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A B S T R A C T

Nonlinear shell analysis relies typically on Finite Element Methods (FEMs) and Iterative-Incremental Procedures
(IIPs). These methodologies can become computationally expensive whenever high-fidelity meshes are required
to capture very localized features or extremely nonlinear responses. Aim of this study is presenting a novel
computational tool based on an efficient finite element formulation, the 𝑝𝑠-FEM, and a rapid perturbation
solution procedure, the Asymptotic-Numerical Method (ANM). The proposed approach adopts a polynomial
space enrichment strategy, the 𝑝-refinement, and a mesh superposition technique, the 𝑠-refinement, to build
numerical models with quasi-optimal accuracy-to-error ratios. The introduced asymptotic framework enhances
the effectiveness of solving nonlinear problems compared to IIPs. A set of test cases and new benchmarks
is presented to validate the tool and demonstrate its potential. The present results show that challenging
problems involving bifurcations, jumps, snap-backs and anisotropy-induced localizations can be solved with
excellent degree of accuracy and relatively small modeling/computational effort.
1. Introduction

Numerical methods for simulating nonlinear phenomena are of pri-
mary importance in different engineering fields. For instance, nonlinear
analyses are essential in aerospace engineering for assessing the stabil-
ity of thin-walled shell structures, such as in the case of load-carrying
components of aircraft and space launchers. In this context, Finite
Element (FE) methods and Iterative-Incremental Procedures (IIPs) are
typically employed as computational tools.

In spite of great flexibility and effectiveness of such numerical
procedures, they often require large computational resources due to the
large number of Degrees Of Freedom (DOFs) associated with the FE
discretization, and the number of operations required by the solution
method. This computational burden can pose challenges in real-world
engineering applications where efficiency is of paramount importance,
especially for routine tasks such as sensitivity analysis, optimization
and design.

Over the years, significant efforts have been devoted to enhancing
the efficiency of FE methodologies. In the classical approach developed
in the 60’s, numerical accuracy was improved by reducing the element
size while keeping the polynomial order fixed to a low value, the
so-called ℎ-refinement. Early FE softwares were based on this refine-
ment procedure. Nowadays, more advanced and efficient techniques
are available, such as the 𝑝- and ℎ𝑝-extensions [1,2]. These strategies
combine high-order shape functions with an element-wise representa-
tion of the solution. Recent implementations of this idea in FE codes
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can be found in the 𝑝-version of the Finite Element Method (𝑝-FEM)
of [3], where a 𝑝-refinement is exploited for increasing numerical
efficiency and solving locking-related phenomena. The Hierarchical
Finite Element Method (HFEM) [4] employs a similar principle to
effectively resolve smooth solution features, such as natural frequencies
and vibration modes. In [5] a ℎ𝑝-version of the Finite Element Method
(ℎ𝑝-FEM), which employs simultaneous mesh refinements and polyno-
mial space enrichment, is presented to improve convergence rates. The
concept of Isogeometric Analysis (IGA) introduced by [6] also exploits
a combined ℎ- and 𝑝-refinements by using high-order Non-Uniform
Rational B-Splines (NURBS) functions for the geometry and solution
representation.

Adaptive refinement techniques are crucial for efficient FE methods.
Indeed, they are a useful mean to optimize computational resources
and achieve the desired level of accuracy in specific sub-portions of the
domain. The 𝑝-adaptive FEM implemented in [7] represents an example
of such methodologies, where the interpolation order is changed in
an element-by-element way over a fixed mesh. In [8–12] different ℎ-
adaptivity approaches are proposed to improve locally the solution
accuracy and minimize the geometric discretization error. In these
approaches, however, only the mesh is refined while the polynomial
order of the elements is maintained constant. An integrated approach is
presented in [13–16], where combined adaptable 𝑝- and ℎ-refinements
are performed using different a-posteriori ℎ𝑝-error estimators.

The major limitations of adaptable FE methods is represented by
the inconvenience of cumbersome transition meshes, time-consuming
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smoothing processes, special element formulations and multi-point con-
straints. Discretization techniques based on mesh superposition have
been proposed recently to avoid these implementation complexities.
These approaches rely upon the concept of ‘‘refine-by-superposition’’
introduced by Mote [11] in the early 70’s. The underlining idea is to
couple a global discretization with a local one by superposition of two
incompatible meshes. This coupling proved to be useful to facilitate the
refinement procedure and reduce the total number of DOFs, with con-
sequent advantages on the computational costs. Different applications
in the context of structural mechanics can be found in the literature. A
mesh superposition strategy is proposed in [17] for buckling analysis
of delaminated composite plates where localized deformation modes
are observed. In [18,19], multiscale problems are efficiently handled
with numerical discretization based on a global/𝑝-refined mesh, com-
bined with a local/overlaid one. Applications to fracture problems
are presented in [20–22], which illustrate the flexibility of having an
overlaying mesh in studying crack growth. A dynamic damage model is
developed in [23] based on a mesh superposition technique. This study
shows how stress/strain concentrations can be effectively captured by
coupling a local, fine-scale discretization over a global/large-scale one.
In the work of [24], microstructure of composites are modeled with
a mesh superposition method to carry out accurate microscopic stress
analysis and efficient sensitivity studies.

In addition to the refinement strategy, a pivotal role to achieve com-
putational efficiency is played by the solution procedure. Nonlinear FE
models are generally solved via IIPs. These algorithms are implemented
in most FE codes for their effectiveness in determining nonlinear solu-
tion branches. For years researchers have devoted efforts to enhance the
performance of IIPs, for example through improved predictor–corrector
techniques [25,26], step-adaptation algorithms [27], convergence ac-
celerators [28], and the formulation of continuation strategies [29–31].
Still, these procedures require a relatively large number of matrix
factorizations and backward/forward substitutions which are neces-
sary to carry out the prediction and correction steps. Furthermore,
the automatization of the solution process is not always robust, as
experience-based tuning is often required to avoid breakdown of the
analysis.

An alternative way to solve nonlinear problems is represented by
perturbation methods [32]. Within these techniques, the solution is
approximated analytically as an asymptotic series in an expansion
parameter. Within this approach a complex nonlinear problem can be
decomposed into a sequence of simpler linear ones. To the best of
the authors’ knowledge, Thompson and Walker [33] were the first to
combine a perturbation approach with a FE code to address a nonlinear
structural problem. However, their method could not overcome, at that
time, the IIPs [34]. Limitations were due to difficulties in deriving
the terms of the series and the finite Range Of Validity (ROV) of the
solution. Significant efforts in this field are due to Noor [35], who
tried to extend the ROV of the solution by using a perturbation method
with a reduced-basis technique. However, his approach did not bring
significant improvements in efficiency over classical IIPs. This was
due to the high computational cost for assembling the reduced-order
equations [36]. This observation can partially explain why successive
applications of perturbation techniques have been restricted to simple
expansion series with few terms, typically the first two, to achieve
qualitative approximations of the nonlinear solution [37–43].

In the early 90’s, Damil and Potier-Ferry [44] approached per-
turbation methods for FE analysis with a new perspective, providing
new research contributions of paramount importance in this field. The
authors introduced a number of innovations that allowed perturbation
and FE approaches to be combined very efficiently. A first contribution
regards the introduction of a convenient formalism to ease and gen-
eralize the expansion procedure [45]. Furthermore, they extended the
domain of validity of the method with Padè approximants [46]. Then,
they proposed a perturbation method within a continuation algorithm
2

to follow generic solution branches with minimum user tuning [47]. 𝐭
Their approach, today known in the literature as Asymptotic-Numerical
Methods (ANMs) [48], has been successfully employed for solving a
large variety of nonlinear shell problems, including post-buckling [49],
bifurcation [50], nonlinear bending [51], large rotations [52], tran-
sient [53] and vibrations analysis [54,55]. More recently, ANMs have
been applied to investigate free vibrations of perforated panels [56],
forced vibration of visco-elastic structures [57,58], post-buckling of
sandwich plates [59] and strips under stress [60], and optimization
of Variable-Stiffness laminates [61]. All these studies and applications
of ANMs demonstrated an improved efficiency and robustness of the
solution process compared with traditional IIPs.

Motivated by these advancements, this paper aims to consolidate re-
cent progress in numerical and analytical methods. Past efforts mainly
focused on the independent improvement of FE schemes and pertur-
bation procedures. We propose an integrated approach to achieve a
unified numerical-asymptotic framework. Specifically, we propose an
efficient FE technique based on mesh superposition, called the 𝑝𝑠-
ersion of the Finite Element Method (𝑝𝑠-FEM) [62], and the most
tate-of-the-art perturbation procedures, represented by the ANMs [48].
he result is an effective computational tool, where the numerical
iscretization can be tailored to the specific problem at hand, so that
xceptionally high ratios between accuracy and size of the FE model are
chieved. Moreover, the nonlinear solution paths are traced analytically
n an accurate, efficient and fully automatic way by application of a per-
urbation procedure. To the best of the authors’ knowledge, numerical
chemes with the above mentioned capabilities cannot be found in the
iterature.

The manuscript is organized as follows: Section 2 presents the theo-
etical framework which is derived with the Hellinger–Reissner mixed
ariational principle. Section 3 shows the derivation of the expansion
rocedure for ANMs. Section 4 aims at illustrating the finite element
pproximation via 𝑝𝑠-FEM approach and its integration with ANMs.
n Section 5, test cases and new benchmarks are proposed to validate
he present framework, demonstrate its potential and furnishing new
esults for future studies. The conclusion of this work are summarized
n Section 6.

. Theoretical framework

For generality, the governing equations are developed considering
three-dimensional continuum. This enables to derive a general set of

quations which can be specified to structural theories in a subsequent
tep. First-order Shear Deformation Theory (FSDT) is considered here.
or the sake of conciseness, the equations of shell theory are reported
n Appendix.

By denoting the displacement field as 𝐮, the Green–Lagrange strain
ensor and its variation are given by

= 𝐄1(𝐮) +
1
2
𝐄2(𝐮) and 𝛿𝐄 = 𝐄1(𝛿𝐮) + 𝐄11(𝛿𝐮,𝐮), (1)

where the strain operators 𝐄1(⋅), 𝐄2(⋅) and 𝐄11(⋅) are defined according
to the mathematical model employed. The corresponding second Piola–
Kirchhoff stress tensor 𝐒 is related to the strains by a linear hyperelastic
constitutive law

𝐒 = C ∶ 𝐄, (2)

with C denoting the elasticity tensor.
The governing equations are obtained starting from the mixed

Hellinger–Reissner functional

𝛱∗(𝐮,𝐒) = ∫𝛺

(

𝐒 ∶ 𝐄 − 1
2
𝐒 ∶ C−1 ∶ 𝐒

)

d𝛺 − ∫𝛺
𝐮 ⋅ 𝐛d𝛺 − ∫𝛤

𝐮 ⋅ 𝐭d𝛤 ,

(3)

hich is written for a generic elastic body occupying a volume 𝛺
ounded by 𝛤 , and subjected to body pressures 𝐛 and surface traction
.
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The mixed functional in Eq. (3) is a cubic function of the vector of
unknowns 𝐔 = {𝐮,𝐒}T due to the quadratic dependency of 𝐄 to 𝐮, see
q. (1). Therefore, its variation yields a set of quadratic equations

𝛱∗(𝐮,𝐒) = ∫𝛺

[

𝛿𝐄 ∶ 𝐒 + 𝛿𝐒 ∶
(

𝐄 − C−1 ∶ 𝐒
)]

d𝛺 − ∫𝛺
𝛿𝐮 ⋅ 𝐛d𝛺 − ∫𝛤

𝛿𝐮 ⋅ 𝐭d𝛤 = 0.

(4)

hese equations correspond to the equilibrium condition and the con-
titutive law

∫𝛺 𝛿𝐄 ∶ 𝐒d𝛺 = ∫𝛺 𝛿𝐮 ⋅ 𝐛d𝛺 + ∫𝛤 𝛿𝐮 ⋅ 𝐭d𝛤
𝐒 = C ∶ 𝐄,

(5)

which are obtained by collecting the variations in 𝛿𝐮 and 𝛿𝐒 from Eq.
(4), respectively.

For convenience, Eq. (4) is written in an operational form

𝐿(𝐔) +𝑄(𝐔,𝐔) − 𝜆𝐹 = 0, (6)

where 𝜆 is a loading parameter, while 𝐿(⋅), 𝑄(⋅, ⋅) and 𝐹 are mixed
linear, quadratic and constant operators defined in Appendix.

The use of a mixed formulation permits more tractable equations to
be obtained compared to a conventional displacement one, where addi-
tional cubic nonlinear terms would arise. This will provide a significant
simplification in the derivation of the asymptotic expansions for ANMs.

3. Asymptotic expansions

The mixed nonlinear problem in Eq. (6) is solved via perturba-
tion approach. To this purpose, three asymptotic approximations are
developed, i.e. power, rational and piece-wise. Each of them provide
a different analytical representation of the solution path, and can
be coupled with a FE approximation to obtain different Asymptotic-
Numerical Methods (ANMs). In this section, the derivation of the
asymptotic expansions is done in a continuous/variational context. The
solution of these expansions is achieved using a FE approach, discussed
in Section 4.

3.1. Power approximation

The solution path (𝐔, 𝜆) around the initial point (𝐔0, 𝜆0) can be
approximated in terms of a truncated power series of the vector of
unknowns and load factor [46],

𝐔 = 𝐔0 + 𝜉𝐔1 + 𝜉2𝐔2 +⋯ + 𝜉𝑛𝐔𝑛 and
𝜆 = 𝜆0 + 𝜉𝜆1 + 𝜉2𝜆2 +⋯ + 𝜉𝑛𝜆𝑛,

(7)

where 𝜉 is a perturbation parameter, while 𝑛 is the order of truncation
of the asymptotic expansion. By introducing Eq. (7) into Eq. (6) and
equating power-like terms of 𝜉𝑘, a set of 𝑛 linear mixed problems is
obtained
𝑘 = 1 ∶ 𝑇 (𝐔1) = 𝜆1𝐹 ,

𝑘 = 𝑛 ∶ 𝑇 (𝐔𝑛) = 𝜆𝑛𝐹 −
𝑛−1
∑

𝑟=1
𝑄(𝐔𝑟,𝐔𝑛−𝑟),

(8)

where 𝑇 (⋅) = 𝐿(⋅) +𝑄(𝐔0, ⋅) +𝑄(⋅,𝐔0) is the tangent stiffness operator
evaluated at the initial point.

The system of Eq. (8) represents a sequence of linear non-homo-
geneous problems sharing the same stiffness operator. For each prob-
lem, the forcing term, i.e. the Right-Hand Side (RHS) of Eq. (8), depends
on the load coefficient 𝜆𝑘 and the fields available from the solution of
the lower order problems {𝐔𝑘−1,𝐔𝑘−2,… ,𝐔1}T.

To make the expansion of Eq. (7) unique, the following definition
of the perturbation parameter 𝜉 is introduced [46]

𝜉 = 1 [

(𝐔 − 𝐔 ) ⋅ 𝐔 + (𝜆 − 𝜆 )𝜆
]

, (9)
3

𝑎2 0 1 0 1 t
where the dot stands for the scalar product, while 𝑎 is a scaling
arameter corresponding to the length of the tangent vector (𝐔1, 𝜆1).
direct substitution of Eq. (7) into Eq. (9) leads to the conditions

= 1 ∶ 𝐔1 ⋅ 𝐔1 + 𝜆1𝜆1 = 1,

= 𝑛 ∶ 𝐔1 ⋅ 𝐔𝑛 + 𝜆1𝜆𝑛 = 0.
(10)

he power series in Eq. (7) is completely defined after solving Eq.
8) with Eq. (10). Following the approach presented in Ref. [46], the
olution is achieved in two steps:

• Step 1: Change the formulation from mixed to displacement-
based.

• Step 2: Introduce the numerical discretization.

he change of formulation is achieved through the introduction of
he constitutive law described by Eq. (2) into Eqs. (8) and (10). This
assage is detailed in the Appendix. The numerical approximation
s performed using advanced displacement-based finite elements, as
iscussed in Section 4.

.2. Rational approximation

Rational series tend to better approximate a function near a specific
oint than power series do [63]. Based on this consideration, the power
epresentation of Eq. (7) can be transformed into an equivalent rational
ne based on Padé approximants [64],

= 𝐔0 + 𝑟1(𝜉)𝐔1 + 𝑟2(𝜉)𝐔2 +⋯ + 𝑟𝑛(𝜉)𝐔𝑛 and
𝜆 = 𝜆0 + 𝑟1(𝜉)𝜆1 + 𝑟2(𝜉)𝜆2 +⋯ + 𝑟𝑛(𝜉)𝜆𝑛,

(11)

here 𝑟𝑘(𝜉) are rational functions of order 𝑘 dependent on the perturba-
ion parameter 𝜉. In this work, they are constructed using the approach
eveloped by Najah et al. [51],

𝑖(𝜉) =
{

𝜉
𝛥(𝑛−2)

𝛥(𝑛−1)
, 𝜉2

𝛥(𝑛−3)

𝛥(𝑛−1)
, ... , 𝜉𝑛−1 1

𝛥(𝑛−1)
, 0

}

, for 𝑖 = 1, 2,… , 𝑛,

(12)

here 𝛥(𝑖) = 1+𝜉𝑑1+𝜉2𝑑2+⋯+𝜉𝑖𝑑𝑖 are polynomials of order 𝑖 dependent
n

1 = −
𝛼(𝑛)(𝑛−1)
𝛼(𝑛−1)(𝑛−1)

, 𝑑𝑖 = −
𝛼(𝑛)(𝑛−𝑖)
𝛼(𝑛−𝑖)(𝑛−𝑖)

−
𝑖−1
∑

𝑗=1

𝛼(𝑛−𝑗)(𝑛−𝑖)
𝛼(𝑛−𝑖)(𝑛−𝑖)

𝑑𝑗 for 𝑖 ≤ 𝑛 − 1,

(13)

while the scalar coefficients 𝛼(𝑖)(𝑗) are obtained from a Gram–Schmidt
rthogonization of the vector fields {𝐔1,𝐔2,…𝐔𝑛}T.

The rational representation above offers an advantage with respect
o others presented in the past [64]. In particular, the expressions of Eq.
12) share the same denominator 𝛥(𝑛−1), hence reducing the number of
oles that make the expansion singular in some points.

.3. Piece-wise approximation

The truncated series in Eqs. (7) and (11) provide a local represen-
ations of the exact solution with a Range Of Validity (ROV) in the
eighborhood of the initial point, i.e. 0 < 𝜉 < 𝜉ROV. To overcome
his restriction, a piece-wise approximation can be employed [47]. The
ain idea consists in writing successive expansions

= 1 ∶ 𝐔 = 𝐔(1)
0 +

𝑛
∑

𝑘=1
𝜉𝑘𝐔(1)

𝑘 and 𝜆 = 𝜆(1)0 +
𝑛
∑

𝑘=1
𝜉𝑘𝜆(1)𝑘 for 0 < 𝜉 < 𝜉(1)ROV

= 𝑗 ∶ 𝐔 = 𝐔(𝑗)
0 +

𝑛
∑

𝑘=1
𝜉𝑘𝐔(𝑗)

𝑘 and 𝜆 = 𝜆(𝑗)0 +
𝑛
∑

𝑘=1
𝜉𝑘𝜆(𝑗)𝑘 for 0 < 𝜉 < 𝜉(𝑗)ROV,

(14)

where the starting points (𝐔(𝑗)
0 𝜆(𝑗)0 ) of each series fall inside the ROV of

he previous one 0 < 𝜉 < 𝜉(𝑗−1).
ROV
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Fig. 1. Building blocks of the continuation algorithm: (a) estimator, (b) corrector and (c) predictor. The ANM performs different estimation, correction and prediction steps to
generate an analytical piece-wise representation of the solution path: in the estimation phase the radius of validity of the predictor is determined, in the correction phase the
starting point of the predictor is corrected, in the prediction phase a new series expansion is generated to approximate the solution path.
In the present work, this concept is implemented with a continua-
tion algorithm which employs a predictor, an estimator and a corrector.
A graphical representation of the workflow is presented in Fig. 1. The
three different building blocks are discussed in the following.

Predictor
In the predictor phase, a perturbation method is employed to solve

the problem around a starting point (𝐔(𝑗)
0 , 𝜆(𝑗)0 ). In the developed con-

tinuation algorithm, the predicted solution is expressed in the form of
a power series

𝐔 = 𝐔(𝑗)
0 + 𝜉𝐔(𝑗)

1 + 𝜉2𝐔(𝑗)
2 +⋯ + 𝜉𝑛𝐔(𝑗)

𝑛 and

𝜆 = 𝜆(𝑗)0 + 𝜉𝜆(𝑗)1 + 𝜉2𝜆(𝑗)2 +⋯ + 𝜉𝑛𝜆(𝑗)𝑛 ,
(15)

where the superscript 𝑗 identifies the prediction step.
Power representation is preferred over rational ones due to bet-

ter analytic properties. Indeed, power series do not suffer from the
presence of poles, which is desirable to guarantee robustness in the
continuation algorithm.

Estimator
An estimator is used to calculate the ROV of the series in Eq.

(15) and define the starting point for the subsequent prediction step
(𝐔(𝑗+1)

0 , 𝜆(𝑗+1)0 ). The ROV is computed using the criterion introduced by
Cochelin [47]

𝜉(𝑗)ROV =

(

𝜖
𝐔(𝑗)
1

𝐔(𝑗)
𝑛

)

1
(𝑛−1)

, (16)

where 𝜖 is a scalar which defines the accuracy criteria.
The definition of the ROV in Eq. (16) is based on the following em-

pirical observation: the terms in the perturbation expansion tend to be
similar inside the ROV of the series, while they separate quickly when
this radius is reached. Hence, the ratio between the first 𝐔1 and last
terms 𝐔𝑛 of the series can be used to check whether the ROV is reached
or not. This simple criterion provides a good approximation of the ROV
of the solution, while requiring almost no additional computational
cost.

Corrector
The corrector phase is introduced to bound the error while progress-

ing along the solution path. This is achieved by correcting the starting
points before the beginning of each prediction step. Assuming (𝐔̃, 𝜆̃) to
be a trial solution of Eq. (6) at the end of the prediction step 𝑗, i.e. Eq.
(15) evaluated at Eq. (16), the correction is performed by standard
Newton–Raphson iterations

𝐔(𝑖+1) = 𝐔(𝑖) + 𝛥𝐔, with 𝐔(0) = 𝐔̃,
(17)
4

𝑇 (𝛥𝐔) = −𝑅(𝐔(𝑖), 𝜆̃),
where 𝑅(⋅, 𝜆) = 𝐿(⋅) + 𝑄(⋅, ⋅) − 𝜆𝐹 is the residual operator, while the
subscript 𝑖 is the iteration index. The process is repeated until the norm
of the residual is below a pre-defined tolerance.

4. Finite element approximation

This work adopts an advanced spatial discretization based on the 𝑝𝑠-
version of the Finite Element Method (𝑝𝑠-FEM) [62]. In the following,
the main features of this FE approach are recalled with reference to
the polynomial space construction, the mesh design and the refinement
procedure. Finally, the so-obtained FE scheme is employed to compute
the asymptotic terms derived in Section 3.

4.1. Polynomial space construction

The polynomial space 𝑆𝑝 is constructed from the set of one-dimens-
ional hierarchical functions introduced by Babuška et al. [1] and ap-
plied in the 𝑝-FEM

𝑓1(𝜂) =
1
2
(1 + 𝜂) , 𝑓2(𝜂) =

1
2
(1 − 𝜂) ,

𝑓𝑘+1(𝜂) =
√

2𝑘 − 1
2 ∫

𝜂

−1
𝑃𝑘−1(𝜂′)d𝜂′, for 𝑘 = 2, 3,… , 𝑝,

(18)

where

𝑃0(𝜂) = 1, 𝑃1(𝜂) = 𝜂

𝑃𝑘(𝜂) =
1
𝑘
[

𝜂 (2𝑘 − 1)𝑃𝑘−1(𝜂) − (𝑘 − 1)𝑃𝑘−2(𝜂)
]

, for 𝑘 = 2, 3,… , 𝑝,

(19)

are Legendre polynomial functions of order 𝑘. The functions belonging
to this series expansion can be divided into two categories, i.e. nodal
and internal mode functions. The former are the well-known Lagrange
linear interpolation polynomials, 𝑓1(𝜂) and 𝑓2(𝜂), while the latter are
represented by the higher-order terms 𝑓𝑘(𝜂) (with 𝑘 > 2) based on
the integrals of Legendre polynomials. The combination of nodal and
internal mode functions leads to different types of two-dimensional
shape functions, i.e., nodal (two nodal modes), edge (one nodal mode
and one internal mode), and face (two internal modes) shape functions.
A graphical illustration is reported in Fig. 2.

The functions depicted in Fig. 2 form a quasi-orthogonal and hierar-
chical polynomial space. These properties give two major advantages
in the numerical computations. Firstly, the resulting tangent stiffness
matrix 𝐓 is well-conditioned even for very high polynomial orders
𝑝. Secondly, the refinement of the series (or 𝑝-refinement) can be
performed easily, with no need to reassemble all the FE system.
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Fig. 2. Polynomial space employed in the 𝑝𝑠-FEM. Three families of two-dimensional
shape functions form the polynomial space: nodal, edge and face functions. Nodal
functions are non-zero at only one node. Edge functions are non-zero at only one
edge. Face functions are zero on all four nodes and edges.

Fig. 3. Mesh design by ‘‘refine-by-superposition’’. A coarse/global mesh 𝛥G is over-
lapped by a fine-scale/local one 𝛥L. The final numerical solution is given by the sum
of the global and local discretizations, 𝐮𝛥G

and 𝐮𝛥L
, respectively, and by the imposition

of proper compatibility and linear independence conditions on the shape functions [67].

4.2. Mesh design

The finite element mesh – denoted here with the letter 𝛥 – is
constructed using the concept of solution superposition, first introduced
by Mote [65] and later implemented in the 𝑠-FEM [66]. The idea is to
decompose the FE approximation 𝐮𝛥 into global and local parts, 𝐮𝛥G
and 𝐮𝛥L , through a mesh superposition technique

𝐮 ≃ 𝐮𝛥 =

{

𝐮𝛥G in 𝛺 −𝛺L

𝐮𝛥G + 𝐮𝛥L in 𝛺L,
(20)

where 𝛺 is the computational domain discretized by the global mesh
𝛥G, while 𝛺L is the region of superposition, where a local/finer mesh
𝛥L is defined , see Fig. 3.

The possibility of decomposing the solution as outlined above is
subjected to two requirements: the compatibility of the basis functions
and their linear independence. The former condition is ensured by
imposing homogeneous Dirichlet boundary conditions on the boundary
of the local mesh. The latter is enforced by ‘‘deactivating’’ redundant
nodal, side and face shape functions operating on the same mesh
region [67].

The main advantage of this approach relies on the possibility of
reducing the element size ℎ at local level. It follows that local mesh
refinements can be carried out without the need of employing transition
elements or enforcing multi-point constraint conditions [68,69].

4.3. Refinement procedure

In the 𝑝𝑠-FEM, the refinement process is taken from Zander [21],
and is outlined in Fig. 4.
5

In the first step, the global mesh 𝛥G is defined. Its resolution ℎ
is chosen to guarantee a correct imposition of the boundary/loading
conditions and avoid the introduction of excessively distorted elements
to represent the problems’ geometry. The interpolation order of the
elements, 𝑝, is increased until the desired accuracy is reached at global
level.

In the second step, a local mesh 𝛥L is generated and superimposed
to the global one. This operation is performed for any region where a
local response is of concern. In particular, the procedure to construct
𝛥L is illustrated in Fig. 5.

Firstly, the region of local refinement is chosen and the elements
belonging to this region are divided into four parts. Then, the resulting
sub-elements are used to define the superimposing mesh. To further
decrease the elements size ℎ, different layers of local meshes can be
generated and superimposed one over the others. This recursive pro-
cedure can be done following an isotropic subdivision of the elements
(𝑞 = 0) or a more general anisotropic subdivision (𝑞 > 0).

The availability of a 𝑝- and 𝑠-extension allows for various 𝑝𝑠-
refinement strategies to be implemented [21]. By proper adjustment
of the elements’ order and size in accordance with the smoothness
characteristics of the solution, improved trade-off between accuracy
and computational cost are reached compared with conventional FE
approaches. In general, global quantities (gross displacements, natural
frequencies, buckling loads) can be effectively captured with a com-
bination of coarse and high-order elements. On the other hand, local
features (stress concentrations, solution gradients, singularity points)
are accurately represented by adding a local mesh combining small and
lower-order elements.

4.4. Computation of asymptotic terms

The discrete asymptotic equations are obtained by elaborating the
pseudo-mixed set of Eqs. (8) and (10) with the steps presented in
Appendix. The resulting set of equations is

𝑘 = 1 ∶ 𝐓𝐜1 = 𝜆1𝐟 and 𝐜1T𝐜1 + 𝜆1𝜆1 = 1,

𝑘 = 𝑛 ∶ 𝐓𝐜𝑛 = 𝜆𝑛𝐟 − 𝐪𝑛 and 𝐜𝑛T𝐜1 + 𝜆𝑛𝜆1 = 0,
(21)

where 𝐓 is the tangent stiffness matrix, 𝐟 is the vector of the exter-
nal forces, while 𝐪𝑘 is the vector of the nonlinear terms; the vector
𝐜𝑘 denotes the numerical solution of the 𝑘th order problem, whose
evaluation is carried out as

𝐜̂1 = 𝐓−1𝐟 , 𝜆1 =
1

√

1 + 𝐜̂1T𝐜̂1
, 𝐜1 = 𝜆1𝐜̂1,

𝐜̂𝑘 = 𝐓−1𝐪𝑘, 𝜆𝑘 = −
𝐜1T𝐜̂𝑘
𝑎2

𝜆1, 𝐜𝑘 =
𝜆𝑘
𝜆1

𝐜1 + 𝐜̂𝑘 for 𝑘 > 1.
(22)

Note, one single factorization of the tangent stiffness matrix 𝐓 is
needed. Furthermore, it is noted that the number of operations to
construct the nonlinear vectors 𝐪𝑘 is similar to the evaluations of the
residual vector 𝐫. Once the vectors of unknowns 𝐜𝑘 are available, the
final FE solution is

𝐜 = 𝐜0 + 𝜉𝐜1 + 𝜉2𝐜2 +⋯ + 𝜉𝑛𝐜𝑛. (23)

5. Results

The numerical-asymptotic framework is now applied to the analysis
of composite plates and shells. Aim of this section is to illustrate the
potential of the proposed approach, relying on the combination of
an efficient numerical method (𝑝𝑠-FEM) and a fast solution procedure
(ANM).

In the following, different challenging test cases are proposed.
Whenever available, comparison is done with literature results. In all
other cases, Abaqus is used to generate reference solutions. For the
sake of clarity, the nomenclature used for the FE models is explained
in Table 1.
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Fig. 4. Refinement procedures implemented in the 𝑝𝑠-FEM. The 𝑝- and 𝑠-refinement are combined to have different 𝑝𝑠-refinement strategies. In the linear 𝑝𝑠-refinement, 𝑝-refinement
is performed only on the global mesh, while multi-level 𝑠-refinements are carried out with linear elements. In the uniform 𝑝𝑠-refinement, 𝑝-refinement is performed uniformly on
global and local meshes, such that all elements have the same order 𝑝. In the graded 𝑝𝑠-refinement, 𝑝-refinement is performed independently on global and local meshes.
Fig. 5. Mesh refinement procedure implemented in the 𝑝𝑠-FEM: (1) Elements in the region of refinement are quartered with an isotropic (𝑞 = 0) or anisotropic (𝑞 > 0) subdivision
rule, (2) an incompatible local mesh is generated from the resulting sub-elements and superimposed to the underlying mesh, (3) the process is repeated until a desired resolution
ℎ is reached.
Table 1
Nomenclature for the FE models.
FE model Element formulation Refinement strategy Solution algorithm

ℎ-Modela Lagrange elements ℎ-refinement Iterative-Incremental
𝑝-Model Hierarchical elements 𝑝-refinement Asymptotic-Numerical
𝑝𝑠-Model Hierarchical elements 𝑝𝑠-refinement Asymptotic-Numerical

a Generated with Abaqus using S4R elements.
For instance, when an ℎ-Model is used, the type of element, the
refinement and the solution strategies are specified based on the infor-
mation presented in the table. In addition, a summary of the features
of the FE models used in this section is available in Table 2.

For each test case, information is provided regarding the number
of elements, the order of polynomial interpolation and the number of
overlaid meshes, the latter equal to zero whenever no local refinement
is performed. The last column reports the total number of degrees
of freedom, which is crucial for establishing the convenience of a
refinement strategy with respect to another. Further details on the
parameters of the solution procedures are provided in Table 3.
6

Test 1: Cylindrical roof

The first test case considers a hinged cylindrical roof loaded with a
concentrated force. This benchmark problem is taken from Ref. [70],
and is chosen for its complex nonlinear response, where several jumps
phenomena are observed.

The problem is schematized in Fig. 6, where the following geometric
parameters are considered: 𝐿 = 508 mm, 𝑅 = 2540 mm, 𝜃 = 0.1 rad,
𝑡 = 6.35 mm. The shell is made of composite material with mechanical
properties given by 𝐸11 = 3300 GPa, 𝐸22 = 1100 GPa, 𝐺12 = 𝐺13 =
𝐺23 = 660 GPa, 𝜈11 = 0.25. A cross-ply lamination sequence [90∕0∕90] is
considered.
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Table 2
Features of the FE models.

FE Mesh Polynomial Superposition Degrees of
Model Resolution (ℎ)a Order (𝑝) Levels (𝑠) Freedom

Test 1 𝑝𝑠-Model 2 × 2 elements 𝑝 = 4 𝑠 = 4 471
Test 2 𝑝-Model 8 elements 𝑝 = 5 𝑠 = 0 1,054
Test 3 𝑝-Model 4 × 20 elements 𝑝 = 5 𝑠 = 0 10,299
Benchmark 1 ℎ-Model 20 × 20 elements 𝑝 = 1 𝑠 = 0 2,646

40 × 40 elements 𝑝 = 1 𝑠 = 0 10,086
100 × 100 elements 𝑝 = 1 𝑠 = 0 61,206
200 × 200 elements 𝑝 = 1 𝑠 = 0 242,406

𝑝-Model 20 × 20 elements 𝑝 = 2 𝑠 = 0 8,019
20 × 20 elements 𝑝 = 3 𝑠 = 0 18,019
20 × 20 elements 𝑝 = 4 𝑠 = 0 32,019

𝑝𝑠-Model 4 × 4 elements 𝑝 = 6 𝑠 = 1 3,483
4 × 4 elements 𝑝 = 6 𝑠 = 2 3,843
4 × 4 elements 𝑝 = 6 𝑠 = 3 4,023

Benchmark 2 ℎ-Model 640 elements 𝑝 = 1 𝑠 = 0 4,230
1,932 elements 𝑝 = 1 𝑠 = 0 12,270
3,920 elements 𝑝 = 1 𝑠 = 0 24,486
9,984 elements 𝑝 = 1 𝑠 = 0 61,406
18,832 elements 𝑝 = 1 𝑠 = 0 115,110

𝑝𝑠-Model 44 elements 𝑝 = 3 𝑠 = 1 2,406
44 elements 𝑝 = 4 𝑠 = 2 5,092
44 elements 𝑝 = 5 𝑠 = 3 9,318

Benchmark 3 ℎ-Model 270 × 90 elements 𝑝 = 1 𝑠 = 0 147,420
𝑝𝑠-Model 20 × 4 elements 𝑝 = 5 𝑠 = 3 11,179

a The format 𝑎 × 𝑏 is used whenever the mesh is uniform.
Table 3
Parameters of the solution algorithms.

Algorithm Representation Predictor Estimator Corrector

Test 1 ANM Power 𝑛 = 10, 30, 50 ∕ ∕
Rational 𝑛 = 10, 30, 50 ∕ ∕
Power piece-wise 𝑛 = 10 𝜖 = 10−3 tol = 10−7

Test 2 ANM Power piece-wise 𝑛 = 20 𝜖 = 10−5 tol = 10−7

Test 3 ANM Power piece-wise 𝑛 = 15 𝜖 = 10−4 tol = 10−7

Benchmark 1 ANM Power piece-wise 𝑛 = 10 𝜖 = 10−3 tol = 10−7

IIPa Linear piece-wise 𝑛 = 1 ∕ tol = 5 × 10−3

Benchmark 2 ANM Power piece-wise 𝑛 = 15 𝜖 = 10−3 tol = 10−7

IIPa Linear piece-wise 𝑛 = 1 ∕ tol = 5 × 10−3

Benchmark 3 ANM Power piece-wise 𝑛 = 10 𝜖 = 10−3 tol = 10−7

IIPa Linear piece-wise 𝑛 = 1 ∕ tol = 5 × 10−3

a Riks method in Abaqus; IIP: Incremental-Iterative Procedure; ANM: Asymptotic-Numerical Method.
Fig. 6. Cylindrical roof problem. Geometric quantities are referred to the shell middle surface, while boundary conditions are defined in terms of middle displacement (𝑢, 𝑣,𝑤)
and rotation (𝜙1 , 𝜙2) components in a curvilinear reference system (𝜉1 , 𝜉2 , 𝜁). The finite element model is generated considering one quarter of the shell, and is defined in terms of
mesh resolution ℎ, and element polynomial order 𝑝.
The FE model is generated by exploiting the double symmetry of the
problem, as illustrated in Fig. 6. Simulations are conducted with a mesh
of 2 × 2 elements of order 𝑝 = 4 and a local refinement at the point of
application of the load. A total of 𝑠 = 4 local meshes are superimposed
in the context of a graded 𝑝𝑠-refinement strategy. A linear grading rule

𝑝 = 𝑝 − floor
( 𝑠 ) (24)
7

𝑠 𝑚
is adopted for the construction of the FE model, where 𝑝𝑠 and 𝑝 are
the polynomial degrees of the elements at the 𝑠th superposition level
and at the base level (𝑠 = 0), respectively. The constant 𝑚 is a tuning
parameter, here taken equal to 1.

With the purpose of validating the solution procedures presented
in Section 3, three different perturbation strategies are considered by
adopting power, rational and power piece-wise series representations.
The features of the solution algorithms are summarized in Table 3.
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Fig. 7. Solution of the cylindrical roof problem. The first column reports load–deflection curves. The second column reports error curves. Rows refer to the curves obtained with
different analytical representations: power (first row), rational (second row) and power piece-wise (third row). Deflection shapes are plotted with a magnification factor of 5, while
contour colors are generated in terms of

√

𝑢2 + 𝑣2 +𝑤2 and normalized with a factor of 25 mm.
The results of the analysis are illustrated in Fig. 7.
The comparison is presented in terms of load–deflection curves, see

Figs. 7a, Figs. 7c and 7e, against the results reported by Hao et al. [70],
where a NURBS-based FE method is adopted in conjunction with an IIP.
Furthermore, the norm of the residuals is shown in Figs. 7b, 7d and
7f, for different values of the expansion parameter 𝜉.

From Fig. 7a, one can see that the power series solution is capable
of representing a considerable branch of the solution. The path-length
covered is equivalent to the one obtained with 4 − 5 incremental steps
8

in Ref. [70], where a spherical arc-length method is used. For this
problem, the Radius Of Validity (ROV) of the series is estimated to
be 𝜉ROV = 0.35. Once this threshold is reached, the solution starts
diverging, as clear from the analysis of the error in Fig. 7b.

The ROV of the solution can be drastically extended by referring
to a rational representation, as illustrated in Fig. 7c. In this case, a
single series is capable of covering the equivalent path obtained in the
reference with 15 − 16 incremental steps. As seen, this corresponds to
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Table 4
Comparison of Radius of Validity between
different series representations — cylindrical roof.
Representation Radius of validity

Power 𝜉ROV = 0.35
Rational 𝜉ROV = 0.74
Power piece-wise 𝜉ROV = ∞

more than double the range of the power expansion. The values are
summarized in Table 4.

Despite these excellent performances, rational series are sensitive
to the presence of poles [46], which can deteriorate the quality of the
solution along the solution path. Poles may appear also inside the ROV,
see the solution for 𝑛 = 10 in Fig. 7c-7d. These drawbacks affect the
robustness of the approach, unless special measures are taken to predict
their appearance [49]. The limitation of the ROV can be eliminated
by applying the ANM as an high-order predictor within a continuation
procedure. This approach enables a piece-wise representation of the
solution to be obtained, where each interval of the equilibrium path
is represented with different expansion series.

The results of Fig. 7e are obtained using a power series predictor
of order 𝑛 = 10, a ROV estimator with a step control parameter 𝜖 =
10−3, and Newton–Raphson corrector with tolerance tol = 10−7. As
seen, the complete solution path can be obtained with 25 prediction
steps. This represents a reduction of approximately 1∕3 the number of
increments compared to the arc-length method of [70]. Furthermore,
by introducing a correction step before the definition of each series
the norm of the error cannot diverge, as clear from Fig. 7f: at every
correction step the error is brought below the specified tolerance level,
hence leading to the zig-zag response exhibited by the curve.

Due to the accuracy of the results, insights on the shell response can
be gained. From Fig. 7e it can be seen that the shell buckles at a load
level of about 243 N, which represents its ultimate bearing capability.
This effect is not captured correctly by a simple power and rational
series, see Figs. 7a and 7c, due to the limited ROV and/or the presence
of poles. After the ultimate load, the solution follows an intricate path
where several turning points are encountered, each of these with a very
different deformation mode, see Fig. 7e. This complex behavior is due
to the particular orthotropic lamination sequence considered and the
high thinness of the shell [70].

The unrestricted ROV and the high robustness make the power
piece-wise series the best solution approach among the ones presented
in Section 3. For this reason, this strategy will be applied to solve the
remaining set of test cases.

Test 2: Plate with circular cutout

The second test case regards a Variable-Stiffness (VS) plate with a
cutout [71]. Aim of this section is demonstrating the validity of the
proposed approach in the presence of complex geometries and material
properties distributions.

The characteristics of the plate are presented in Fig. 8 along with
its FE model. The plate is characterized by 𝐿 = 254 mm, 𝐷∕𝐿 = 0.6,
𝑡 = 2.0352 mm.

The nominal geometry is altered by an initial imperfection with a
shape corresponding to the first buckling mode and maximum ampli-
tude equal to 1% of the thickness. The material properties are given
by 𝐸11 = 181, 000 MPa, 𝐸22 = 10, 273 MPa, 𝐺12 = 𝐺13 = 𝐺23 =
7, 170.5 MPa, 𝜈12 = 0.28, while the VS lamination sequence is defined
by [±90⟨0, 75⟩]4𝑠.

The plate is simply supported at the four sides, with out-of-plane
deflections and torsional rotations set to zero. In addition, the loaded
edges are free to translate, but forced to remain straight, this condition
9

being imposed with a multi-point constraint. The load is introduced a
with a concentrated force applied to two reference nodes, one for each
side, as illustrated in Fig. 8a.

The FE model is composed by 8 elements of order 𝑝 = 5, as shown
in Figs. 8b-8c. No local refinement is required despite the presence
of a cutout. Indeed, the VS layup allows for a proper redistribution of
stresses with a resulting mitigation of stress gradients [71].

The numerical solution is sought with a continuation strategy,
whose parameters are available in Table 3. In particular, the predictor
is a power series of order 𝑛 = 20, the ROV estimator is specified to be
𝜖 = 10−5, and the tolerance of the corrector is fixed to 10−7.

The results are presented in Fig. 9 through equilibrium and error
urves. The equilibrium curves are expressed in terms of average edge
esultant and strain,

𝑁11 =
1
𝐿 ∫

𝐿∕2

−𝐿∕2
𝑁11(±𝐿∕2, 𝜉2)𝑑𝜉2 and 𝜖11 =

1
𝐿 ∫

𝐿∕2

−𝐿∕2
𝑢(±𝐿∕2, 𝜉2)𝑑𝜉2,

(25)

hich are normalized with respect to the critical buckling resultant
𝑁

iso
c and strain 𝜖iso

c of a quasi-isotropic laminate without cutout. For
the material properties considered, the corresponding equivalent Pois-
son’s coefficient and Young modulus are 𝜈iso = 0.296 and 𝐸iso =
9, 668 MPa [71].

The present results are compared with the ones of Li et al. [71],
btained with a Ritz method and IIP. From Fig. 9a one can see an
xcellent degree of agreement of the pre- and post-buckling equilibrium
aths. For this plate problem, buckling occurs at an end-shortening
evel of about 5 × 𝜖iso

c . After the jump from the primary to secondary
branch, the plate buckles with a single half-wave.

Besides the excellent quality of results, different considerations can
be made in terms of choice of numerical method and solution proce-
dure. In particular, the convergence analysis in [71] shows that the Ritz
model requires 3,732 DOFs to converge. On the other hand, the present
FE model employs only 1,054 DOFs. These savings demonstrate how
a high-order/piece-wise approximation is more suitable than a high-
order/element-free one in the presence of a complex geometry. Indeed,
element-free approaches require special penalty factors to correctly
describe a generic geometry. This often undermines the convergence
performance of these methods due to ill-conditioning of the numerical
matrices.

Regarding the solution procedure, the ANM requires only 5 predic-
tion steps to trace the equilibrium curve. This represents less than 1/10
the number required by the IIP used in Ref. [71], where approximately
55 − 60 incremental steps were needed. Considering that in the present
approach the average number of corrections per step is only 2, see
Fig. 9b, the reduction in computational time is noticeable.

The comparison in this section provides clear insights into the
ability of the proposed strategy to handle the nonlinear response of
VS structures. As seen, the combination of ANM and few high-order
element allows to combine the inherent flexibility of FE procedures
with the performance of Ritz-like approaches.

Test 3: Water’s composite cylinder

The third test case deals with the Water’s composite shell, which is a
typical benchmark for numerical validation of shell problems [72,73].
The post-buckling analysis of axially loaded cylinders is a challenging
task for nonlinear solution algorithms. Indeed, the presence of limit
loads and sudden snap-backs requires special care, and have stimulated
in the years the development of several ad-hoc solution procedures [29,
31]. The present test case aims at verifying the robustness of the present
FE-approach to the analysis of this challenging problem.

The cylinder under investigation and its FE discretization are shown
in Fig. 10. The geometry is defined by 𝐿 = 355.6 mm, 𝑅 = 203.19 mm,
nd 𝑡 = 1.016 mm. The lamination sequence is [±45∕0∕90] , where the
s
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Fig. 8. Cutout plate problem. Geometric quantities are referred to the plate middle surface, while boundary conditions are defined in terms of middle displacement (𝑢, 𝑣,𝑤) and
rotation (𝜙1 , 𝜙2) components in a cartesian reference system (𝜉1 , 𝜉2 , 𝜁). The finite element model is defined in terms of mesh resolution ℎ, and element polynomial order 𝑝.
Fig. 9. Solution of the cutout plate problem. Solutions are presented in terms of load-shortening and error curves. The error curve is overlapped with a bar diagram showing the
number of corrections for each prediction steps. Deflection shapes are plotted with a magnification factor of 30, while contour colors are generated in terms of

√

𝑢2 + 𝑣2 +𝑤2 and
normalized with a factor of 2 mm.
Fig. 10. Water’s composite cylinder problem. Geometric quantities are referred to the cylinder’s middle surface, while boundary conditions are defined in terms of middle
displacement (𝑢, 𝑣,𝑤) and rotation (𝜙1 , 𝜙2) components in a cylindrical reference system (𝜉1 , 𝜉2 , 𝜁). The finite element model is defined in terms of mesh resolution ℎ, and element
polynomial order 𝑝.
ply properties are: 𝐸11 = 127, 629 MPa, 𝐸22 = 11, 307.4 MPa, 𝐺12 = 𝐺13 =
𝐺23 = 6, 002.57 GPa, 𝜈12 = 𝜈23 = 𝜈13 = 0.300235.

The shell is axially loaded with a uniformly distributed compres-
sion load applied along the top and bottom rim. Both the ends are
subjected to simply-supported boundary conditions of type SS-3. The
imperfections are introduced analytically considering a rectangular
10
mode

𝑤0(𝑥, 𝑦) = 𝐴0 sin
(𝜋𝑚𝑥

𝐿

)

cos
(𝜋𝑛𝑦

𝑅

)

, (26)

with wave numbers 𝑚 = 1 and 𝑛 = 7, and imperfection amplitude 𝐴0 =
0.75𝑡. This imperfection shape drives the shell to a global deformation
mode in the post-buckling range.
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Fig. 11. Solution of the Water’s composite cylinder problem. The solution is presented in terms of a load-shortening curve. A zoom of the limit point is provided for better
visualization. Deflection shapes are plotted with a magnification factor of 30, while contour colors are generated in terms of

√

𝑢2 + 𝑣2 +𝑤2 and normalized with a factor of 2 mm.
The numerical model is presented in Fig. 10b-10c. It consists of a
mesh with 20 elements along the circumferential direction and 4 along
the axial one. Such a coarse mesh is justified by the adoption of a
relatively high polynomial order for the elements, which is 𝑝 = 5.

The load–displacement curves obtained with the present approach
and the one taken from Ref. [74] are reported in Fig. 11. The load
is expressed in terms of Loadscale Factor (LF), defined as the applied
edge resultant 𝑁11 divided by the linearized buckling load, i.e. 𝑁c =
391.9888 N/mm [72]. The end-shortening 𝛥𝑢 is measured as the average
shortening undergone by the cylinder.

The present results closely match with the ones obtained by Noten-
boom and Jansen [74], where a multi-modal perturbation method is
employed as solution strategy. The limit LF predicted in Ref. [74] is
0.1875, while the one obtained with the present method is 0.1856. The
percent difference between the two approaches is small, 2% approxi-
mately.

A further detail of the solution is provided in Fig. 11b, which illus-
trates a zoom around the limit load. The plot highlights the sharpness of
the turning point, which can cause a premature analysis failure in arc-
length methods, unless a careful tuning of the step size is performed.
The selection of an appropriate step length entails a balancing between
efficiency and convergence demands of the solver, which can be a
very tedious and time-consuming process. Within the present approach
this problem does not arise. Indeed, the ANM can adjust automatically
the step size, which is very large in the linear pre-buckling path,
while it gets smaller in correspondence of the limit point. Using the
parameter shown in Table 3, the maximum and minimum steps size are
𝜉max
ROV = 4.85 and 𝜉min

ROV = 0.08, respectively. This step-length adjustment
is performed without the user intervention. The only parameter to be
tuned is the estimator’s constant 𝜖, whose value is chosen based on
whether a short-steps/high-quality or a large-steps/low-quality solution
is required.

Benchmark 1: Highly anisotropic plate

The analysis of highly anisotropic composite plates offers numer-
ical challenges due to localization effects induced by drastic elastic
couplings. The difficulties in evaluating buckling loads and linear fre-
quencies have been investigated in past works in the literature [62,
75,76]. Here, new reference results are derived with focus on the
post-buckling response of these laminates. No previous attempts can
be found in the literature, so reporting accurate results for this class
11
of problems is believed of interest for future comparisons by other
researchers.

The benchmark is taken from [76] and is presented in Fig. 12. It
consists of a very thin square plate with side 𝐿 = 100 mm and 𝐿∕𝑡 =
100, 000. This extremely high ratio 𝐿∕𝑡 was considered in Ref. [76]
to minimize shear deformation effects and have a fair comparison
between a Ritz code based on Kirchhoff theory and Abaqus simulations.
The plate is made of a single ply oriented at 45 degree, while the
following material data are used: 𝐸11 = 369, 000 MPa, 𝐸22 = 5, 030 MPa,
𝐺12 = 𝐺13 = 𝐺23 = 5, 240 MPa, 𝜈12 = 𝜈23 = 𝜈13 = 0.31. Simply-
supported boundary conditions are considered, as they are associated
with the mostly intricate linearized buckling response [76]. Hence, they
are believed of particular interest even for the post-buckling case. The
load is introduced by imposing uniform edge-shortening conditions.
The unloaded edges are free to expand. A sketch of the structure and
the relevant boundary conditions is available in Fig. 12a.

This benchmark is analyzed by means of three distinct numerical
models. Following the nomenclature of Table 1, they are denoted as:
ℎ-Model, 𝑝-Model and 𝑝𝑠-Model. In particular, the first one is generated
and solved using Abaqus in the context of an ℎ-refinement strategy and
an IIP. The 𝑝-Model and the 𝑝𝑠-Model are developed within the present
FE framework using 𝑝- and 𝑝𝑠-refinement strategies, respectively, and
are solved with the ANM.

The meshes of the ℎ- and 𝑝-Models are assembled from square
elements of constant size. Regarding the 𝑝𝑠-Model, its mesh is char-
acterized by three levels of 𝑠-refinements and is illustrated in Fig. 12.

For this case, the mesh design is based on the studies of Ref. [62],
which showed the occurrence of complex anisotropy-induced local
effects around two opposite corners. In these regions, concentrations
of twisting moment and transverse shear are observed. Therefore, local
refinements are introduced in these areas. The color code of Fig. 12c
clarifies how successive mesh layers are generated with polynomials of
decreasing order.

The results for the different numerical models are reported in Fig. 13
in terms of load–deflection, see Figs. 13a, 13c and 13e, and load–stress
curves, see Figs. 13b, 13d and 13f. Load and deflections are expressed
in adimensional form using the critical load 𝜆c and thickness 𝑡.

The curves in Figs. 13a-13b show a convergence study on the
Abaqus-generated ℎ-Model. Looking at the number of DOFs, one can
have an idea of the convergence challenges of this problem. Adopting
an ℎ-refinement strategy, 61,206 DOFs are still insufficient to capture
correctly the bifurcation point. To reach a stable and consistent value

for displacements and stresses in the solution range of interest, a total
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Fig. 12. Highly anisotropic plate problem. Geometric quantities are referred to the plate middle surface, while boundary conditions are defined in terms of middle displacement
(𝑢, 𝑣,𝑤) and rotation (𝜙1 , 𝜙2) components in a cartesian reference system (𝜉1 , 𝜉2 , 𝜁). The finite element model is defined in terms of mesh resolution ℎ, and element polynomial
order 𝑝 for three different levels of 𝑝𝑠-refinement.
Table 5
Comparison of performance between different FE formulations — highly anisotropic plate.
Model Refinement level 𝜂% 𝐸%

a for 𝑤(0, 0) 𝐸%
a for 𝜎11(0, 0, 𝑡∕2)

ℎ-Model 1 1.09 14.88 20.57
2 4.16 5.25 6.50
3 25.25 1.37 1.26
4 100.00 0.00 0.00

𝑝-Model 1 3.30 87.20 94.39
2 7.43 19.45 11.89
3 13.21 12.62 9.93

𝑝𝑠-Model 1 1.44 10.95 8.33
2 1.58 5.78 4.11
3 1.66 2.87 1.78

a Error are measured considering quantities at load step 𝜆∕𝜆c = 1.2.
of 242,406 DOFs are necessary. This is a relatively large model for plate
problem.

The results of the 𝑝-Model considering a 20 × 20 mesh are shown in
Figs. 13c-13d. In this case, the 𝑝-refinement strategy exhibits an even
worse convergence rate. Quartic shape functions still do not lead to a
satisfactory accuracy, as evident from the zooms around the bifurcation
point. The poor performance of the 𝑝-refinement strategy is explained
by the inadequacy of high-order polynomials to capture the low-spatial-
frequency effects. In general, these are better represented via low-
order/piece-wise approximations, rather than high-order/continuous
ones.

The simulations with the 𝑝𝑠-Model are reported in Figs. 13e-13f.
This model shows the fastest convergence rate among the ones con-
sidered earlier. The superior efficiency is achieved thanks to a more
effective refinement strategy: large/high-order elements are employed
in smooth solution regions, while small/low-order elements are used in
proximity of steep gradients.

To gather further insight into the performance of the different
refinement strategies, a direct comparison between the three models
is presented in Table 5.

Two parameters are introduced for this purpose, the percent error
𝐸% and the DOFs ratio

𝜂% =
𝑁FE

DOF
242, 406

× 100 (27)

relative to the converged ℎ-Model.
The results of the 𝑝-Model quantify the inadequacy of the 𝑝-refine-

ment strategy for the problem at hand. The percentage errors at re-
finement level 3 (32,019 DOFs) are one order of magnitude larger
than the ones of ℎ-Model at refinement level 2 (10,086 DOFs), despite
the latter is associated with 1∕3 the number of DOFs of the former.
When considering the 𝑝𝑠-approach, satisfactory accuracy is achieved
at refinement level 3 (4,023 DOFs), which corresponds to 1 − 2% the
12
number of DOFs of the converged ℎ-Model. So, the reduction of the
problem size is drastic.

Benchmark 2: ‘‘Dog-bone’’ shell

In this test case, the postbuckling analysis of a VS cylindrical panel
with a ‘‘dog-bone’’ shape is investigated. The problem is illustrated
in Fig. 14, where the following geometric data are considered: 𝑎 =
200 mm, 𝑏 = 100 mm, 𝑎1 = 𝑏1 = 60 mm, 𝑅 = 500 mm, 𝑡 = 1 mm. The VS
stacking sequence is described by [±⟨30, 0⟩]4𝑠, with fibers varying along
the circumferential direction.

The material considered is P100/AS3501 [75], a pre-preg with high
levels of anisotropy with mechanical properties: 𝐸11 = 369, 000 MPa,
𝐸22 = 5, 030 MPa, 𝐺12 = 𝐺13 = 𝐺23 = 5, 240 MPa, 𝜈12 = 𝜈23 = 𝜈13 = 0.31.
Simply-supported conditions are imposed at 𝜉1 = ±𝑎∕2 and 𝜉2 = ±𝑏∕2,
while the re-entrant edges are free. The curved sides are loaded with
a uniform edge-shortening, while the unloaded ones are prevented
to expand in the transverse direction. The post-buckling analysis is
carried out considering an imperfection whose amplitude is 50% the
wall thickness 𝑡 and shape of the first buckling mode.

The structure is analyzed using two different strategies, aiming at
illustrating the advantages offered by the present FE framework. The
first approach relies on the standard strategy considered in commercial
FE codes: an ℎ-Model is used for the numerical description of the
structure along with a Riks-based solution procedure. In this case, the
simulations are conducted using Abaqus. The second approach relies on
an advanced 𝑝𝑠-Model in conjunction with the ANM solution procedure.

The features of the numerical models and solution algorithms are
summarized in Tables 2 and 3, respectively. The mesh of the 𝑝𝑠-Models
is reported in Figs. 14b-14c. The presence of internal corners suggests
the introduction of local refinements to appropriately capture sharp
gradients occurring in these areas. As seen, three levels of refinement
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Fig. 13. Solution of the highly anisotropic plate problem. The first column reports load–deflection curves. The second column reports load–stress curves. Rows refer to the curves
obtained with different finite element models: ℎ-Model (first row), 𝑝-Model (second row) and 𝑝𝑠-Model (third row).
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Fig. 14. ‘‘Dog-bone’’ shell problem. Geometric quantities are referred to the shell middle surface, while boundary conditions are defined in terms of middle displacement (𝑢, 𝑣,𝑤)
and rotation (𝜙1 , 𝜙2) components in a curvilinear reference system (𝜉1 , 𝜉2 , 𝜁). The finite element model is defined in terms of mesh resolution ℎ, and element polynomial order 𝑝
for three different levels of 𝑝𝑠-refinement.
Table 6
Comparison of performance between different solution algorithms – ‘‘dog-bone’’ shell.
Algorithm Steps Corrections per step Factorizations Residual eval. 𝐪𝑘 eval.a

IIP 100 3 100 × 3 100 × 3 ∕
ANM 11 2 11 + (11 × 2) 11 × 2 11 × 15

a CPU similar to a residual evaluation.
are considered, with progressive reduction of the element size and
polynomial order.

The results of the ℎ-Model are presented in Figs. 15a-15b in terms
of load–deflection and load–stress curves.

A large number of elements is necessary to guarantee converged
displacements and stresses. This is due to the presence of free and re-
entrant edges, which are responsible for local stress concentrations.
Moreover, the non-uniform stiffness distribution and high level of
material anisotropy generate a relatively intricate internal load path. As
a consequence, the ℎ-Model requires a total number of 18,832 elements,
corresponding to 115,110 DOFs.

The results of the 𝑝𝑠-Model are reported in Figs. 15c-15d with the
converged ℎ-Model. In this case, 44 elements of order 𝑝 = 5 and 𝑠 = 3
layers of overlaying meshes suffice to achieve satisfactory results. The
corresponding number of DOFs is 9,318 DOFs, which represents less
than 92% the DOFs of the converged ℎ-Model. This computational
savings can be further magnified by adopting the ANM for solving the
𝑝𝑠-Model.

A performance comparison between the ANM and the Riks method
is presented in Table 6.

With a minimum and maximum arc-length increment of 10−5 and
10−1, respectively, and a tolerance of 5×10−3, the Riks method requires
a total of 100 increment steps from the undeformed configuration to the
post-buckling state corresponding to 𝐹 = 1944 N. The average number
of iterations per increment is 3. Accordingly, a number of ≈300 matrix
factorizations and residual evaluations are necessary to complete the
analysis. On the other hand, the ANM requires only 11 prediction
steps, with an average of 2 iterations to perform the Newton–Raphson
correction. It is worth noting that less correction steps are required in
this case, even if the tolerance is 3–4 order of magnitudes stricter than
the one used in Abaqus — see Table 3.

The reduced number of prediction steps possible with the ANM
enables a considerable drop of required matrix factorizations. More-
over, the matrices to be inverted have smaller size due to the advanced
refinement procedures available in the 𝑝𝑠-FEM. These features lead to
significant improvements in terms of computational efficiency.

Benchmark 3: Conical shell

This benchmark problem considers a conical composite shell loaded
in compression with a perturbation force acting in the transverse
direction. The challenging features of this test case involve the presence
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of an unstable post-buckling response and the stress concentrations
induced by the perturbation load.

The cone under investigation is taken from Ref. [77] and is illus-
trated in Fig. 16 with its finite element discretization. The shell is
defined by the following geometric properties: 𝐻 = 200 mm, 𝑅 =
400 mm, 𝛼 = 45 deg, and 𝑡 = 1.1250 mm. The material elastic properties
of the material are: 𝐸11 = 142, 500 MPa, 𝐸22 = 8, 700 MPa, 𝐺12 = 𝐺13 =
𝐺23 = 5, 100 MPa, 𝜈12 = 𝜈23 = 𝜈13 = 0.28. The lamination sequence
is defined by the 9-plies layup [±30∕± 60∕0]ms, where the subscript ms
denotes mid-plane symmetry, meaning that the ply at 0 is not repeated.

The boundary conditions are simply-supported of SS1 type, as
shown in Fig. 16a. The compressive load is applied by imposing an
axial displacement to the nodes of the upper edge. This condition is
denoted in the figure as no-warping edge. The perturbation load 𝐹SPL
is introduced at the shell mid-height, and acts along the shell normal
direction. The loading sequence consists in the initial application of the
perturbation load of 50 N, followed by the axial compression. During
this second phase, the perturbation load is maintained constant at 50
N.

For this problem, a 𝑝𝑠-Model is employed, see Fig. 16b-16c. The
mesh has a resolution of 4 × 20 elements with order 𝑝 = 5. The com-
bination of a relatively coarse mesh with high-order elements proved
to be a good tradeoff between computational cost and accuracy in
predicting the buckling load. A number of 𝑠 = 3 levels of superposition
meshes are introduced around the point of application of the force to
capture the local features of the solution.

The solution of the numerical model is performed using the ANM
with the parameters of Table 3. The load–displacement curves are
reported in Fig. 17, where the comparison is presented against Abaqus
simulations.

The ℎ-Model is generated with 270 × 90 elements and used in con-
junction with the Riks method. The nonlinear solution is characterized
by an initial Local Snap-Through (LST), followed by a Global Buckling
(GB) response. Both these effects are captured by the 𝑝𝑠-Model. In
particular, the LST and GB points are predicted at the load levels of
𝐹LST = 63.970 kN and 𝐹GB = 85.335 kN, respectively. The corresponding
points extracted from Abaqus simulations are 𝐹LST = 65.253 kN and
𝐹GB = 85.260 kN.

The 𝑝𝑠-Model is characterized by less than 1∕10 the DOFs required

by the ℎ-Model. As shown, this saving does not imply any loss of
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Fig. 15. Solution of the ‘‘dog-bone’’ shell problem. The first column reports load-shortening curves. The second column reports load–stress curves. Rows refer to the curves obtained
with different finite element models: ℎ-Model (first row) and 𝑝𝑠-Model (second row).

Fig. 16. Conical shell problem. Geometric quantities are referred to the cone’s middle surface, while boundary conditions are defined in terms of middle displacement (𝑈, 𝑉 ,𝑊 )
in a cartesian reference system (𝑋, 𝑌 ,𝑍). The finite element model is defined in terms of mesh resolution ℎ, and element polynomial order 𝑝.
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Fig. 17. Solution of the conical shell problem. The solution is presented in terms of load-shortening curves. Two zooms are provided for better visualization of the local snap-
through and global buckling. Deflection shapes are plotted with a magnification factor of 10, while contour colors are generated in terms of

√

𝑢2 + 𝑣2 +𝑤2. For each deflection
mode displacement 𝑊 and stress 𝜎11 profiles are provided at 𝜉2 = 0.
accuracy. On the contrary, the 𝑝𝑠-Model provides a slightly smaller
prediction for 𝐹LST, likely achievable through further refinement of the
Abaqus model.

In Fig. 17 are also shown displacement and stress profiles at 𝜉2 = 0
for different equilibrium points, which are here denoted as A, B and
C. Point A is taken in the pre-buckling region (𝐹 = 53.69 kN), point B
is located in the region between the LST and the GB (𝐹 = 67.43 kN),
while C is chosen in the region after GB has occurred (𝐹 = 69.92 kN).
From the plots of Fig. 17, it is possible to see that the 𝑝𝑠- and ℎ-Models
predict a similar global trend for the deflection and direct stress. Not
surprisingly, the stress singularity induced by the concentrated force is
better represented by the present approach, owing to the presence of a
local refinement.

6. Conclusions

This work introduces a computational tool for nonlinear shell analy-
sis based on two pillars: the 𝑝𝑠-FEM, used for the spatial discretization,
and the ANM, used for the solution of the discrete problem. The
synergy of these elements results in a novel analysis framework capable
of performing much quicker and more accurate nonlinear analyses
compared to traditional approaches.
16
One of the key aspects of this study regards the improved efficiency
of the 𝑝𝑠-FEM over standard FE- and Ritz-based methods. In particular,
the results illustrate that saving in DOFs as high as 90% are achievable
by a proper refinement procedure. The 𝑝𝑠-FEM employs a combination
of 𝑝- and 𝑠-refinements, such that large/high-order elements are placed
in smooth solution regions, while small/low-order elements are over-
laid in areas of localized effects. These features are not attainable with
a Ritz approach, while they involve complex mesh generations in FE
methods.

A second aspect of this work concerns the use of the ANM as solver
to further leverage the advantages of the 𝑝𝑠-FEM. By employing a
piece-wise analytic representation of the nonlinear solution, the ANM
tracks the equilibrium path with different prediction, estimation, and
correction steps. For the problems investigated here, the resulting
number of increments/iterations is drastically smaller with respect to
an incremental-iterative procedure. In particular, a reduction of a factor
of 10 in number of matrix factorizations is observed compared to the
Riks method, leading to a further drop in cpu.

Based on these aspects, it is concluded that the combination of 𝑝𝑠-
FEM and ANM is a viable strategy to optimize the time for the analysis
from several perspectives: the numerical solution has faster conver-
gence, the modeling phase is simplified, the solution procedure requires
fewer computer operations. All these features make the proposed tool
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Fig. 18. Reference system and kinematics of the shell. The mathematical model is
defined from a First-order Shear Deformation Theory (FSDT). The formulation of the
theory is done on a curvilinear reference system so that generic shell configurations
can be considered.

an interesting mean for the design and analysis of advanced composite
shell structures, especially when the process may benefit from early
introduction of nonlinear requirements.
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Appendix

Definition of the shell mathematical model

The mathematical model considered in this work is based on a
first-order shell theory. Accordingly, the displacement field {𝑢1, 𝑢2, 𝑢3}T

is expressed as function of the displacements {𝑢, 𝑣,𝑤}T and rotations
{𝜙1, 𝜙2}T components on the shell’s middle surface 𝛺, see Fig. 18.
In this work, the middle surface is parametrized by two arc-length
coordinates 𝜉1 and 𝜉2, so that an orthogonal curvilinear coordinate
system (𝜉1, 𝜉2, 𝜁) can be defined to describe the shell kinematics, with 𝜁
being the coordinate normal to 𝛺.

The components of the Green–Lagrange strain tensor 𝐸𝛼𝛽 , are ar-
ranged in two vectors 𝝐 = {𝐸11 𝐸22 2𝐸12}T and 𝜸 = {2𝐸13 2𝐸23}T, so
that

𝝐 = 𝝐0 + 𝜁𝐤, and 𝜸 = 𝜸0. (28)

The vector of generalized membrane strains 𝝐0, curvatures 𝐤, and shear
strains 𝜸0 in Eq. (28) are available in Ref. [62]. The corresponding
generalized forces are obtained from the constitutive law
{

𝐍
𝐌

}

=
[

𝐀(𝜉1, 𝜉2) 𝐁(𝜉1, 𝜉2)
𝐁(𝜉1, 𝜉2) 𝐃(𝜉1, 𝜉2)

]{

𝝐0
𝐤

}

and 𝐐 = 𝐀(𝜉1, 𝜉2)𝜸0, (29)

where 𝐍 = {𝑁11 𝑁22 𝑁12}T, 𝐌 = {𝑀11 𝑀22 𝑀12}T, 𝐐 = {𝑄1 𝑄2}T

represent the force and moment resultants, whereas 𝐀, 𝐃, 𝐁, 𝐀 are the
membrane, stiffness, coupling and transverse shear stiffness matrices.
These matrices are assumed to be function of the in-plane coordinates,
so that modern Variable-Stiffness laminates [78–80] can be accounted
for.
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The expression of the mixed functional 𝛱∗ and its variations 𝛿𝛱∗

are given by

𝛱∗(𝐮,𝐒) = ∫𝛺

[

(

𝝐0T𝐍 + 𝐤T𝐌 + 𝜸0T𝐐
)

− 1
2
(

𝐍T𝐀∗𝐍 +𝐌T𝐃∗𝐌+

+ 2𝐍T𝐁∗𝐌𝐐T𝐀
∗
𝐐
)]

d𝛺 + 𝑉 (𝐮),
(30)

𝛿𝛱∗(𝐮,𝐒) = ∫𝛺

[

𝛿𝝐0T𝐍 − 𝛿𝐍T (𝝐0 − 𝐀∗𝐍 − 𝐁∗𝐌
)

+

+ 𝛿𝐤T𝐌 − 𝛿𝐌T (𝐤 − 𝐁∗𝐍 − 𝐃∗𝐌
)

+

+ 𝛿𝜸0T𝐐 − 𝛿𝐐T
(

𝜸0 − 𝐀
∗
𝐐
)]

d𝛺 + 𝛿𝑉 (𝐮) = 0,

(31)

respectively, where 𝑉 (𝐮) is the potential of the applied loads, 𝐀∗,𝐁∗,𝐃∗,
𝐀
∗

are matrices obtained by inverting the constitutive law in Eq.
(29), while the mixed unknowns are 𝐮 = {𝑢, 𝑣,𝑤, 𝜙1, 𝜙2}T and 𝐒 =
{𝐍,𝐌,𝐐}T.

Definition of the mixed problem

Using the following notation for the generalized strains

𝝐0 = 𝝐01(𝐮) +
1
2
𝝐02(𝐮), 𝐤 = 𝐤(𝐮), 𝜸0 = 𝜸0(𝐮),

𝛿𝝐0 = 𝝐01(𝛿𝐮) + 𝝐011(𝛿𝐮,𝐮), 𝛿𝐤 = 𝐤(𝛿𝐮), 𝛿𝜸0 = 𝜸0(𝛿𝐮),
(32)

the linear 𝐿(⋅), quadratic 𝑄(⋅, ⋅), constant 𝐹 operators are

𝛿𝐔 ⋅ 𝐿(𝐔) =
⎧

⎪

⎨

⎪

⎩

∫𝛺[𝝐
0
1(𝛿𝐮)

T𝐍 + 𝐤(𝛿𝐮)T𝐌 + 𝜸0(𝛿𝐮)T𝐐]d𝛺
∫𝛺[𝛿𝐍

T(𝝐01(𝐮) − 𝐀∗𝐍 − 𝐁∗𝐌) + 𝛿𝐌T(𝐤(𝐮) − 𝐁∗𝐍 − 𝐃∗𝐌)+
+𝛿𝐐T(𝜸0(𝐮) − 𝐀

∗
𝐐)]d𝛺

𝛿𝐔 ⋅𝑄(𝐔,𝐔) =
{

∫𝛺 𝝐011(𝛿𝐮,𝐮)
T𝐍d𝛺

∫𝛺 𝛿𝐍T 1
2 𝝐

0
2(𝐮)d𝛺

}

, and

𝛿𝐔 ⋅ 𝐹 =
{

−𝑉 (𝛿𝐮)
0

}

.

(33)

Change of formulation

The generic mixed problem of order 𝑘 ≥ 1 is

𝑇 (𝐔𝑘) = 𝜆𝑘𝐹 −
𝑘−1
∑

𝑟=1
𝑄(𝐔𝑟,𝐔𝑘−𝑟). (34)

The explicit form of Eq. (34) reads as the equation given in Box I,
where the following formalism for the quadratic operator is used

𝛿𝐔 ⋅𝑄(𝐔𝑎,𝐔𝑏) =
{

∫𝛺[𝝐
0
11(𝛿𝐮,𝐮𝑎)

T𝐍𝑏 + 𝝐011(𝛿𝐮,𝐮𝑏)
T𝐍𝑎]d𝛺

∫𝛺 𝛿𝐍T𝝐011(𝐮𝑎,𝐮𝑏)d𝛺

}

. (35)

The mixed linear problem in Eq. I is equivalent to a pseudo-equilibrium
condition

∫𝛺
[𝝐011(𝛿𝐮,𝐮𝑘)

T𝐍0 + (𝝐01(𝛿𝐮) + 𝝐011(𝛿𝐮,𝐮0))
T𝐍𝑘 + 𝐤(𝛿𝐮)T𝐌𝑘+

+ 𝜸0(𝛿𝐮)T𝐐𝑘]d𝛺 = − 𝜆𝑘𝑉 (𝛿𝐮) −
𝑘−1
∑

𝑟=1
∫𝛺

𝝐011(𝛿𝐮,𝐮𝑘−𝑟)
T𝐍𝑟d𝛺,

(36)

which is obtained from Eq. I by collecting terms multiplied by 𝛿𝐮 =
{𝛿𝑢, 𝛿𝑣, 𝛿𝑤, 𝛿𝜙1, 𝛿𝜙2}T, and a pseudo-constitutive law

𝐍𝑘 = 𝐀[𝝐01(𝐮𝑘) + 𝝐011(𝐮0,𝐮𝑘) +
𝑘−1
∑

𝑟=1

1
2
𝝐011(𝐮𝑟,𝐮𝑘−𝑟)] + 𝐁𝐤(𝐮𝑘),

𝐌𝑘 = 𝐁[𝝐01(𝐮𝑘) + 𝝐011(𝐮0,𝐮𝑘) +
𝑘−1
∑

𝑟=1

1
2
𝝐011(𝐮𝑟,𝐮𝑘−𝑟)] + 𝐃𝐤(𝐮𝑘),

𝐐𝑘 = 𝐀𝜸0(𝐮𝑘),

(37)

which is extracted from Eq. I by taking the terms multiplied by the
virtual variation 𝛿𝐒 = {𝛿𝐍, 𝛿𝐌, 𝛿𝐐}T. Finally, a substitution of Eq.
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(
c
d

R

{

∫𝛺[𝝐
0
1(𝛿𝐮)

T𝐍𝑘 + 𝐤(𝛿𝐮)T𝐌𝑘 + 𝜸0(𝛿𝐮)T𝐐𝑘]d𝛺
∫𝛺[𝛿𝐍

T(𝝐01(𝐮𝑘) − 𝐀∗𝐍𝑘 − 𝐁∗𝐌𝑘) + 𝛿𝐌T(𝐤(𝐮𝑘) − 𝐁∗𝐍𝑘 − 𝐃∗𝐌𝑘) + 𝛿𝐐T(𝜸0(𝐮𝑘) − 𝐀
∗
𝐐𝑘)]d𝛺

}

+

+
{

∫𝛺[𝝐
0
11(𝛿𝐮,𝐮𝑘)

T𝐍0 + 𝝐011(𝛿𝐮,𝐮0)
T𝐍𝑘]d𝛺

∫𝛺 𝛿𝐍T𝝐011(𝐮0,𝐮𝑘)d𝛺

}

= −𝜆𝑘

{

𝑉 (𝛿𝐮)
0

}

−
𝑘−1
∑

𝑟=1

{

∫𝛺 𝝐011(𝛿𝐮,𝐮𝑘−𝑟)
T𝐍𝑟d𝛺

∫𝛺 𝛿𝐍T 1
2 𝝐

0
11(𝐮𝑟,𝐮𝑘−𝑟)d𝛺

}

,

Box I.
37) into Eq. (36) leads to the displacement version of Eq. I. The
orresponding numerical solution can be obtained after applying a FE
iscretization.
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