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In the present study, we exploit the Renard-Deck identity [“A theoretical decompo-

sition of mean skin friction generation into physical phenomena across the boundary

layer”, J. Fluid Mech. 790, 339–367 (2016)] to decompose the mean friction drag in

adverse-pressure-gradient turbulent boundary layers (APG-TBLs) into three compo-

nents, associated with viscous dissipation, turbulence kinetic energy production, and

spatial growth of the flow, respectively. We consider adverse-pressure-gradient tur-

bulent boundary layers developing on flat-plates and airfoils, with friction Reynolds

numbers in the range 200 < Reτ < 2000, and with Rotta-Clauser pressure-gradient

parameters (β) ranging from 0 to 50. The effects of Reynolds number, adverse pres-

sure gradient, and the pressure-gradient-history on the contributing components are

individually investigated, and special attention is paid to the comparisons with zero-

pressure-gradient turbulent boundary layers (ZPG-TBLs). Our results indicate that

the inner peaks of the dissipation and production terms are located at y+ ≈ 6 and

y+ ≈ 16.5, respectively, and their outer peaks scale with the 99% boundary-layer

thickness (δ99), i.e. y/δ99 ≈ 0.7 and y/δ99 ≈ 0.53, respectively. These results are

independent of the friction Reynolds number, the magnitude of β and its develop-

ment history. Moreover, the spatial-growth component is negative in the investigated

APG-TBLs, and its magnitude increases with β.
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I. INTRODUCTION

Turbulent boundary layers (TBLs) subjected to adverse pressure gradients (APGs) are

frequently encountered in industrial applications, such as aircraft wings, turbine blades and

diffusers. The effects of APGs on the mean flow-fields and turbulence statistics of TBLs

have been investigated for decades both experimentally and numerically1–7. Compared to

zero-pressure-gradient (ZPG) TBLs, APG-TBLs develop a larger wake region, which shifts

downward and invalidates the standard law of the wall for ZPG-TBLs at least at low-to-

moderate Reynolds numbers3,4. Prominent peaks of turbulence intensities, Reynolds stress

and turbulence kinetic energy production are observed in the outer region of APG-TBLs7,8,

which are generally related with the energisation of large-scale outer motions9–11. Harun

et al. 9 reported that the energisation of outer motions due to APG is quite similar to that

of ZPG-TBLs at high Reynolds numbers, though differences in both small and large scales

in the outer region were later pointed out by Tanarro et al. 12 .

The ability to understand and predict the mean friction drag in APG-TBLs is pursued

in aerodynamic design of modern aircraft and engines. Although the mean friction drag

is a wall property by definition, its generation is not only linked to the near-wall turbu-

lence dynamics but also connected with the energy-containing motions populating the outer

regions in terms of superposition and modulation13–16. Based on appropriate mathemati-

cal derivations17–19, the mean friction drag can be explicitly calculated by the turbulence

statistics across the wall layer and decomposed into several contributing constituents. With

a successive triple integration of the averaged streamwise momentum equation, Fukagata

et al. 17 derived a relationship between the mean friction coefficient and the Reynolds shear

stress. This method was later known as FIK identity and has been used and modified over

the years20–23. Inspired by the derivation of FIK identity, Yoon et al. 19 performed the triple

integration on the mean spanwise vorticity equation and quantified the contribution of vor-

tical motions on the generation of mean friction drag. Recent studies18,24,25 have argued

that the FIK identity does not involve any causal relations for friction-drag generation and

its mathematical derivation is in lack of physics-informed interpretations. On the basis of

mean streamwise kinetic-energy budgets in an absolute reference frame, Renard and Deck 18

proposed a physics-informed friction-drag decomposition method for incompressible TBLs,

which is named as RD identity hereafter. The RD identity characterizes the generation of
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mean friction drag as the power supplied by the moving wall (see Sec. III for details) to the

fluid, diffused in the boundary layers through direct viscous dissipation, turbulence kinetic

energy production, and spatial growth. Li et al. 26 and Fan et al. 16 extended the RD identity

to a compressible form and used it to investigate the Reynolds- and Mach-number depen-

dence of the contributing components. They also quantified the effect of compressibility on

skin-friction drag generation.

To date, very few studies have been found to investigate the mean friction drag decom-

position in APG-TBLs. Yoon et al. 27 decomposed the mean friction drag in a moderate

APG-TBL by using their vorticity-based method19, and their results suggested that the en-

hanced large-scale outer motions contribute significantly to the friction constituents caused

by advective transport and vortex stretching, by means of superposition and amplitude-

modulation effects. In the present study, we adopt the RD identity to decompose the

mean friction drag in APG-TBLs. As opposed to the vorticity-based method by Yoon et

al.19, the RD identity was proposed from the perspective of the mean streamwise kinetic

energy budget, thus identifying the energy distribution/transfer of dissipation, production

and convection as a source of skin-friction generation. APG-TBLs developing both on flat

plates under near-equilibrium conditions5,28 and NACA4412 airfoils with a quickly growing

pressure-gradient magnitude, are taken into consideration. The friction-Reynolds-number

range under scrutiny is 200 < Reτ < 2000 (where Reτ = uτδ99/ν, with uτ being the fric-

tion velocity, δ99 the 99% boundary-layer thickness (obtained as in Ref.29), and ν the fluid

kinematic viscosity), and the Rotta-Clauser pressure-gradient parameter β30–32 ranges from

0 to 50 (where β = δ∗/τwdPe/dx, with δ∗ being the displacement thickness, τw the wall-

shear stress, and dPe/dx the streamwise pressure gradient at the boundary-layer edge). The

Reynolds-number and pressure-gradient effects on the contributing components are investi-

gated and compared with those uncovered in ZPG-TBLs16.

This paper is organized as follows. Section II introduces the LES/DNS database of APG-

TBLs and a ZPG-TBL. The theory of the mean friction drag decomposition is described in

Sec. III. Results are presented in Sec. IV, including the quantification of contributions to

the friction drag in APG-TBLs, and the revealing of their Reynolds-number and pressure-

gradient dependence. Effects of the flow history on the contributing terms are also discussed.

At last, concluding remarks are summarized in Sec. V.
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TABLE I. Datasets of the flow cases considered in this paper.

Case Reτ Rec β Cf × 103

APG-TBLs5,33,35

β1 285 – 862 - ≈ 1 2.6 – 3.9

β2 283 – 910 - ≈ 2 2.2 – 3.7

β1.4 1000 – 2000 - ≈ 1.4 2.0 – 2.3

m18 281 – 973 - 2.15 – 4.07 1.7 – 3.5

NACA44126

W2 66 – 231 200,000 0 – 258 0 – 6.1

W4 140 – 372 400,000 0 – 112 0 – 5.9

W10 263 – 707 1,000,000 0 – 77 0 – 5.1

ZPG-TBL34 250 – 830 - 0 3.33 – 4.78

II. TURBULENT-BOUNDARY-LAYER DATABASES

A database containing large-eddy simulations (LESs) of APG-TBLs on flat plates5,33,

LESs of APG-TBLs on a NACA4412 airfoil6, and a direct numerical simulation (DNS) of a

ZPG-TBL34 is utilized in the present study. Details of the database parameters are listed

in table I.

For the APG-TBLs on flat plates under the near-equilibrium conditions, the friction

Reynolds number Reτ ranges from 200 to 2000. In cases ‘β1’, ‘β2’ and ‘β1.4’, the Rotta-

Clauser pressure gradient parameter β30–32 is approximately constant in the streamwise

direction. In case ‘m18’, β varies in the streamwise direction from 2.15 to 4.07. For the

APG-TBLs on the NACA4412 airfoil, three cases with the chord-based Reynolds number

of Rec=200,000, 400,000, and 1,000,000 are considered, and named as W2, W4 and W10,

respectively, where Rec = u∞c/ν, u∞ is the free-stream velocity, and c is the chord length.

Much stronger β values are exhibited by the airfoils than those on the flat plates. In addition,

a ZPG-TBL, i.e. β = 0, with 250 ≤ Reτ ≤ 830 is also included for comparison. The skin-

friction coefficients (Cf ), directly calculated by Cf = 2τw/(ρU
2
e ) with ρ being the density,

and Ue the streamwise velocity at the boundary-layer edge, are also listed in table I.
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III. MEAN FRICTION DRAG DECOMPOSITION METHOD

Under the absolute reference frame where the wall is moving at the speed of −Ue (which

is the velocity at the boundary-layer edge), Renard and Deck 18 proposed a mean friction

drag decomposition method (RD identity) from the perspective of mean streamwise kinetic

energy budgets. With the RD identity, the mean skin-friction coefficient Cf in APG-TBLs

is decomposed as:

Cf =
2

U3
e

∫ δ99

0

ν

(
∂ 〈u〉
∂y

)2

dy︸ ︷︷ ︸
Cf1

+
2

U3
e

∫ δ99

0

−〈u′v′〉 ∂ 〈u〉
∂y

dy︸ ︷︷ ︸
Cf2

+
2

U3
e

∫ δ99

0

(〈u〉 − Ue)
∂

∂y

(
ν
∂ 〈u〉
∂y

− 〈u′v′〉
)
dy︸ ︷︷ ︸

Cf3

, (1)

and

Cf3 =
2

U3
e

∫ δ99

0

(〈u〉 − Ue)

(
〈u〉 ∂ 〈u〉

∂x
+ 〈v〉 ∂ 〈u〉

∂y

)
dy︸ ︷︷ ︸

Cf31

+
2

U3
e

∫ δ99

0

−(〈u〉 − Ue)

(
ν
∂2 〈u〉
∂x2

− ∂ 〈u′u′〉
∂x

)
dy︸ ︷︷ ︸

Cf32

+
2

U3
e

∫ δ99

0

(〈u〉 − Ue)

(
dp/ρ

dx

)
dy︸ ︷︷ ︸

Cf33

, (2)

where 〈·〉 is the Reynolds averaging operator, and the prime ′ denotes fluctuations with re-

spect to the Reynolds averages. Furthermore, x and y represent the directions tangential and

normal to the wall surface, respectively, u and v are the corresponding velocity components,

and p is the static pressure.

The mean streamwise kinetic energy balance is strictly held in the RD identity: Cf

describes the mean friction drag generation in terms of the mean power supplied from the

moving wall to the fluid; Cf1 represents the direct molecular viscous dissipation, transforming

the power of the mechanical power into heat; Cf2 represents the power spent for turbulence

kinetic energy production; and Cf3 represents the spatial growth of the flow, in terms of

the flow convection Cf31, streamwise heterogeneity Cf32, and the pressure gradient Cf33,

as expressed in equation (2). Note that in equation (1), the integrand in Cf3 has been

substituted with local information which only depends on the well-documented profiles at

a considered streamwise location, in order to get rid of the explicit streamwise derivatives.

More details can be found in Renard and Deck 18 .
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IV. RESULTS AND DISCUSSION

In this section, we first investigate the skin-friction decomposition in the case of flat-

plate APG-TBLs with constant β, including its pressure-gradient and Reynolds-number

dependence, in contrast with the phenomena in the ZPG-TBL. Attention is paid to the

friction contributions on the suction side of the NACA4412 wing section with a similar

streamwise development of β to isolate the Reynolds-number effects. Furthermore, history

effects of pressure-gradient on the mean skin friction and its constituents are also discussed.

A. APG effects on the decomposed constituents

In this subsection, the APG effects on the decomposed constituents are analyzed at a

selected friction Reynolds number Reτ = 670, by using the ZPG-TBL (β = 0) and the

APG-TBLs with constant β (≈ 1 and 2). Figure 1 illustrates the variation of (Cf1 + Cf2 +

Cf3)/Cf , Cf1/Cf , Cf2/Cf , and Cf3/Cf for the three cases under consideration, where Cf is

directly calculated by Cf = 2τw/(ρU
2
e ). Similar features can be found in other cases with

the same Reτ . The relative errors [(Cf1 + Cf2 + Cf3) − Cf ]/Cf are well confined within

±0.05%, which suggests that the RD identity essentially recovers the total mean friction

drag. Under the condition of APG, Cf1/Cf decreases, while Cf2/Cf increases significantly for

higher values of β. These trends are attributed to the differences in the spatial distributions

of decomposed constituents in the inner and outer regions with the existence of APGs,

which will be discussed below. In the ZPG-TBLs, Cf3 is always positive and accounts for

approximately 12% of the total Cf for Reτ ranging from 250 to 127016. However, in the

APG-TBLs, Cf3/Cf becomes negative (at least) when β ≥ 1, and the negative contributions

increase with the APG magnitude. This is caused by the negative contribution of Cf33, as

discussed in detail throughout this section.

The ratios Cf1/Cf , Cf2/Cf , and Cf3/Cf can be expressed as:

Cf1

Cf

=

∫ Reτ

0

1/U+
e

(
∂ 〈u〉+
∂y+

)2

dy+, (3)

Cf2

Cf

=

∫ Reτ

0

1/U+
e 〈−u′v′〉+ ∂ 〈u〉+

∂y+
dy+, (4)

Cf3

Cf

=

∫ Reτ

0

1/U+
e

(〈u〉+ − U+
e

) ∂

∂y+

(
∂ 〈u〉+
∂y+

− 〈u′v′〉+
)
dy+, (5)
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FIG. 1. Contributions of the three decomposed components for flat-plate TBLs with constant

β = 0, ≈ 1, and 2, and Reτ = 670.
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FIG. 2. Distributions of the pre-multiplied integrand in Cf1/Cf (a), Cf2/Cf (b), and Cf3/Cf (c)

as a function of y+ for the flat-plate TBLs with constant β = 0, ≈ 1, ≈ 2 and Reτ = 670.

where the superscript + denotes normalization by local viscous units, i.e. friction velocity

uτ =
√

(τw/ρ) and viscous length scale δν = ν/uτ .

Wall-normal distributions of the pre-multiplied integrands in equations (3)-(5) are de-

picted in figure 2. The areas beneath the curves yield the proportion of Cf1, Cf2, and Cf3

with respect to the total, as displayed in figure 1. It can be seen from figure 2 that for

APG-TBLs, two peaks are observed respectively in the near-wall and outer regions both in

the distributions of Cf1-contribution and Cf2-contribution. Most of the Cf1-contributions

come from the inner region (y+ < 30), which is in line with the physics, i.e. the fact that

the viscous dissipation is concentrated in the near-wall region36. As β increases from 0 to

2, the inner-peak value is decreased, whereas its location remains fixed at y+ ≈ 6.0, which

indicates that:

d[y+(∂〈u〉+/∂y+)2]
dy+

∣∣∣
y+≈6

= 0. (6)
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FIG. 3. Profiles of mean streamwise velocity (a), wall-normal gradient of velocity (b), Reynolds

shear stress (c), and production (d) as a function of y+ for the flat-plate TBLs with constant β = 0,

≈ 1, ≈ 2 and Reτ = 670.

This differential equation finally yields:

d ln(d〈u〉+/dy+)
d ln y+

∣∣∣
y+≈6

= −1

2
, (7)

leading to a local expansion of 〈u〉+ − 〈u〉+ |y+≈6∝ (y+)
1/2

at y+ ≈ 6, regardless of the

imposed pressure gradient. This phenomenon is interesting, extending our knowledge on

the mean velocity profile beyond the viscous sublayer (up to y+ = 5). Meanwhile, as shown

in the inset of figure 2(a), a small secondary peak appears in the outer region of APG-TBLs,

and the peak value is increased with β. Note that this secondary peak is absent in the

ZPG-TBLs, even at higher Reynolds numbers up to Reτ = 127016. This suggests that the

APG has an action to enhance the generation of outer-layer energy, which is consistent with
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the observation in the studies by Tanarro et al. 12 and Sanmiguel Vila et al. 37 .

As for the Cf2-contributions shown in figure 2(b), they are related to the distribution

of pre-multiplied production P+38, which is defined as P+ = 〈−u′v′〉+ d 〈u〉+/dy+; thus the
Cf2-contributions correspond to y+P+/U+

e . Note that two peaks are observed in the inner

and outer regions located at y+ ≈ 16.5 and y+ ≈ 300 − 400, respectively. The inner-layer

peak collapse at y+ ≈ 16.5 indicates that:

d(y+P+)
dy+

∣∣∣
y+≈16.5

= 0, (8)

suggesting that the trend P+ ∝ 1/y+ holds at y+ ≈ 16.5. For increasing β, the inner peak

decreases, while the outer peak increases dramatically and becomes dominant in the Cf2-

contributions, which is ascribed to the remarkable upward shift of the mean velocity and

Reynolds shear stress in the wake region, as shown in figure 3. Thus, in contrast to ZPG-

TBLs, outer-layer motions carry larger amounts of turbulence kinetic energy in APG-TBLs,

which were found to be associated with the energisation of large-scale structures6,7,9–11.

Consequently, as for the mean friction generation, the large Cf2-contributions observed in

the outer region are directly linked to the energisation of large-scale motions, especially for

the APG-TBLs with high β. Note that y+P+ defines the log density of production. Its

good collapse at y+ ≈ 16.5 does not mean that the peak location of P+ also keeps invariant.

As shown in figure 3(d), the inner-peak locations of P+ are shifted closer to the wall in

viscous units as β increases (P+/U+
e in figure 3(d) is exactly the integrand of Cf2/Cf , and

the prefactor of 1/U+
e will not influence the peak locations.).

Things are quite different for the Cf3-contributions, as shown in figure 2(c): in ZPG-

TBLs, the Cf3-contributions are always positive; on the other hand, in the APG-TBLs,

negative Cf3-contributions are observed within y+ � 300, and positive values beyond this

region. According to equation (2), Cf3 consists of three parts: convection term (Cf31),

streamwise-heterogeneity term (Cf32), and pressure-gradient term (Cf33), and their ratios

with respect to Cf can be written as:

Cf31

Cf

= 1/U+
e

∫ Reτ

0

(〈u〉+ − U+
e )

(
〈u〉+ ∂ 〈u〉+

∂x+
+ 〈v〉+ ∂ 〈u〉+

∂y+

)
dy+, (9)

Cf32

Cf

= 1/U+
e

∫ Reτ

0

−(〈u〉+ − U+
e )

(
∂2 〈u〉+
∂x+2

− ∂ 〈u′u′〉+
∂x+

)
dy+, (10)

Cf33

Cf

= 1/U+
e

∫ Reτ

0

(〈u〉+ − U+
e )

(
dp/(ρu2

τ )

dx+

)
dy+. (11)
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FIG. 4. Distributions of the pre-multiplied integrand in Cf31/Cf (a), Cf32/Cf (b), and Cf33/Cf

(c) as a function of y+ for the flat-plate TBLs with constant β = 0, ≈ 1, ≈ 2 and Reτ = 670.

Figure 4 shows the wall-normal distributions of the pre-multiplied integrands in equa-

tions (9)–(11). The Cf31-contributions are always positive and mainly confined to the outer

region. Its peak value is significantly increased with APG magnitude, which is in accordance

with stronger outer-layer convection at higher β. The effect of streamwise heterogeneity, as

shown in figure 4(b), is negligible due to its small amplitude. With the imposed adverse

pressure gradients, negative Cf33-contributions are observed across the boundary layer, as

expected, as shown in figure 4(c). Thus, the sign switching of the Cf3-contributions in fig-

ure 2(c) is mainly related to the counterbalance between the convection term (Cf31) and the

pressure-gradient term (Cf33).

B. Reynolds-number effects on the various terms

After assessing the impact of the APG magnitude on the Cf decomposition terms for fixed

Reτ , here we analyze their evolution with Reynolds number for approximately constant β.

For this analysis we consider an APG-TBL database with β ≈ 1.4 and Reτ ranging from

1000 to 2000, the wall-normal distributions of the pre-multiplied integrands in equations (3)-

(5) are shown in figure 5. Similar features can be found in the APG-TBLs with β ≈ 1 and 2

(see Appendix A). As depicted in figures 5(a) and 5(b), the inner peaks of the Cf1- and Cf2-

contributions are fixed at y+ ≈ 6 and y+ ≈ 16.5, respectively. Meanwhile, secondary peaks

appear both in the Cf1- and Cf2-contributions, which are associated with the enhancement

of outer-layer energy. In outer scaling, i.e. in terms of δ99, as depicted in figure 5(d), the

secondary peaks of the Cf1- contributions collapse well at y/δ99 ≈ 0.7. Similar to the feature

of mean velocity profile in the vicinity of y+ ≈ 6 (as interpreted with equations (6)-(7)),
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the secondary peak indicates that d[y(d 〈u〉 /dy)2]/d(y/δ99)|y/δ99≈0.7 = 0, suggesting a local

expansion of mean velocity profile near y/δ99 ≈ 0.7, i.e. 〈u〉 − 〈u〉 |y/δ99≈0.7∝ (y/δ99)
1/2. As

for the secondary peaks of the Cf2-contributions, they are perfectly collapsed at y/δ99 ≈ 0.53

(as shown in figure 5(e)), revealing a local feature of the production (P ) distribution, that is

P |y/δ99≈0.53∝ 1/(y/δ99). These features are also confirmed in the APG-TBLs developing on

the NACA4412 wing section, subjected to much higher APG magnitudes, which indicates

that the outer-peak locations are well-collapsed regardless of pressure-gradient magnitude

as well, as discussed in the following subsection.

The wall-normal distribution of the pre-multiplied integrand in Cf3/Cf (figures 5(c) and

5(f)) shows that both the valley and peak locations appear to be well-scaled by outer units.

The valleys collapse at y/δ99 ≈ 0.1, and the peaks at y/δ99 ≈ 0.65. It is reasonable that both

the convection (Cf31/Cf ) and pressure-gradient term (Cf33/Cf ) are dominated by large-scale

motions. As the Reynolds number increases, both the absolute values of the valley and peak

decrease. To clarify this variation, we trace back to the profile of mean convection in the

momentum-balance equation (i.e. (〈u〉 ∂ 〈u〉/∂x + 〈v〉 ∂ 〈u〉/∂y)/(U2
e /δ99) ). As shown in

figure 6, the mean convection decreases with Reτ , supporting that the increasing Reynolds

number could attenuate the effects caused by the adverse pressure gradient in the wake

region. This is an agreement with previous APG-TBL studies6.

Finally, the well-collapsed outer-peak locations in figure 5(d-f) can be related to the mean

streamwise kinetic energy budget equation:

∂

∂y

[
(〈u〉 − Ue)

τ

ρ

]
= ν

(
∂ 〈u〉
∂y

)2

+ 〈−u′v′〉 ∂ 〈u〉
∂y

+ (〈u〉 − Ue)
∂τ/ρ

∂y
, (12)

where τ/ρ = ν∂ 〈u〉 /∂y− 〈u′v′〉. The term on the left-hand side of equation (12) represents

the power of viscous and turbulent stresses, and the terms on the right-hand side represent

viscous dissipation, turbulence kinetic energy production, and spatial growth, respectively.

Their pre-multiplied distributions are plotted in figure 7. Similarity of outer-layer peak

locations is obvious, and distributions of dissipation, production, and spatial growth are

balanced by the power done by total shear stress in each layer.
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FIG. 5. Distributions of the pre-multiplied integrand in Cf1/Cf , Cf2/Cf , and Cf3/Cf as a function

of y+ (a–c) and as a function of y/δ99 (d–f) for the APG-TBL with β ≈ 1.4. The vertical dashed

lines in (d–f) mark the position y/δ99 = 0.7, 0.53, and 0.65 respectively.
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FIG. 6. Profiles of mean convection (〈u〉 ∂ 〈u〉/∂x+ 〈v〉 ∂ 〈u〉/∂y)/(U2
e /δ99) for the APG-TBL with

β ≈ 1.4. For legends, see caption in figure 5.

C. Mean friction drag decomposition of the APG-TBLs on NACA4412 wing

section

For the APG-TBLs on the suction side of the NACA4412 wing section at Rec = 200, 000,

400,000, and 1,000,000, the pressure-gradient parameters (β) are much higher than those

12



10-2 100

y/
99

-5

0

5

10

15

P
ow

er

10-4(a)

10-2 100

y/
99

0

0.5

1

1.5

D
is

si
pa

ti
on

10-4

Re =1000, =1.57

Re =1197, =1.47

Re =1389, =1.38

Re =1564, =1.32

Re =1743, =1.26

Re =1918, =1.26

(b)

10-2 100

y/
99

0

2

4

6

8

P
ro

du
ct

io
n

10-4(c)

10-2 100

y/
99

-4

-2

0

2

4
Sp

at
ia

l g
ro

w
th

10-4(d)

FIG. 7. Distributions of the (y/δ99−)pre-multiplied power of viscous and turbulent stress (a),

viscous dissipation (b), turbulence kinetic energy production (c), and spatial growth (d) for the

APG-TBL with β ≈ 1.4.

on the flat plates. Figure 8(a) shows the distributions of β along the suction side of various

cases, focusing on the range of 0.4 < x/c < 0.95. Note that near the leading edge of the

airfoil (x/c < 0.4), the magnitude of the APG is limited within β � 1, and under the

very strong APG conditions observed for x/c > 0.95, it may be inappropriate to use β to

characterize the effects of pressure gradients on TBLs6,11.

Figure 8(b) shows the streamwise evolution of the contributing components (Cf1/Cf ,

Cf2/Cf , and Cf3/Cf ) for the three Reynolds numbers. The relative errors [(Cf1 + Cf2 +

Cf3) − Cf ]/Cf are within ±0.96%, which indicates that the RD identity is also reliable

when analyzing the mean friction drag on the airfoils. Similar trends are observed for the

various components at the three values of Rec. The magnitude of Cf1/Cf is much smaller
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than the other two components, especially near the trailing edge of the airfoil, where β

becomes very large. Regardless of Rec, the positive Cf2/Cf increases, and the negative

Cf3/Cf decreases for increasing x. At the same position on the airfoil, larger Rec leads to

relatively smaller positive contribution of Cf2 and negative contribution of Cf3. Note that

these observations correspond to the NACA4412 wing section, but they do not necessarily

apply to other airfoils.

The effect of Reynolds number for a fixed value of β on the suction-side APG-TBL is

evaluated next. To this end, in figure 9 we show the distributions of β as a function of Reτ

for the three wings. We will consider the values β = 2, 4, and 8, marked with circles, squares

and triangles, respectively in figure 9, in our analysis.

Figure 10 quantifies the wall-normal distributions of the pre-multiplied integrands in

Cf1/Cf , Cf2/Cf , and Cf3/Cf at β ≈ 2, 4, and 8. It can be seen that regardless of the

pressure-gradient coefficient and the Reynolds number, (i) the inner peaks of the Cf1- and

Cf2-contributions are fixed at y+ ≈ 6 and y+ ≈ 16.5, respectively; (ii) the positions of the

outer peaks in the Cf1- and Cf2-contributions are well-scaled by the outer scale at y/δ99 ≈ 0.7

and y/δ99 ≈ 0.53, respectively; and (iii) the valleys and peaks of the Cf3-contributions scale

well in outer units, and they are located at y/δ99 ≈ 0.1 and y/δ99 ≈ 0.65, respectively. These

features are the same as the observations in APG-TBLs on flat plates with constant β.

With the same β, the effects of the Reynolds number on the peak values are more evident

in the APG-TBLs on the NACA4412 airfoil: (i) both the inner- and outer-peak values

of the Cf1- and Cf2-contributions decrease as Reτ increases, confirming the finding6 that

the higher-Re TBLs are less sensitive to APG effects; (ii) both the valleys and peaks of

the Cf3-contributions attenuate with the increase of Reynolds number, due to the reduced

contributions of the convection and pressure gradient to the skin-friction drag generation

(not shown here).

D. Pressure-gradient-history effects on the mean friction drag decomposition

The β-history effect on the mean friction decomposition is also considered in this paper.

As reported in Bobke et al. 5 and Tanarro et al. 12 , besides β and Reτ , the history of β is

also an important parameter to characterize the state of the APG-TBLs. Figure 11 shows

the β − Reτ diagram by using the cases of β1, β2, m18, W4 and W10. Three different

14
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FIG. 8. (a) Distribution of β as a function of x/c on the suction side of the NACA4412 wing

section for the three Reynolds numbers. The shaded areas are excluded from this study. (b) The

ratio of each contribution to the total friction coefficient for the airfoil APG-TBLs.
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FIG. 9. Distributions of β as a function of Reτ on the suction side of the NACA4412 airfoil.

The three values of β, i.e. β = 2, 4 and 8, are represented by a circle, a square, and a triangle,

respectively.

conditions with the same β and Reτ but different β-histories are selected from figure 11

and marked with a triangular (P1), a circle (P2), and a star (P3). At P1, the variation of

β exhibits an increasing trend but with different slopes in the two cases; P2 involves two

cases with an increasing and decreasing trend, respectively; and at P3, the approximately

invariant β(Reτ ) intersects the increasing β trend from the wing case. Similar results can

be found for other intersections in figure 11, but are not shown here for brevity.
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FIG. 10. Distributions of the pre-multiplied integrand in Cf1/Cf (a, d, g) , Cf2/Cf (b, e, h), and

Cf3/Cf (c, f, i) as a function of y+ for the airfoil APG-TBLs at three different β. Top, middle,

and bottom rows correspond to the conditions denoted by circle, square, and triangular in figure

9, respectively.

Table II gives the mean friction drag coefficients of the APG-TBLs at points P1–P3, which

exhibit different histories of β. It can be noted that the development history of β has an

impact on the local skin-friction coefficient, and stronger accumulated β values lead to lower

Cf . Figure 12 shows the wall-normal distributions of the pre-multiplied integrands for cases

P1–P3. Both the inner and outer peaks of the three friction terms are located at the same

y+, which is unaffected by the β-history. However, several redistributions of the friction

contributions along the wall-normal direction can be observed. For the APG-TBLs with a

higher upstream-β, i.e. m18 at P1, m18 at P2, and β2 at P3, larger contributions to Cf1/Cf ,

Cf2/Cf and Cf3/Cf are observed in the outer region, associated with the enhancement of

16



200 400 600 800 1000
Re

0

1

2

3

4

5

6
1
2

m18
W4
W10

FIG. 11. Distribution of the pressure-gradient parameter β as a function of the friction Reynolds

number Reτ for various APG-TBL cases. The conditions P1, P2 and P3 are denoted by a triangle,

a circle and a star, respectively.

TABLE II. Skin-friction drag coefficients of APG-TBLs with different histories of β, for the con-

ditions shown in figure 11.

Case
P1 P2 P3

m18 W4 m18 W10 β2 W10

Cf 2.2× 10−3 2.6× 10−3 1.7× 10−3 2.3× 10−3 2.2× 10−3 2.6× 10−3

both small- and large-scale activities in the outer region, whereas the role of inner-layer

dynamics is decreased in the contribution of Cf1 and Cf2. This implies that the upstream

development of the pressure gradient can be accumulated and the higher upstream-β leads

to a more pronounced outer-layer contribution to skin-friction drag whereas it reduces the

significance of inner-layer dynamics.

V. CONCLUSIONS

The mean friction drag in adverse-pressure-gradient turbulent boundary layers, develop-

ing both on flat-plates and airfoils, has been decomposed with the RD identity18. Results

show that as the pressure-gradient coefficient β increases, the component of direct viscous

dissipation (Cf1/Cf ) decreases, and the component of turbulence kinetic energy production

(Cf2/Cf ) increases dramatically and becomes dominant for the friction-drag generation. By
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FIG. 12. Distribution of the pre-multiplied integrand in Cf1/Cf (a, d, g), Cf2/Cf (b, e, h), and

Cf3/Cf (c, f , i) as a function of y+ for the airfoil TBLs for cases P1 (a–c), P2 (d–f), and P3 (g–i).

checking the wall-normal distributions of the pre-multiplied integrands in the components,

we found that the inner peaks of the Cf1- and Cf2-contributions are fixed at y+ ≈ 6 and

y+ ≈ 16.5, respectively, and their outer peaks are located at y/δ99 ≈ 0.7 and y/δ99 ≈ 0.53,

respectively, regardless of the friction Reynolds number (Reτ ), the magnitude of β and its

development history. Importantly, stronger accumulated β leads to a more pronounced

outer-layer contribution to the mean friction drag whereas it reduces the role of inner-layer

dynamics. The component of spatial growth of the flow (Cf3/Cf ) becomes negative in the

investigated APG-TBLs and increases with β. Its wall-normal distributions of the pre-

multiplied integrand are only well-collapsed in the outer scale. Furthermore, inner-outer

scale separations are more evident in the APG-TBLs than in the ZPG-TBL, even at rel-

atively low Reynolds numbers with the enhancement of outer-scale motions. This leads
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to significantly larger contributions of outer-layer dissipation, production and convection,

although the pressure gradient itself produces negative contributions. These observations

may help to design promising drag-reduction approaches for the adverse-pressure-gradient

turbulent boundary layers.
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Appendix A: Decomposed constituents in flat-plate APG-TBLs for β ≈ 1 and 2

Figures A1 and A2 quantify the wall-normal distributions of the pre-multiplied integrands

in Cf1/Cf , Cf2/Cf , and Cf3/Cf in equations (3)-(5) , for β ≈ 1 and 2 respectively, with

Reτ ranging from 400 to 750. The conclusions regarding Reynolds-number effects discussed

in Sec. IVB at higher Reynolds number are confirmed here.
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23A. Bannier, É. Garnier, and P. Sagaut. Riblet flow model based on an extended FIK

identity. Flow, Turbul. Combust., 95(2-3):351–376, 2015.
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34P. Schlatter and R. Örlü. Assessment of direct numerical simulation data of turbulent

boundary layers. J. Fluid Mech., 659:116–126, 2010.

22


	FronteRivista
	000

