results that is a direct consequence
of Sects. 5 and 6. Recall that ρ := 2/

√
3.

Theorem 7.1 (�-convergence) Assume (32). The functional

En := n−1/2(In + 6cFn), (105)

where In is defined by (16), �-converges with respect to the weak* convergence of
measures to the functional I∞ defined by

I∞(μ) :=

⎧⎪⎨
⎪⎩
E(Dμ), if ∃Dμ ⊂ R

2\S set of finite perimeter

with |Dμ| =
√
3
2 such that μ = 2√

3
χDμ

+∞, otherwise,

(106)

for every μ ∈ M(R2).

Proof In view of the definition of �-convergence the assertion directly follows from
the lower and upper bound provided by Theorems 5.3 and 6.1, respectively. ��

We notice that Theorem 7.1 is not enough to conclude Assertion 3. of Theorem 2.4.
In fact, the compactness provided for energy equi-bounded sequences Dn ∈ Cn by
Theorem 4.4 of Sect. 4 holds only for almost-connected configurations Dn . Therefore,
as detailed in the following result, we can deduce the convergence of a subsequence
of minimizers only after performing (for example) the transformation T given by
Definition 2.1, which does not change the property of being a minimizer.

Corollary 7.2 Assume (32). For every sequence of minimizers μn ∈ Mn of En, there
exists a ( possibly different) sequence of minimizers μ̃n ∈ Mn of En that admits a
subsequence converging with respect to the weakly *convergence of measures to a
minimizer of I∞ in

MW :=
{
μ ∈ M(R2) : ∃D ⊂ R

2\S set of finite perimeter, bounded,

with |D| = 1

ρ
, and such that μ = ρχD

}
.
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Proof Let μn ∈ Mn be minimizers of En . By (15), (16), and (105) there exist con-
figurations Dn ∈ Cn such that μn := μDn . Let T (Dn) ∈ Cn be the transformed
configurations associated with Dn by Definition 2.1. We notice that the sequence of
measures

μ̂n := μT (Dn)

is also a sequence of minimizers of En , since by Definition 2.1 and (17) we have that

En(μ̂n) ≤ En(μn).

Therefore, by Theorems 7.1 and 4.4 we obtain that there exist a sequence of vectors
an := tn t1 for tn ∈ Z, an increasing sequence nk , k ∈ N, and a measure μ ∈ MW

(being a minimizer of I∞) such that μ̃nk⇀
∗μ inM(R2), where

μ̃n := μ̂n(· + an).

This concludes the proof. ��
In view of Theorem 2.3, we can improve the previous result and in turns, prove

the convergence of minimizers (up to a subsequence) directly without passing to an
auxiliary sequence of minimizers obtained by performing the transformation T given
byDefinition 2.1. In fact, Theorem 2.3 allows to exclude the possibility that a sequence
of (not almost-connected) minimizers μn ∈ Mn loses mass in the limit.

Proof of Theorem 2.3 Let D̂n be such that

Vn(D̂n) = min
Dn∈Cn

Vn(Dn),

and select for every D̂n a connected component D̂n,1 ⊂ D̂n with largest cardinality.
We assume by contradiction that

lim inf
n→∞ μD̂n

(D̂n,1) < 1,

and we select a subsequence nk such that

lim
k→∞ μD̂nk

(D̂nk ,1) = lim inf
n→∞ μD̂n

(D̂n,1) < 1. (107)

By Corollary 7.2, there exists a (possibly different) sequence of minimizers μ̃nk ∈
Mnk of Enk that (up to passing to a non-relabeled subsequence) converge with respect
to the weak* convergence of measures to a minimizer μ ∈ MW of I∞. Therefore,
there exists a bounded set D ⊂ R

2\S of finite perimeter with |D| = 1/ρ such that
μ = ρχD and μ̃nk converge with respect to the weak* convergence to ρχD .

We claim that
m0 := E(D) > 0, (108)
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and observe that (108) follows from

∫
∂∗D∩{x2>0}

�(νD)dH1 ≥ 2cFH1(∂∗D ∩ {x2 = 0}). (109)

In order to prove (109), we first show that

∫
∂∗D

νDdH1 = 0, (110)

by taking ϕi ∈ C1
c (R

2;R2), ϕi = t i on some open set F such that D ⊂⊂ F , for
i = 1, 3, in the identity

∫
∂∗D

〈νD, ϕi 〉dH1 = −
∫
D
divϕi dx = −

∫
D
divt i dx = 0,

where we used the definition of reduced boundary and the generalized Gauss–Green
formula (Ambrosio et al. 2000, Theorem 3.36) for sets of finite perimeter. Then, from
(110) it follows that

∫
∂∗D∩{x2>0}

νDdH1 = H1(∂∗D ∩ {x2 = 0})t3

and hence, since � is convex and homogeneous, by Jensen’s inequality and the fact
that �(t3) = 2cF we conclude that

∫
∂∗D∩{x2>0}

�(νD)dH1 ≥ L�

(
1

L

∫
∂∗‘D∩{x2>0}

νDdH1
)

= 2cFH1(∂∗D ∩ {x2 = 0}),

where L := H1(∂∗D ∩ {x2 > 0}), which is (109).
We claim that there exist configurations D̃nk ∈ Cnk defined by

D̃nk := D̃1
nk ∪ D̃2

nk ,

where D̃1
nk and D̃2

nk are configurations such that:

(i) supp μD̃1
nk

⊂ B(x1, R1) and supp μD̃1
nk

⊂ B(x2, R2) for some x1, x2 ∈ R
2 and

R1, R2 > 0 with B(x1, R1) ∩ B(x2, R2) = ∅,
(ii) the energy is preserved, i.e.,

Vnk (D̃nk ) = Vnk (D̂nk ),

(iii) the following inequalities hold:

lim inf
k→∞ μD̃nk

(D̃1
nk ) > 0 and lim inf

k→∞ μD̃nk
(D̃2

nk ) > 0.
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Under the further assumption that

lim
k→∞ μD̂nk

(D̂nk ,1) > 0, (111)

we can explicitly define D̃1
nk := T (D̂nk\D̂nk ,1) and D̃2

nk := D̂nk ,1 + tq t1 for some
large t ∈ Z (see (13) for the definition of q). In fact, the configurations D̃1

nk and D̃2
nk

are bounded because by Definition 2.1 they are almost connected and hence, property
(i) is satisfied provided that t ∈ Z is chosen large enough. Furthermore, again by
Definition 2.1 (and the translation of D̂nk ,1 of q-multiples) property (ii) is verified.
Finally, property (iii) directly follows from (107) and (111).

If condition (111) is not satisfied, the definition of D̃1
nk and D̃2

nk is more involved.
We choose an order among the connected components of D̂nk other than D̂nk ,1, say
D̂nk ,� for � ≥ 2 with the convention that D̂nk ,� := ∅ for � larger than the number of
connected components of D̂nk , and we observe that

0 ≤ lim
k→∞max

l∈N μD̂nk
(D̂nk ,�) ≤ lim

k→∞ μD̂nk
(D̂nk ,1) = 0,

so that
lim
k→∞max

l∈N μD̂nk
(D̂nk ,�) = 0. (112)

Furthermore, from (112) and the fact that

μD̂nk

(⋃
�

D̂nk ,�

)
= 1, (113)

it follows that there exist Jk ≥ 2 such that

Jk−1∑
j=1

μD̂nk
(D̂nk ,� j ) ≤ 1

3
and

Jk∑
j=1

μD̂nk
(D̂nk ,� j ) >

1

3
. (114)

We define

D̃1
nk := T

⎛
⎝ Jk⋃

j=1

D̂nk ,� j

⎞
⎠ and D̃2

nk := T

⎛
⎝D̂nk\

⎛
⎝ Jk⋃

j=1

D̂nk ,� j

⎞
⎠
⎞
⎠ + t ′q t1

for a large t ′ ∈ N. As in the previous case properties (i) and (ii) directly follow from
Definition 2.1 and the choice of the t1-translation by a q-multiple t ′ ∈ N large enough,
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where q is defined in (13). Finally, property (iii) is also satisfied since

lim inf
k→∞ μD̃nk

(D̃2
nk )

≥ lim
k→∞ μD̂nk

(⋃
�∈N

D̂nk ,�

)
− lim sup

k→∞
μD̃nk

⎛
⎝Jk−1⋃

j=1

D̂nk ,� j

⎞
⎠ − lim

k→∞ μD̂nk
(D̂nk ,Jk )

= 1 − lim sup
k→∞

μD̃nk

⎛
⎝Jk−1⋃

j=1

D̂nk ,� j

⎞
⎠ − 0 ≥ 2

3
> 0,

where we used (113) and (112). Therefore, the claim is verified.
By such claim and the same arguments used in Theorem 4.4, we deduce that (up to

a non-relabeled subsequence)

μ
D̃ j
nk

⇀∗ 1

|D j |χD j

inM(R2) for j = 1, 2, with D j disjoint bounded sets of finite perimeter such that

D′ = D1 ∪ D2,

where D′ is a minimizer of E . Therefore, if with λ j := |D j |, then

λ1 + λ2 = |D′| =
√
3

2
(115)

with both λ1 > 0 and λ2 > 0, respectively, because of (i) and (iii) above. Finally, by
scaling arguments we conclude

m0 = E(D) = E(D1) + E(D2) =
√

2√
3

(√
λ1m0 + √

λ2m0

)

and hence, by (108) and (115) we obtain

√
λ1 + √

λ2 =
√√

3/2 = √
λ1 + λ2,

which implies λ1 = 0 or λ2 = 0 that is a contradiction. ��
We are now ready to prove Theorem 2.4.

Proof of Theorem 2.4 Assertions 1. and 2. directly follow fromTheorem7.1 andCorol-
lary 7.2, respectively. It remains to show Assertion 3. to which the rest of the proof is
devoted.
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Let μn ∈ Mn be minimizers of En . By Corollary 7.2, there exist another sequence
of minimizers μ̃n ∈ Mn of En , an increasing sequence nk for k ∈ N, and a measure
μ ∈ MW minimizing I∞ such that

μ̃nk⇀
∗μ (116)

inM(R2). In particular, from the proof of Corollary 7.2 we observe that

μ̃n := μT (Dn)(· + tn t1)

for some integers tn ∈ Z, and for configurations Dn ∈ Cn such that μn := μDn ,
where T (Dn) := T2(T1(Dn)) (see Definition 2.1). Furthermore, by (16) and (105)
the configurations Dn are minimizers of Vn in Cn and hence, T1(Dn) = Dn and by
Theorem 2.3 we have that, up to a non-relabeled subsequence,

lim
k→∞ μDnk

(Dnk ,1) = 1, (117)

where Dnk ,1 is a connected component of Dnk (with the largest cardinality). We also
observe that the transformationT2 consists in translations of the connected components
of Dnk with respect to a vector in the direction −t1 with norm (depending on the
component) in N ∪ {0}. Let t ′nk ∈ N ∪ {0} be the norm of the vector for the connected
component Dnk ,1. From (116) and (117), it follows that

μDnk
(· + (tnk − t ′nk )t1)⇀

∗μ

and hence, we can choose cnk := tnk − t ′nk ∈ Z. ��

8 Examples of Other Positioning of Reference Lattices

The analysis presented in this manuscript is to be intended as a first attempt to model
crystalline drops on rigid substrates without the ambition of directly provide a compre-
hensive treatment. We aim at introducing a specific mathematical setting, which could
be a reference for further developments and already incorporates techniques useful for
more general cases. In particular, the results presented in the previous sections relate
to a particular positioning of the film and the substrate reference lattice that depends
on the definition of xF in (7) chosen to be equal to

x0F := (0, eFS)

by (8). Such positioningmight not be energetically optimal in certain situations, mean-
ing for example that at the discrete level for specific choices of the vector of parameters
used in the mathematical setting introduced in Sect. 2, which we denote in the follow-
ing as

�0 := (eF , eFS, eS, cF , cS),

123



32 Page 50 of 55 Journal of Nonlinear Science (2022) 32 :32

the same drop configurations could have a lower energy for some other choices of
xF ∈ R

2\S.
We do not intend to address here the general case of all possible positionings for a

fixed reference film lattice, as this requires a too lengthy and involved treatment, which
is the subject of Piovano and Velčić (2021) and of the forthcoming paper (Piovano and
Velčić in preparation). However, we would like to mention that the model considered
in this current paper will be one of the very few necessary settings to which the
greater generality of positionings of film and substrate reference lattices considered
in Piovano and Velčić (2021) and Piovano and Velčić (in preparation) is reduced, and
we conclude the paper by presenting in this section some relevant settings where the
optimal positioning is different, but can be easily reduced to the model of Sect. 2.

To this end, we denote in the following by M�(xF ) the model analogous to the
model introduced in Sect. 2 where xF := (xF,1, xF,2) referred to as the center of the
film lattice is free to be fixed in any point in R

2\S and � is any admissible vector of
parameters, i.e.,

� := (e′
F , e′

FS, e
′
S, c

′
F , c′

S).

More precisely, we make explicit the dependence on xF := (xF,1, xF,2) and � in the
choice of

LF,�(xF ) := {xF + k1 t1 + k2 t2 : k1 ∈ Z and k2 ∈ N ∪ {0}},
∂LS,� := {sk := (keS, 0) : k ∈ Z},

and the related family of configurations

Cn,�(xF ) := {A ⊂ LF,�(xF ) : #A = n}

and denote the discrete energy of any configuration Dn ∈ Cn,�(xF ) by Vn,�,xF (Dn)

(for vFα defined as in (9) with respect to the parameters in �).
We observe that the specific model defined in Sect. 2 corresponds to the model

M�0(x0F ) (with �0 := (eF , eFS, eS, cF , cS) for which we recall that eF was normal-
ized to 1) with family of configurations Cn,�0(x0F ), which we indicate for simplicity
in the following with

M0 := M�0(x0F ).

For M0 we keep on using the same notation of previous sections for the family of
configurations and the discrete energy related to M0, namely

Cn := Cn,�0(x0F )

and

Vn := Vn,�0,x0F
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in Cn , respectively. We also recall that q and p are the natural numbers as defined in
(13) such that

eS = q

p
.

We now introduce the notion of equivalent configurations to M0 among the con-
figurations in the various families Cn,�(xF ) defined for different xF ∈ R

2\S.
Definition 8.1 GivenM�(xF ) and a vector of parameter � := (e′

F , e′
FS, e

′
S, c

′
F , c′

S),
we say that D0

n is the associated configuration in C0n of a configuration Dn ∈ Cn,�(xF )

if and only if

D0
n := Dn − xF + x0F .

Furthermore, we say that the model M�(xF ) is equivalent toM0 if

Vn,�,xF (Dn) = Vn(D
0
n)

for every Dn ∈ Cn,�(xF ).

The following definition allows to compare two models M�(xF ) with different
centers xF of the film lattice and vectors of parameters �.

Definition 8.2 For k = 1, 2 let xkF ∈ R
2\S and let �k be admissible vectors of

parameters. We denote Mk := M�k (xkF ), Ckn := Cn,�k (xkF ), and V k
n := Vn,�k ,xkF

,

and say that the model M1 has a (energetically) better positioning of the reference
lattices than the model M2 if

V 1
n (Dn) ≤ V 2

n (Dn − x1F + x2F )

for every Dn ∈ C1n and there exists D′
n ∈ C1n such that V 1

n (D′
n) < V 2

n (D′
n − x1F + x2F ).

If neither ofM1 andM2 have a better positioning, then we say thatM1 andM2 are
not comparable.

With the following proposition, we recover the same results obtained for M0 for
every model equivalent toM0.

Proposition 8.3 For every model M�(xF ) equivalent to M0 in the sense of Defini-
tion 8.1 for some xF ∈ R

2\S, and vector of parameters � all the main results of
Sect. 7, i.e., Theorems 2.2, 2.3, and 2.4, remain valid forM�(xF ).

Proof The assertion follows by simply observing that all results of Sect. 7 are valid for
the family of associated configurations D0

n of the configurations Dn ∈ Cn,�(xF ), and
that Vn,�,xF (Dn) = Vn(D0

n) sinceM�(xF ) is equivalent toM0. Therefore, the same
wetting condition (31), the corresponding dewetting condition (32), and the same form
(26) for the limiting energy E are obtained also forM�(xF ). ��
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We now list some relevant examples of models M�(xF ) for � := (e′
F , e′

FS, e
′
S,

c′
F , c′

S) and xF ∈ R
2\S that are equivalent toM0 in the sense of Definition 8.1.

We begin with an example in which the positioning of xF allows each film atom in
∂LF,�(xF ) to be connected with exactly two (neighboring) substrate atoms, providing
an optimal positioning for film atoms, that is equivalent to M0 and hence, for which
Proposition 8.3 holds.

Example 8.4 If q = 1 and eS = eFS = 1/p, then the model M�(xF ) defined for

xF := eS
2

(
1,

√
3
)

,

with e′
FS = e′

S := eS , c′
F := cF , and c′

S := 2cS , is equivalent toM0.

The following is an example of a model in which every substrate atom can be
bonded to two film atoms that has a better positioning than the corresponding model
with same vector of parameters and center in x0F , but that can also be reduced toM0.

Example 8.5 If q = p = 1 and eS = eFS = 1, then the modelM�(x1F ) defined with

x1F := 1

2

(
1,

√
15

)
,

e′
S = e′

FS := 2, c′
F := cF , and c′

S := cS is equivalent to M0. We notice that every
film atom in ∂LF,�(x1F ) is connected with exactly one substrate atom and that every
substrate atom is bonded with exactly two film atoms in ∂LF,�(x1F ). Regarding the
optimality among lattice positioning of M�(x1F ) we can observe that M�(x1F ) has,
e.g., a better positioning than M�(x0F ), but that there is a model M�(x2F ) which is
not comparable withM�(x1F ), e.g., choose

x2F :=
(
1,

√
3
)

,

despite the fact that in the model M�(x2F ) every second atom of ∂LF,�(x2F ) can be
bonded with two substrate atoms. Notice also that the model M�(x2F ) defined in the
previous example represents a case in which the configurations in Cn,�(x2F )with finite
energy Vn,�,x2F

need to have every second lattice site in ∂LF,�(x2F ) free of atoms (see

the discussion after Example 8.6 for further aspects of M�(x2F )).

We discuss one more example that is equivalent to model M0 for which we have
the particular situation in which every substrate atom can be bonded with exactly one
film atom apart from periodically each third of them, which cannot be bonded with
film atoms.

Example 8.6 If q = p = 1 and eFS = eS = 1, then the modelM�(x1F ) defined with

x1F := 1

6

(
−1,

√
15

)
,
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e′
S = e′

FS := 2/3, c′
F := cF , and c′

S := cS is equivalent to M0. Every film atom in
∂LF,�(x1F ) is bondedwith exactly one substrate atom, and every substrate atom can be
bonded with exactly one film atom apart from periodically each third of them, which
cannot be bonded with film atoms. We notice that this model has a better positioning
than the model M�(x0F ) and is not comparable with the model M�(x2F ), where

x2F := 1

3

(
1,

√
3
)

,

despite the fact that in the model M�(x2F ) every second atom of ∂LF,�(x2F ) can be
bonded with two substrate atoms, since it is also a case in which the configurations in
Cn,�(x2F )withfinite energyVn,�,x2F

need tohave every second lattice site in ∂LF,�(x2F )

free of atoms.

We notice that Examples 8.5 and 8.6 also shows that models in which certain sites
of the lower border of the film lattice are prevented for configurations with finite
energy (i.e., the settings denoted by M�(x2F ) in both examples) do not present in
principle a better positioning than models equivalent to M0, despite that the other
(allowed) film atoms on the film-lattice border have two bonds with substrate atoms.
For these settings which cannot be reduced toM0 we prove in the forthcoming paper
(Piovano and Velčić in preparation) by considering a modification of the model M0

that analogous results to the ones contained in Sect. 7 hold true, but with different
wetting condition and adhesivity parameter σ for the limiting energy of the type (26).

Also the model M�(xF ) defined by

xF := 1

8

(
−1,

√
35

)
,

e′
S = e′

FS := 3/4, e′
F = 1, and by any admissible c′

F and c′
S , will be reduced

in Piovano and Velčić (in preparation) to a modification of M0 for which similar
arguments allow us to prove analogous results to the ones contained in Sect. 7, but
with wetting condition replaced by c′

S ≥ 5c′
F and adhesivity parameter in the limiting

energy (26) given by

σ = 2c′
F − 2

3
c′
S .

Such amodel is interesting since every third film atom in ∂LF,�(xF ) cannot be bonded
with any substrate atom and every other film atom in ∂LF,�(xF ) is connected with
exactly one substrate atom. Furthermore, there exist substrate atoms in ∂LS,� that are
not connectedwith anyfilmatoms.We also notice that thismodel has better positioning
than the model M�(x0F ) since in the period of three film atoms in ∂LF,�(xF ) two
neighboring film atoms are connected with one substrate atom, while in ∂LF,�(x0F )

only one.
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