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Abstract

We consider the problem of goal-directed planning under a deterministic
transition model. Monte Carlo Tree Search has shown remarkable per-
formance in solving deterministic control problems. By using function
approximators to bias the search of the tree, MCTS has been extended
to complex continuous domains, resulting in the AlphaZero family of algo-
rithms. Nonetheless, these algorithms still struggle with control problems
with sparse rewards such as goal-directed domains, where a positive reward is
awarded only when reaching a goal state. In this work, we extend AlphaZero
with Hindsight Experience Replay to tackle complex goal-directed planning
tasks. We demonstrate the effectiveness of the proposed approach through
an extensive empirical evaluation in several simulated domains, including a
novel application to a quantum compiling domain.

1 Introduction

Monte Carlo Tree Search (MCTS) (Browne et al., 2012) algorithms have shown outstanding
results in solving sequential decision-making problems, especially in deterministic transition
tasks, such as games. MCTS planners use a forward environment model to build a search
tree, estimate the value of each action in the current state, and execute the best-estimated
one, respectively. Such a procedure allows finding a “local” solution to the decision problem
in every decision step by sampling trajectories of possible future policies using the forward
model. Although providing local solutions is advantageous in some contexts, it comes at
a high computational cost since acting in the environment requires interleaved planning
phases and possibly large search trees. These high computational costs have been a barrier
in applying MCTS to larger problems, especially those with long planning horizons and huge
tree branching factors (number of actions). However, MCTS does not require a training
phase and can be deployed immediately.

Reinforcement Learning (RL) (Sutton et al., 1998), on the other hand, aims to find a global
solution to the control problem by learning a policy that performs adequately in the whole
state space. While this may seem a more desirable outcome, it can often be hard to produce
a policy that generalizes satisfactorily across different state regions. For this reason, MCTS
algorithms have achieved tremendous success in a wide range of tasks (Borsboom et al.;
Enzenberger et al., 2010; Ikehata and Ito, 2011). The AlphaZero (Silver et al., 2016) family
of algorithms made it possible to use sequential planners like MCTS in more challenging
environments, such as the game of Go, where the AlphaGo agent defeated the world champion,
achieving super-human performance. AlphaGo was in turn defeated by the AlphaZero, a
version of the algorithm without any heuristic related to the game of Go. AlphaZero
combines MCTS with the ability of RL algorithms to generalize across the state-action space
by keeping a parametrized policy and value network. Specifically, the policy network biases
the exploration during the tree search, and the value network estimates the value of the
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states corresponding to the search tree leaves, replacing the trajectory-based evaluation
usually performed with an ad-hoc evaluation policy called rollout policy. On the other hand,
the MCTS algorithm acts as a policy improvement step. It takes as input the current state,
as well as the policy and value networks, therefore improving the parametrized policy and
generating the samples used to train the networks in a supervised manner. Although a
tree search is still required, the deployment is cheaper since it usually requires a humbler
planning budget, thanks to the policy and value networks which bias the search by making
it more efficient. The algorithm has been successfully applied to different games such as Go,
Chess, and Shogi (Silver et al., 2017a) without game-specific heuristics. However, despite its
success, the algorithm suffers from a high sample complexity, especially prominent in tasks
with sparse reward functions, such as goal-directed planning.

In goal-directed tasks, the agent aims to reach a goal state, and in general, the policies
take both the current state of the environment and the goal state as input. Usually, the
actual reward function in these problems is zero for any transition except the one to the
goal state, which gives a positive reward. RL algorithms struggle to optimize sparse reward
functions since it might be hard to reach goal states, or even practically impossible during
exploration if the task is quite challenging. Therefore, there is not a reward signal to guide
the exploration. While in practice, in specific tasks, it is possible to use more informative
reward functions, such as a distance from the goal state, such a choice is not possible for every
task. Furthermore, it might also lead to sub-optimal solutions since a reward function based
on a state distance might generate local-optima in the policy space (Grzes and Kudenko,
2009). Hindsight Experience Replay (HER) (Andrychowicz et al., 2017) is a straightforward
method to tackle the problem of sparse-reward functions in goal-directed tasks. HER can be
used with any off-policy RL algorithm to extend the training dataset for the value networks.
Practically, whenever the goal state is not reached during a training episode, the states
visited during the episode are used as alternative goal states and are fed to the network
during training. It allows reward signals to be given to the value networks and generalize
them to reach the input goal state.

In this work, we consider the problem of applying HER to AlphaZero to tackle goal-directed
tasks. We provide a scheme that does not involve computationally heavy tree re-weighting
procedures or high additional computational costs. Finally, we benchmark the method with
simulated environments, and we show a novel application to quantum compiling, where
it is extremely hard to find unitary gate sequences from a set to approximate arbitrary
single-qubit unitary operators.

2 Preliminaries

2.1 Goal-Directed Reinforcement Learning

In this work, we focus on goal-directed Reinforcement Learning problems. In such setting, an
autonomous agent interacts with an environment to maximize the sum of observed reward
signals. Formally, in deterministic transition models, the environment consists of a state
space S, a set of goal states G (that can also be equal to S), an action space A, a goal-state
dependent reward function r : S × A × G → R, a transition model P : S × A → S, a
probability distribution over S for the initial state s0 ∼ µ, and a probability distribution
over G for the goal state sg ∼ ν.

The behavior of the agent is described by a Markovian stationary goal-dependent policy,
π : S×G → ∆(A), which takes as input the current state s and the goal state sg, and outputs
a probability distribution over the actions in A. At the beginning of each episode, an initial
state s0 ∼ µ and a goal state sg ∼ ν are sampled. Then, at time step t, the agent observes
the current state st, selects an action at ∼ π(st, sg), observes the next state st+1 = P(st, at)
and it gets the reward signal rt = r(st, at, sg).

The goal of the agent is to maximize the expected return E[Rt] defined as the expectation
of the discounted sum of future rewards Rt =

∑∞
i=t γ

i−tri taken over the initial state and
goal state. Given a policy π, the value of each state is encoded by the value function
V π(s, sg) = Eat∼π[R0|s0 = s]. Similarly, the action-value function is defined for each state-
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action pair, conditioning on the first action of the trajectories, Qπ(s, a, sg) = Eat∼π[R0|s0 =
s, a0 = a]. The goal of maximizing the return can be expressed as finding an optimal policy,
π∗ = argmaxπ V

π(s, sg), ∀(s, sg) ∈ S × G.

2.2 Monte Carlo Tree Search

We briefly introduce the Monte Carlo Tree Search (MCTS) family of algorithms, which
combine tree-search algorithms with Monte Carlo sampling to build a search tree iteratively.
We focus on the most popular algorithm in the MCTS family, i.e., the upper confidence
bound for trees (UCT) (Kocsis and Szepesvári, 2006). More precisely the general MCTS
algorithm consists of four stages (Browne et al., 2012):

Selection. In the selection stage, the selection policy is applied from the root of the search
tree recursively until an unexpanded leaf node is reached.

Expansion. In the expansion stage, one or more successors to the previously-found unex-
panded node are generated according to the actions available in the node.

Evaluation. The newly generated nodes are evaluated, generally through a simulation
(rollout) using a default policy.

Backpropagation. In the last stage, the rewards collected during the selection and evalua-
tion phase are backed up following the previously visited tree branch.

UCT performs the selection phase using the Upper Confidence Bound (UCB1) (Auer et al.,
2002) bandit algorithm. Specifically, each node of the search tree maintains statistics related
to the future value of each action, including the number of visits, the number of times an
action is performed, and the total sum of the returns observed, used to estimate the mean
return. Using such statistics UCB1 chooses the next action to perform, an, according to

an = argmax
i=1..K

B(ai) = Ri,Ti(n−1) + C

√
2 log n

Ti(n− 1)
, (1)

where K is the number of actions, C is a constant that regulates the exploration-exploitation
trade-off, Ti(n− 1) is the number of times action i has been played up to time n− 1 and
Ri,Ti(n−1) is the average payoff observed from arm i. UCT recursively updates the values of
the nodes from the leaf to the root of the tree, during the backup phase. The algorithm is
proved to be consistent, i.e., it converges to the optimal policy in the limit.

2.3 AlphaZero

AlphaZero (Silver et al., 2017a) bridges the gap between RL and MCTS by maintaining a
parametric policy, πθ and value function vρ. The policy and value networks are provided as
input to the MCTS algorithm to bias the tree search. In contrast, the visit counts in the
tree’s root are used to build the targets for the supervised training of the policy network.

Compared to general MCTS, the selection and evaluation phases are modified. The former
phase uses the policy πθ, to bias the exploration according to the policy recommendations.
Furthermore, AlphaZero replaces the classic UCT algorithm with PUCT (Rosin, 2011) and
performs the selection according to:

an = argmax
i=1..K

B(ai) = Ri,Ti(n−1) + Cπθ(s, ai)

√
n

1 + Ti(n− 1)
. (2)

By multiplying the PUCT confidence interval with the probability given to ai by πθ, Alp-
haZero initially prefers actions with high probability and a low visit count but asymptotically
prefers actions with high values. In the latter phase, AlphaZero evaluates the leaf nodes using
the estimate provided by the value network vρ, instead of performing expensive simulations
with a default rollout policy. The training targets of the value network are the actual returns
collected during acting. More formally, at each time step t, AlphaZero performs M search
iterations of MCTS, starting from the current environment state st and using πθ during the
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selection phase, and vρ during the evaluation of the leaves. After the search phase, the policy
targets pt are constructed using the visit counts at the root of the tree:

pt(ai) =
Nt,i∑
j Nt,j

∀i = 1, . . . ,K, (3)

where Nt,i is the visit count of the i-th action in the search tree at step t, and K is the
number of actions. Then at is sampled according to pt and is executed observing the next
state st+1 and the reward signal rt. In practice, pt is often constructed as a greedy policy
over the action counts, only executing the most explored one. At the end of each episode, the
collected rewards are used to build the value network targets Rt. The triples (st,pt, Rt) are
added to a replay buffer D used during training of the networks. In the original AlphaZero
paper, the policy and value networks share the parameter vector θ and AlphaZero minimizes:

E
(s,p,R)∼D

[
(R− vθ(s))

2 − pT log πθ(s) + c∥θ∥2
]
, (4)

where c controls the amount of L2 regularization.

2.4 Hindsight Experience Replay

Hindsight Experience Replay (Andrychowicz et al., 2017) is a method of extending off-policy
RL algorithms to improve sample efficiency even in the presence of sparse reward functions.
HER requires parameterizing the reward, policy, and value as a function of the current and
the goal state. The basic idea behind HER is to extend the replay buffer B after each episode
{s0, s1, . . . , sT } with the returns calculated based on a set of subgoals. While the main goal
influences the agent’s actions during training, it does not influence the state transitions.
Consequently, we can generate additional training samples by considering a subset of the
states visited during the episode as subgoals. This is extremely beneficial in cases with sparse
rewards, such as a reward function of the type r(st, at, sg) = 1(st+1 = sg), where reward
signals would be null until the goal state is visited by chance. However, HER enables the
reward signals to be generalized across the state space.

3 AlphaZero with Hindsight Experience Replay

This section describes the AlphaZeroHER algorithm. AlphaZero has been successfully applied
to challenging games such as Go and Chess with outstanding results. The complexity of
these games stands in the vast state-action spaces and the highly sparse reward function,
since the agents will only know at the end of the game whether they have won (a reward of
+1), lost (a reward of −1) or drawn (a reward of 0). Although in the context of Temporal
Difference (TD) (Sutton et al., 1998) algorithms, Chess and Go fall under the definition of
sparse reward, when considering returns observed at the end of the episode (Monte Carlo
returns), such games have a clear reward function: the game’s result is either a win, a loss or
a draw. This reason may give the impression that AlphaZero doesn’t suffer in sparse reward
setting. However, in goal-directed planning, the Monte Carlo returns are often sparse, in
the sense that the whole episode might finish without a reward signal. This problem was
also mitigated in the original AlphaGo Zero paper (Silver et al., 2017b), where the authors
employed ad-hoc board evaluators to compute the Monte Carlo returns when episodes of Go
were interrupted because they were too long. Due to the criticality of sparse rewards, we
extend AlphaZero with HER to tackle goal-directed tasks.

3.1 AlphaZeroHER

The basic idea of AlphaZeroHER, is to extend AlphaZero by using a goal-directed policy and
value network and injecting HER into such a setting. Exploiting a goal-directed policy and
value network in AlphaZero is effortless since the experience samples also include the goal
state sg. However, AlphaZero is not an off-policy algorithm since the value network is trained
with the returns collected while playing the MCTS augmented policy. Moreover, it is not
straightforward how to evaluate the new policy when considering a new goal st ≠ sg without
introducing additional prohibitive computational costs and tree re-weighting procedures.
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Ideally, we aim at estimating a new policy conditioned on a subgoal st ≠ sg. However,
estimating such a policy requires building an additional tree since the policy targets in
AlphaZero are a function of the action counts in the tree’s root node, and this with an
obvious additional computational cost. An alternative approach could keep the original
goal’s search tree and re-weight the statistics in the nodes conditioned on the reward function
for the new goal st. However, such a procedure would require at least traversing the whole
tree once, which would be computationally prohibitive for a large search-tree. Such problems
represent the main obstacle toward introducing HER.

We propose a procedure that extends AlphaZero with HER without adding high computa-
tional costs. The basic idea is to neglect its on-policy nature generating additional training
samples at the end of each episode by sampling additional subgoals from the visited states.
In fact, even though the MCTS augmented policy of AlphaZero did not reach the goal
state, it successfully reached all the states visited during the episode. More precisely, we
employ HER after finishing an episode of length T and having generated the sequence of
states, reward and policies, {st,pt, rt}Tt=1. The episode is retraced so that at each state st,
M subgoals are sampled from future visited states, {si}Ti=t+1. After selecting the subgoals
states for state st, we need to compute these states’ policy and value targets. This task is
not straightforward since AlphaZero is an on-policy algorithm. If we computed, in some way,
a different policy target from the actual policy played pt, these would generate a different
sequence of state and rewards after timestep t, which are not available. We could use the
built tree to evaluate these returns related to the subgoals, but these would come with heavy
tree-reweighting schemes for an already computationally heavy algorithm as AlphaZero. For
this reason, we select as additional policy targets the policies played during the episode pt

since, although these are not the optimal policies that the MCTS agent would have played if
the subgoal states were the goal during the search, they successfully reached the alternative
goal states. Therefore, these samples still represent an improvement over the current policy
pθ, which can be used as policy improvement steps. Finally, we compute the new returns
based on the states visited only by computing the new reward signals for each new subgoal.
Such procedure is done once for each episode and involves negligible additional computation.
We call this method AlphaZeroHER. Algorithm 1 in the appendix shows the pseudocode of
the proposed procedure.

3.2 Motivating Example

To highlight the AlphaZero criticality in sparse reward environments, we consider a simple
BitFlip domain from (Andrychowicz et al., 2017), described in detail in Section 5. In this
domain, the goal is to modify a long series of n bits to reach the desired bit configuration.
While it might be easy to achieve the goal configuration by applying a random policy when
considering few bits only, it is practically impossible reaching the goal state if the bit length
is increased.

Figure 1 shows the performance of plain AlphaZero in the bit-flip environment, where we
have plotted the expected return and the percentage of solved episodes as a function of the
training epochs for three different scenarios. While AlphaZero can consistently solve an
“easy” scenario of 10 bits achieving almost perfect performance, it struggles with a modest
increase in the number of bits, dramatically failing to solve the task with 18 bits.

4 Related Works

Goal-Directed Reinforcement Learning has been extensively studied over the years. The
optimization of multiple goals has been largely investigated in multi-goal policy optimization,
curriculum learning, goal-directed planning, and multiple-task off-policy learning.

In the context of universal value function approximators, in (Schaul et al., 2015) the authors
consider the problem of approximating multiple value functions in a single architecture. In
this line of work, various works study the problem of compact representations of multiple
tasks (Dhiman et al., 2018; Ghosh et al., 2018). In such context, the use of sub-goals
(intermediate states between the current state and the goal state) have been studied to
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Figure 1: Performance of the AlphaZero agent in the BitFlip environment varying the number
of bits using 20 search iterations. Average over 10 runs, 95% c.i.

accelerate learning and generalize over the state-space (Nasiriany et al., 2019; Jurgenson et al.,
2020). In (Parascandolo et al., 2020), the authors move the problem of goal-directed planning
from the space of possible policies to the problem of finding suitable sub-goals. While this
has some advantages in certain situations, it cannot be applied in large state spaces since the
complexity of the algorithm scales linearly with the number of states. Approximate value
iteration has also been used with great results to solve the Rubic’s cube with a goal-directed
framework in (McAleer et al., 2019).

In the context of policy search, (Pinto and Gupta, 2016) and (Caruana, 1997) aim to learn
policies to solve multiple tasks simultaneously. Meta-learning has also been extensively
studied in recent years and can be seen as closely related to multi-task learning. In meta-
learning, a meta-learner is trained to learn swiftly in ever-changing tasks to adapt to learning
in new untested tasks quickly. While meta-learning has been investigated early in the
literature (Schmidhuber, 1987; 2007), recent work has shown impressive results in the context
of Deep RL (Finn et al., 2017; 2018). Hierarchical Reinforcement Learning is also closely
related to meta-learning (and our work). Here the goal is to (automatically) learn to perform
multiple tasks by splitting the main problem into sub-tasks (Schmidhuber, 2002; Fruit et al.,
2017). This is also closely related to the options framework.

5 Experiments

In this section, we provide an experimental evaluation of AlphaZeroHER on simulated do-
mains, including a novel application on a quantum compiling task, modeled as a deterministic
goal-directed MDP. In the following, “search iteration” refers to a single application of the
4 MCTS phases. More details are given in Appendix B.1, including a comparison with
DQN+HER.

5.1 BitFlip

We consider a BitFlip environment where the individual bits of a long series of n bits are
changed to reach a desired final configuration. More precisely, the state space is S = {0, 1}n,
as well as the goal space G. The action space A = {0, 1, . . . , n − 1} specifies which bit of
the current state changes from 0 to 1 or vice-versa. At the beginning of each episode, the
starting bits and goal state are set randomly with uniform measures over the state space.
We use a “sparse” reward of −1 for each transition, unless the goal state is reached.

We tested such an environment as a motivating example for the application of HER in
AlphaZero and a benchmark test since increasing the number of bits can vary the task’s
difficulty sensibly. In all the runs in BitFlip, we use 20 neurons for the shared layer, 8
neurons for the policy layer and 4 for the value layer. The network hyper-parameters were
not optimized. Figure 2 reports the performance of AlphaZeroHER in the scenario of 70
bits for different number of subgoals sampled (0 subgoals refers to plain AlphaZero). While
AlphaZero struggles with 12 bits and fails with 18 bits, AlphaZeroHER manages to achieve
great results in the case of 70 bits. Moreover, the agent achieves better performance by
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Figure 2: Comparison between AlphaZero (red line) and AlphaZeroHER (green, blue, and
orange lines) in the BitFlip environment varying the number of sampled subgoals, using 20
search iterations and 70 bits. Average over 10 runs, 95% c.i.
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Figure 3: Comparison between AlphaZero and AlphaZeroHER in the 2D Navigation task
using 70 search iterations. Average over 5 runs, 95% c.i.

increasing the number of additional goals, getting perfect performance by using 4 subgoals
only.

5.2 2D Navigation Task

In this section, we consider a 2D navigation task built on top of the Mujoco (Todorov et al.,
2012) robotics simulator, called Point. The purpose of this experiment is to observe the
performance of AlphaZero and AlphaZeroHER in a more challenging task, that requires a
fair amount of exploration. More precisely, the agent’s goal (orange ball) has to reach the
goal state highlighted by the green rectangle as shown in Figure 4. The task is made more
challenging by the presence of a wall in the center of the environment. At the beginning of
each episode, the starting state and the goal state are sampled on the left and right sides of
the wall, respectively. The agent observes its current position and its current velocities in
both directions and the coordinates of the goal state, while the action space is represented as
control over two actuators of the agent. Although the original action space is continuous over
the domain [−1, 1]2, we restricted the space to 9 discrete actions, representing the center
(no action) and 8 points on the circle centered at action (0, 0) with radius 1. The reward
function is −1 at each step, making the optimal policy the shortest path that reaches the
green rectangle while circumventing the wall.

We use a simple MLP with 20 neurons for the shared layer, 10 neurons for the policy layer
and 4 for the value layer. Figure 3 shows the results of the experiments in this domain. We
use a large horizon of 200 steps, after which we interrupt if the goal state was not reached.
While AlphaZero fails to solve the environment, only reaching the goal state in 10% of the
episodes, by applying HER we manage to solve most of the episodes, with only sampling 2
additional goals each episode of experience.

5.3 2D Maze

This section considers an environment of 2D procedurally generated mazes whose structure
changes at each episode, as shown in Figure 4. This experiment aims to test the algorithm’s
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Figure 4: Visual representation of the Point (left) and Maze (right) environments.
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Figure 5: Comparison between AlphaZero and AlphaZeroHER in the 2D Maze task using
120 search iterations. Average over 5 runs, 95% c.i.

performance in a challenging image task, where Convolutional Neural Networks represent
the policy and value space. At each episode, the agent is spawned on a free cell (shown in
red) and moves to reach the goal cell (shown in green). The action space consists of four
directional movements, which move the agent to one of the adjacent cells. However, if the
action points towards a wall, the agent does not move. The reward function employed in
this environment is a constant reward of −1, prompting the agent to find the shortest path
to the goal. The state-space corresponds to a 2D image of the complete maze.

We employ the same network architecture in all the experiments, consisting of a 3-Layer
CNN, with a kernel size of 3, a Layer Normalization after each convolutional layer, and
strides of [1,1,2]. The policy and value network heads have two additional fully connected
layers of 128 and 64 neurons each. We run experiments in 10x10 mazes, using an horizon
of 60 steps, after which we interrupt if the goal state was not reached. Figure 5 shows
the results of the experiments in this domain. We can see that AlphaZeroHER clearly
outperforms plain AlphaZero in this environment, although it does not itself achieve a perfect
score. We attribute this low general performance to the fact that the hyperparameters of the
training process were not optimized, and in an image based task, with CNNs as policy and
value space, the architecture and training procedure is crucial. Nonetheless, AlphaZeroHER
manages to substantially clearly improve over plain AlphaZero with only 2 additional goals.

5.4 Quantum Compiler Environment

Gate-model quantum computers achieve quantum computation by applying quantum trans-
formations on quantum physical systems called qubits (Nielsen and Chuang, 2002). Due to
hardware constraints and quantum disturbances (Linke et al., 2017; Maslov, 2017; Leibfried
et al., 2007; Debnath et al., 2016), quantum computers require compilers to approximate
any quantum transformations as ordered sequences of quantum gates that can be applied on
the hardware. In this work, we employ AlphaZeroHER to address the problem of quantum
compilation. We consider a Quantum Compiler (QC) environment consisting of a sequence
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Figure 6: Comparison between AlphaZero and AlphaZeroHER in the quantum compiling
environment with 20 search iterations. Average over 10 runs, 95% c.i.

Un =
∏n

j=1 Aj of quantum gates Aj that starts empty at the beginning of each episode,
as fully described in Moro et al. (2021). Such sequence is built incrementally at each
time-step by the agent, choosing from a finite set of quantum gates B corresponding to
the action space. More specifically, we chose the base composed of six finite rotations, i.e
B =

(
Rx̂(± π

128 ), Rŷ(± π
128 ), Rẑ(± π

128 )
)
.

The goal of the agent consists to approximate a single-qubit unitary transformation U
that is chosen at each episode from Haar matrices. Pictorially, sampling Haar unitary
matrices can be seen as choosing a number from a uniform distribution (Russell et al., 2017).
The observation used as input at time-step t corresponds to the vector of the real and
imaginary parts of the elements of the matrix On, where U = Un ·On. Such representation
encodes all the useful information required to achieve the task, i.e the unitary transformation
to approximate U and the current sequence of gates. We exploited average gate fidelity
(AGF) (Nielsen, 2002) as a metric to evaluate the distance between the target gate U and
the current sequence of gates Un. The task is solved whenever the agent reaches a distance
equal to or greater than 0.99 AGF. The base of gates B allows defining a distance-based
reward, which allows solving the problem with relative ease, although it leads to sub-optimal
solutions as shown in Moro et al. (2021). However, in this work, we employ a sparse reward
equal to −1 regardless of the action performed by the agent. For such reason, the task is
very challenging since a high number of steps are required to approximate Haar unitary
targets on average.

In all the experiments, we use the same network architecture, consisting of a simple MLP
with one initial layers of 16 hidden neurons. The policy and value network heads have
an additional layer of 8 and 4 hidden neurons respectively. Figure 6 shows the results of
the experiments in the QC task. In this task, the planning horizon is substantially longer
than in previous environments. We interrupted the episodes at 300 steps since a perfect
policy achieves an average episode length of 180 steps, and 95% of the solution can be
achieved using less than 200 steps (Moro et al., 2021). AlphaZero shows a slow performance
improvement, but after 100 training epochs it fails to learn the optimal policy. On the other
hand, AlphaZeroHER consistently improves the performance and achieves almost perfect
resolution of the problem.

6 Conclusions

We introduced a novel algorithm for goal-directed planning, consisting of the extension of
AlphaZero with the Hindsight Experience Replay (HER) method to overcome the issues caused
by sparse reward functions typical of goal-directed planning. We provide a straightforward
procedure that does not involve high computational costs by sampling other goals from the
visited states and addressing the intrinsic on-policy nature of AlphaZero. The proposed
approach outperforms AlphaZero in several test domains, including a novel application to
quantum compiling, with negligible additional computation compared to plain AlphaZero.
In the future, we aim to apply the proposed method to more challenging goal-directed tasks,
including tasks with stochastic transition models, which were not considered in this work.
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Table 1: List of the hyperparameters and their values used in all environments.

Hyperparameter Value

Optimizer Adam
cuct 2.0

Discount factor 0.999
Episodes per epoch 50

A Additional Description of AlphaZeroHER

In this appendix, we present the pseudocode of AlphaZeroHERO in Algorithm 1. We notice
that the main loop of AlphaZero, where target values are generated from the policy targets
given from MCTS and the Monte Carlo returns observed during the episodes, are extended
with a set of additional experiences, based on the secondary goal states. In our implemen-
tation, the goal states are sampled uniformly from the states visited during each episode.
Algorithm 1: AlphaZeroHER
Initialize memory buffer B
Initialize policy πθ and value network vθ
for epoch = 1, · · · , N do

for episode = 1, · · · ,M do
experiences ← {}
st ∼ µ // Sample initial state
while not done do

pt, at ← MCTS(st, πθ, vθ)
st+1, rt, done ← applyAction(at)
experiences ← experiences

⋃
(st,pt, rt)

st ← st+1

end
Store every experience (st,pt, zt) in B, where zt =

∑T
i=t γ

i−tri
for t in episode experiences do // Generate new experiences

G← Sample k goals from future visited states sj where j > t
for g in G do

rgt ← r(st, at, g)
end
Store every (st,pt, z

g
t ) in B, where zgt =

∑T
i=t γ

i−trgi
end
update πθ, vθ according to Equation 4

end
end

B Experimental Appendix

B.1 Reproducibility Details

In this section, we provide the hyper-parameters employed in the experiments presented
in this work. Table 1 and Table 2 provide a list of hyperparameters employed for both
AlphaZero and AlphaZeroHER, without being optimized. We ran each experiment in a
single multi-core machine, with no GPUs.

B.2 Varying the number of subgoals sampled

In this section, we study the effect of increasing the number of sampled subgoals in Alp-
haZeroHER. Figure 7 and Figure 8 show the results of varying the number of subgoal in
the BitFlip and quantum compiling environments respectively. We can see that in both
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Table 2: List of the hyperparameters and their values used in each environment.

Hyperparameter Environment Value

Learning rate
BitFlip 0.0005
2D Navigation 0.001
2D Maze 0.0005
Quantum Compiling 0.00005

Batch size
BitFlip 256
2D Navigation 512
2D Maze 512
Quantum Compiling 512

Search Iterations
BitFlip 20
2D Navigation 70
2D Maze 120
Quantum Compiling 20
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Figure 7: Varying the number of subgoals in the BitFlip environment. Average of 10 runs,
95% c.i..

enviroments the performance increases as we increase the number of subgoals k, until we
reach a (problem dependend) threshold after which the performance starts falling until it
reaches the lower levels when we use as subgoals, all the available ones (label All

). This is in line with the results presented in the original HER paper (Andrychowicz et al.,
2017).

B.3 Comparison with DQN + HER

In this section, we compared the proposed AlphaZeroHER with DQN+HER used in the
original HER paper. The goal of this experiment is to answer whether using HER in a
MCTS method like AlphaZero was needed, or using “more traditional” HER implementations,
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Figure 8: Varying the number of subgoals in the quantum compiling environment. Average
of 10 runs, 95% c.i..
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Table 3: List of the hyperparameters and their values used in DQN+HER for each environ-
ment.

Hyperparameter Environment Value

Target net update frequency
BitFlip 100
2D Navigation 500
Quantum Compiling 500

Final exploration epsilon
BitFlip 0.21
2D Navigation 0.21
Quantum Compiling 0.15

Train Frequency
BitFlip 4
2D Navigation 4
Quantum Compiling 1

Learning Rate
BitFlip 0.00064
2D Navigation 0.0007
Quantum Compiling 0.00022

Batch Size
BitFlip 32
2D Navigation 128
Quantum Compiling 64

Buffer Size
BitFlip 500000
2D Navigation 1000000
Quantum Compiling 1000000
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Figure 9: Performance of DQN+HER in Bitflip by varying the number of bits. Average of 5
runs, 95% c.i..

like DQN was enough to solve the considered environments. We use the implementation
of DQN and HER given from stable-baselines 1. To make the comparison fair, we first
employed the same network architecture used by our agents. However, except for the bitflip
domains of less than 20 bits, the DQN agents could not solve any of the domains. For this
reason, in the following results, we have employed a more complex network architecture
for all domains (except Maze where we use the same CNN), namely an MLP with a single
hidden layer of 128 neurons. We optimized the DQN hyperparameters using hyperopt2. The
best hyperparameters used in all domains are listed in Table 3. It is worth noting that the
hyperparameters for AlphaZero and AlphaZeroHer presented in Section 5 were not tuned.

Figure 9 shows the results of DQN+HER in the Bitflip domain for different numbers of
bits. We used four additional subgoals like in the AlphaZero case but a more complex
network architecture. We can reproduce the results presented in the HER paper, as the
top-performing policies solve the problems 100% of the time. When comparing the average
performance, though, DQN+HER still performs worse than AlphaZeroHER, only solving on
average 80% of the episodes up to 60 bits, and even less when increasing to 70 bits.

1https://github.com/hill-a/stable-baselines
2http://hyperopt.github.io/hyperopt/
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Figure 10: Performance of DQN+HER in QC using 4 additional subgoals. Average of 5 runs,
95% c.i..
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Figure 11: Performance of DQN+HER in the 2D navigation task. Average of 5 runs, 95%
c.i..

We also achieved satisfactory results in the quantum compiling domain, solving around
80% of the episodes within the given horizon, yet still less than the 95% achieved from
the AlphaZeroHER agent presented in Section 5. Figure 10 shows the performance in this
domain. There, a more complex network structure was needed to achieve this performance
too. DQN+HER starts to fail in the 2D navigation task. Figure 11 presents the results in
this domain. Even after tuning the DQN parameters, we only can achieve around 5% of
solved episodes on average, in contrast to the 80% achieved by AlphaZeroHER. Finally, in
the Maze domain, even after tuning, DQN+HER could not resolve a single episode of the
task against the 60% solve rate of AlphaZeroHER.
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