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A unique feature of non-Hermitian (NH) systems is the NH skin effect, i.e. the edge localization
of an extensive number of bulk-band eigenstates in a lattice with open or semi-infinite boundaries.
Unlike extended Bloch waves in Hermitian systems, the skin modes are normalizable eigenstates of
the Hamiltonian that originate from the intrinsic non-Hermitian point-gap topology of the Bloch
band energy spectra. Here we unravel a fascinating property of NH skin modes, namely self-healing,
i.e. the ability to self-reconstruct their shape after being scattered off by a space-time potential.

Introduction. Self-healing is the fantastic property
of certain classical or quantum (matter) waves to
reconstruct their original shape after being scattered
off by a potential (an obstacle) [1–3]. Such a special
property is rather generally shared by diffraction-free
and thus non-normalizable (delocalized) states of the
underlying wave equation. Important examples include
Bessel waves of the Helmholtz equation [1, 2, 4] and
self-accelerating (Airy) waves of the Schrödinger equa-
tion [3, 5, 6]. Self-healing has been demonstrated for
optical [1, 3, 7–10], acoustic [11–14] and matter waves
[15, 16], with a variety of applications in different areas
of science such as in microscopy and biomedical imaging
[17–19], material processing [20], particle manipulation
[21, 22], sensing [8–10] and quantum communications
[23]. However, in a norm-preserving (Hermitian) system
any normalizable (bound) wave function cannot be
strictly self-healing. An interesting and open question is
whether infinitely-many self-healing normalizable waves
can exist in NH systems [24]. An important class of such
systems is provided by NH lattices, where the role of
topology and its far-reaching physical consequences are
attracting an enormous interest [25–100] (for a recent
review see [79]). A unique feature of NH lattices is the
skin effect [29–31, 33, 55], i.e. the localization of an
extensive number of bulk eigenstates at the edges under
open (OBC) or semi-infinite (SIBC) boundary condi-
tions. The localized skin modes replace the extended
Bloch waves of Hermitian lattices and their origin can be
traced back to the nontrivial point-gap topology of the
bulk energy spectra under periodic boundary conditions
(PBC), thus establishing a bulk-edge correspondence for
skin modes [27, 55].
In this work we unveil that topological skin edge modes
share the fascinating property of being self-healing
waves. Like non-normalizable diffraction-free waves
in Hermitian systems, in one-dimensional (1D) NH
lattices with SIBC there are infinitely many localized
(normalizable) topological skin edge states that can
reconstruct their shape after being scattered off by a
rather arbitrary space-time potential.

Wave self-healing. Let us consider the time-dependent
dynamics of a wave function |ψ(t)〉 described by the
Schrödinger-like wave equation

i
d

dt
|ψ〉 = (Ĥ + V̂ )|ψ〉 (1)

where Ĥ is the time-independent Hamiltonian of the sys-
tem, which is assumed rather generally NH, and V̂ =
V̂ (t) describes a space-time local scattering potential (the
′obstacle′), which vanishes for t > T and with compact
support in space [Fig.1(a)]. At initial time t = 0 the sys-
tem is prepared in the state |ψ(0)〉 = |φ(0)〉, and let |φ(t)〉
be the evolved wave function in the absence of the scatter-
ing potential V̂ , i.e. |φ(t)〉 = exp(−iĤt)|φ(0)〉. Clearly,
the presence of the scattering potential destroys the un-
perturbed evolution of the wave function, so that after
interaction with the potential, i.e. for t > T , |ψ(t)〉 can
largely deviate for ever from the unperturbed solution
|φ(t)〉. The wave function |φ(t)〉 is dubbed self-healing if
the deviation |ξ(t)〉 ≡ |ψ(t)〉 − |φ(t)〉 is asymptotically
much smaller than |φ(t)〉 as t→∞ regardless of the form
of V̂ , i.e. provided that [Fig.1(a)] limt→∞ ε(t) = 0, where

ε(t) =
〈ξ(t)|ξ(t)〉
〈φ(t)|φ(t)〉

. (2)

Note that the above condition corresponds to ‖ψ̃(t) −
φ̃(t)‖ → 0 for the normalized wave functions |ψ̃(t)〉 =
|ψ(t)〉/‖ψ(t)‖ and |φ̃(t)〉 = |φ(t)〉/‖φ(t)‖. Clearly,
in an Hermitian system owing to norm conservation
any normalizable wave function is not strictly self-
healing, though it can approximate an extended (non-
normalizable) wave function at some extent [6]. For ex-
ample, for a freely-moving quantum particle in a one-
dimensional space, Ĥ = −∂2/∂x2, the self-accelerating
Airy solutions to the time-dependent Schrödinger equa-
tion [5] are non-normalizable self-healing waves [3].
Other non-normalizable self-healing modes include Bessel
waves, parabolic cylinder waves, Weber and Mathieu
beams, Bloch surface waves, and others (see e.g. [2, 9,
101]). However, in a NH system propagation-invariant
normalizable waves can be found [102].
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FIG. 1: (a) Sketch of wave function propagation and self-
healing property. After being scattered off by a space-time
localized potential (the ′obstable′), the wave function ψ(x, t)
can reconstruct its shape, as if the scattering potential were
not present. (b) In a NH semi-infinite lattice with a left
boundary, any topological edge skin mode at energy E with
W (E) < 0 and Im(E) > Em (shaded area in the figure) is a
self-healing wave function. In the figure, the outer closed loop
describes the energy spectrum σ(HPBC), whereas the inner
open arc is the energy spectrum σ(HOBC).

Energy spectra, topological skin modes and the bulk-
edge correspondence. We consider a one-dimensional NH
lattice with short-range hopping with Hamiltonian Ĥ in
physical space given by

Ĥ =

N∑
n,l=1

Hn,l|n〉〈l|, (3)

where Hn,l is a N ×N banded matrix and N is the num-
ber of lattice sites. We indicate by HPBC and HOBC

the N × N matrix Hamiltonians under PBC and OBC,
respectively, in the large (thermodynamic) N limit. For
a single-band model, HOBC is a banded Toeplitz matrix,
i.e. (HOBC)n,l = tn−l with tn = 0 for n > s and n < −r
(t−r, ts 6= 0), where t±l are the left/right hopping ampli-
tudes among sites distant ±l in the lattice and r, s ≥ 1
are the largest orders of left/right hopping. HPBC is a
circulant matrix with the same form as HOBC , except
for the top right and bottom left corners of the matrix.
Finally, we indicate by HSIBC the infinite-dimensional
matrix Hamiltonian under SIBC with a boundary on the
left but not on the right, i.e. (HSIBC)n,l = tn−l for
n, l = 1, 2, 3, .... The central result in the band the-
ory of NH systems is that the energy spectra σ(HPBC),
σ(HOBC) and σ(HSIBC) are rather generally distinct,
which implies the emergence of the NH skin effect, topo-
logical NH edge states and the need for a non-Bloch
band theory. These results, studied in several recent
works [30, 38, 40, 55, 59, 60] and briefly reviewed in
Sec.1 of [103], are basically rooted in the spectral theory
of non-self-adjoint Toeplitz matrices and operators [104–
107]. Specifically, for a single-band lattice: (i) σ(HPBC)
is a closed loop in complex energy plane described by
the Bloch Hamiltonian H(k) = P (β = exp(ik)), where
P (β) =

∑s
l=−r tlβ

l is the Laurent polynomial associated

to the Toeplitz matrix and −π ≤ k < π is the Bloch wave
number. (ii) σ(HOBC) is the set of complex energies
E = P (β), where β varies on the generalized Brillouin
zone (GBZ) Cβ . σ(HOBC) is always topological trivial in
terms of a point gap [55]. The definition and calculation
of Cβ is discussed in [30, 38, 59, 60], and briefly reviewed
in [103]. (iii) σ(HSIBC) = σ(HPBC)

⋃
B, where B is the

interior of the PBC energy spectrum loop such that for
E ∈ B the winding number W (E), defined by

W (E) =
1

2πi

∫ π

−π
dk

d

dk
log det {H(k)− E} (4)

is non vanishing. If W (E) < 0, then E is an eigenvalue
of HSIBC of multiplicity |W (E)|, and the corresponding
(right) eigenvectors are exponentially localized at the
left edge. Such a result provides a bulk-boundary corre-
spondence for NH systems, relating the appearance of
skin edge states in a semi-infinite lattice to the topology
of the PBC energy spectrum [55].

Self-healing of topological skin modes. The central
result of this work is that in NH lattices displaying the
NH skin effect there are infinitely many skin edge modes
that are self-healing. Specifically, let us consider a
one-dimensional NH lattice with SIBC, with a boundary
on the left but no boundary on the right, and with a
GBZ Cβ that is, at least partly, external to the unit circle
(to ensure the existence of left-edge skin states). The
local scattering potential is assumed to have a compact
support both in space and time, i.e. V̂ = Vn(t)|n〉〈n|
with Vn(t) = 0 for t > T and n > L. Let us indicate
by Em1

the largest imaginary part of the energies in
the set σ(HOBC), i.e. Em1 = maxβ∈Cβ

Im{P (β)};
Em2 the largest imaginary part of the energies E in
the set B defined by {E ∈ B | W (E) > 0 }; and
Em = max(Em1

, Em2
). Note that the set B is empty if

the GBZ is entirely external to the unit circle |β| = 1,
i.e. if there are not Bloch point [38]; in this case one
should assume Em = Em1 [as in Fig.1(b)]. The following
theorem can be then proven, which is illustrated in Fig.1:
any topological skin edge state |φ(t)〉 = |φ0〉 exp(−iE0t)
with energy E0 and W (E0) < 0 is self healing if and
only if Im(E0) > Em.
A simple corollary of this theorem is that any topological
skin edge state belonging to HOBC is not self-healing,
because in this case one has Im(E0) ≤ Em1 ≤ Em.
Here we provide a sketch of the proof of the theorem
(technical details are given in [103]). Let us indicate by
|ψ(t)〉 the wave function satisfying Eq.(1) with the initial
condition |ψ(0)〉 = |φ0〉, and let |ξ(t)〉 = |ψ(t)〉 − |φ(t)〉
be the deviation of the wave function |ψ(t)〉 from the
unperturbed (skin edge eigenstate) solution. The proof
consists of two main steps. In the first step, one shows
that, after interaction with the scatting potential,
the deviation ξn(T ) = 〈n|ξ(T )〉 vanishes as n → ∞
faster than exponential, i.e. for any h > 0 one has
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FIG. 2: (a) Energy spectrum of HPBC (outer thin closed loop
with one self-intersection), HOBC (inner bold open arcs) and
HSIBC (shaded areas) of a NH lattice with nearest- and next-
to-nearest neighbor hopping amplitudes t−2 = 1, t−1 = 1,
t0 = 0, t1 = 0.7, and t2 = 0.8. In the light shaded area
W (E) = −1, corresponding to simple (non-degenerate) skin
edge state, whereas in the dark shaded area W (E) = −2,
corresponding to the existence of two energy-degenerate skin
edge states of HSIBC . The largest value Em1 of Im(σ(HOBC))
is Em1 = 0.2. (b) The numerically-computed GBZ Cβ , corre-
sponding to a deformed circle with |β| > 1 all along Cβ . The
thin dashed curve depicts the reference unit circle |β| = 1.

limn→∞ ξn(T ) exp(hn) = 0. Physically, this result stems
from the fact that, since the hopping in the lattice is
finite (short range) and the scattering potential has a
limited support in space (Vn = 0 for n > L), the speed
of excitation spreading in the lattice arising from the
interaction with the scattering potential is bounded
(according to the Lieb-Robinson bound [27]), and thus
after interaction ξn(T ) remains basically unperturbed,
i.e. very close to zero, for large enough n. The fast
decay of ξn with n is mathematically justified by the
asymptotic form of the exponential of a banded matrix
[108] (Sec.2 of [103]). Let us then indicate by |β〉 the
set of eigenfunctions of HOBC (skin modes) with energy
P (β) belonging to σ(HOBC), i.e. HOBC |β〉 = P (β)|β〉
with β ∈ Cβ . Note that |β〉 is also an eigenstate of
HSIBC when |β| > 1 in the N → ∞ limit. For large n,
〈n|β〉 behaves as 〈n|β〉 ∼ β−n(1 + Aβ exp(−iθβn)) with
some β-dependent constants Aβ and θβ . Since |ξ(T )〉 is
bounded with a localization higher than any exponential,
one can decompose |ξ(T )〉 as a superposition (integral)
of |β〉 skin states, i.e. one can write (Sec.1 of [103])
|ξ(T )〉 =

∮
Cβ
dβF (β)|β〉 with F (β) non-singular on Cβ .

Since V̂ = 0 for t > T , after the scattering event the
wave function |ξ(t)〉 evolves according to the Schrödinger
equation i∂t|ξ〉 = ĤSIBC |ξ〉, so that for t > T one
has |ξ(t)〉 =

∮
Cβ
dβF (β) exp[−iP (β)(t − T )] |β〉.

The second step is to calculate the growth rate of
‖ξ(t)‖2 = 〈ξ(t)|ξ(t)〉. To this aim, one has to distinguish
two cases (Sec.3 of [103]). If Cβ is entirely external to
the unit circle, i.e. |β| > 1 for any β ∈ Cβ , the growth
rate of ‖ξ(t)‖ is Em1 = maxβ∈Cβ

Im(P (β)), which is
attained at the value βs ∈ Cβ corresponding to the

most unstable saddle point of P (β). Since ‖φ(t)‖ grows
in time as ∼ exp(Im(E0)t), one has limt→∞ ε(t) = 0
if and only if Im(E0) > Em, where ε(t) is defined
by Eq.(2) and Em = Em1

. On the other hand, if a
portion of Cβ is internal to the unit circle the asymptotic
analysis shows that the growth rate of ‖ξ(t)‖ is the
larger number between Em1

and Em2
, where Em2

is the
largest imaginary part of energies in the set B [103].
This proves the theorem. �

As an illustrative example, let us consider a lat-
tice with nearest- and next-nearest neighbor hopping
(r = s = 2). Figure 2 shows the energy spectra
σ(HPBC), σ(HOBC) and σ(HSIBC) and corresponding
GBZ, which is entirely external to the unit circle with
Em = Em1

' 0.5. In the wide light shaded region of
Fig.2(a), for each complex energy E there is a single
topological skin edge state (W = −1), while when E is
internal to the narrow dark shaded region encircling the
origin there are two linearly-independent skin edge states
(W = −2). To show the self-healing property of skin
edge states, we consider a strongly absorbing potential
Vn(t) = −10i which is non-vanishing in the interval
2 < t < 4 and in the spatial region 1 ≤ n ≤ L = 10. The
initial state |φ0〉 is chosen to be a skin edge state with
an energy E0 in the stable (Im(E0) > Em) or unstable
(Im(E0) < Em) regions. The self-healing property is
measured by the long-time behavior of ε(t) [Eq.(2)].
Figure 3 illustrates the typical numerical results of
wave propagation in the lattice, corresponding to the
self-healing of the skin mode for Im(E0) > Em [Fig.3(a)],
and to the disruption of the skin mode for Im(E0) < Em
[Fig.3(b)]. The results are obtained by solving Eq.(1) in
Wannier (real-space) basis by an accurate fourth-order
Runge-Kutta method on a finite-sized lattice with OBC
and with a size wide enough (N = 300 sites) to avoid
right-edge effects over the largest propagation time
(t ∼ 20), which would destroy the SIBC skin state
[27, 109]. A strategic method to selectively prepare the
system in a self-healing SIBC edge state is discussed in
[109] and in Sec.5 of [103]. As clearly shown in the
left panel of Fig.3(a), the strongly absorbing potential
cuts the excitation at lattice sites n ≤ L, however
after the scattering process the skin edge state can
restore its original shape, corresponding to a vanishing
of ε(t) [right panel of Fig.3(a)]. A different behavior is
observed in Fig.3(b), where the skin edge state cannot
restore its original shape and ε(t) does not decay toward
zero. We checked [103] that the self-healing property
can be observed also when there are Bloch points (the
GBZ zone crosses the unit circle) and for different
types of scattering potentials, including inhomogeneous
Hermitian and non-Hermitian amplifying potentials.

Multiband systems. The previous analysis has
been focused to single band models, however the self-
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FIG. 3: Self-healing of topological skin edge states. The left
panels show the temporal evolution of the modulus of the
normalized amplitudes ψ̃n(t) on a pseudo color map, in a
semi-infinite lattice with parameter values as in Fig.2 and
with an absorbing scattering potential (obstacle) localized in
the dotted rectangular region of the space-time plane (n ≤ 10
and 2 < t < 4). The initial state ψn(0) is the skin edge mode
with energy E0 = 0.35i in (a), and E0 = −1 + 0.05i in (b).
The right panels show the corresponding temporal evolution
of the function ε(t), defined by Eq.(2), which measures the
deviation of the evolved wave function from the skin state.

healing property of topological skin edge states can
be extended to multiband systems. As an illustrative
example, we consider a quasi 1D lattice composed by
two side-coupled Hatano-Nelson chains [110] [Fig.4(a)],
which displays the critical NH skin effect [64]. The
Bloch Hamiltonian of the systems reads

H(k) = σ0d0 + t0σx + [V + i(δb − δa) sin k]σz (5)

where d0 = 2t1 cos k − i(δa + δb) sin k, σl are the Pauli
matrices, (t1 ± δa,b) are the asymmetric left/right hop-
ping amplitudes in the upper (a) and lower (b) chains,
±V their on-site energy offset and t0 is the side cou-
pling constant. Figures 4(b,c) show a typical behavior
of GBZ and energy spectra (PBC, OBC and SIBC) for
δa > 0, δb < 0, with the shaded region corresponding to
topological skin edge states localized at the left boundary
under SIBC. Self-healing skin edge states are those with
energy E satisfying the condition Im(E) > Em, with
Em = max(Em1 , Em2) = Em1 ' 0.255. The self-healing
property is illustrated in Fig.4(d), where a skin edge state
is scattered off by a complex absorbing potential in both
chains (Vn(t) = 10i for 4 < t < 8 and 1 ≤ n ≤ 10, Vn = 0
otherwise).

Conclusion. In summary, we have demonstrated
that infinitely-many topological edge skin modes in
semi-infinite NH lattices can exhibit self-healing prop-
erties, i.e. they can reconstruct their shape after being
scattered off by a rather arbitrary space-time potential.
Contrary to self-healing waves known in Hermitian
systems, such as Bessel and Airy waves, the topological
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FIG. 4: (a) Scheme of two side-coupled Hatano-Nelson
chains. (b) PBC (thin solid curves) OBC (solid dots) and
SIBC (shaded area) energy spectra for t1 = 0.75, δa = 0.25,
δb = −0.15, t0 = 0.05 and V = 0.8. The two PBC Bloch
bands form two closed loops which are travelled in opposite
direction, leading to three possible values 0,±1 of the wind-
ing W in their interior. For any energy E in the shaded
area (W = −1) there is one topological edge state at the
left boundary of the lattice. (c) Diagram of the GBZ (solid
dots). The thin dashed curve shows the unit circle as a ref-
erence. (d,e) Self-healing of the topological edge state with
energy E = 1 + 0.4i. (d) Evolution of the normalized ampli-

tudes

√
|ψ(a)
n |2 + |ψ(b)

n |2/
∑
n

√
|ψ(a)
n |2 + |ψ(b)

n |2, where ψ
(a)
n

and ψ
(b)
n are the wave amplitudes at site n in the two chains

a and b, respectively. (e) Temporal behavior of ε(t). The
absorbing scattering potential is localized in the dotted rect-
angular region of the space-time plane.

skin edge states are truly normalizable eigenstates of
the underlying Hamiltonian. Our results unravel a
fascinating fundamental property of recently-discovered
topological skin modes, extend the idea of self-healing
waves beyond the diffraction-free paradigm of Hermitian
physics, and could be thus of potential relevance in
different areas of physics and for future applications of
self-healing NH waves.
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