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Abstract
An explicit cosimulation scheme is developed to study the coupling of smooth and nons-
mooth systems using kinematic constraints. Using the force-displacement decomposition,
the coupling constraints are formulated at the velocity level, to preserve consistency with
the impulse-momentum equations for frictional contacts in the nonsmooth solver, which
however potentially leads to instability of the explicit cosimulation. To improve the stabil-
ity of the cosimulation without affecting the format of the coupling constraints, guidelines
for the modification of the prescribed motion are developed following the spirit of Baum-
garte’s stabilization technique and the characteristics of the proposed integration scheme,
which prescribes a combination of position, velocity, and acceleration to the constrained
bodies. Using modified inputs, the stability of the cosimulation is tested using a rigidly con-
nected two-mass oscillator model, which shows clear improvement compared to that with
unaltered inputs. The performances of the cosimulation with modified inputs are further il-
lustrated using a double-pendulum system and a complex flexible multibody system coupled
with a particle damper. It follows that cosimulation results well agree with those obtained
using monolithic simulation or simplified models, verifying the explicit smooth/nonsmooth
cosimulation. The results also show a higher efficiency of the explicit cosimulation scheme,
which requires much less computational time to obtain similar results, compared to the im-
plicit smooth/nonsmooth cosimulation.

Keywords Explicit cosimulation · Smooth/nonsmooth coupled system · Stabilization
technique · Cosimulation stability

1 Introduction

Multibody dynamics is often used to simulate multiphysics and multidomain problems.
Although a monolithic approach is sometimes feasible (for example, coupled helicopter
aeromechanics and pilot biomechanics in [1, 2]), cosimulation techniques are widely used
to coordinate different solvers [3–7] and to parallelize the simulation process [8–10]. In the
present work, we address the application of explicit cosimulation techniques to smooth/non-
smooth coupled multibody systems.

The cosimulation of nonsmooth systems has been studied by several authors, most of
them focusing on smooth/nonsmooth subsystems connected by contact forces calculated
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by penalty methods or contact laws and then sent to the subsystems [11]. This approach
is commonly used in the cosimulation of discrete element methods (DEM) or nonsmooth
methods [12, 13] and multibody dynamics (MBD) [4, 9, 14, 15]. Apart from connecting
subsystems through contact forces, in some studies, smooth and nonsmooth subsystems are
linked by ideal kinematic constraints, for example, mechanical systems mounting particle
dampers [16] and nonsmooth systems coupled with other physical modules [17]. In these
cases, although contact forces can still be employed as coupling variables, an alternative
choice is to decompose the overall system at the kinematic constraints and to send reaction
forces/moments to other subsystems. The use of reaction forces/moments avoids calculating
the sum of contact forces, which may be time-consuming if a large number of nonsmooth
events takes place on the coupling body. This approach can also help confine the details of
the solution process in nonsmooth subsystems.

This work adopts the latter approach, namely smooth/nonsmooth cosimulation with kine-
matic constraints. We first discuss the coupled smooth systems with kinematic constraints.
In this case the whole system can be formulated using Newton–Euler’s equations as a set of
differential-algebraic equations (DAEs) [18]. In cosimulation a common way is to decom-
pose the whole DAEs in several sets of ordinary differential equations (ODEs) governing
the motion of each subsystem and a set of algebraic equations representing the kinematic
constraints between subsystems. Using the decomposition, Kubler et al. [18, 19] provided
two implicit schemes, also called “iterative schemes,” which employ an approximate Jaco-
bian matrix to guarantee the local convergence of cosimulation iterations. In [20] a semi-
implicit cosimulation scheme including prediction and correction procedures was proposed,
which shows advantages in terms of stability compared to explicit cosimulation schemes.
The prediction–correction procedure incorporates different stabilization methods, such as
the projection technique [21], Baumgarte’s stabilization method [22], the weighted multi-
plier approach [22], and the Gear-Gupta-Leimkuhler (GGL) method [23], to enforce the
constraints and to yield reaction forces/moments. The resulting forces/moments are then
sent to the subsystems to continue the co-simulation. Apart from integrating stabilization
methods in the semi-implicit scheme, to achieve higher convergence rates, a technique that
updates higher-order approximation polynomials in each macrostep [24] was also estab-
lished to enforce the coupling conditions at all levels: position, velocity, and acceleration,.

Although the above-mentioned semiimplicit/implicit cosimulation schemes show satis-
factory stability, explicit solver coupling is still widely used, owing to its advantage in terms
of efficiency. Gu et al. [25, 26] developed an explicit cosimulation scheme, which adopts
Baumgarte’s stabilization method to deal with the coupling algebraic equations, where
index-r DAEs are reformulated as index-1 DAEs to generate reaction forces/moments for
the subsystems. In [27] a force-displacement cosimulation with kinematic constraints was
also explicitly implemented to avoid constraint drift problems. This study pointed out that
in the cosimulation platform, using the index-1 monolithic equations to calculate constraint
forces may result in an unacceptable amount of computation when the coupled system is
large, whereas formulating the constraint forces as functions of acceleration vectors gen-
erates algebraic loops in the cosimulation, even spoiling the zero-stability of cosimulation
schemes in some cases [27]. Apart from calculating reaction forces in the cosimulation plat-
form, if subsystems can produce reaction forces, then the coupling constraints can also be
modeled in subsystems by enforcing kinematics. Using a nonsmooth method that can deal
with bilateral constraints [28, 29], an embedded force-displacement cosimulation scheme
was developed, where the coupling constraints can be formulated in one subsystem to gen-
erate reaction forces/moments as outputs [7]. However, using this approach, an implicit
cosimulation scheme with an iterative solution process is required to enhance convergence
and enforce algorithmic stability [7].
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For coupled smooth/nonsmooth systems with kinematic constraints, if an explicit force-
displacement cosimulation scheme [7] is employed in addition to the risk of losing sta-
bility, then another problem that may occur is the inconsistency of kinematic constraints
between the monolithic DAEs and the nonsmooth methods. In fact, in nonsmooth time-
stepping methods [17, 28, 30–32], kinematic constraint equations are usually formulated at
the velocity level for consistency with the nonsmooth dynamic equations at the impulse-
momentum level, whereas in monolithic DAEs and cosimulation, constraint equations are
expected to be satisfied at position, velocity, and acceleration levels at the synchronization
time [21, 22]. This inconsistency cannot be eliminated when subsolvers are expected to re-
main opaque, as is a common practice when cosimulating between existing well-established
solvers, and although just alternatively coupling positions or velocities would be an option,
the stability of the cosimulation scheme would be poor in general cases.

In this paper, we develop an explicit cosimulation scheme for smooth/nonsmooth cou-
pled multibody systems with kinematic constraints. A force-displacement decomposition
technique is employed to divide the whole system at coupling kinematic constraints into
smooth subsystems with external dynamic variables, i.e., prescribed forces, and nonsmooth
subsystems with external kinematic variables, i.e., prescribed kinematics. In smooth subsys-
tems, dynamic variables are applied to bodies at markers of coupling constraints, whereas in
nonsmooth subsystems, kinematic variables are enforced to bodies through rheonomic con-
straints at the velocity level. To guarantee the imposition of all coupling kinematics, namely
position, velocity, and acceleration, to the bodies in the nonsmooth subsystems and at the
same time to maintain the confinement of the nonsmooth solver, the input kinematics result-
ing from the smooth subsystems are modified using Baumgarte’s stabilization method [33]
and the properties of the integrators in the nonsmooth subsystems. As in other studies [20],
a two-mass oscillator is used to assess how the modified inputs improve algorithmic stabil-
ity. The analysis shows that the modified inputs can enlarge the stability region, compared
to directly using the original constraint equations at the velocity level in the nonsmooth sub-
systems. Finally, the capabilities of the explicit cosimulation scheme are further assessed by
applying it to a double pendulum and to a smooth/nonsmooth coupled system consisting of
a flexible crank-slider mechanism actuating a beam that carries a particle damper.

Specifically, in Sect. 2, we decompose a coupled system into smooth and nonsmooth
subsystems. For each subsystem, we give formulations and modified input–output schemes.
In Sect. 3, we introduce the cosimulation strategy, where an explicit cosimulation scheme
and its implementation are discussed. In Sect. 4, a linear two-mass oscillator is cosimu-
lated to compare the effect of different input formats on algorithmic stability, and two other
numerical examples are also analyzed to show the effectiveness of the smooth/nonsmooth
cosimulation with modified inputs. In Sect. 5, we finally draw conclusions.

2 Formulation of coupled systems

2.1 System decomposition

As shown in Fig. 1(a), a coupled smooth/nonsmooth system consists of a set of bodies Si

(i = 0,1,2, . . .) whose dynamics are formulated as smooth, i.e., they are assumed to be un-
affected by impacts or friction (called for simplicity “smooth bodies”), and another set of
bodies NSj (j = 0,1,2, . . .) that can be subject to nonsmooth events (called “nonsmooth
bodies”). According to the force-displacement decomposition technique [21, 27], this cou-
pled system can be divided into smooth and nonsmooth subsystems at bilateral constraints
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Fig. 1 Decomposition of coupled system: (a) with multiple connections, (b) with one coupling connection at
constraints S0 − NS0 (Marker A-Marker B)

that connect sets of smooth and nonsmooth bodies. For clarity of explanation, let us dis-
cuss the coupled system of Fig. 1(b). A smooth subsystem and a nonsmooth subsystem are
connected by constraints between markers A and B , which are rigidly attached to bodies S0

and NS0, respectively. By the force-displacement decomposition this coupled system is di-
vided into a smooth subsystem and a nonsmooth subsystem at the coupling constraints. The
smooth subsystem generates the motion of marker A as output, whereas the nonsmooth
subsystem supplies to the smooth subsystem the reaction forces and moments that act on
marker A.

2.2 Formulation of subsystems

2.2.1 Formulation of smooth subsystems

The smooth subsystem consisting of bodies Si is modeled as a generic multibody system,
which can be formulated as a set of DAEs using the physical coordinates q1 as in [34, 35]:

M1v̇1 + gT
1/q1

λ1 + gT
co/q1

λco − f1 (q1,v1, t) = 0, (1a)

g1 (q1, t) = 0, (1b)

where M1 is the mass matrix, v1 = q̇1 represents the generalized velocity coordinate vector,
t ≥ 0 denotes the time, vectors g1 and gco indicate the constraints in the smooth subsys-
tem and the coupling constraint S0 − NS0 between the subsystems, as shown in Fig. 1(b),
the latter being defined later in Eqs. (2a)–(2e) as part of the nonsmooth subsystem dynam-
ics, vectors λ1 and λco represent the Lagrange multipliers of the corresponding constraints,
vector f1 contains the generalized external forces, the over dot denotes the derivative with
respect to time, and the operator ()/x denotes the partial derivative with respect to x.
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2.2.2 Formulation of nonsmooth subsystem

Nonsmooth methods [13, 30, 32, 36] are effective tools to deal with nonsmooth dynam-
ics. In nonsmooth methods, bodies are assumed to be rigid, and nonsmooth events among
bodies are described as frictional unilateral constraints, such as the Coulomb friction and
impacts, which are transformed to nonlinear/linear complementarity problems (N/LCPs) or
projection functions to be solved [37]. The nonsmooth methods are extended to systems
with bilateral constraints [29, 38, 39], where bilateral constraints are formulated at the ve-
locity level with different stabilization methods, to enforce the bilateral constraints at both
position and velocity levels. In the present work, we use the nonsmooth method proposed by
Tasora and Anitescu [29], based on cone complementarity problems (CCPs). The method
uses a semiimplicit Euler integrator; bilateral constraints are modified as a combination of
constraints at position and velocity levels. The nonsmooth method is included in the open-
source C++ library Project Chrono.1

Using the CCP-based method [28, 29], we formulate a nonsmooth subsystem with cou-
pling constraints as

M2v̇2 + gT
2/q2

λ2 + gT
co/q2

λco +
∑

πi∈Π

Dπi
pπi

= f2(q2,v2, t), (2a)

g2(q2, t) = 0, (2b)

gco(q1,q2) = 0, (2c)

πi ∈ Π : 0 ≤ pnπi
⊥ Φnπi

≥ 0, (2d)
(
puπi

, pwπi

)
= arg min

‖puπi
uπi

+pwπi
wπi

‖≤μπi
pnπi

vT
Tπi

(
puπi

uπi
+ pwπi

wπi

)
, (2e)

where M2 is the mass matrix, the vectors q2 and v2 are generalized position and velocity
coordinates, respectively, the vector g2 denotes the bilateral constraints in the nonsmooth
subsystem, and gco is the constraint S0 − NS0 between the subsystems, representing the
interfaces used to prescribe the motion to the nonsmooth bodies, g2/q2 and gco/q2 are the
corresponding Jacobian matrices, the vectors λ2 and λco represent the Lagrange multipliers
of the corresponding constraints, the vector f2 contains the generalized external forces, the
set Π collects all closed contacts, the index πi refers to a generic element of the set Π , for the
contact πi , the local reference is defined by three orthogonal vectors nπi

, uπi
, and wπi

at the
contact point, where nπi

denotes the normal direction, whereas uπi
and wπi

are orthogonal
vectors representing the tangential directions, pπi

is the vector of the generalized forces
generated by the frictional contacts, pnπi

, puπi
, and pwπi

are the three components of pπi

along directions nπi
, uπi

, and wπi
, respectively, vnπi

and vT
Tπi

=
[
vuπi

, vwπi

]
are the normal

component and the tangential projection of the velocity vector at the contact point, and Φnπi

denotes the normal distance at the contact πi .
To improve notation readability, we further assume that v2 = q̇2, although in the nons-

mooth method [28, 29] the rotation is described by quaternions in q2, which are updated
using an exponential map to preserve their unimodularity, whereas the angular velocity in
the local reference is used in v2.

1http://projectchrono.org/, last accessed by March 2021.

http://projectchrono.org/
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2.2.3 Discrete equations

Since both smooth and nonsmooth solvers are assumed to model the respective portions of
the problem as sets of rigid bodies, before discretizing the equations, we rewrite the coupling
constraints as functions of the generalized coordinates related to the interface bodies S0

and NS0. As shown in Fig. 1(b), the constraint S0 − NS0, written as gco in Eq. (2c), only
involves the motion of body S0 in the smooth subsystem and of body NS0 in the nonsmooth
subsystem. Therefore the constraint gco in Eq. (2c) can be rewritten as

gco (q1,q2) = gco

(
qco

1 ,qco
2

) = 0, (3)

where qco
1 and qco

2 denote the physical coordinates of the coupling body, S0 and NS0, in the
respective subsystems. According to Eq. (3), Eq. (1a) can be rewritten as

M1v̇1 + gT
1/q1

λ1 +
[

gT
co/qco

1

0

]
λco − f1 (q1, q̇1, t) = 0. (4)

In Eqs. (1a), (1b) and (4), DAEs are solved using the formulation proposed in [34], i.e.,
discretized at time tn+1 as

M1q̈1,n+1 + gT
1/q1

λ1,n+1 +
[

gT
co/qco

1

0

]
λco

n+1 − f1,n+1
(
q1,n+1, q̇1,n+1, tn+1

) = 0, (5a)

g1

(
q1,n+1, tn+1

) = 0. (5b)

The state variables x = [
qT

1 , q̇T
1 ,λT

1

]T
are predicted and updated at each step according to an

implicit linear two-step scheme [34, 39] as

xn+1 =
∑

i=1,2

aixn+1−i + �t
∑

i=0,1,2

bi ẋn+1−i , (6)

which has second-order accuracy and is unconditionally stable with tunable algorithmic
dissipation. The coefficients are defined as functions of the asymptotic spectral radius ρ∞
(ρ∞ ∈ [0,1]) and are expressed as [34]

a1 = 1 − 3(1 − ρ∞)2 + 4 (2ρ∞ − 1)

4 − (1 − ρ∞)2 , (7a)

a2 = 3(1 − ρ∞)2 + 4 (2ρ∞ − 1)

4 − (1 − ρ∞)2 = 1 − a1, (7b)

b0 = (1 − ρ∞)2

2
[
4 − (1 − ρ∞)2

] + 1

2
, (7c)

b1 = 3(1 − ρ∞)2 + 4 (2ρ∞ − 1)

2
[
4 − (1 − ρ∞)2

] + 1

2
− (1 − ρ∞)2

4 − (1 − ρ∞)2 , (7d)

b2 = 3(1 − ρ∞)2 + 4 (2ρ∞ − 1)

2
[
4 − (1 − ρ∞)2

] + (1 − ρ∞)2

2
[
4 − (1 − ρ∞)2

] . (7e)
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This implicit linear two-step scheme for generic multibody systems is implemented in the
free, general-purpose multibody software MBDyn,2 which in the present work is used to
model the smooth portion of the system. Although the complete orientation matrix of the
interface bodies is exchanged with the subsystems, in the solution process the incremental
Cayley–Gibbs–Rodriguez (CGR) rotation parameters are used as state variables to update
the orientation of the bodies [34]. For ease of notation, we use a generalized coordinate
set q1 to represent displacements and rotations in the smooth subsystem. In the integration
procedure the dynamics equations (5a) and (5b) can be rewritten as [34]

Res (xn+1, ẋn+1, tn+1) = 0, (8)

where the coupling Lagrange multiplier λco does not explicitly appear because it is deter-
mined by the inputs, which are only related to the time for the noniterative cosimulation
or to the iterations for the iterative cosimulation. To solve the dynamics problem (8), we
employ the prediction–correction approach [34], by which ẋn+1 is predicted first, written
as ẋ(0)

n+1, and then is substituted into the implicit two-step scheme to calculate the predicted

xn+1, written as x(0)

n+1. Then, with the perturbation of Eq. (6) expressed as

∂xn+1 = �tb0∂ ẋn+1, (9)

the correction procedure is given as [34]

(
�tb0Res/x + Res/ẋ

)
∂ ẋ = −Res

(
x(j)

n+1, ẋ(j)

n+1, t
(j)

n+1

)
, (10a)

ẋ(j+1)

n+1 = ẋ(j)

n+1 + ∂ ẋ, (10b)

x(j+1)

n+1 = x(j)

n+1 + �tb0∂ ẋ. (10c)

The dynamics equations of the nonsmooth subsystem (2a)–(2e) are solved at the impulse-
momentum level [29], since under the assumption that all bodies are rigid, frictional contacts
may lead to inconsistent or indeterminate solutions at the acceleration-force level [29, 40].
At the impulse-momentum level the dynamics equations are discretized by a half-implicit
Euler scheme at time tn+1 [28, 29] as

q2,n+1 = q2,n + �t q̇2,n+1, (11a)

M2

(
v2,n+1 − v2,n

) + gT
2/q2,nλ̃2,n+1 + gT

co/q2,nλ̃
co
n+1 +

∑

πi∈Π

Dπi ,np̃πi ,n+1 = f̃2,n, (11b)

g2,n

�t
+ g2/q2,nq̇2,n+1 + g2/t,n = 0, (11c)

gco
n

�t
+ gco/qco

2 ,nq̇co
2,n+1 + gco/qco

1 ,nq̇co
1,n+1 = 0, (11d)

where λ̃2,n+1 ≡ �tλ2,n+1, λ̃co
n+1 ≡ �tλco

n+1, p̃πi ,n+1 ≡ �tpπi ,n+1, f̃2,n ≡ �tf2,n, and g2/t ≡
∂g2/∂t are defined [28, 29]. Besides, there are two aspects related to the above discrete
equations:

2https://www.mbdyn.org, last accessed by March 2021.

https://www.mbdyn.org
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1. concerning Baumgarte’s stabilization method [33], the discretized bilateral constraints gco

and g2 are prescribed as a combination of their expression at the position and velocity
levels, where the stabilization term g2,n/�t is employed to avoid drifting away from the
constraint manifold while, at the same time, reducing the index of the corresponding set
of DAEs [28, 29]. Since the integration scheme is semiexplicit, an explicit term g2/t,n is
used in the equation [28];

2. the discrete equations involving unilateral constraints are not listed for simplicity since
we focus on the interface with the other subsystem, namely the coupling constraint gco,
in the cosimulation, where unilateral constraints are assumed to be not involved.

In this nonsmooth solution approach [29], the velocity vector q̇2,n+1 is solved using the
discrete formulation of Eq. (11a)–(11d) using CCPs [41]; the position and acceleration vec-
tors are updated as [29]

q2,n+1 = q2,n + �t · q̇2,n+1, (12a)

q̈2,n+1 = q̇2,n+1 − q̇2,n

�t
. (12b)

2.3 Input–output scheme of decomposed subsystems

In the cosimulation, λco
n+1 in Eq. (5a) for the smooth subsystem and qco

1,n+1 and its deriva-
tives in Eq. (11d) for the nonsmooth subsystem are obtained from the other subsystem. As
a consequence, these two equations are modified as

M1v̇1 + gT
1/q1

λ1 +
[−gT

co/qco
1

0

]
u1 − f1 (q1,v1, t) = 0 (13)

and

gco
n

(
qco

2 ,u21

)

�t
+ gco/qco

2 ,nq̇co
2,n+1 − u22 = 0, (14)

where the vectors u1 and u2 = [
uT

21,uT
22

]T
are the inputs of the smooth and nonsmooth sub-

systems, respectively; u1 and u2 are related to the Lagrange multipliers λco and the coupling
state variables qco

1 , q̇co
1 , q̈co

1 , respectively, expressed as

{
u1 = y2 = Y2 (λco) ,

u2 = y1 = Y1

(
qco

1 , q̇co
1 , q̈co

1

)
,

(15)

where yi (i = 1,2) are the outputs of the ith subsystem, and Yi are functions of the corre-
sponding subsystem state variables.

To illustrate how inputs are constructed, in this section, we employ a simple coupling
joint gco ∈ R

6, which clamps the generalized coordinates of bodies S0 and NS0 together,
expressed as

gco

(
qco

1 ,qco
2

) = qco
2 − qco

1 = 0. (16)

It is worth mentioning that the interface constraint between bodies S0 and NS0 is not actually
enforced by prescribing Eq. (16). That expression is merely intended to show the relation-
ship between reaction forces/moments and kinematic variables in the smooth subsystem.
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Reaction forces and moments in the global reference are sent to the smooth subsystem, so
that the input and the Jacobian matrix of the smooth subsystem can be formulated as

u1 = −λco, (17a)

gco/qco
1

= −E6, (17b)

where E6 ∈R
6×6 is the identity matrix.

In the solution process, the constraint gco is formulated in the nonsmooth subsystem with
respect to a moving local reference defined by the inputs u21.

2.3.1 Original inputs

In the nonsmooth subsystem the interfaces for the input of the motion are designed according
to the discrete bilateral constraints in Eq. (14) as (with reference to the class ChLinkMo-
tionImposed in Project Chrono)

qco
2,n − u21

�t
+ q̇co

2,n+1 − u22 = 0. (18)

By comparing the interfaces with the coupling constraints gco = 0 ∈ R
6 of Eq. (16), which

are discretized as

qco
2,n − qco

1,n

�t
+ q̇co

2,n+1 − q̇co
1,n+1 = 0, (19)

we obtain the corresponding inputs expressed as
{

u21 = qco
1,n,

u22 = q̇co
1,n+1.

(20)

It is worth noticing that whereas the discrete velocity constraint is evaluated at time tn+1, the
discrete position constraint is evaluated at time tn.

Using this set of inputs, we solve the coupling constraint gco in the nonsmooth subsys-
tem, which linearly combines the constraints at position and velocity levels, although not
enforced at the same time step. However, in cosimulation, this combination of the constraint
formulation may jeopardize algorithmic stability. A more stable scheme is needed to guar-
antee adequate enforcement of gco at the position, velocity, and acceleration levels.

We further call this set of inputs “original inputs.”

2.3.2 Inputs according to Baumgarte’s method

To improve the algorithmic stability of the cosimulation and, at the same time, avoid expos-
ing the details of the nonsmooth solver solution process, we redesign the inputs of Eq. (20).
We define the new inputs with the specific objective of satisfying the constraints obtained
from Baumgarte’s stabilization method [33] formulated as

α
(
qco

2,n+1 − qco
1,n+1

) + β
(
q̇co

2,n+1 − q̇co
1,n+1

) + γ
(
q̈co

2,n+1 − q̈co
1,n+1

) = 0, (21)

where α > 0, β > 0, and γ > 0 are the parameters of Baumgarte’s stabilization method. In
general, the choice

α = 2

�t2
, β = 2

�t
, γ = 1 (22)
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provides an adequate (i.e., accurate and fast) enforcement of the constraint at the position
level [42]. It is worth noticing that in Eq. (21), γ = 0 generates a formulation without ac-
celerations, namely index-2 DAEs for the coupled system, and β = γ = 0 yields index-3
DAEs.

In the nonsmooth subsystem, can be rewrite the interface of Eq. (18) as

q̇co
2,n+1 = u22 − qco

2,n − u21

�t
. (23)

Substituting the update scheme into Eq. (12a), (12b) and the interface of Eq. (23) into
Eq. (21) yields

(
α�t + β + 1

�t
γ

)(
u22 − qco

2,n − u21

�t

)
= α

(
qco

1,n+1 − qco
2,n

) + βq̇co
1,n+1

+ γ

�t

(
q̇co

2,n + �t q̈co
1,n+1

)
.

(24)

If inputs u21 and u22 can enforce Eq. (24), then the constraint in Eq. (21) will be satisfied.
For simplicity, in the cosimulation, u21 is given as

u21 = qco
2,n, (25)

which is substituted into Eq. (24) to generate the input u22 as

u22 = �t

α�t2 + β�t + γ

[
α�t

qco
1,n+1 − qco

2,n

�t
+ βq̇co

1,n+1 + 1

�t
γ

(
q̇co

2,n + �t q̈co
1,n+1

)]
. (26)

In Eq. (26), u22 is the weighted average of three contributions: a generalized velocity vec-
tor obtained by the difference of qco

1,n+1 and qco
2,n, the velocity obtained from the smooth

subsystem q̇co
1,n+1, and the velocity vector obtained from the integration of q̈co

1,n+1.

2.3.3 A general coupling joint

When there are offsets between the coupling markers and the generalized coordinates of the
coupling bodies, as shown in Fig. 1(b), the coupling constraints are formulated as functions
of the markers’ kinematic variables qco

1,A and qco
2,B :

gco

(
qco

1 ,qco
2

) = qco
2,B − qco

1,A = 0. (27)

In qco
1,A and qco

2,B the displacement coordinate vectors rco
1,A and rco

2,B are obtained by

rco
1,A = rco

1 + Rco
1 rA,loc, (28a)

rco
2,B = rco

2 + Rco
2 rB,loc, (28b)

where rA,loc and rB,loc represent the offsets of the markers in the local reference frame of the
bodies, rco

1 and rco
2 are the displacement coordinate vectors of the coupling bodies, rco

1R and
rco

2R denote the rotation coordinates of the coupling bodies, and their corresponding rotation
matrices are written as Rco

1 and Rco
2 , respectively. In qco

1,A and qco
2,B the rotation coordinates

r1,AR and r2,BR are the same as those in qco
1,A and qco

2,B :

rco
1,AR = rco

1R, (29a)
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rco
2,BR = rco

2R. (29b)

From Eqs. (27)–(29b) the partial derivative gco/qco
1

can be obtained as

gco/qco
1

= −
[

E3, − (
Rco

1 rA,loc

)×
0, E3

]
, (30)

where × represents the cross-product operator, and for a vector a ∈ R
3, a× is the corre-

sponding skew-symmetric matrix.3

In this case the original and modified input formats can be respectively expressed as
functions of the coordinates of the markers, qco

1,A and qco
2,B :

u21 = qco
1,A,n, (31a)

u22 = q̇co
1,A,n+1, (31b)

and

u21 = qco
2,B,n, (32a)

u22 = �t

α�t2 + β�t + γ

[
α�t

qco
1,A,n+1 − qco

2,B,n

�t
+ βq̇co

1,A,n+1

+ 1

�t
γ

(
q̇co

2,B,n + �t q̈co
1,A,n+1

)]
. (32b)

We call the latter set of inputs “modified inputs.” Using these modified inputs, Baumgarte’s
constraint stabilization in Eq. (21) is achieved during cosimulation, improving the algorith-
mic stability of the explicit cosimulation.

For a general joint that does not enforce all components of position and rotation, the
reference is defined at Marker B to describe whether rotation or displacement along each
axis in the local frame is allowed.

3 Cosimulation strategy

3.1 Cosimulation schemes

Cosimulation is performed by solving the subsystems separately, exchanging information
at discrete time points. The time interval between these points is defined as a macrotime
step. Although each subsystem can perform multiple time steps between macrotime steps,
which is called multirate cosimulations, in this work, we assume the macrotime step and the
time step in each subsystem to be the same. Explicit cosimulation schemes (in the sense of
Hafner and Popper [43]), also called noniterative schemes [43], are established between the
smooth and nonsmooth subsystems.

Explicit cosimulation can be structured according to two schemes:

3The operator that transforms the generic vector a ∈ R
3 into the skew-symmetric matrix a× which in turn,

when multiplies from the left another generic vector b ∈ R
3, yields the cross-product of a and b, namely

(a×)b = a × b.
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Fig. 2 Flowchart of different explicit cosimulation schemes for the smooth/nonsmooth cosimulation

• the Jacobi-type scheme [43], as shown in Fig. 2(a), in which all subsystems are simulated
in parallel using extrapolated inputs for each time step;

• the Gauss–Seidel scheme, as shown in Fig. 2(b), in which subsystems are integrated se-
rially at each time step: extrapolation is used to predict the input for the subsystem that
is solved first; subsequently, it generates the input for the other subsystem, which is inte-
grated afterward.

Both cosimulation algorithms can be applied to the cosimulation process using the modified
inputs described in Sect. 2. It is worth mentioning that when the explicit Gauss–Seidel ap-
proach is employed, the cosimulation suffers from the risk of lacking zero-stability [27, 44],
which depends on the mass ratios that contribute to the coupling kinematic constraints and
cannot be guaranteed simply by using the modified inputs. Nonetheless, owing to its sim-
plicity, we still use the explicit Gauss–Seidel cosimulation in the following examples to
illustrate the procedure with modified inputs.

Assuming that the macrotime step is equal to the micro one, an explicit cosimulation
scheme between the smooth and nonsmooth subsystems is depicted in Fig. 2(b). The non-
smooth subsystem is simulated first, based on the prescribed interface motion predicted by
the smooth subsystem. Subsequently, the resulting reaction forces/moments are sent to the
smooth subsystem. The choice of this sequence of operations naturally stemmed from the
consideration that in the smooth subsystem the solution of the discrete equations (5a) and
(5b) already predicts the solution to provide initial values for the Newton iteration used
to solve the resulting nonlinear problem. Such initial values are obtained by extrapolation
from the solution at previous time steps according to the aforementioned multistep inte-
gration scheme. Using the readily available predicted motion as output avoids repeating the
extrapolation process. Alternatively, a different extrapolation formulation can be used for the
coupling motion to improve the stability of cosimulation [45]. However, this investigation is
beyond the scope of the present work.
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In the smooth subsystem the derivatives of the state variables are extrapolated by Hermi-
tian interpolation, yielding the predicted generalized velocity vector q̇(0)

1,n+1 [34]:

q̇(0)

1,n+1 = − 12

�t
(q1,n − q1,n−1) + 8q̇1,n + 5q̇1,n−1, (33)

which is substituted into the integration scheme in Eq. (6) to produce the predicted general-
ized coordinate

q(0)

1,n+1 =
∑

i=1,2

aiqn+1−i + �t
∑

i=0,2

bi q̇n+1−i

=
∑

i=1,2

aiqn+1−i + �t
∑

i=1,2

bi q̇n+1−i + �tb0

[
− 12

�t
(qn − qn−1) + 8q̇n + 5q̇n−1

]

= (a1 − 12b0)qn + (a2 + 12b0)qn−1 + �t (b1 + 8b0) q̇n + �t (b2 + 5b0) q̇n−1.

(34)

For accelerations, a constant extrapolation formula is used:

q̈(0)

1,n+1 = q̈1,n. (35)

According to the input formats, these predicted state variables are substituted into Eq. (31a),
(31b) or Eq. (32a), (32b) to yield inputs for the nonsmooth subsystem. The nonsmooth
system is then solved to generate the reaction forces and moments for the smooth subsystem.

3.2 Implementation

Cosimulation of the coupled smooth/nonsmooth subsystem is implemented between the free
general-purpose multibody dynamics software MBDyn and the open-source multiphysics
C++ library, Project Chrono. The smooth subsystem is modeled in MBDyn, and the non-
smooth subsystem is modeled with the Chrono library. To achieve cosimulation between
these two subsystems, a stable two-way communication layer is necessary.

In this work, we establish dynamic linking between these two solvers, as shown in
Fig. 3, where the nonsmooth subsystem is embedded in MBDyn as an external module,
implementing a user-defined force element. In detail, a run-time loadable module named
module-chrono-interface was implemented, which can be loaded during the ex-
ecution of MBDyn. The module consists of three parts: i) a user-defined element called
ChronoInterface, ii) a set of MBDyn-Chrono interface functions, and iii) the model of
the nonsmooth subsystem, implemented using the C++ libraries provided by Chrono. The
ChronoInterface element is derived from the generic user-defined element in MBDyn,
which has access to the solution process of MBDyn.

The ChronoInterface element can obtain kinematic data of bodies from the MB-
Dyn solver and apply reaction forces and moments to the bodies themselves. Additionally,
to gather the reaction forces and moments, this element also sends commands to the nons-
mooth subsystem, such as requesting the simulation of the nonsmooth subsystem by calling
the related function and reading/writing information related to the nonsmooth subsystem
from/to files.

The second part of the module is a set of MBDyn-Chrono interface functions. These
functions act as an intermediate communication layer: they receive kinematic data and com-
mands from the ChronoInterface element and pass them to the nonsmooth subsystem,
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Fig. 3 Schematics of communication layer between MBDyn and Chrono

receive dynamic data and messages from the nonsmooth subsystem, and hand them over to
the ChronoInterface element.

The third part of the run-time loadable module is the nonsmooth subsystem, which needs
to be modeled by the user in the function named MBDyn_CE_CEModel_Create(). In
the process of modeling, the physical components of the nonsmooth subsystem are provided
by the Chrono library.

According to the dependencies of the different parts, the interface functions and the user-
defined nonsmooth subsystem are compiled together with the dynamic libraries in Chrono
to generate a dynamic library for the ChronoInterface element called libuser-
model.so. With the generated library, the ChronoInterface element generates a
new dynamic library, called libchrono-interface-module.so, which is run-time
loaded in MBDyn, by defining the related statement in the input file. Overall, this commu-
nication layer provides a convenient way to establish cosimulation between MBDyn and
Project Chrono, by which the cosimulation scheme in Fig. 2(b) is achieved.

The previously mentioned explicit Gauss–Seidel cosimulation scheme is similar to the
first step of the implicit cosimulation scheme in [7]. The proposed explicit cosimulation
scheme differs from that of [7] in the following three aspects: (1) apart from the cosimu-
lation procedure illustrated in Fig. 2(b), the implicit cosimulation scheme includes an it-
erative process, by which the simulation of the nonsmooth subsystem(s) is embedded into
the correction process of Eqs. (10a)–(10c) of the smooth solver; the cosimulation moves
to the subsequent step only when the convergence of the iterative process is achieved; (2)
the proposed explicit cosimulation scheme focuses on evaluating the ability of different
types of inputs, consisting of position-, velocity-, and acceleration-level kinematic quanti-
ties and their combinations to obtain a stable and accurate cosimulation, whereas the im-
plicit scheme only uses the position-level generalized physical coordinates during cosim-
ulation; (3) last but not least, the proposed explicit cosimulation scheme is implemented
in the form of a user-defined run-time loadable module embedded in MBDyn, module-
chrono-interface, by which the aforementioned cosimulation schemes, such as the
Jacobi- or Gauss–Seidel-type explicit or implicit cosimulations using the modified inputs,
are all achieved in the element interface, ChronoInterface, whereas the data exchange
approach used for the implicit scheme illustrated in [7] was built on interprocess communi-
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Fig. 4 Decomposition of the two-mass oscillator

cation through Unix sockets, the cosimulation strategies being defined in the specific subsys-
tems. This may appear an implementation detail but represents a substantial generalization
and a great simplification in the use of the proposed cosimulation setup.

4 Numerical experiments

4.1 Linear two-mass oscillator

The linear two-mass oscillator of Fig. 4 is commonly used to test the performance of co-
simulation methods in the literature [21]. Also in this work, it is used to test the proposed co-
simulation configuration and to show the influence of the modified inputs on its algorithmic
stability. In the tests the recurrence equations of the cosimulation are deduced to produce
the stability plots with different inputs and to show the influence of the modified inputs.
It is worth mentioning that although the two-mass oscillator is a smooth system, it is still
decomposed into two subsystems, and one of them is integrated using the method proposed
for nonsmooth subsystems.

4.1.1 Recurrence scheme

According to the methods in Sect. 2, the two-mass oscillator with constraints in Fig. 4 is
decomposed into two subsystems:

⎧
⎨

⎩

ẋ1 = v1,

v̇1 = − k1

m1
x1 − c1

m1
v1 + 1

m1
λ,

(36a)

⎧
⎪⎨

⎪⎩

ẋ2 = v2,

v̇2 = − k2

m2
x2 − c2

m2
v2 − 1

m2
λ,

x2 − x1 = 0,

(36b)

where mi , ki , and ci (i = 1,2) are the mass, stiffness, and damping coefficients for bodies 1
and 2, as shown in Fig. 4, xi and vi (i = 1,2) are the position and velocity of the two bodies,
and λ is the Lagrange multiplier corresponding to the algebraic constraint.

Equations (36a) are formulated using the method for the smooth subsystem and are in-
tegrated by the implicit linear two-step scheme in Eq. (6). Substituting Eq. (36a) into the
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integration scheme (6) yields

x1,n+1 =
∑

j=1,2

ajx1,n+1−j + �t
∑

j=1,2

bjv1,n+1−j + �tb0v1,n+1, (37a)

v1,n+1 =
∑

j=1,2

ajv1,n+1−j + �t
∑

j=0,1,2

bj

(
− k1

m1
x1,n+1−j − c1

m1
v1,n+1−j + 1

m1
u1,n+1−j

)
,

(37b)

where u1 is the input.
Equation (36a) and (36b) is formulated using the formulation proposed for the nons-

mooth subsystem in Eq. (11a)–(11d), although the subsystem analyzed here is smooth, as

x2,n+1 = x2,n + �tv2,n+1, (38a)

v2,n+1 = v2,n − �tk2

m2
x2,n − �tc2

m2
v2,n − �t

m2
λn+1, (38b)

0 = x2,n − u21,n+1

�t
+ v2,n+1 − u22,n+1, (38c)

where u21 and u22 are inputs received from subsystem 1; the forces generated by the spring
and damper are regarded as parts of the external forces f2.

For the inputs in Eqs. (37a), (37b) and (38a)–(38c), if those that have been defined as the
original inputs in Eq. (31a), (31b) are employed, then we obtain

u1,n+1 = λn+1, (39a)

u21,n+1 = x1,n, (39b)

u22,n+1 = v
(0)

1,n+1 = − 12

�t
(x1,n − x1,n−1) + 8v1,n + 5v1,n−1, (39c)

where v
(0)

1,n+1 is obtained using the extrapolation formula (33). Collecting Eqs. (37a)–(39c)
yields the recurrence equations

Λ1zn+1 = Λ2zn + Λ3zn−1, (40)

where

zn+1 = [
x1,n+1, v1,n+1, x2,n+1, v2,n+1, λn+1, u1,n+1, u21,n+1, u22,n+1

]T
, (41)

and the coefficient matrices Λi (i = 1,2,3) are related to the system parameters, the algo-
rithmic parameters ρ∞, and time-step sizes �t .

Alternatively, if “modified inputs” in Eq. (32a), (32b) are employed to incorporate Baum-
garte’s stabilization method during the explicit cosimulation, then we obtain

u1,n+1 = λn+1, (42a)

u21,n+1 = x2,n, (42b)

u22,n+1 = �t

α�t2 + β�t + γ

[
α

(
x

(0)

1,n+1 − x2,n

)
+ βv

(0)

1,n+1 + 1

�t
γ

(
v2,n + �tv̇

(0)

1,n+1

)]
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= Θ0

(
Θ1x1,n + Θ2x1,n−1 + Θ3v1,n + Θ4v1,n−1 + γ

m1
u1,n − αx2,n + γ

�t
v2,n

)
,

(42c)

where the superscript (·)(0) denotes the extrapolated variables of Eqs. (33)–(35), and

Θ0 = �t

α�t2 + β�t + γ
, (43a)

Θ1 = (a1 − 12b0)α − 12

�t
β − k1

m1
γ, (43b)

Θ2 = (a2 + 12b0)α + 12

�t
β, (43c)

Θ3 = (�tb1 + 8�tb0)α + 8β − c1

m1
γ, (43d)

Θ4 = (�tb2 + 5�tb0)α + 5β. (43e)

Similarly to the case that uses the original inputs, the recurrence equations can be ob-
tained by combining Eqs. (36b), (37a), (37b) and (42a)–(42c) expressed in the form (40)
with a new set of coefficient matrices Λ (i = 1,2,3), which are also related to the parame-
ters α, β , and γ in the modified inputs.

4.1.2 Stability results of the recurrence equations

From a physical point of view, the linear two-mass oscillator system is called asymptotically
stable if its parameters satisfy the requirements mi > 0, ki > 0, ci > 0. For an asymptotically
stable two-mass oscillator, cosimulation results using the proposed explicit cosimulation
scheme can be obtained from the solution of the recurrence equations (40). They can be
solved using the exponential approach, as zn = ẑ · λ̂n, where λ̂ is the generic eigenvalue,
and ẑ is the corresponding eigenvector of the recurrence equation [46]. The stability of the
solution depends on the spectral radius ρ̃ = max(|λ̂j |) of the recurrence equation, where λ̂j

is the j th eigenvalue of the latter. When ρ̃ > 1, the recurrence equation generates an unstable
solution, and the corresponding cosimulation is (algorithmically) unstable [46]. Otherwise,
when ρ̃ ≤ 1, the cosimulation is (algorithmically) stable [46].

In the tests, we consider a set of parameters, where m1 = 1.0 kg, and other system pa-
rameters are defined as functions related to equivalent natural frequencies ω0i (i = 1,2) and
damping factors ξi of the subsystems:

{
ki = miω

2
0i N m−1,

ci = 2miω0iξi N s m−1,
(44)

where

m2 = 1.0 kg, ω02 = 0.0 rad s−1, ξ1 = ξ2 = 0.0. (45)

Different sets of parameters are employed for the modified inputs, namely:

α = 2

�t2
, β = 2

�t
, γ = 1, (46a)
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Fig. 5 Stability plots of cosimulation schemes with: (a) the original inputs of Eq. (20); (b) index-3: α = 1,
β = 0, and γ = 0; (c) index-2: α = 1/�t2, β = 1/�t , and γ = 0; (d) index-1: α = 2/�t2, β = 2/�t , and
γ = 1

α = 1

�t
, β = 1, γ = 0, (46b)

α = 1, β = 0, γ = 0, (46c)

which correspond to index-1, index-2, and index-3 monolithic DAEs, respectively. Two-
dimensional stability plots as functions of ω01�t and ρ∞ are shown in Fig. 5 with the orig-
inal and modified inputs. In the figure the points indicate that ρ̃ ≤ 1 is satisfied using the
corresponding set of ω01�t and ρ∞, i.e., stable cosimulation results are obtained. We can
see that for a simple, undamped case, the cosimulation using the original inputs cannot give
stable results for small values of ω01�t , at least for a broad range of ρ∞. With the same
system parameters in Eq. (45), this situation can be improved using the modified inputs,
which can always produce stable solutions with a small ω01�t , provided that a suitable ρ∞
is employed in the smooth multistep integrator. Apart from this, Fig. 5(d) also shows that
the modified inputs with the index-1 format, corresponding to the parameters in Eq. (46a),
possess the largest stability region.

Different input parameters are also employed to test the stability of the explicit co-
simulation scheme, as shown in Fig. 6, where the stability plots of an implicit cosimulation
scheme developed in [7] are also provided as a reference. We can see that when α and β
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Fig. 6 Stability plots of cosimulation schemes with (a) α = 0.2/�t2, β = 0.2/�t , and γ = 1, (b)
α = 20/�t2, β = 20/�t , and γ = 1, (c) α = 200/�t2, β = 200/�t , and γ = 1, and (d) implicit cosim-
ulation scheme

are smaller than those used in Eq. (46a), the explicit cosimulation scheme can offer stable
results in all ω01�t and ρ∞ tested combinations close to the performance of the implicit
cosimulation scheme. When larger α and β are used, the stability results are similar to those
of the explicit cosimulation scheme with the input parameters of Eq. (46b), since α 	 γ and

β 	 γ imply that the constraints error γ
(
v̇2,n+1 − v̇

(0)

1,n+1

)
can be neglected, compared with

that of the other two contributions.
Stability plots with different mass ratios are also shown in Fig. 7. We can notice that a

large mass ratio (m2 	 m1) may spoil the zero-stability of the explicit Gauss–Seidel cosim-
ulation, regardless of whether the original or the index-1 modified inputs are used, although
the cosimulation using the index-1 modified inputs shows better stability properties. The
influence of the mass ratio is consistent with analogous conclusions in the literature that
cosimulation may lack zero-stability when the mass ratio is large [27, 44].

4.1.3 Simulation results

With initial position x1 = x2 = 0.0 m and initial velocity v1 = v2 = 0.1 m/s, the explicit co-
simulation between MBDyn and Chrono is performed with ρ∞ = 0.56 and ω2

01 = 5000 s−2.
The cosimulation results with original and modified inputs of Eqs. (46a)–(46c) are shown
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Fig. 7 Stability plots of cosimulation schemes with different mass ratios: (a) original inputs and
m2/m1 = 0.5, (b) index-1 modified inputs and m2/m1 = 0.5, (c) original inputs and m2/m1 = 2.0, (d)
index-1 modified inputs and m2/m1 = 2.0

in Fig. 8, where the results obtained by a monolithic simulation in MBDyn are shown as
dotted lines for reference. The cosimulation results are consistent with those obtained from
the previously mentioned recurrence equations (40). In detail, the solution using the orig-
inal inputs is unstable because the corresponding spectral radius ρ̃ ≈ 1.11 > 1, whereas
algorithmically stable results are obtained with the other three sets of inputs, since the sta-
bility condition ρ̃ ≈ 0.999 ≤ 1 is satisfied. However, Fig. 8 also shows a clear difference
between the results obtained with monolithic and explicit cosimulations, owing to the al-
gorithmic dissipation introduced by the explicit coupling. Such difference can be reduced
using a smaller time step size, as shown in Fig. 9, where the relative errors of the explicit
cosimulation of the interval t ∈ [0,0.5] s using different step sizes are given. The relative
errors of the implicit cosimulation scheme proposed in [7] (a maximum of 10 iterations is
allowed, and the co-simulation tolerance is 1 × 10−6) are also plotted as a reference. In the
figure the relative errors are computed using the L1 norm [7]:

‖error‖1 =
∑N

n=0 |xn − x (tn)|∑N

n=0 |x (tn)|
, (47)
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Fig. 8 Time histories of xi using the proposed explicit cosimulation schemes: (a) using original inputs,
(b) using index-3 parameters of Eq. (46c), (c) using index-2 parameters of Eq. (46b), and (d) using index-1
parameters of Eq. (46a)

Fig. 9 Relative errors of the developed explicit co-simulation schemes: (a) relative position error; (b) relative
velocity error

where xn is the numerical solution at time tn, and x(tn) is the theoretical solution at time tn.
The explicit cosimulation scheme using modified inputs approximately has the first-order
accuracy as the implicit one. Table 1 reports the CPU times required by the different co-
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Table 1 CPU time (s) of different cosimulation schemes

Co-simulation schemes �t = 10−2 s �t = 10−3 s �t = 10−4 s �t = 10−5 s

Explicit cosimulation (index-1) 0.11 1.20 11.81 125.22

Explicit cosimulation (index-2) 0.11 1.22 11.55 121.56

Explicit cosimulation (index-3) 0.10 1.16 11.52 122.40

Implicit cosimulation 1.18 13.39 117.77 1012.66

Fig. 10 Decomposition of a
double-pendulum system

simulation schemes; an Intel i5-8300H CPU @ 2.30 GHz with 8G RAM is employed using
only one thread. The table shows that the proposed explicit cosimulation scheme needs
much less computation time than the implicit cosimulation one while offering comparable
accuracy.

In this subsection, we em[loy the two-mass oscillator with kinematic constraints to assess
the stability of the cosimulation with different input formats. Stability plots are presented to
show the effects of the modified inputs. The modified inputs can enlarge the stability re-
gion; using index-1 modified inputs, we obtain the largest stability region, although it still
cannot guarantee the zero-stability of the explicit Gauss–Seidel cosimulation. This conclu-
sion is verified by cosimulation results between MBDyn and Chrono, which also show that
the original input format leads to unstable results. Besides, compared to the implicit co-
simulation scheme [7], the explicit one is more efficient as we would expect, as it requires
much less computational time to achieve comparable accuracy.

4.2 Double-pendulum system

Two bodies, one connected to the ground and both connected to each other by revolute joints,
form a double pendulum system. For cosimulation, the system is decomposed at the revolute
joint O1 −O2 that connects the two bodies as shown in Fig. 10. One pendulum is modeled in
MBDyn; the coordinates of point C1 are employed as generalized coordinates, and the mo-
tion of O1 is generated for another subsystem. In the other subsystem the displacements and
rotations of point C2 are employed as generalized coordinates, and the coupling constraints
are imposed to point O2. A reference frame at O2, rigidly connected to the pendulum, is
also established to describe whether the constraints are active, as shown in Fig. 10. In this
reference, a revolute joint is set up by allowing rotation about axis x, whereas rotation about
the other two axes and displacement along all three axes are constrained.

The system parameters are

L = 0.4 m, m1 = m2 = 1 kg, JC1 = JC2 = E3 kg m2, θz,i = π

2
, θ̇z,i = 0.5 rad s−1,

(48)
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Fig. 11 Time histories of θz,i and θ̇z,i using the developed explicit cosimulation schemes: (a) θz,1, (b) θ̇z,1,
(c) θz,2, and (d) θ̇z,2

where L and mi (i = 1,2) are the length and mass of the bodies, JCi
represents the moment

of inertia with respect to point Ci , E3 ∈ R
3×3 is the identity matrix, θz,i and θ̇z,i denote the

initial rotation and angular velocity about axis z in the global reference. Using these param-
eters, the system is cosimulated by the proposed explicit cosimulation scheme with index-1,
index-2, and index-3 parameters in Eqs. (46a)–(46c). The time histories of θz,i and θ̇z,i are
shown in Fig. 11, where the monolithic simulation results obtained using MBDyn are plotted
as references. The cosimulation results agree well with those obtained using the monolithic
simulation. This example demonstrates that the developed explicit cosimulation scheme can
effectively deal with coupled systems connected by a coupling revolute joint.

4.3 Smooth system coupled with a nonsmooth particle damper

4.3.1 System description

An experimental setup used to test the amount of damping provided by a particle damper
(PD) is modeled and cosimulated in this section. The system shown in Fig. 12 consists of
a crank-slider mechanism, a beam, a particle damper, and a sensor. One tip of the beam is
connected to the slider of the slider-crank mechanism, which forces the transverse displace-
ment of the beam. The PD is mounted at the other tip of the beam to limit its vibrations.
A sensor is also attached at the location of the PD.
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Fig. 12 Diagram of the
smooth/nonsmooth coupled
system with a particle damper

To numerically study the dynamical behavior of the setup in Fig. 12, a three-dimensional
model is built. The system is decomposed into two subsystems at the constraints connecting
the beam and the PD. After decomposition, the smooth subsystem is modeled in MBDyn,
which consists of a crank-slider mechanism, a beam, and a sensor, whereas the nonsmooth
subsystem consisting of a PD is modeled using the Chrono library.

In the smooth subsystem the crank-slider mechanism is modeled as three bodies: the
crank, the connecting rod (rod 1), and the slider (rod 2), as shown in Fig. 12. A rheonomic
constraint is imposed on the crank to enforce its rotation at constant angular velocity ωcra, so
that the crank-slider mechanism can drive the beam’s constrained end to move along axis y.
To avoid constraint redundancy, the joint connecting the crank and rod 1 is modeled as
a spherical hinge, and the joint between rod 1 and rod 2 is modeled as a revolute joint. Rod 2
is also constrained by a translation joint, which forces the rod to move along the guide.
Besides, rod 2 is rigidly connected to the beam at one tip to excite the beam’s transverse
displacement.

The beam is modeled in MBDyn using the original geometrically exact finite volume
approach [47, 48]. It is meshed using 10 three-node beam elements for a total of 21 nodes.
A linear elastic constitutive law is considered with no structural damping. A PD is rigidly
connected to the other end of the beam. The connection is represented by a joint that imposes
all components of relative displacement and rotation.

The particles are treated as rigid three-dimensional spheres of identical size. Among
the particles, nonsmooth interactions are modeled as frictional unilateral contacts using the
nonsmooth formulation [29], which are solved using the Chrono library. The particles are
collected in a cylindrical container and modeled as a rigid body. Its outer height is Hc . Its
ceiling can be adjusted for different inner heights Hcin

, although only one is considered in
the present work. Impacts and friction between particles and the container are described
using unilateral frictional constraints. In the simulation the same dynamic and static friction
coefficients μp are assumed for interparticle and particle–container interaction. Fully plastic
impacts are considered.

The parameters of each body are indicated by the corresponding subscripts, as shown in
Fig. 12, where (·)cra, (·)1, (·)2, (·)b , (·)c , (·)p , and (·)s , respectively, represent the crank, rod
1, rod 2, the beam, the container of the PD, the particles, and the sensor. The mass, length,
and density of a body are denoted by m, l, and ρ, where the mass of the particles refers to
the total mass of all particles; Rr is the radius of the crank, rod 1, and rod 2; Eb and νb are
Young’s modulus and Poisson’s ratio of the beam; wb and hb are the width and height of the
beam cross-section; Rc and Hc are the base radius and the height of the container; Rp is the
particle radius; Jsx , Jsy , Jsz, Jcx , Jcy , and Jcz are the diagonal elements of the inertia tensor
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Table 2 Parameters for the smooth/nonsmooth coupled system with particle damper

Parameters Value Parameters Value Parameters Value

Crank-Slider lcra (mm) 0.25 l1 (mm) 10.0 l2 (mm) 10.0

mcra (kg) 1.0 m1 (kg) 1.0 m2 (kg) 2.0

Rr (mm) 0.5

Beam/Sensor Eb (GPa) 210 νb 0.33 mb (g) 117.7

ρb (kg/m3) 7845 hb (mm) 2.0 wb (mm) 30.0

lb (mm) 250.0 ms (g) 12.7 Jsx (kg mm2) 1.05833

Jsy (kg mm2) 1.27 Jsz (kg mm2) 1.05833

PD mc (g) 35.8 Rc (mm) 10.0 Hc (mm) 20.0

μp 0.52 ρp (kg/m3) 11344 mp (g) 7.0

Rp (mm) 1.0 Jcx (kg mm2) 2.98333 Jcy (kg mm2) 3.58

Jcz (kg mm2) 2.98333

Fig. 13 Simplified system with a
particle damper

of the bodies lumped at the free end of the beam, the subscripts s and c referring to the
sensor and the particles’ container, respectively. The parameter values used in the analysis
are listed in Table 2.

As a reference, a simplified model is also simulated, as shown in Fig. 13, where the
smooth subsystem is described by an equivalent single degree of freedom system, and the
excitation Ye is obtained from the motion of the point that connects rod 2 and the beam. The
equivalent mass and stiffness are obtained from [49] as

Me = 0.24mb + mattach, Ke = 3EbIbz

l3
b

, (49)

where mattach denotes the mass attached to the beam, including that of the sensor;
Ibz = (wbh

3
b)/12 is the moment of inertia of the beam cross-section. Since the beam is

modeled with no structural damping, the equivalent damping ratio Ce is zero. Using the
parameters in Table 2, Me = 0.076742 kg and Ke = 806.4 N/m are obtained.

4.3.2 Simulation results

In the numerical experiments the proposed explicit cosimulation scheme between the
smooth method in MBDyn and the nonsmooth method using the Chrono library is employed
for solving the coupled system with a PD in Fig. 12. To obtain algorithmically stable numer-
ical results, the modified inputs are used setting the coefficients α, β , and γ as in Eq. (22).
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Fig. 14 Time histories of (a) displacement and (b) velocity, along axis y of the container without particles

The simplified system with a particle damper of Fig. 13 is simulated monolithically using
the Chrono library to verify the results of the explicit cosimulation.

Initially, the crank-slider mechanism is set at the highest position, the crank and rod 1
being aligned with axis y. The initial angular velocity of the crank is ωcra = 31.0π rad/s.
A particle damper with inner height Hcin

= 11.84 mm is used, which is able to give satisfac-
tory damping for vibrations around the first natural frequency of the system, between 15 Hz
and 16 Hz [7]. Considering the configuration of the crank-slider mechanism and its initial
conditions, the excitation Ye in the simplified model can be expressed as

Ye =
√

l2
1 − l2

cracos2 (ωcrat + 0.5π) + lcrasin (ωcrat + 0.5π) + l2, (50)

where t denotes the simulation time. Time step sizes for the explicit cosimulation scheme
and the monolithic one are �t = 10−4 s.

A case without particles is studied first, where the total mass of the particles is treated as
a lumped mass attached to the beam’s end. In this case the natural frequencies of the beam
with the particle mass lumped at the tip can be obtained by modal analysis [7], yielding the
first three natural frequencies 15.619 Hz, 127.460 Hz, and 381.082 Hz. In the numerical
experiments, since the angular velocity is set as ωcra = 31.0π rad/s, close to the first natural
frequency, resonance is observed in the results, as shown in Fig. 14, where the y compo-
nent of displacement and velocity of the container are plotted. In the figure the solid black
lines represent the results obtained with the coupled model using the explicit cosimulation
scheme, and the red dashed lines show the results obtained with the monolithic simulation
of the simplified model. These lines almost overlap, which further verifies the effectiveness
of the explicit cosimulation scheme.

In the second case, we consider a particle damper filled with particles. The total mass of
the particles and the properties of particles are listed in Table 2. All other conditions are the
same as in the first case. The displacements and velocities of the container along axis y are
plotted in Fig. 15, where the results obtained from the simplified model without particles are
also shown. We can see that the explicit cosimulation scheme predicts satisfactory results,
which are very close to the monolithic simulation results. All these results indicate that
the PD can effectively suppress the resonance of the beam when the excitation frequency
is close to the first natural frequency of the beam. Besides, because of the chaotic motion
of the particles, the symmetry of the problem is broken, and the beam twists, as shown in
Fig. 16, where the rotation about axis x and the torsional moment between the PD and the
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Fig. 15 Time histories of (a) displacement and (b) velocity along axis y of the container

Fig. 16 Time histories of (a) rotation about axis x and (b) torsional moment in the coupled model

Fig. 17 Time histories of the
accelerations using different
input formats

end of the beam are given. It follows that in the coupled model, small but not negligible and
physically justified out-of-plane motion and torsional moment are caused by the activity of
the particles in the PD, which, of course, cannot be observed when the simplified model is
used.
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Fig. 18 Zoom pictures of time histories of (a) displacement and (b) velocity along axis y of the container
using different cosimulation schemes

Table 3 Computational time of
different cosimulation schemes Cosimulation

schemes
CPU
time (s)

Elapsed
time (s)

Chrono CPU
time (s)

Iterations

Explicit cosimulation 2683.4 672.5 2571.5 20001

Implicit cosimulation 10754.9 2682.0 10693.4 60011

The explicit cosimulation schemes using the original inputs as in Eq. (20), the index-
2 inputs as in Eq. (46b), and index-3 modified inputs as in Eq. (46c) are also used in the
cosimulation, as shown in Fig. 17. The results show that index-1 modified inputs generate
stable results, whereas the other schemes fail to obtain algorithmically stable results. Those
results verify that the explicit cosimulation using index-1 inputs can improve the stability
even in complex coupled systems.

The proposed explicit cosimulation method is also compared with the implicit cosimula-
tion scheme between MBDyn and Chrono presented in [7], which adopts an iterative process
to improve the algorithmic stability of the cosimulation and exchanges contact forces/mo-
ments as coupling variables. In the implicit cosimulation the tolerance ε̃ for the coupling
variables is set as ε̃ = 0.001, and up to 10 iterations are allowed within each step. The time
step size �t = 10−4 s is used in both cosimulation schemes, and all the other conditions are
the same as in the last numerical experiment. The results for the smooth/nonsmooth cou-
pled model from different cosimulation schemes are shown in Fig. 18, and the results for
the simplified model are also plotted as a reference. We can see that the developed explicit
cosimulation scheme predicts results very close to the implicit one. The computational cost
of different cosimulation schemes during t ∈ [0,2] s are listed in Table 3, where cosimula-
tions were all run on an Intel i5-8300H CPU @ 2.30 GHz with 8G RAM and 4 threads. The
CPU time denotes the amount of time that the CPU needs, whereas the elapsed time repre-
sents the actual wall clock time that the simulation requires; “Chrono CPU time” denotes
the CPU time used by the nonsmooth solver; “Iterations” indicates the number of times the
nonsmooth solver is called during cosimulation. It follows that under similar accuracy re-
quirements, the proposed explicit cosimulation scheme can save almost three-quarters of the
computational time required by the implicit cosimulation scheme because the nonsmooth
solver is called just once for each discrete time, whereas the implicit approach requires
the restart and reintegration of the nonsmooth subsystem at each step multiple times with
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Fig. 19 Time histories of (a) displacement and (b) velocity along axis y of the container

an average of almost exactly three additional calls per time step. Therefore the explicit co-
simulation scheme is recommended concerning computational cost, although the implicit
one may show better stability in general applications.

The explicit cosimulation scheme using the index-1 modified inputs is also able to deal
with the coupled model when the stiffness of the beam is reduced. The thickness of the beam
is reduced to 1 mm with the other parameters remaining as in Table 2. The equivalent mass
and stiffness of the beam are

Me = 0.062621 kg, Ke = 100.8 N/m, (51)

which leads to a value for the first natural frequency of approximately 6.1 Hz. The dynamic
response to an excitation close to the first natural frequency, obtained by setting the angular
velocity of the crank to ωcra = 6.1 × 2π rad/s, is shown in Fig. 19. It follows that the results
obtained using the cosimulation are consistent with those of the simplified model, which
verifies the explicit cosimulation scheme. These results also indicate the ability of the PD
to effectively produce damping and suppress vibrations in the vicinity of the first natural
frequency.

5 Conclusions

An explicit cosimulation scheme is developed between an implicit solver for differential-
algebraic equations, implemented in MBDyn, and a nonsmooth solver based on cone com-
plementarity problems, implemented as a user-defined element using Project Chrono li-
braries, to deal with coupled smooth/nonsmooth systems with constraints. At the constraints
that connect subsystems, a force-displacement decomposition technique is employed to split
the whole system into smooth and nonsmooth subsystems, where smooth subsystems output
kinematic variables and receive reaction forces and moments as inputs, whereas nonsmooth
subsystems receive kinematic variables as inputs and send reaction forces/moments as out-
puts.

To improve the stability of explicit cosimulation schemes and keep the details of the
nonsmooth solver confined, the inputs to the nonsmooth subsystems are modified along the
lines of Baumgarte’s stabilization technique and the properties of the integrator used in the
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nonsmooth solver. The modified inputs can be used to describe general coupling joints by
modifying the motion of markers fixed to coupling bodies.

For the communication platform between MBDyn and Project Chrono, a loadable
Chrono-Interface module has been developed in MBDyn using dynamic linking and run-
time loading. The nonsmooth subsystems and interface functions are compiled as dynamical
libraries that are run-time loaded into MBDyn.

Finally, a linear two-mass oscillator, a double pendulum system, and a smooth flexible
system coupled with a nonsmooth particle damper are cosimulated using the explicit cosim-
ulation scheme. For the two-mass oscillator, stability plots with the same system parameters
but different input formats are also presented. It follows that using index-1 modified inputs,
the largest stability region is achieved, whereas using the original inputs, algorithmically
unstable results are obtained in most cases. The explicit cosimulation using various mod-
ified inputs is also compared to its implicit counterpart. The results show that explicit co-
simulation requires less computational effort to obtain comparable accuracy. In the double
pendulum system, cosimulation results agree well with those obtained using a monolithic
simulation, which verifies that the explicit cosimulation scheme can deal with a generic cou-
pling joint. In the system coupled with a particle damper, a simplified model of the smooth
subsystem is also simulated for reference. The results of the coupled model using the ex-
plicit cosimulation scheme with index-1 modified inputs are consistent with those of the
simplified model and of the coupled model using an implicit cosimulation scheme. Besides,
the explicit cosimulation scheme requires much less time than the implicit one. Therefore
the explicit cosimulation scheme is a better choice in terms of efficiency for solving the
smooth/nonsmooth coupled systems.

Nomenclature

Formulation
α, β , γ parameters of Baumgarte’s stabilization method in the modified inputs
�t time step size
(·)/x partial derivatives with respect to x
(·)n discretized variables at time tn
Φnπi

normal distance at the contact πi

Π set collecting all closed contacts
πi index referring to an element of the closed contact set Π

ρ∞ asymptotic spectral radius of the implicit linear two-step scheme
ai (i = 1,2) coefficients for variables x in the implicit linear two-step scheme
bj (j = 1,2,3) coefficients for variables ẋ in the implicit linear two-step scheme
NSj (j = 0,1,2, . . .) bodies in the non-smooth subsystems
pnπi

normal contact force along directions nπi
at the contact πi

puπi
tangential contact force along directions uπi

at the contact πi

pwπi
tangential contact force along directions wπi

at the contact πi

Si (i = 0,1,2, . . .) bodies in the smooth subsystems
t time
vnπi

normal velocity at the contact πi

vuπi
tangential velocity along direction uπi

at the contact πi

vwπi
tangential velocity along direction wπi

at the contact πi

a× skew-symmetric matrix of the vector a ∈R

f1 external generalized forces vector in the smooth subsystem
f2 external generalized forces vector in the non-smooth subsystem
g1 bilateral constraints in the smooth subsystem
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g2 bilateral constraints in the non-smooth subsystem
gco coupling constraints between the smooth and the non-smooth subsystem
M1 mass matrix of the smooth subsystem
M2 mass matrix of the non-smooth subsystem
nπi

, uπi
, wπi

three unit orthogonal vectors representing the local reference at the contact πi

pπi
the forces vector collecting the contact forces pnπi

, puπi
, and pwπi

at the contact πi

qco
1,A physical coordinates of the Maker “A”

qco
1 physical coordinates of the coupling bodies in the smooth subsystem

qco
2,B physical coordinates of the Maker “B”

qco
2 physical coordinates of the coupling bodies in the non-smooth subsystem

q1 physical coordinates of the smooth subsystem
q2 physical coordinates of the non-smooth subsystem
rco

1,A, rco
1,AR displacement and rotation coordinates in qco

1,A

rco
1 , rco

1R displacement and rotation coordinates in qco
1

rco
2,B , rco

2,BR displacement and rotation coordinates in qco
2,B

rco
2 , rco

2R displacement and rotation coordinates in qco
2

Rco
i (i = 1,2) rotation matrices corresponding to the rotation coordinates rco

i,R

rA,loc relative offsets of Marker “A” in bodies’ local reference frame
rB,loc relative offsets of Marker “B” in bodies’ local reference frame
u1 inputs of the smooth subsystem
u21, u22 components of the inputs u2

u2 inputs of the non-smooth subsystem
v1 generalized velocity coordinate vector (v1 ≡ q̇1 is assumed)
v2 generalized velocity coordinate vector (v2 ≡ q̇2 is assumed)
vTπi

tangential velocity at the contact πi

x state variables of the smooth subsystem collecting q1, q̇1, and λ1

y1 outputs of the smooth subsystem
y2 outputs of the non-smooth subsystem
f̃2 external impulse generated by the external forces vector f2

p̃πi
impulse generated from the friction contact πi

q(0)

1 predicted physical coordinated in the smooth subsystem
q̈(0)

1 predicted generalized acceleration vector in the smooth subsystem
q̇(0)

1 predicted generalized velocity vector in the smooth subsystem
λco Lagrange multiplier of the coupling constraints
λ1 Lagrange multiplier of the bilateral constraints g1

λ2 Lagrange multiplier of the bilateral constraints
λ̃

co
reaction impulse corresponding to the coupling constraints gco

λ̃2 reaction impulse corresponding to the bilateral constraints g2

Two-Mass Oscillator
λ Lagrange multiplier of the coupling constraint in the two-mass oscillator
ω01) natural frequency of the smooth subsystem
ω02) natural frequency of the “non-smooth” subsystem
ρ̃ spectral radius of the recurrence equations of the two-mass oscillator
ξ1 damping factor of the smooth subsystem
ξ2 damping factor of the “non-smooth” subsystem
Avj coefficients in the characteristic equations
ci (i = 1,2) damping coefficient of Mass i in the two-mass oscillator
ki (i = 1,2) stiffness of Mass i in the two-mass oscillator
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mi (i = 1,2) mass of Mass i in the two-mass oscillator
u1 inputs for the smooth subsystem in the two-mass oscillator
u21, u22 inputs for the “non-smooth” subsystem in the two-mass oscillator
v

(0)

1 predicted velocity of Mass 1
vi (i = 1,2) velocity of Mass i in the two-mass oscillator
x (tn) theoretical solution at time tn
x

(0)

1 predicted position of Mass 1
xi (i = 1,2) position of Mass i in the two-mass oscillator
xn numerical solution at time tn
v̇

(0)

1 predicted position of Mass 1

Double-Pendulum System
αz,i (i = 1,2) initial rotation about axis z in the double-pendulum system
ωz,i (i = 1,2) initial angular velocity about axis z in the double-pendulum system
L length of the pendulum in the double-pendulum system
mi (i = 1,2) mass of Pendulum i in the double-pendulum system
E3 ∈R identity matrix
JCi

(i = 1,2) moment of the inertia with respect to point Ci of Pendulum i in the
double-pendulum system

Crank-Slider-PD System
(·)1 variables of rod 1
(·)2 variables of rod 2
(·)cra variables of the crank
(·)b variables of the beam
(·)c variables of the container of the PD
(·)p variables of the PD
(·)s variables of the sensor
μp friction coefficient among particles and their enclosure
νb Poisson’s ratio of the beam
ωcra angular velocity of the crank
ρ density of a body
ε̃ tolerance for the coupling variables in the implicit co-simulation
Ce equivalent damping ratio of the simplified model
Eb Young’s modulus of the beam
hb height of the cross section of the beam
Hc outer height of the enclosure of the PD
Hcin inner height of the enclosure of the PD
Ibz moment of inertia of the beam’s cross-section
Jcx , Jcy , Jcz diagonal elements of Jc

Jsx , Jsy , Jsz diagonal elements of Js

Ke equivalent stiffness of the simplified model
l length of a body
m mass of a body
Me equivalent mass of the simplified model
Rc base radius of the container of the PD
Rp radius of particles
Rr radius of the crank, rod 1 and rod 2
wb width of the cross section of the beam
Ye excitation magnitude in the simplified model
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Jc the inertia tensor of the container of the PD
Js the inertia tensor of the sensor
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