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Abstract: The research on methods for monitoring sheet metal stamping is benefiting from the in-
creased availability of enabling technologies such as sensors, data mining software, cloud computing,
and artificial intelligence. The predictive maintenance policies of tools (punches and dies) can be
targeted at monitoring progressive wear or at the detection of sudden failures or anomalies. Early
detection of tool failure is the method preferred by the recent literature on data management in sheet
metal stamping. However, the stamping of small parts poses challenges due to multiple tools and
signals and limited visibility of die wear, requiring management of multiple sensors and data sources.
This paper proposes a failure prevention approach for progressive die stamping using global and
local force sensors with upper bounds for maximum values to indicate unhealthy conditions. The
methodology was tested on millions of small washers made of carbon steel. The stamping process
was implemented using a servo-press with a high rate. The press was equipped with eight in-process
sensors, including strain gauges, thin foil force sensors, and acoustic sensors. The data of material
properties, maintenance reports, statistical process control data, and in-process sensors were collected
and stored in a data lake. By combining the in-process sensor acquisition with the corresponding log
events and maintenance data in the same time span, it is possible to look for correlations among the
variables and build an effective tool health prevention policy.

Keywords: preventive maintenance; data lake; process monitoring; tool failure; sheet metal forming;
Industry 4.0

1. Introduction

The research on methods for the continuous monitoring of sheet metal forming pro-
cesses in general, especially the stamping process, has been continuously increasing in
the last years, following the increased availability of enabling technologies such as sen-
sors [1], data mining software [2], cloud and internet communication devices [3], artificial
intelligence (AI) methods [4], and all the ingredients of the “Industry 4.0” revolution.
Data-driven analysis strategies can help improve the monitoring methods of stamped
part quality [5], which generally requires the use of multivariate statistical methods [6].
Greater attention has been devoted to maintenance strategies than quality. In deep drawing
processes, part failure may occur independently of the health condition of the tools [7].
Conversely, in progressive die stamping, a deterioration of the condition of the tools easily
leads to a reduction in quality (or an increase in defects); therefore, an effective maintenance
strategy also indirectly improves production quality. Predictive maintenance policies can
address the mechanical and electrical components of the presses [8] or, more frequently,
aim to control and improve the life of tools (punches and dies). Predictive maintenance
for tools can be focused on the monitoring of progressive wear [9] phenomena and/or the
detection/prevention of sudden failures or anomalies [10].

Early Failure Detection and Condition Monitoring. The vast majority of smart and
predictive maintenance approaches in the literature are aimed at early detection of such
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failures or anomalies in stamping or bending [11,12]. Several examples of algorithms
for anomaly detection can be found. As an example, Shiu et al. [13] developed a two-
stage approach for progressive stamping using tonnage signals. The first stage uses a
combined Haar transform and power spectrum analysis to map features extracted from
aggregated signals to individual operations. The second stage develops a two-step control
chart strategy for anomaly detection and identification. Since in progressive die stamping
the tonnage comes from the combined effect of multiple simultaneously working tools,
the force signal of a single stamping cycle must be segmented in smaller portions [14,15].
The problem of decomposing the force signals and identifying features inside the signals
requires complex and sophisticated mathematical or artificial intelligence approaches, e.g.,
recurrence plots [16], wavelets [17], or machine learning approaches such as support vector
machines (SVMs) [18]. While the scientific literature on tool maintenance approaches in
progressive die stamping centres on early failure detection, it is a strategy that presents some
serious risks and drawbacks. In fact, progressive die stamping (especially for small metal
parts) is a process with a very high throughput (tens of thousands of parts per shift), and a
strategy based on early detection of failure might easily lead to the production of many
defective parts and high costs. A more efficient architecture should, rather, be based on
condition monitoring [19] and preventive maintenance. In other words, rather than using
in-process sensors to detect when the process has failed, condition-based maintenance [20]
helps by predicting the condition of tools in advance to make decisions that might either
increase tool life or better schedule the maintenance tasks. Unfortunately, the complexity
and the dimensionality of condition monitoring problems require a greater effort than those
of early failure detection, and the literature that addresses this topic in progressive die
stamping is very scarce.

The curse of dimensionality. Progressive die stamping is especially challenging
because multiple tools and multiple signals are the cause of a cumbersome “curse of
dimensionality” [21] to any control or optimization process. To make things worse, when
progressive die stamping involves tiny components, such as washers [22], a single tooling
setup can include more than 50 tools simultaneously operating and the stamping rate can
be as high as several hundreds of strokes per minutes. In this case, not only are technologies
required for the real-time handling of a very big amount of data [23], but smart methods
are needed for the filtering and compression of process signals [24]. Modern presses are
equipped with four force sensors, one for each of the press columns [25], but four signals
might not be enough to achieve effective decomposition and feature recognition. For this
reason, multiple sensors are used to achieve a richer supply of data, such as acoustic sensors
embedded in the tool holders [26–28], thin film local load sensors [29] or sensors to measure
in-process the geometry [30], the quality [31] or the temperature [32] of the stamped
parts. Another problem connected to data-driven approaches is that in real industrial
cases, signals may shift for reasons that are often unknown and lead to conditions that are
“false positives”, i.e., conditions that apparently indicate an anomaly but that eventually
correspond to regular production with good quality and no evidently worn or failed tools.
Indeed, many sources of variability affect progressive die stamping, including material
variations (thickness and properties), strip vibrations [33], piloting imprecisions [34] and
many others. Another relevant issue connected with the progressive die stamping of small
metal parts is the inherent difficulty of observing and measuring the progression of die
wear in real industrial environments [35].

The problem of managing the “big data” generated by multiple sensors over time
calls for advanced techniques for data storage and simultaneous analysis of multiple data.
Recently, the trend in the field of predictive maintenance obtained through the management
of Big Data is to implement and use “data lakes” [36] instead of more traditional and
structured data bases. A data lake is a centralised repository that allows for the storage
of structured, semi-structured and unstructured data at any scale. Its implementation in
sheet metal forming problems is still in the beginning stage; the only example known to
the authors is by prof. Klocke [37]. When it comes to the problem of analysing the multiple
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data provided by multiple simultaneous sensors, so-called “sensor fusion” techniques are
required (often applied to sheet metal forming, e.g., [38]).

Barriers to industrial implementation. Several barriers limit the real industrial ap-
plication of fully integrated, even semi-supervised, predictive maintenance plans based
on in-process sensor acquisition [39]. Due to the many practical issues listed above and
the complexity of the problems, several approaches in the literature are either limited to
lab-scale environments [40] or are based on a very small sample of real industrial data. This
is especially true for progressive die stamping of very small components, because tens of
tools work simultaneously, the tonnage contribution of individual tools to the overall force
profile is negligible and signal monitoring is extremely difficult. Even if it was technically
and economically feasible to place an individual sensor per each tool, failure detection
would still be difficult because of a poor signal-to-noise ratio [41]. Conversely, the global
tonnage signal is influenced and potentially shifted or altered by many phenomena and
external interacting variables. Consequently, the effort required for training a robust AI
is larger and longer than any industrial company can realistically bear. In conclusion, in
this specific field, a simpler, process-specific approach is required to set up an effective and
realistic procedure.

In this paper, a simple failure prevention approach is proposed that aims to simplify
the inherent complexity of progressive die stamping of small parts and reduce the curse
of dimensionality induced by it, circumventing the many problems described above. This
method is based on a combination of global and local force sensors and uses upper bounds
for the maximum values recorded by the sensors, above which unhealthy conditions may
be triggered.

2. Description of the Test Cases

Two test cases were used to develop the proposed methodology. They are small
washers made of C60S carbon steel, each produced in millions of parts per year. C60S is
a low-alloyed medium carbon steel with 0.57–0.65% carbon content and 0.6–0.9% Mn. In
Figure 1, the drawings of the parts are shown and the tooling layout is presented. In Table 1,
the main features of the productions are listed.
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In the first case (Figure 1), the part is obtained with 5 stations (punching, piloting,
chamfering, coining and blanking) and 4 parts are stamped at once. Therefore, a total
of 40 tools (20 dies and 20 punches) operates in a single stroke of the progressive die
stamping press. The press normally runs at 600 strokes per minute (SPM), with a potential
production of 2400 washers per minute. In the second case (Figure 2), the part is obtained
with 5 stations.

Table 1. Main features of the three productions under study.

Case Type of
Washer Number of Type of Stations stations Parts Per

Stroke Tools SPM Parts
Per Min

1 Dented 5 Punching Piloting Chamfering Coining Blanking 4 40 600 2400
2 Square indented 5 Coining Punching Top chamfering Bottom chamfering Blanking 5 50 500 2500
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Figure 2. Tooling lay-out, drawings and pictures of a square indented washer (test case 2).

The material is nominally constant for all cases, but its actual material properties may
vary from lot to lot as the coil is changed and to some extent even within a single coil. The
material properties are also dependent on sheet thickness. The variability of the material
properties was monitored over 20 months, with a summary reported in Figure 3 in terms of
ultimate tensile stress UTS vs. elongation A% and yield stress Ys.

Although Figure 3 shows large variability in the materials, the FEM simulations,
which will be later described, evidence that the consequences of this variability on the
stamping process are limited and may easily be confounded with other effects and sources
of variation. C60ISOB is the same alloy of C60S but with a post-rolling thermal treatment
to reduce its anisotropy. The initial thicknesses are t0 = 1.8 ± 0.05 mm for case 1 and
t0 = 1.5 ± 0.05 mm for case 2.
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Figure 3. UTS vs. A% and YS for tested coils over a period of 20 months. A, B, C and D represent
materials that were used in the FEM analysis of case 1; E and F are the materials for the analysis of
case 2. Case 3 was included in the study but not reported in the paper for brevity.

3. FEM Simulations and Sensitivity Analysis

The test cases were simulated by means of the FEM software package Forge using
Transvalor (a non-linear solver with implicit time integration). The main objective of the
simulations was to model the sensitivity of process parameters and variations (material
properties, sheet thickness, sheet alignment, tool geometry and precision, etc.) with respect
to the following responses:

• The quality and dimensions of stamped washers;
• The force profile of each single operation and of the overall die;
• The non-dimensional tool wear indicator FEAwear, computed from the FEM simulations

as the ratio between the highest shear stress acting on the tool surface during stamping
and the Vickers hardness of the tool surface (formulation described in reference [22];

• The non-dimensional tool failure indicator FEAdamage, defined as the difference between
the maximum von Mises stress detected on the tools and the residual stress on the tool
coating, with normalised division by the yield stress of the die [22].

Numerical setup. FEA simulations were performed; for brevity, only a brief sample
of the results is reported as follows. Only half of the tools were simulated, assuming a
symmetry plane. The top die was simulated with the movement of a mechanical press
operating at 500 rpm with a crank radius of 13 mm. Self-contact was enabled to prevent
self-penetration of the material in case of folds.

In the deformation and shearing zones, a fine mesh of tetrahedral elements with
0.2 mm size was built using mesh boxes, and the rest of the tools and the sheet were
meshed with coarser mesh size. An example of initial meshing can be seen in Figure 4
for the coining (embossing) station of case 2. Automatic remeshing on deformation was
activated on the tetrahedral elements, with a strain threshold of 0.4.

The friction between the sheet and tools was modelled using a Coulomb-limited Tresca

model, with the Coulomb coefficient µ assumed to be 0.1 and the Tresca friction factor
−
µ

equal to 0.2. The Latham and Cockcroft normalised damage model was activated for all
simulations with an element deletion threshold of 0.4, activated for punching and blanking
operation, to simulate shearing.
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Simulations were run assuming rigid dies and then replicated with deformable purely
elastic dies (Young’s modulus E = 520 GPa for tungsten carbide tools and E = 226.5 GPa for
1.3343 tool steel tools). For the calculation of wear indicators, a coating on the tools was
assumed with 3000–3200 HV hardness. The reference sheet material was isotropic, with
hardening modelled using the Hansel–Spittel equation. The C60 material suggested by the
FORGE material database was used as a starting value to validate the simulations because
it is well inside the cloud of possible materials shown in Figure 3.

3.1. FEM Validation

A reference or base scenario was initially simulated for all cases. The simulations were
validated with real data by comparing:

• The real values of some relevant dimensions with simulated values;
• The simulated and real maximum total pressing force values;
• A simulated indicator of ductile damage FEAdamage with the statistical tool maintenance

data related to tool failure by fracture;
• A simulated indicator of progressive die wear FEAwear with the statistical tool mainte-

nance data related to tool replacement or conditioning operations due to wear.

These comparisons were performed for all cases and they confirmed the reliability and
accuracy of the FEM simulations. In Table 2, comparisons are reported for some dimensions
of the case 2 washer. As another example, in Figure 5, the maximum simulated pressing
force for 1/8 of the whole tool set is plotted for case 1 (the dented washer).

Table 2. Comparison between real and FEA dimensions (mm) for embossed square washer (case 2).

Hole-to-
Embossing

Distance
Width 1 Width 2

Internal
Hole

Diameter

Embossing
Distance

Washer
Height

Final
Thickness

FEA dimension 1.21 9.08 8.3 3.8 2.8 3.54 1.52
Real washer
dimension 0.9 9.05–9.15 8.5–8.6 3.55–3.6 2.4–2.6 3.4–3.6 1.45–1.55

The total experimental force Fz must be divided by 8 to consider symmetry and to
consider that 4 parts are formed simultaneously for case 1. The maximum simulated force
amounts to nearly 14 tons, while the real values range between 12.4 and 14.4 tons.
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simulation, hence the real Fz value must be divided by 2 to consider symmetry and by 4 to consider
that 4 washers are produced simultaneously. The experimental Fz/8 lies between 12.2 and 14.4 tons.

Finally, the simulations were validated by comparing the simulated values of FEAwear
and FEAdamage indicators to the actual maintenance data recorded over the last 4 years of
production. An example is reported in Figure 6 for case 2. The FEAdamage indicator is built
in order to provide a non-null value for tools at non-negligible risk of failure. In Figure 6,
FEAdamage is larger than 0 only for the three tools (the embossing die, the upper chamfering
punch and the blanking punch) that have the largest numbers of maintenance interventions.
The figure shows, therefore, that the actual number of interventions correlates quite well
with the proposed indicators. Similar considerations can be performed for FEAwear, and the
two indicators can be safely used in this type of sensitivity analysis.
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3.2. Sensitivity to the Blank Material Properties and Thickness

The press force signal has very wide variations in real operations; it may increase or
decrease depending on many factors. Different scenarios were simulated based on real
situations to have a better understanding of the most critical factors affecting the press
force. For brevity, they are here reported only for the most complex of the studied cases, i.e.,
case 1, the dented washer. For these sensitivity analyses, simulations were performed using
rigid, non-deformable tools. The maximum press force was computed after reconstructing
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the signal, as already shown in Figure 5. The sensitivity analyses described as follows
were run:

The material “A” shown in Figure 3, with initial thickness t0 = 1.85 mm and isotropic
properties, was used as the baseline in the sensitivity analysis. It is particularly hard in
terms of ultimate tensile strength (633 MPa). The 3 other materials labelled as B, C and D in
Figure 3 were also simulated, and the maximum Fz was compared to the validated simula-
tion and to the minimum and maximum values registered in the real process. Material B is
particularly ductile (A% = 0.27), material C is stiffer than the others (yield stress is 482 MPa)
and material D is softer (UTS is 568 MPa). Materials A, B, C, D and the standard Forge
material are assumed to be isotropic, but an additional simulation was run by modelling
the material A as anisotropic, with realistic Lankford coefficients taken from the performed
tensile tests (r0 = 1.18, r45 = 1.22. and r90 = 1.2). Furthermore, while all simulations, in-
cluding the reference case, were run with an initial blank thickness of 1.85 mm, material
A was also simulated with a reduced thickness, 1.8 mm, which is the central value of the
acceptable tolerance of the incoming sheet. The real measured total Fz can be as low as
75 and as high as 135 tons. The result of the sensitivity analysis, given in Figure 7, clearly
shows how the variability, which can be attributed to the material property variations, is
much smaller than the measured variability in the real process, since the max force in the
many different simulated cases ranges from 112 to 133 tons, with a total variation of about
±9%. This is not surprising, because the actual force variability may come from many
different sources, not only from material and thickness.
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The same analysis was repeated on the other two cases, with similar results.

3.3. Sensitivity to Sabering

One of the main problems in this process is the potential misalignment of the coil,
due to a sabering (or swording) defect of the incoming material, which means that the axis
of the strip might not be perfectly straight [42]. The role of sabering in progressive die
stamping is substantially neglected by the scientific literature, but it has indeed a very large
impact on the process. For investigating the sabering effect, the coil was given a rotation
so that the centre of the initially punched circular hole was misaligned with the centre of
each subsequent station. This is better explained in Figure 8. The maximum displacement
is given to the strip at the blanking station.

The total sabering was measured as the distance along the Y-direction (horizontal)
between the centre of the initially punched hole and the axis of the tool.
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was misaligned by the quantities reported above.

The case with isotropic material “A” and nominal initial thickness 1.80 mm was taken
as the baseline in this analysis. The baseline simulation was modified by setting the total
sabering displacement at the last station (blanking) at two values: 0.2 mm and 0.9 mm; both
values may occasionally occur during real-time operations. When the sabering amounts to
0.9 mm, the washer is defective, as it is out of tolerance.

The effect of sabering can be appreciated on the total maximum Fz as a reduction in
its value, because this force, as already shown in Figure 5, is mainly influenced by the
coining and chamfering operations, which see a decrease in the deformed cross section as a
consequence of chamfering. In fact, with respect to the baseline simulation with material A
and t0 = 1.8 mm (where Fz = 120 tons), the total Fz decreases merely by 1.7% for a small
0.2 mm total displacement and decreases by 8.8% (109 tons) for a large 0.9 mm displacement.

While in all other sensitivity studies conducted, the Fz and the FEAwear and FEAdamage
indicators are well correlated with each other, this is not the case when sabering occurs.
Despite the maximum force decreasing, the risk of tool wear increases, especially for the
blanking punch and for the piloting portion of the coining punches (i.e., the cylindrical
portion in Figure 9). This is the only case, indeed, where the pilots might suffer some
relevant frictional wear.
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coining punch in case 1.

3.4. Sensitivity to Tool Wear

Sensitivity analyses were run on the three test cases, but here only the results of case 1
are reported, because the dented coining die is the single tool, among all the investigated
ones, that received the largest number of maintenance interventions over the observed
period of time. The reason is that the teeth of the die must bear a very high compressive
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and shear stress and might progressively wear out or even break dramatically, as shown in
Figure 10. To model how the pressing force is influenced by a tool failure or by a progressive
die wear phenomenon, two scenarios were simulated:

• A case where all the teeth of all 4 coining dies were rounded in the initial mesh of the
tool to emulate the actual corner rounding that occurs due to wear;

• A case where 6 teeth were broken for each of the 4 coining dies (Figure 10).
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The consequences on the max Fz can be appreciated in Figure 11, which clearly shows
how the “broken teeth” profile is nearly overlapped with the standard force profile. Any
early failure detection for the major event, which is the fragile fracture of a tooth, based
on the online monitoring of some load signal is bound to fail, because the noise would be
much larger than the signal shift due to a rupture. On the contrary, there is a little (−3%)
but evident decrease in force as a consequence of the rounding of all teeth edges. However,
the wear of the edges of the teeth is a progressive, relatively slow phenomenon. In the real
press it would be very easily confounded with other drifts, e.g., thermal dilatation of the
press columns, heating of the tools, and slow deviation in sheet thickness through the coil.
It would be impossible to detect such a drift in a real situation.
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3.5. Sensitivity to the Bottom Dead Centre Position

In all progressive die stamping operations where chamfering or coining are involved,
a major and obvious source of variation, by far the most important, is the actual position of
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the bottom dead centre (BDC) of the coining or chamfering tools. In fact, a small variation
in the final position of the coining punch at the end of its stroke may cause a very large
variation in coining force. The actual position of the BDC may vary either within the same
production run or between different runs. Within the same run, the instantaneous value
of the BDC may change for several reasons: dynamic control errors of the servo-press,
inertial effects in case the SPM is changed, thermal dilatation of the press columns and
the tools, and tool wear [43]. The BDC may also change between different runs because of
small height adjustment errors during assembly or maintenance of tooling or because of
adjustments performed by the press operator. Indeed, whenever the operator at the press
detects an overall force that is out of the specified boundaries or whenever some quality
issues arise in the workpiece, the first reaction is always to perform small adjustments to
the press slide control, i.e., small adjustments of the BDC. The effect of changing the BDC is
somehow similar to a variation in sheet thickness, but while the sheet thickness may vary
only by a few cents of a millimetre (within-run and between-runs), the position of the BDC
may vary significantly, even by tenths of a millimetre. In fact, in stamping operations at
high rate (hundreds of SPM), thermal dilatations may occur in the tools, but especially in
the four press columns, which are long. The four columns of a stamping servo-press might
heat up because of changing environmental conditions or (more likely) because of their
own elastic deformation work. As an example, a press with 3 m long columns that heat up
by only 3 ◦C will elongate by 0.1 mm, and this will have a consequence on the measured
maximum load.

Sensitivity FEM analyses were run on all test cases and major variations in total force
took place even with small variations in height.

3.6. Discussion of the Results of the Sensitivity Analysis

In real operations, the range of variability of the maximum pressing force is very
large. Fz can experience slow variations of ±8% within the same production run. When the
production is stopped, e.g., because of maintenance or a change in material coil or simply a
shift change for the workers, the maximum Fz can have sudden run-to-run variations of
±29%, according the collected historical data.

On the contrary, in FEM simulations, even drastic variations in single factors such as
the material mechanical properties, the sheet thickness, the strip sabering or the failure of a
coining tool do not induce large variations, with only one exception: the position of the
BDC, which, as explained in Section 3.5, may induce force variations in excess of ±100%.

In conclusion, the outcome of the FEM simulations is that the overall tonnage may
vary for several interfering reasons, and many of them cannot be directly related to an
anomaly in the process. Even the rupture of several simultaneous tools, in a progressive
die stamping operation of small components, cannot be distinguished, if looking at the
force profile, from other sources of variation. The same considerations hold even if, instead
of calculating the maximum value of the overall pressing force, the single loads of each
of the four columns of a press are monitored. The order of magnitude of variations and
sensitivities does not change.

If an early failure detection monitoring device must be implemented, the only viable
option would be to place small local load sensors within the holders of those tools that are
at greater failure risk. However, this approach is cumbersome for a tooling setup where
tens of different tools operate simultaneously.

As stated in the introduction, a wide range of the literature is based on techniques
(e.g., wavelets [44]) for monitoring the time profile of process signals and trying to predict
pathological conditions by identifying some variation in the features of the profiles. These
applications are always focused on problems with a limited number of relatively large tools,
and they are not suited to stamping of small components with many tools, because the
individual contribution of a single faulty tool would be lost inside the natural variability of
the process signal. A different strategy is required.
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4. Stamping Equipment, Sensors and Data Lake

The stamping process of the test cases was implemented in a 150-ton 4-column vertical
mechanical press by Bruderer. The stamping rate could be varied from 100 up to a maximum
of 760 strokes per minute (SPM).

A data lake was created that collects all relevant process data related to the mechanical
press under investigation, connecting them with a time-stamp:

• The sheet coil properties, i.e., the tensile test data, when available with direct measurements;
• The log file of the press events and status, i.e., which operation is being conducted on the

press at any time (9 types of events are coded, including stamping, setup, idle, etc.);
• The maintenance reports (i.e., which tool is being replaced or reconditioned, which

type of maintenance operation has been performed);
• The statistical process control (SPC) data, i.e., the measured dimensions and quality of

the washers;
• The data coming from the in process-sensors.

The data lake was populated with the production files of the three parts over a time
span of a few years: the material properties over nearly 2 years and the maintenance data,
the log files and the SPC data over 4 years. The data coming from the process sensors were
more recently implemented; though data are available only for the last year, they still refer
to the production of millions of washers. As an example, the average production volume is
about 2.2 million pieces per year for case 1; at an average stamping rate of 400 strokes per
minute and 4 parts per stroke, this amounts to about 23 h of useful active stamping time
per year.

The press is equipped with 8 in-process sensors (see Figure 12a for a schematical
representation of their layout):

• Four Baumer DSRT 23DF strain gauges are installed at each of the four columns, and
the measured vertical strain is converted into a force signal. The maximum of the
values of each column is registered at each cycle of the press and stored in the variables
Fmaxfr, Fmaxbr, Fmaxfl, Fmaxbl, where the suffix b stands for back, f for front, r for
right and l for left. These four values can be summed to obtain the total maximum
vertical force Fz, which is the one simulated in Figure 5 for case 1.

• Two Brankamp Marposs thin foil force sensors are embedded in the bottom die-holder
inside two rectangular 90 × 120 mm slots. When the die-holder is loaded at each cycle,
it deflects elastically, causing a small deformation of the right and left foil sensors.
Their output voltage signal is normalised to non-dimensional load indicators Lr(θ) and
Ll(θ) (r for right, l for left) that range from 0 to 1000. The whole signal is monitored
with a synchronization with the rotation θ of the press crankshaft so that one value is
registered every 0.23◦ of rotation for a total of 115◦ around the bottom dead centre. A
total of 500 values per stroke are acquired. The maximum values Lmaxl and Lmaxr of
the two load signals are stored.

• Two Brankamp Marposs acoustic sensors (microphones) are installed at the back
side of the bottom die-holder, and their output voltage is also converted to non-
dimensional noise indicators Nr(θ) and Nl(θ) ranging from 0 to 100, with the same
sampling frequency as the Lc indicators.

Not all the above listed sensor variables are stored in the data lake. To reduce the
dimensionality, only the maximum values of each stroke are stored: the 4 global force
Fmax and the 2 local load Lmax values. The maximum values of the noise indicators N are
not stored because the analysis of the data showed that they are clearly not correlated to
maintenance events nor to part quality issues. Furthermore, the 4 local load L and noise
N time signals are not stored in the data lake, but they are used for real time detection of
relevant anomalies and failures. When any of the four Lr(θ), Ll(θ), Nr(θ) and Nl(θ) signals
exceeds given upper and lower control limits, the press issues a warning, as explained in
Section 5.1.
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position of the noise sensors, while the two blue rectangles are the thin load cells below the tooling.

Figure 12b shows the locations of the local load and noise sensors with respect to the
tooling of case 1. Their signal is mostly influenced, i.e., sense more, the operations that
are closer to them. Sensors Lr(θ) and Nr(θ) are more influenced by the coining and the
trimming operations for case 1; coining is, surely, the operation that requires the highest
load. Sensors Ll(θ) and Nl(θ) are more influenced by the initial punching operation, while
piloting generates a negligible noise and load (except when sabering occurs). In the case of
Figure 12b, using 20 smaller local load sensors (instead of only 2), each placed under every
tool, would provide cleaner and more direct information for every single operation, but it
would also have a tremendous impact on the cost and complexity of manufacturing.

A controller is connected to the four local sensors and its output is also shown on the
GUI (graphical user interface) panel of the press. At the beginning of every new production
run, the first 100 strokes (after a steady condition is reached) are used by the controller to
compute the average expected temporal profile of each signal Lr(θ), Ll(θ), Nr(θ), Nr(θ).
These variables are all functions of the crankshaft rotation θ. Then, a control band is built
between a lower control limit (LCL) and an upper control limit (UCL). The UCL is obtained
by adding to the mean value of the signal a fraction α of the mean signal itself. The LCL is
determined by subtracting the same quantity. The value of α is set arbitrarily by the press
operator, according to their personal experience of the expected process variability, and it
generally ranges between 10 and 20%. Therefore, the load indicator coming from the right
load foil sensor must remain within the following limits:

LCL = Lr(θ)(1 − α) < Lr(θ) < Lr(θ)(1 + α) = UCL, (1)

If Lr(θ) exceeds these boundaries, a warning alarm is shown on the GUI of the press
and the operator is advised to stop the stamping press and check whether any problem or
failure has occurred (tool failure, quality problems of the parts, any anomaly in coil position
or any other type of anomaly). The results of this check should be noted, if positive, i.e.,
if any anomaly has been detected, in the event log file. The most frequent correction is
the micro-adjustment of the actual position of the bottom dead centre (BDC): if the UCL
is exceeded, often the BDC is raised by some tens of microns. However, the BDC can
be raised only if the measured thickness of the coined washer is within the lower half of
its dimensional tolerance, otherwise raising the BDC would generate a risk of stamping
defective parts (too thick). On the opposite case, if the LCL is crossed, the BDC might be
lowered, but only if there is no risk of generating a part that is excessively coined. If no
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anomaly is detected by the operator and no adjustment is performed on the BDC, the press
is started again without any intervention. In this case, the alarm is labelled as a “false
positive”. The occurrence of false positives is indeed very frequent.

5. Analysis of In-Process Sensor Measurements

By combining the in-process sensor acquisitions with the corresponding log events
and maintenance data in the same time span, it is possible to look for correlations among
the variables and to build an effective health prediction policy. In this section, some
representative examples of sensor data acquisition are shown and commented upon.

5.1. Analysis of Local Load and Noise Profiles

In Figure 13, as an example, the plots of the two local left and right load sensors are
shown, coming from nearly three days of production of the dented washer, case 1. In the
Ll(θ) group of signals, two different groups of profiles can be identified. This means that
at some point during the 3 days, there must have been a shift in the punching operation
(which is more sensed by the left Ll load cell). Despite this evident shift, no failure event
occurred in the punching tools and no deterioration in the punched edge quality was
observed during these three days. In the right Lr(θ) group of signals, a large variability
is evident, especially at 180◦ (when coining takes place), but there is no clear shift in the
process. The shifts of the signal are of course more evident when the signals are plotted in
a time sequence rather than all together. The trend in the maximum values of the signals
over time is discussed in the next section, Section 5.2.

J. Manuf. Mater. Process. 2023, 7, x FOR PEER REVIEW 14 of 21 
 

 

position or any other type of anomaly). The results of this check should be noted, if posi-
tive, i.e., if any anomaly has been detected, in the event log file. The most frequent correc-
tion is the micro-adjustment of the actual position of the bottom dead centre (BDC): if the 
UCL is exceeded, often the BDC is raised by some tens of microns. However, the BDC can 
be raised only if the measured thickness of the coined washer is within the lower half of 
its dimensional tolerance, otherwise raising the BDC would generate a risk of stamping 
defective parts (too thick). On the opposite case, if the LCL is crossed, the BDC might be 
lowered, but only if there is no risk of generating a part that is excessively coined. If no 
anomaly is detected by the operator and no adjustment is performed on the BDC, the press 
is started again without any intervention. In this case, the alarm is labelled as a “false 
positive”. The occurrence of false positives is indeed very frequent. 

5. Analysis of In-Process Sensor Measurements 
By combining the in-process sensor acquisitions with the corresponding log events 

and maintenance data in the same time span, it is possible to look for correlations among 
the variables and to build an effective health prediction policy. In this section, some rep-
resentative examples of sensor data acquisition are shown and commented upon. 

5.1. Analysis of Local Load and Noise Profiles 
In Figure 13, as an example, the plots of the two local left and right load sensors are 

shown, coming from nearly three days of production of the dented washer, case 1. In the 
Ll(θ) group of signals, two different groups of profiles can be identified. This means that 
at some point during the 3 days, there must have been a shift in the punching operation 
(which is more sensed by the left Ll load cell). Despite this evident shift, no failure event 
occurred in the punching tools and no deterioration in the punched edge quality was ob-
served during these three days. In the right Lr(θ) group of signals, a large variability is 
evident, especially at 180° (when coining takes place), but there is no clear shift in the 
process. The shifts of the signal are of course more evident when the signals are plotted in 
a time sequence rather than all together. The trend in the maximum values of the signals 
over time is discussed in the next section, Section 5.2. 

  
Figure 13. Lr(θ) and Ll(θ) acquired during 3 days of production of the dented washer. Some of the 
profiles are shifted to the right: they belong to stamping cycles with reduced SPM, which are typi-
cally run when the press is re-started after a stop; they are wrongly plotted in terms of rotation angle 
and must be ignored. The two left and right plots do not refer to the same acquisition, as they were 
taken on different days. The BDC is at 180°. Lines are plotted in different colours to improve visibil-
ity, every different line represents a new pressing cycle. 

In Figure 14 the left noise Nl signal is shown vs. the rotation over another 3-day time 
span. The figure shows that the Nl profiles do not exhibit any clear trend, but the observed 
variability is still very large, much larger than 10 or 20% of the average values.  

Figure 13. Lr(θ) and Ll(θ) acquired during 3 days of production of the dented washer. Some of the
profiles are shifted to the right: they belong to stamping cycles with reduced SPM, which are typically
run when the press is re-started after a stop; they are wrongly plotted in terms of rotation angle and
must be ignored. The two left and right plots do not refer to the same acquisition, as they were taken
on different days. The BDC is at 180◦. Lines are plotted in different colours to improve visibility,
every different line represents a new pressing cycle.

In Figure 14 the left noise Nl signal is shown vs. the rotation over another 3-day time
span. The figure shows that the Nl profiles do not exhibit any clear trend, but the observed
variability is still very large, much larger than 10 or 20% of the average values.

With reference to Figures 13 and 14 and considering the control logic described by
Equation (1), if setting α = 0.2, the control panel would continuously raise alarms, regarded
as false alarms, and production would be continuously stopped. As a consequence, the
operators would typically increase the α-value to a level where it does not interfere with
the regular production and would not detect any minor anomalies, but instead only major
anomalies (e.g., when some trimmed sheet metal scrap is stuck to the tooling). However,
major anomalies generally make the overall pressing force Fz dramatically change, and
therefore the press itself, even without using the four local sensors, would detect a problem
and automatically stop.



J. Manuf. Mater. Process. 2023, 7, 92 15 of 20J. Manuf. Mater. Process. 2023, 7, x FOR PEER REVIEW 15 of 21 
 

 

 
Figure 14. Noise Nl(θ) acquired during 3 production days of the dented washer; BDC at 180°. 

With reference to Figures 13 and 14 and considering the control logic described by 
Equation (1), if setting 𝛼 0.2 , the control panel would continuously raise alarms, re-
garded as false alarms, and production would be continuously stopped. As a conse-
quence, the operators would typically increase the α-value to a level where it does not 
interfere with the regular production and would not detect any minor anomalies, but in-
stead only major anomalies (e.g., when some trimmed sheet metal scrap is stuck to the 
tooling). However, major anomalies generally make the overall pressing force Fz dramat-
ically change, and therefore the press itself, even without using the four local sensors, 
would detect a problem and automatically stop.  

In other words, while the typical variations in the local signals can be very large, they 
do not induce any obvious failure and are therefore tolerated; they have no immediate 
consequence on stamping operations. The profiles shown in Figures 13 and 14 have a tre-
mendously large variability, both in terms of shape and maximum values. The reasons for 
this variability was explained previously in Section 3: the FEM sensitivity analysis shows 
how the response of the process is influenced by many variables, none of which clearly 
prevail over the others, except for the variation in BDC. Any variation in material thick-
ness, material properties, lubrication conditions, tool wear progression, swording of the 
coil, inclination of the tools, planarity of the die plane, and vertical positioning of the tools 
influences the shape of the profiles. 

In conclusion, early failure detection algorithms are bound to fail because the opera-
tor will likely interpret the alarms as “false positives”. 

5.2. Analysis of Maximum Load Time Series 
The profiles shown in Figures 13 and 14 are useful to highlight the variability of the 

process, but they do not easily indicate temporal drifts (i.e., slow modifications of the sig-
nal profiles) and shifts (i.e., sudden modifications of the signal profiles). Drifts can be 
caused by thermal dilatations or by progressive tool wear. A more useful graphical repre-
sentation in this regard is to report as a function of time only the maximum values of any 
of the monitored variables. The most significant variables are the maximum total pressing 
force Fz and the maximum value of either Lr or Ll. For case 1, the Lrmax value is well corre-
lated to the coining operations, which is most dangerous operation with respect to tool 
failure. In Figure 15, an example is given of the sequence of Fz and Lrmax for two consecutive 
production runs of case 1, during which two failure events were observed on the coining 
die. Both runs were terminated after the operator detected a defect on the dented washer 
caused by a failure of the coining die. The coining die failed after 28,000 and then after 
45,000 strokes. In both cases, the Lrmax and Fz values increase (most likely because of ther-
mal drifts), then a maximum is reached shortly after the failure is detected. Within a single 
run of a few hours, the variation in tonnage can be as high as 100 kN. Between runs, after 
the tooling was repaired and adjusted, the force dropped significantly. 

Figure 14. Noise Nl(θ) acquired during 3 production days of the dented washer; BDC at 180◦.

In other words, while the typical variations in the local signals can be very large, they
do not induce any obvious failure and are therefore tolerated; they have no immediate
consequence on stamping operations. The profiles shown in Figures 13 and 14 have a
tremendously large variability, both in terms of shape and maximum values. The reasons
for this variability was explained previously in Section 3: the FEM sensitivity analysis
shows how the response of the process is influenced by many variables, none of which
clearly prevail over the others, except for the variation in BDC. Any variation in material
thickness, material properties, lubrication conditions, tool wear progression, swording of
the coil, inclination of the tools, planarity of the die plane, and vertical positioning of the
tools influences the shape of the profiles.

In conclusion, early failure detection algorithms are bound to fail because the operator
will likely interpret the alarms as “false positives”.

5.2. Analysis of Maximum Load Time Series

The profiles shown in Figures 13 and 14 are useful to highlight the variability of the
process, but they do not easily indicate temporal drifts (i.e., slow modifications of the
signal profiles) and shifts (i.e., sudden modifications of the signal profiles). Drifts can
be caused by thermal dilatations or by progressive tool wear. A more useful graphical
representation in this regard is to report as a function of time only the maximum values
of any of the monitored variables. The most significant variables are the maximum total
pressing force Fz and the maximum value of either Lr or Ll. For case 1, the Lrmax value is
well correlated to the coining operations, which is most dangerous operation with respect
to tool failure. In Figure 15, an example is given of the sequence of Fz and Lrmax for two
consecutive production runs of case 1, during which two failure events were observed
on the coining die. Both runs were terminated after the operator detected a defect on the
dented washer caused by a failure of the coining die. The coining die failed after 28,000 and
then after 45,000 strokes. In both cases, the Lrmax and Fz values increase (most likely because
of thermal drifts), then a maximum is reached shortly after the failure is detected. Within a
single run of a few hours, the variation in tonnage can be as high as 100 kN. Between runs,
after the tooling was repaired and adjusted, the force dropped significantly.

Figure 15 is only a very small example of a large campaign of data collected and stored
in the data lake. Several different situations were observed, and they cannot all be reported
here for brevity. However, in any of the observed trends for all cases:

• Large variations in Lrmax, Llmax and Fz can be observed both within a single run and
within subsequent runs;

• The most typical variation in maximum load value within a single run is of a continu-
ous increase, most likely due to thermal drifts, because thermal dimensional variations
in the press components are the only phenomenon that can logically explain such
monotonous and large short-run increasing trends;
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• Not only may the values of Lrmax, Llmax and Fz have significant run-to-run and between-
run variations, but the shape of the curves shown in the previous figures is also neither
constant nor repeatable;

• Failure of tools occasionally seems to follow the occurrence of very high force or load
values, but some other times, failure occurs without evident alteration of the loads.
This is not surprising because in punching, trimming and coining tools failure may
often occur by fatigue. In this case, the useful tool life may be reached with no warning
signs. Fatigue failure could possibly be detected with advanced experimental analyses,
but this is almost impossible in a real industrial environment.
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The availability of the data lake allows us to look for correlations among the peak
loads monitored over time and the occurrence of defects on the parts or maintenance events.
As an example, Figure 16 reports the log of a few hours of production for washer case 2.
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event no. 15, tool failure.

As shown in Figure 6, the tool that is mostly at risk is the blanking punch, located at
the far right of the tool. It makes sense, therefore, to monitor the right local load cell Lrmax
and the maximum pressing force Fz. The figure shows the trend of Lrmax and Fz together
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with the event log. Every type of event has a code. For instance, event no. 6 is the regular
attended production; event code no. 13 represents a grinding operation performed on a
tool (also signalled with a red cross in the diagram) because of tool wear. Event no. 4 is
the tooling setup or adjustment on the press (also labelled with a green cross in the figure);
event no. 17 (labelled with a yellow star) is the detection of a tool failure in operation. The
figure shows that Lrmax and Fz are not correlated and that tool failure does not seem to be
forewarned or indicated by any drift/shift in the sensor profiles.

6. A New Tool Health Prevention Strategy

In the previous sections, we showed how difficult it is to detect failure in progressive
die stamping of small parts. Additionally, for a process that produces thousands of defective
parts in a minute, the early detection of a failure can never be rapid enough to prevent the
accumulation of large amounts of scrap. Failure (by wear or fracture of the tools) cannot be
avoided, but it might be predicted in advance, although only in statistical terms. As they
are used now, the six load sensors installed at the press area are able to detect only major
events, such as the lack of a metal strip of the missed ejection of a stamped part.

However, they become useful to build maintenance strategy aimed at avoiding unsafe
stamping conditions. By observing the whole set of maintenance events, process variables
and quality measurements stored in the data lake, some weak statistical observations
emerge, especially looking at the maximum Fz value and the Lmax value of the load cell,
which more closely reflect the tools that are at greater risk of failure (e.g., the right foil load
sensor Lrmax in case 1). The data show that upper thresholds may exist for Fz and Lrmax.
If Fz and Lrmax simultaneously exceed these thresholds, the tooling is at a higher risk of
failure and can, therefore, be considered as overloaded. This situation is summarised in
Table 3, which reports the percentage of recorded failures during the observed time span of
the coining die of case 1 in different scenarios. The process is not interrupted immediately
as failure occurs: it takes some time before the operator realises that failure has occurred
and stops the press. After any major failure event of the coining die of case 1, the maximum
values of Fz and Lrmax in the production run preceding the failure event are considered.
When Lrmax and Fz are both below given thresholds (identified respectively in 570 and
1160 kN), no failure event is recorded. On the contrary, when both values have exceeded
these thresholds, 50% of the failure events occurred. Thirty-eight percent of the coining die
failure took place when Fz exceeded 1160 kN but Lrmax was below its threshold.

Table 3. Percentage of failures of the coining die of case 1 in different conditions of maximum values
of Fz and Lrmax during the production run preceding the event.

Fz < 1160 kN Fz > 1160 kN

Lrmax < 570 0% 38%
Lrmax > 570 13% 50%

Obviously, the thresholds in Table 3 cannot be generalised; every progressive stamping
die will have its own. However, similar trends were also observed for test case no. 2, where
thresholds seem to exist for Fz and Lrmax at 230 and 1030 kN, respectively, above which the
probability of tool failure increases. When the sensors detect values that are above those
thresholds, the mean time to failure of the riskiest tool (the chamfering/coining die, in this
case) seems to be shortened.

We demonstrated in Section 3 that peak loads may vary for several reasons, which are
not, in many cases, pathological. However, it is a fact that when the maximum pressing
force increases and the local load sensors value increase, there is an increased stress on the
tool. This explains why the probability of failure seems to increase above given thresholds.
An advisable prevention strategy is: when thresholds are exceeded, stop production and
implement some force reduction action, such as raising the BD by 1 cent of a millimetre, if
the part quality is controlled. If changing the BDC alters the part quality, then the solution
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is to decrease the SPM, which has a relevant effect on the stamping force. Reducing the
SPM has a cost, but this is worthwhile if it delays tool failure. In fact, any tool failure
dramatically reduces productivity because production is completely stopped for several
hours when a failure event takes place.

7. Conclusions

In this paper, we investigated the stamping process of small metal components, such
as washers, with multiple simultaneous tools. FEM analysis was run to understand the
sensitivity of the process, especially the stamping force, with respect to different potential
sources of variation. Our paper shows that, except for a variation in the BDC, which in turn
may be influenced by thermal drifts of the press and tooling, no single source of variation
can explain the large variability that can be measured in the real process. In this type of
production, given the small dimensions and the large number of simultaneously operating
tools under a unique press slide, tool maintenance policies based on early failure detection
are bound to fail. However, our paper shows that a combination of local load sensors and
the global tonnage indicator can be used to identify thresholds above which the probability
of failure of the riskiest tools increases. During regular operations, care should be taken to
avoid overcoming those thresholds to prolong tool life. In other words, while failure cannot
be detected immediately after it has occurred and cannot be predicted with certainty, it is
still possible to identify conditions that are dangerous, that is, conditions that can induce
larger probability of failure; therefore, mitigation actions or countermeasures can be taken
to delay tool failure (e.g., raising the BDC or reducing the SPM).

The research has shown that implementing a robust predictive maintenance plan
exploiting the state-of-the-art technology in in-process sensor measurements is a very
challenging, albeit not impossible task. A large amount of data are required to implement
an effective predictive maintenance strategy. This can be obtained either by multiplying the
number of local sensors or by using a “big data” approach that over a long period of time
collects enough information to elaborate more advanced algorithms. The present paper can
be seen as a first step towards this direction.
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