# Association for Information Systems AIS Electronic Library (AISeL)

#### All Sprouts Content

Sprouts

4-16-2011

# Application Driven IT Service Management for Energy Efficiency

Cinzia Cappiello *Politecnico di Milano,* cappiello@elet.polimi.it

Alexandre Ferreira *Politecnico di Milano,* ferreira@elet.polimi.it

Mariagrazia Fugini Politecnico di Milano, fugini@elet.polimi.it

Barbara Pernici *Politecnico di Milano*, pernici@elet.polimi.it

Follow this and additional works at: http://aisel.aisnet.org/sprouts all

#### **Recommended** Citation

Cappiello, Cinzia; Ferreira, Alexandre; Fugini, Mariagrazia; and Pernici, Barbara, "Application Driven IT Service Management for Energy Efficiency" (2011). *All Sprouts Content*. 424. http://aisel.aisnet.org/sprouts\_all/424

This material is brought to you by the Sprouts at AIS Electronic Library (AISeL). It has been accepted for inclusion in All Sprouts Content by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact elibrary@aisnet.org.

# Application Driven IT Service Management for Energy Efficiency

Cinzia Cappiello Politecnico di Milano, Italy Alexandre Ferreira Politecnico di Milano, Italy Mariagrazia Fugini Politecnico di Milano, Italy Barbara Pernici Politecnico di Milano, Italy Pierluigi Plebani

Politecnico di Milano, Italy

# Abstract

Considering the ever increasing of information technology usage in our everyday life and the huge concentration of computational resources at remote service centers, energy costs become one of the biggest challenging issues for IT managers. Mechanisms to improve energy efficiency in service centers are divided at different levels which range from single components to the whole facility, considering both equipment and application issues. In this paper we focus on analyzing energy efficiency issues at the application level, focusing on e-business processes. Our approach proposes a new method to evaluate and to apply green adaptations strategies based on the service application characteristics with respect to the business process taking into account non-functional requirements.

Keywords: Green information systems, adaptive services, Green Performance Indicators

Permanent URL: http://sprouts.aisnet.org/10-131

Copyright: Creative Commons Attribution-Noncommercial-No Derivative Works License

**Reference:** Cappiello, C., Ferreira, A., Fugini, M.G., Pernici, B., Plebani, P. (2010). "Application Driven IT Service Management for Energy Efficiency," Proceedings > Proceedings of SIGGreen Workshop . *Sprouts: Working Papers on Information Systems*, 10(131). http://sprouts.aisnet.org/10-131

## **INTRODUCTION**

The impact of IT on the energy consumption is continuously increasing and IT is becoming a major energy consumer. Such trend is due not only to the pervasive diffusion of information systems, but also to the availability of IT services of common use, such as for instance search engines, file sharing, and social networking services. Cloud computing paradigm is starting to provide the basis for new ways of providing services over rented resources from infrastructure providers (Zhang et al., 2010). While offering the possibility of providing services more easily and without the need of heavy infrastructure investments by service providers, these trends are increasing the need of managing efficiently large computer centers: energy consumption becomes an important item of cost and also a limitation if the power supply is not adequate for serving requests in peak times. With respect to that, a lot of work has been done at the infrastructure which includes IT hardware equipment and supply systems such as cooling and power system. On the other hand, our proposed work aims to tackle energy costs at the business process level such that we may need less physical resources, or at least use them in a more efficient way, to provide acceptable performance requirements.

# ADAPTIVE AND PROACTIVE SERVICE CENTER MANAGEMENT

In this paper we focus in particular on the proposal of managing resources at all levels in a service center based on two main approaches: a) a flexible management of resources, based on an intelligent information system for providing business process context-aware adaptive behavior in the data center; b) a deep knowledge of the services provided in the service center, to be able to anticipate their needs of resources and manage them in an energy-efficient way (e.g., Ardagna et al., 2008, Ferreira et al., 2009).

Regarding the former approach, we argue that the design of energy efficient information systems can leverage on some characteristics of the service-oriented approach and its flexibility and adaptivity, which can be applied at different levels and phases. In particular, while process analysis is usually focusing on performance, trade-offs between performance and energy consumption are also considered. Energy-related aspects include the amount and characteristics of energy resources which are available at a given time; peak situations may constrain the functioning of data centers causing an impact on business processes; the costs of different energy sources, especially at peak times; and the availability of computing resources for each assigned business task. Possible solutions may also involve rescheduling mechanisms when resources are not available or energy consumption is constrained. A self-\* approach, as proposed in the service engineering area (Kephart et al., 2003), can be pursued, in particular to adapt systems to variable operating conditions and to different phases of the life-cycle of applications and services. Frameworks for adapting service-based business processes such as the PAWS framework (Ardagna et al., 2007) can be adopted to realize context-aware service systems.

However, in order to be able to provide such an adaptive behavior, we first need to understand all information regarding the service center and its running applications in details. For that reason, the monitoring, analysis, and control of the use of the service center components have to be supported by the development of a green controller which provides filtering and decision support functionalities in order to achieve pre-defined green strategies goals. Such strategies take into consideration energy efficiency at the service level in terms of Green Performance Indicators (GPI) which link low level measurements with high level business process features (Barroso, 2007).

For that reason, we have defined two groups of GPI: tactical and operational. GPIs belonging to the tactical group denote how the business process will consume less energy if its development phases are enhanced through the use of process engineering metrics. Such metrics characterize the level of maturity and capacities of the service development platform (including code language and development frameworks), the developer's use of innovative processes, and the rate of reused stable and well-known functions and methods. They are likely to produce energy-aware systems through improvement of the system quality in terms of service delivery versus customers' expectations and in terms of less complexity of the overall service interfaces.

In the operational group, we have GPIs that based on the information provided by the monitoring of IT resources, such as processor, memory, storage, etc., deal with energy needs and resource usage patterns from a business process perspective. To do so, GPIs abstract monitored values through some calculations in order to keep it independent from physical configurations and to be able to estimate business process needs in terms of power consumption (i.e. watts) and usage (i.e. percentage). The information provided by such GPIs is then used within a reasoning engine which is able to foresee possible situations in which the system can be set to a lower power mode by combining business process adaptation strategies and infrastructure allocation mechanisms such as dynamic workload scheduling. The application functionality also when lower power modes are adopted during execution.

The second direction mentioned in the beginning of this section is toward a proactive approach to the service center management, with the goal of continuous improvement of energy efficiency.

#### **RESEARCH QUESTIONS**

Starting from the discussion introduced in (Watson et al., 2010), we propose a first analysis of a service center characteristics in Table 1, in which we discuss some of the proposed research questions considering service centers and different aspects to be considered when managing information for a more efficient use of computing resources.

In the table, we generalize the concept of sensor network to a more general concept of monitoring, the flow network in this case are service networks, sensitized objects are requested applications run in the service center. The information system in this case is an IS for assessment and control to drive the adaptive behavior of the service center.

In the first line we introduce issues about the level of granularity of the sensor network. In fact, such value depends on several other parameters such as facility dimensions and the type of the equipment or software that will be monitored. The biggest problem here is to find a balance between the overhead produced by the monitoring system and its benefits toward energy efficiency. It has a direct impact on RQ2 and RQ3 in which we discuss the needed granularity level of energy costs reduction. At RQ6 we point out the narrow correlation between supply and demand sides and at RQ9 we present examples that energy efficient strategies may bring both to customers and providers.

# **APPLICATION SCENARIO**

In order to verify our proposed approach and demonstrate the advantages of the ideas proposed at Table 1, in this section we consider a generic e-commerce scenario in which some GPIs are considered to enact green adaptation strategies. The goal is not to present any specific e-commerce system, but to use some of the common activities shared by most of the e-commerce systems and their main characteristics. Let us assume that the system is composed by several individual tasks that are responsible to execute tasks such as customer registration, product selection, payment modules, and product shipment. In addition, each task is annotated with its minimum performance requirements that include physical resource considerations.

In order to perform such tasks, one or more application services are available with similar functionality but different from the non-functional point of view. Therefore, it enables us to select the best service maximizing performance, but, at the same time, minimizing energy consumption parameters. As explained in the previous section, applications are annotated with respect to relevant GPIs and performance values. Figure 1 depicts how our proposed approach works within this scenario. The GPIs selection phase selects among all existing GPIs the ones that are suitable for this specific application both at design-time and run-time. At design-time we have selected as a GPI Application performance that measures the number of transactions executed within one watt, and IOPS/watt which measures the number of I/O operations per second per watt. The GPIs selection for process design is mainly based on the nature of the application, which in this case performs a large number of database accesses. The GPIs selection phase also selects GPIs to be computed at run-time, i.e. during its execution, which are CPU usage, which measures the percentage of use of the CPU; storage usage which calculates divides the amount of used space by the total allocated space; and *energy consumption* which monitor the power consumption of each transaction. The last component, process feedback, is responsible to provide feedback information about GPIs used in order to improve future GPI selection phase.

|                                                                                                                                      | Monitoring                                                                                                                                                                                                 | Service center                                                                                                                     | IS for assessment<br>and control                                                                                                                    | Applications                                                                                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RQ 1: What is the<br>optimum level of<br>information<br>granularity of the<br>sensor network to<br>optimize a given<br>flow network? | Specific sensors<br>placed at strategic<br>points monitor<br>physical<br>infrastructure in<br>terms of energy<br>consumption,<br>temperature, and<br>humidity<br>producing<br>minimum possible<br>overhead | Adaptive actions in<br>the service center<br>at different<br>granularity levels<br>based on different<br>aggregated<br>information | Evaluation of<br>Green<br>Performance<br>Indicators (GPI) at<br>different level of<br>granularity taking<br>into account each<br>particular context | Consider<br>functional and<br>non-functional<br>requirements<br>(such as QoS) for<br>applications and<br>their components<br>services, define<br>optional services |
| RQ 2: What<br>information<br>granularity<br>enables effective<br>enforcement of<br>energy policy?                                    | Design the<br>minimal<br>monitoring<br>infrastructure with<br>less impact within<br>the environment                                                                                                        | Enable context-<br>aware adaptivity<br>actions                                                                                     | Dependencies<br>among GPIs                                                                                                                          | Combine<br>strategical and<br>tactical goals                                                                                                                       |

| RQ 3: What<br>information, and<br>at what level of<br>granularity, is<br>required to<br>optimize a given<br>type of flow<br>network?                 | The monitoring<br>system is<br>composed by<br>physical<br>infrastructure<br>(sensors) and<br>logical<br>components<br>(application)               | From physical<br>devices, the<br>granularity of the<br>information starts<br>from a single<br>component (CPU)<br>being aggregated<br>until the track or<br>room level | Context-aware<br>energy<br>management rules<br>(at application,<br>platform,<br>infrastructure and<br>facility levels) | Applications<br>annotations to<br>characterize<br>energy<br>consumption and<br>utilization profiles                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| RQ 4: What<br>government<br>policies and<br>regulations will<br>impel flow network<br>managers to make<br>them more energy<br>efficient?             | The limitation<br>here is the<br>overhead<br>produced by the<br>different<br>granularity levels<br>of the monitoring<br>system                    | E.g. apply EU code<br>of conduct for data<br>centers (EU code<br>of conduct for data<br>centers, 2010)                                                                |                                                                                                                        | Design application<br>following software<br>engineering best<br>practices in order<br>to create more<br>energy-efficient<br>codes |
| RQ 6: How can an<br>information system<br>integrate supply<br>and demand data<br>to increase energy<br>efficiency?                                   | In the monitoring<br>system of a service<br>center supply data<br>is regarding to<br>auxiliary systems<br>such as cooling<br>and power<br>systems | Mechanisms to<br>improve demand<br>systems (e.g. IT<br>hardware) will<br>directly reduce<br>supply side energy<br>requirements                                        | Manage resources<br>at a global level,<br>considering both<br>performance and<br>energy efficiency                     | Energy-aware<br>service adaptation<br>strategies (short-<br>term) and service<br>evolution (long-<br>term)                        |
| RQ 9: What<br>information do<br>consumers need<br>about the usage of<br>the objects they<br>own or manage to<br>increase their<br>energy efficiency? |                                                                                                                                                   | Reducing the<br>infrastructure<br>power<br>consumption may<br>lead to<br>governmental<br>benefits for both<br>side (provider and<br>consumer)                         | Energy profile for<br>application                                                                                      | Mapping between<br>needed resources<br>for each<br>application and<br>available ones                                              |

 Table 1. Energy Informatics research challenges in service centers

Based on the values provided by the GPIs, different adaptation strategies can be applied both to the infrastructure layer and to the application layer. Regarding to the former one, such strategies are mainly oriented to changing physical devices mode, e.g. low power mode, turning off physical resources and virtual server migration. At the application level, adaptation strategies may include minimum performance requirements renegotiation, e.g. response time, by replacing one available application service by another one which is also available for the same task, and task skipping which can be applied over optional tasks only or reducing some of the functionalities. Considering our e-commerce scenario, the combination of *CPU usage, storage usage and energy consumption* GPIs at run-time may lead to virtual server migration in order to either provide less CPU power (it is mostly a database system) or stay closer to the required storage system aiming to reduce network overhead. By monitoring the usage parameters in the storage system we are able to play with parameters like data access frequency and data migration in order to change disk arrays mode or even turn them off. Furthermore, our tactical GPIs make sure that none of the selected service application is overtaking the number of transaction by useless operations.



Figure 1. GPIs application over the methodology

# **CONCLUDING REMARKS**

In this paper we have presented our initial ideas to reduce energy consumption within service centers which focus at the application level at both design-time and run-time directions. Also, through a realist scenario example we provide details about its functionality and desired goals which embrace most of the issues with proposed solutions presented at Table 1 to tackle energy cost at the application level. The approach combines the high level view of business process and the low level of the infrastructure physical components. The approach presented here is an ongoing research work and first experimental results are just coming up.

# ACKNOWLEDGMENT

Part of this work has been funded by the European Commission within the Green Active Management of Energy in IT Service centers (GAMES) FP7 project.

# REFERENCES

- Ardagna, D., Cappiello, C., Lovera, M., Pernici, B., Tanelli, M.: Active energy-aware management of business-process based applications. In: Proceedings of the ServiceWave. (2008)
- Ardagna, D., Comuzzi, M., Mussi, E., Pernici, B., Plebani, P., *PAWS: A Framework for Executing Adaptive Web-Service Processes*, IEEE Software 24 (6) (2007) 39-46.
- Barroso, L. A., Holzle, U. *The Case for Energy-Proportional Computing*. IEEE Computer Society Press, Computer 40 12 (2007), 33-37.

EU code of conduct for data centers, 2010. Available at: http://re.jrc.ec.europa.eu/energyefficiency/html/standby\_initiative\_data\_centers.htm

- Ferreira, A.M., Kritikos, K., Pernici, B.: *Energy-aware design of service-based applications*. In: Proceedings of ICSOC/ServiceWave. (2009)
- Kephart, J. O., Chess, D. M. *The Vision of Autonomic Computing*, IEEE Computer 36 (1) (2003) 41-50.
- Watson, R. T., Boudreau, M.-C., & Chen, A. J. Information Systems and Environmentally Sustainable Development: Energy Informatics and New Directions for the IS Community. MIS Quarterly, 34(1), (2010), 23-38
- Zhang Q., Cheng, L., Boutaba, R. *Cloud computing: state-of-the-art and research challenges*, Journal of Internet Services and Applications (2010) 1: 7–18

# 芽|Sprouts

#### Editors:

Michel Avital, University of Amsterdam Kevin Crowston, Syracuse University

#### Advisory Board:

Kalle Lyytinen, Case Western Reserve University Roger Clarke, Australian National University Sue Conger, University of Dallas Marco De Marco, Universita' Cattolica di Milano Guy Fitzgerald, Brunel University Rudy Hirschheim, Louisiana State University Blake Ives, University of Houston Sirkka Jarvenpaa, University of Texas at Austin John King, University of Michigan Rik Maes, University of Amsterdam Dan Robey, Georgia State University Frantz Rowe, University of Nantes Detmar Straub, Georgia State University Richard T. Watson, University of Georgia Ron Weber, Monash University Kwok Kee Wei, City University of Hong Kong

### Sponsors:

Association for Information Systems (AIS) AIM itAIS Addis Ababa University, Ethiopia American University, USA Case Western Reserve University, USA City University of Hong Kong, China Copenhagen Business School, Denmark Hanken School of Economics, Finland Helsinki School of Economics, Finland Indiana University, USA Katholieke Universiteit Leuven, Belgium Lancaster University, UK Leeds Metropolitan University, UK National University of Ireland Galway, Ireland New York University, USA Pennsylvania State University, USA Pepperdine University, USA Syracuse University, USA University of Amsterdam, Netherlands University of Dallas, USA University of Georgia, USA University of Groningen, Netherlands University of Limerick, Ireland University of Oslo, Norway University of San Francisco, USA University of Washington, USA Victoria University of Wellington, New Zealand Viktoria Institute, Sweden

#### Editorial Board:

Margunn Aanestad, University of Oslo Steven Alter, University of San Francisco Egon Berghout, University of Groningen Bo-Christer Bjork, Hanken School of Economics Tony Bryant, Leeds Metropolitan University Erran Carmel, American University Kieran Conboy, National U. of Ireland Galway Jan Damsgaard, Copenhagen Business School Robert Davison, City University of Hong Kong Guido Dedene. Katholieke Universiteit Leuven Alan Dennis, Indiana University Brian Fitzgerald, University of Limerick Ole Hanseth, University of Oslo Ola Henfridsson, Viktoria Institute Sid Huff. Victoria University of Wellington Ard Huizing, University of Amsterdam Lucas Introna, Lancaster University Panos Ipeirotis, New York University Robert Mason, University of Washington John Mooney, Pepperdine University Steve Sawyer, Pennsylvania State University Virpi Tuunainen, Helsinki School of Economics Francesco Virili, Universita' degli Studi di Cassino

#### Managing Editor: Bas Smit University of Amst

Bas Smit, University of Amsterdam

### Office:

Sprouts University of Amsterdam Roetersstraat 11, Room E 2.74 1018 WB Amsterdam, Netherlands Email: admin@sprouts.aisnet.org