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Abstract

We investigate a stochastic version of the Allen–Cahn–Navier–Stokes system in a smooth two- or three-
dimensional domain with random initial data. The system consists of a Navier–Stokes equation coupled 
with a convective Allen–Cahn equation, with two independent sources of randomness given by general 
multiplicative-type Wiener noises. In particular, the Allen–Cahn equation is characterized by a singular 
potential of logarithmic type as prescribed by the classical thermodynamical derivation of the model. The 
problem is endowed with a no-slip boundary condition for the (volume averaged) velocity field, as well as a 
homogeneous Neumann condition for the order parameter. We first prove the existence of analytically weak 
martingale solutions in two and three spatial dimensions. Then, in two dimensions, we also establish path-
wise uniqueness and the existence of a unique probabilistically-strong solution. Eventually, by exploiting a 
suitable generalisation of the classical De Rham theorem to stochastic processes, existence and uniqueness 
of a pressure is also shown.
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1. Introduction

Modeling the behavior of immiscible (or partially miscible) binary fluids is a very active 
area of research because of its importance, for instance, in Biology and Materials Science. A 
well-known and effective approach is the so-called diffuse interface method (see, e.g., [6]). This 
approach is based on the introduction of an order parameter (or phase field) which accounts for 
the presence of the fluid components in a sufficiently smooth way, that is, there is no sharp inter-
face separating them but a sufficiently thin region where there is some mixing. More precisely, 
denoting by ϕ the relative difference between the (rescaled) concentrations of the two compo-
nents, the regions {ϕ = 1} and {ϕ = −1} represent the pure phases. However, they are separated 
by diffuse interfaces where ϕ can take any intermediate value, i.e. ϕ ∈ (−1, 1). The interaction 
between the two components is a competition between the mixing entropy and demixing effects 
and can be represented by a potential energy density of the form

F(ϕ) = θ

2

[
(1 + ϕ) log(1 + ϕ) + (1 − ϕ) log(1 − ϕ)

] − θ0

2
ϕ2, (1.1)

for some 0 < θ < θ0. This is known as the Flory–Huggins potential (see [37,56]). Letting O be 
a (sufficiently) smooth domain of Rd , d = 2, 3, the Helmholtz free energy associated with the 
order parameter is then given by

E(ϕ) =
∫
O

(
ε2

2
|∇ϕ|2 + F(ϕ)

)
dy

where the first term accounts for the surface energy separating the phases. Here ε > 0 is related 
to the thickness of the diffuse interface. Then, the functional derivative of E(ϕ) is called the 
chemical potential and usually denoted by μ, that is,

μ = −ε2�ϕ + F ′(ϕ).

We can now introduce the two basic equations which govern the evolution of ϕ in some time 
interval (0, T ): the Cahn-Hilliard equation (see [19,20])

∂tϕ = �μ

and the Allen-Cahn equation (see [5])

∂tϕ = −μ.

Here we have assumed that the mobility is constant and equal to the unity. We also recall that, 
due to the singular behavior of the mixing entropy, the Flory-Huggins potential (1.1) is often 
approximated with a regular potential like

F(x) = 1
(x2 − 1)2, x ∈R. (1.2)
4
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This choice simplifies the mathematical treatment. However, when the total mass of ϕ is con-
served (e.g. in (1.5)) one cannot ensure that ϕ takes its values in the physical range [−1, 1]. Here 
we choose to keep the physically relevant potential also in view of extending our analysis to 
conserved Allen-Cahn equations where in (1.6) or in (1.9) μ is replaced by μ − μ̄, μ̄ being the 
spatial average of μ (see [69], see also [40,43] and references therein).

When we deal with a two-component fluid mixture, the equation for the phase variable is 
coupled with an equation for a suitably averaged velocity u of the fluid mixture itself. A well 
known choice is the Navier–Stokes system subject to a capillary force, known as Korteweg force, 
which can be represented as μ∇ϕ. More precisely, in the case of an incompressible mixture and 
taking ε = 1, constant density equal to the unity and constant viscosity ν > 0, we have

∂tu + (u · ∇)u − ν�u + ∇π = μ∇ϕ (1.3)

∇ · u = 0 (1.4)

coupled with

∂tϕ + u · ∇ϕ = �μ (1.5)

or

∂tϕ + u · ∇ϕ = −μ (1.6)

in (0, T ) × O, for some given T > 0. Here u represents the volume averaged velocity 
and π stands for the pressure. System (1.3)-(1.4) coupled with (1.5) is known as Cahn–
Hilliard–Navier–Stokes system, if (1.5) is replaced by (1.6) then the system is known as Allen–
Cahn–Navier–Stokes system. We recall that the standard boundary conditions are no-slip for u
and no-flux for (1.5) or (1.6).

Starting from the pioneering contribution [54], two-phase flow models have then been devel-
oped in several works. In particular, we refer to [49] for the Cahn–Hilliard–Navier–Stokes system 
and to [14] for the Allen–Cahn–Navier–Stokes system (see [4,41,64] for more refined models 
with unmatched densities and [52,53] for general thermodynamic derivations). The correspond-
ing mathematical analysis of such models has also experienced a remarkable development in the 
last decades. Concerning the Cahn–Hilliard–Navier–Stokes system with matched densities see 
[1,44] and references therein (see also [2,3,12,42,45,46] for more general models). Regarding the 
Allen–Cahn–Navier–Stokes system, we refer to [38,39] for the matched case (see also references 
therein) and to [34,35,43,55,58,59,61,62] for more refined models.

The deterministic description fails in rendering possible unpredictable oscillations at the mi-
croscopic level. These include, for example, the environmental noise due to temperature and 
configurational effects. The most natural way to take into account such factors was first proposed 
in [21] where a stochastic version of the Cahn–Hilliard equation was introduced (see also [15,16]
for nucleation effects). That equation has been analyzed under various assumptions in a number 
of contributions (see, for instance, [22,24,25,31,48] and, more recently, [71,73,75]). We also refer 
to [65,72,74] for related stochastic optimal control problems. The stochastic Allen-Cahn equation 
has been investigated in the framework of regular potentials (see, for instance, [13,50,51,66] for 
examples of well-posedness analysis, see also [18,70] for numerical schemes and simulations). 
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The singular potential has been analyzed in [10] (see also [9] for the double obstacle potential), 
while in [11] the separation property from the pure phases has been established.

Here we analyze a stochastic version of the Allen–Cahn–Navier–Stokes system characterized 
by two independent sources of randomness, the former acting on the fluid velocity and the latter 
acting on the order parameter dynamic to incorporate thermal fluctuations. More precisely, on 
account of (1.3)-(1.4) and (1.6), taking ν = 1 for the sake of simplicity, we consider the following 
system of stochastic partial differential equations

du + [−�u + (u · ∇)u + ∇π − μ∇ϕ] dt = G1(u)dW1 in (0, T ) ×O, (1.7)

∇ · u = 0 in (0, T ) ×O, (1.8)

dϕ + [u · ∇ϕ + μ] dt = G2(ϕ)dW2 in (0, T ) ×O, (1.9)

μ = −�ϕ + F ′(ϕ) in (0, T ) ×O, (1.10)

u = 0, ∇ϕ · n = 0 on (0, T ) × ∂O, (1.11)

u(0) = u0, ϕ(0) = ϕ0 in O. (1.12)

Here W1 and W2 are two independent cylindrical Wiener processes on some (possibly different) 
separable Hilbert spaces, and Gi is a suitable stochastically integrable process with respect to 
Wi , for i = 1, 2. Moreover, n stands for the outward normal unit vector to ∂O.

The presence of random terms in both the equations has been considered in [33] in the case 
of a smooth potential like (1.2) (see also [47,77,81] for modified models and [26,28,78,80]
for random terms only in the Navier-Stokes system). We also remind that the case of Cahn–
Hilliard–Navier–Stokes system for a compressible fluid has been studied in [32] (see, e.g., 
[27,79] for random terms only in the Navier-Stokes system in the case of regular potential).

Here, for system (1.7)–(1.12) with a potential like (1.1), we prove the existence of martin-
gale solutions in dimension two and three, as well as pathwise uniqueness and existence of 
probabilistically-strong solutions in dimension two. The main difficulties on the mathematical 
side are two. The former is the presence of noise also in the Allen–Cahn equation with singular 
potential: this requires some ad hoc ideas based on a suitable compensation between the degen-
eracy of the noise and the blow up of F ′′ at the endpoints (see (A3) below). The latter is the 
coupling term μ∇ϕ in the Navier-Stokes equation. Indeed, for the Allen–Cahn equation one can 
recover only a L2(0, T ; L2(O))-regularity for μ, while for the Cahn–Hilliard equation one gets 
μ ∈ L2(0, T ; H 1(O)). This results in the necessity to reformulate the first equation for the fluid 
in an alternative fashion, i.e., without employing μ explicitly. Let us point out that the com-
patibility condition between the noise and the potential is implicitly based on the constitutive 
assumption that the random forcing has to be tailored to the physically-relevant range of values 
for the phase-variable: in particular, it excludes the possibility of considering additive noise. This 
is due to the singularity of F ′ at ±1 and is of technical nature. The degeneracy of the noise in ±1
can be avoided in the context of conserved stochastic phase-field models with a multiplicative 
noise in divergence form: this is object of a further work in preparation.

We recall that, in [33], the authors proved the existence of a (dissipative) martingale solution 
for a similar problem with a smooth potential. Then, taking advantage of the smooth potential, 
they used the maximum principle to show that the range of the order parameter remains confined 
in [−1, 1]. Thus the global Lipschitz continuity of the potential and its derivatives holds. This 
fact was exploited to prove the weak-strong pathwise and in law uniqueness in dimension three. 
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However, if the potential is given by (1.1), then no global Lipschitz continuity can be achieved 
unless one can prove that the solution stays uniformly away from the pure phases, but this is not 
straightforward in the stochastic case (see [11] for the single stochastic Allen–Cahn equation).

Besides the existence and uniqueness of solutions, there are still a number of issues to inves-
tigate, which will be object of future work. For example, regularity properties of the solution 
and existence of analytically-strong solutions are open issues. The low regularity of the chemical 
potential μ in the Allen-Cahn equation that we have mentioned above seems to make the analy-
sis challenging. Yet, some higher regularity properties have been shown in the deterministic case 
(see [43]). Their extension to the stochastic case is currently under investigation. Moreover, in the 
spirit of [11], it would be interesting to establish some random strict separation property from the 
pure phases. To do this, suitable regularity results might be needed. It also worth pointing out that 
system (1.7)–(1.12) is the non-conserved version of the model, meaning that the spatial average 
of ϕ is not preserved during the evolution. The deterministic conserved version is now well-
understood (see [43]). Its stochastic counterpart will also be the subject of further analysis. This 
issue will require a tuning of the diffusion coefficient G2 (see for example [7]). Finally, we point 
out that also more general versions of the stochastic Cahn–Hilliard–Navier–Stokes system might 
be considered on account of the recent advances in the analysis of the stochastic Cahn–Hilliard 
equation.

The content of this work is structured as follows. In Section 2, we introduce the notation used 
throughout the work and state the main results. Sections 3 and 4 are devoted to the proof of 
existence of a martingale solutions and, in dimension two, of a probabilistically-strong solution, 
respectively.

2. Preliminaries and main results

2.1. Functional setting and notation

For any (real) Banach space E, its (topological) dual is denoted by E∗ and the duality pairing 
between E∗ and E by 〈·, ·〉E∗,E . If E is a Hilbert space, then the scalar product of E is denoted 
by (·, ·)E . For every couple of separable Hilbert spaces E, F the space of Hilbert-Schmidt op-
erators from E to F is denoted by the symbol L 2(E, F) and endowed with its canonical norm 
‖·‖L 2(E,F ). Let (	, F , (Ft )t∈[0,T ], P ) be a filtered probability space satisfying the usual con-
ditions (namely it is saturated and right-continuous), with T > 0 being a prescribed final time. 

We will use the symbol L= to denote identity in law for random variables. Throughout the paper, 
W1 and W2 are independent cylindrical Wiener process on some separable Hilbert spaces U1
and U2, respectively. For convenience, we fix once and for all two complete orthonormal sys-
tems {u1

j }j∈N on U1 and {u2
j }j∈N on U2. We denote by P the progressive sigma algebra on 

	 × [0, T ]. For every s, r ∈ [1, +∞] and for every Banach space E the symbols Ls(	; E) and 
Lr(0, T ; E) indicate the usual spaces of strongly measurable Bochner-integrable functions on 
	 and (0, T ), respectively. For all s, r ∈ [1, +∞) we write Ls

P(	; Lr(0, T ; E)) to stress that 
measurability is intended with respect to P . For all s ∈ (1, +∞) and for every separable and 
reflexive Banach space E we also define

Ls
w(	;L∞(0, T ;E∗)) := {

v : 	 → L∞(0, T ;E∗)

weakly* measurable : ‖v‖L∞(0,T ;E∗) ∈ Ls(	)
}

,
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which yields by [30, Thm. 8.20.3] the identification

Ls
w(	;L∞(0, T ;E∗)) =

(
Ls/(s−1)(	;L1(0, T ;E))

)∗
.

In case of distribution-valued processes, for every s ∈ [1, +∞), r ∈ (0, +∞), and q ∈ (1, +∞]
we set

Ls
P (	;W−r,q(0, T ;E∗)) := {

v : 	 → W−r,q(0, T ;E∗) weakly* measurable :
v ∈ Ls(	,Ft ;W−r,q(0, t;E)) ∀ t ∈ [0, T ]} .

Let d = 2, 3 and consider a bounded domain O ⊂ Rd with smooth boundary ∂O and out-
ward normal unit vector n. The spatiotemporal domains generated by O are denoted by 
Q := (0, T ) × O and Qt := (0, t) × O for all t ∈ (0, T ]. Moreover, we employ the classical 
notation Ws,p(O), where s ∈ R and p ∈ [1, +∞], for the real Sobolev spaces and we denote 
by ‖·‖Ws,p(O) their canonical norms. We define the Hilbert space Hs(O) := Ws,2(O), s ∈ R, 
endowed with its canonical norm ‖·‖Hs(O), and indicate by H 1

0 (O) the closure of C∞
0 (O) in 

H 1(O). We now define the functional spaces

H := L2(O) , V1 := H 1(O) , V2 :=
{
ψ ∈ H 2(O) : ∂nψ = 0 a.e. on ∂O

}
,

endowed with their standard norms ‖·‖H , ‖·‖V1
, and ‖·‖V2

, respectively. As usual, we identify 
the Hilbert space H with its dual through the Riesz isomorphism, so that we have the variational 
structure

V2 ↪→ V1 ↪→ H ↪→ V ∗
1 ↪→ V ∗

2 ,

with dense and compact embeddings (both in the cases d = 2 and d = 3). We will also denote 
by A : V1 → V ∗

1 the variational realization of the −� with homogeneous Neumann boundary 
condition, namely

〈Aψ,φ〉V ∗
1 ,V1

=
∫
O

∇ψ · ∇φ , ψ,φ ∈ V1 .

For any Banach space E, we use the symbol E for the product space Ed . We also need to define 
the following solenoidal vector-valued spaces

H σ := {v ∈ C∞
0 (O) : ∇ · v = 0 in O}L

2(O)
, V σ := {v ∈ C∞

0 (O) : ∇ · v = 0 in O}H
1(O)

.

The space H σ is endowed with the norm ‖·‖H σ
of H and its respective scalar product (·, ·)Hσ . 

By means of the Poincaré inequality, on the space V σ we can use the norm ‖v‖V σ
:= ‖∇v‖L2(O), 

v ∈ V σ , induced by the scalar product (·, ·)V σ . The d-dimensional realisation of the −� with 
homogeneous Dirichlet boundary condition L : H 1

0(O) → (H 1
0(O))∗ is defined as

〈Lv,w〉 1 ∗ 1 := (∇v,∇w)H , v,w ∈ H 1(	) .
(H 0(	)) ,H 0(	) 0
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Furthermore, we also point out that for any u ∈ (H 1
0(	))∗ and v ∈ [

C∞
0 (	)

]d we have

〈u,v〉(H 1
0(	))∗,H 1

0(	) = 〈u,v〉([
C∞

0 (	)
]d)∗

,
[
C∞

0 (	)
]d .

The Stokes operator A : V σ → V ∗
σ is defined as the canonical Riesz isomorphism of V σ , i.e.

〈Av,w〉V ∗
σ ,V σ

:= (∇v,∇w)H , v,w ∈ V σ .

Employing the spectral properties of the operator A, as customary, we also define the family of 
operators As for any s ∈ R. In particular, if {βk, ek}k∈N+ ⊂ R × V σ denote the eigencouples of 
A, where {ek}k∈N+ is an orthonormal basis of H σ and an orthogonal basis of V σ , we introduce 
for any s ≥ 0 the family of Hilbert spaces

D(As) :=
{

v ∈ H σ : v =
∞∑
i=1

ciei and
∞∑
i=1

β2s
i |ci |2 < +∞

}
,

and we set D(A−s) = D(As)∗. Next, for all s ≥ 0, we define the operators

As : D(As) → H σ , v =
∞∑
i=1

ciei �→ Asv :=
∞∑
i=1

βs
i ciei .

Hereafter, we recall a number of standard facts:

(i) if s = 1, then the Hilbert space D(A) = {v ∈ H σ : Av ∈ H σ } = H 2(O) ∩ V σ denotes the 
so-called part of A in H σ ;

(ii) if s = 1
2 , then we have D(A

1
2 ) = V σ and D(A− 1

2 ) = V ∗
σ ;

(iii) if s = 0, then A0 is the identity operator in Hσ so that D(A0) = H σ ;
(iv) if s = −1, then A−1 coincides with the inverse of the Stokes operator on V ∗

σ and extends it 
on D(A−1).

In light of the previous considerations, using Hσ as pivot space, we also have the general varia-
tional structure

D(As) ↪→ D(At ) ↪→ H σ ≡ D(A0) ↪→ D(A−t ) ↪→ D(A−s)

for any s > t > 0, with dense and compact embeddings in two and three spatial dimensions. 
Finally, we remind that, owing to the Korn inequality, we have

‖v‖V σ
= ‖∇v‖H ≤ √

2‖Dv‖H ≤ √
2‖∇v‖H ∀v ∈ V σ ,

where Dv = 1
2 (∇v + (∇v)t ) denotes the symmetric gradient. Furthermore, we define the usual 

Stokes trilinear form b on V σ × V σ × V σ

b(u,v,w) :=
∫

(u · ∇)v · w =
d∑

i,j=1

∫
ui

∂vi

∂xj

wj , u,v,w ∈ V σ ,
O O
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and the associated bilinear form B : V σ × V σ → V ∗
σ as

〈B(u,v),w〉V ∗
σ ,V σ

:= b(u,v,w) , u,v,w ∈ V σ .

Let us recall that b(u, v, w) = −b(u, w, v) for all u, v, w ∈ V σ , from which it follows in particu-
lar that b(u, v, v) = 0 for all u, v ∈ V σ . Moreover, we point out that thanks to the usual functional 
embeddings it holds that B : V σ ×V σ → L

6
5 (O), hence, in particular, that B : V σ ×V σ → V ∗

1.
We now report for the reader’s convenience a basic embedding result and its proof. This will be 
useful in the forthcoming analysis.

Lemma 2.1. Let r > 1 and let X be a Banach space. For every p > 1, there exists α = α(p, r) ∈
(0, 1) such that W 1,r (0, T ; X) ↪→ Wα,p(0, T ; X). In particular, if p ≤ r then α is any quantity 
in (0, 1), and if p > r then α = r

p
.

Proof. The embedding holds trivially for every α ∈ (0, 1) if p = r . The same follows in the case 
1 < p < r from the chain of embeddings

W 1,r (0, T ;X) ↪→ W 1,p(0, T ;X) ↪→ Wα,p(0, T ;X).

Let now p > r . If α ∈ (0, 1), q ∈ [1, +∞] satisfy

1

p
= 1 − α

q
+ α

r
,

then the fractional Gagliardo-Nirenberg inequality (see [17, Theorem 1]) entails that

‖f ‖Wα,p(0,T ) ≤ C‖f ‖1−α
Lq(0,T )‖f ‖α

W 1,r (0,T )
,

for any f ∈ W 1,r (0, T ). Taking into account the embedding

W 1,r (0, T ) ↪→ C0([0, T ]) ↪→ L∞(0, T ),

valid for every r > 1, we infer that the right hand side of the inequality is finite for every q ∈
[1, +∞]. Moreover, we also get

‖f ‖Wα,p(0,T ) ≤ C‖f ‖W 1,r (0,T ).

If we set q = +∞, then we have

α = r

p
.

If u ∈ W 1,r (0, T ; X) the claim follows applying the proved inequality to t �→ f (t) =
‖u(t)‖X . �
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Finally, we shall make precise the rigorous interpretation of the stochastic terms (see (1.7) and 
(1.9)). As a cylindrical process on Ui , i = 1, 2, Wi admits the following representation

Wi =
+∞∑
k=0

bku
i
k, (2.1)

where {bk}k∈N is a family of real and independent Brownian motions. However, it is well known 
that (2.1) does not converge in Ui , in general. That being said, it always exists a larger Hilbert 
space Ui

0, such that Ui ↪→ Ui
0 with Hilbert-Schmidt embedding ιi , such that we can identify Wi

as a Q0
i -Wiener process on Ui

0, for some trace-class operator Q0
i (see [63, Subsections 2.5.1]). 

Actually, it holds that Q0
i = ιi ◦ ι∗i . In the following, we may implicitly assume this extension by 

simply saying that Wi is a cylindrical process on Ui . This holds also for stochastic integration 
with respect to Wi . The symbol

·∫
0

B(s)dWi(s) :=
·∫

0

B(s) ◦ ι−1
i (s)dWi(s),

for every progressively measurable process B ∈ L2(	; L2(0, T ; L 2(U, K))), where K is any 
(real) Hilbert space. The definition is well posed and does not depend on the choice of U0

i or ιi
(see [63, Subsection 2.5.2]).

2.2. Structural assumptions

The following assumptions are in order throughout the paper.

(A1) The potential F : [−1, 1] → [0, +∞) is of class C0([−1, 1]) ∩ C2(−1, 1) with F ′(0) = 0
and satisfies

lim
x→(±1)∓

F ′(x) = ±∞.

Furthermore, there exists cF > 0 such that

F ′′(x) ≥ −cF , x ∈ (−1,1).

(A2) The operator G1 : H σ → L 2(U1, H σ ) is linearly bounded in H σ , namely there exists 
CG1 > 0 such that

‖G1(v)‖L 2(U1,H σ ) ≤ CG1

(
1 + ‖v‖H σ

)
for any v ∈ H σ . Moreover, taking Y = H σ or Y = V ∗

σ , we assume that G1 : Y →
L 2(U1, Y) is L1-Lipschitz-continuous for some positive constant L1.

(A3) Setting B as the closed unit ball in L∞(O), the operator G2 : B → L 2(U2, H) satisfies

G2(ψ)[u2] = gk(ψ) ∀ k ∈N+ ∀ψ ∈ B ,
k
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where the sequence {gk}k∈N+ ⊂ W 1,∞(−1, 1) is such that

gk(±1) = 0 , F ′′g2
k ∈ L∞(−1,1) ∀ k ∈N+ ,

and

L2
2 :=

∞∑
k=1

(
‖gk‖2

W 1,∞(−1,1)
+

∥∥∥F ′′g2
k

∥∥∥
L∞(−1,1)

)
< +∞ .

In particular, note that this implies that G2 : B → L 2(U2, H) is L2-Lipschitz-continuous 
with respect to the H -metric on B, and also G2(B∩V1) ⊂ L 2(U2, V1). With a slight abuse 
of notation, we will use the symbol

∇G2 : B ∩ V1 → L 2(U2,H )

to indicate the operator

∇G2(ψ)[u2
k] := ∇gk(ψ) = g′

k(ψ)∇ψ , k ∈ N+ , ψ ∈ B ∩ V1 .

Remark 2.2. Let us point out that the physically relevant choice of F (see (1.1)) satisfies (A1)
and the compatibility condition in (A3), up to a suitable extension by right (or left) continuity 
at the boundary of [−1, 1] and some additive constant to grant positivity (see, e.g., [71, Remark 
2.3]).

Remark 2.3. If Y = H σ in (A2), then linear boundedness is directly implied by Lipschitz conti-
nuity.

2.3. Main results

We first introduce suitable notions of solution for problem (1.7)-(1.11). The first is a martin-
gale solution, the second is a probabilistically-strong solution.

Definition 2.4. Let p ≥ 1 and let (u0, ϕ0) satisfy

u0 ∈ Lp(	,F0;H σ ) , (2.2)

ϕ0 ∈ Lp(	,F0;V1) , F (ϕ0) ∈ Lp/2(	,F0;L1(O)) . (2.3)

A martingale solution to problem (1.7)-(1.11) with respect to the initial datum (u0, ϕ0) is a family

((
	̂, F̂ , (F̂t )t∈[0,T ], P̂

)
, Ŵ1, Ŵ2, û, ϕ̂

)
,

where: (	̂, F̂ , (F̂t )t∈[0,T ], ̂P ) is a filtered probability space satisfying the usual conditions; 
Ŵ1, Ŵ2 are two independent cylindrical Wiener processes on U1 and U2, respectively; the pair 
of processes (̂u, ̂ϕ) satisfies
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û ∈ Lp
w(	̂;L∞(0, T ;H σ )) ∩ L

p

P (	̂;L2(0, T ;V σ )) , (2.4)

ϕ̂ ∈ L
p

P (	̂;C0([0, T ];H)) ∩ Lp
w(	̂;L∞(0, T ;V1)) ∩ L

p

P (	̂;L2(0, T ;V2)) , (2.5)

|ϕ̂(ω, x, t)| < 1 for a.a. (ω, x, t) ∈ 	̂ ×O × (0, T ) , (2.6)

μ̂ := −�ϕ̂ + F ′(ϕ̂) ∈ L
p

P (	̂;L2(0, T ;H)) , (2.7)

(̂u(0), ϕ̂(0))
L= (u0, ϕ0) on H σ × V1 ; (2.8)

and, for every v ∈ V σ and ψ ∈ V1, it holds that

(̂u(t),v)H σ +
t∫

0

⎡⎣〈Aû(s),v〉V ∗
σ ,V σ

+ 〈B (̂u(s), û(s)),v〉V ∗
σ ,V σ

−
∫
O

μ̂(s)∇ϕ̂(s) · v
⎤⎦ ds

= (̂u(0),v)H σ +
⎛⎝ t∫

0

G1(̂u(s))dŴ1(s),v

⎞⎠
H σ

∀ t ∈ [0, T ] , P̂ -a.s. (2.9)

(ϕ̂(t),ψ)H +
t∫

0

∫
O

[̂u(s) · ∇ϕ̂(s) + μ̂(s)]ψ ds

= (ϕ̂(0),ψ)H +
⎛⎝ t∫

0

G2(ϕ̂(s))dŴ2(s),ψ

⎞⎠
H

∀ t ∈ [0, T ] , P̂ -a.s. (2.10)

Definition 2.5. Let p ≥ 1 and let (u0, ϕ0) satisfy (2.2)-(2.3). A probabilistically-strong solution 
to problem (1.7)–(1.11) with respect to the initial datum (u0, ϕ0) is a pair of processes (u, ϕ)

such that

u ∈ Lp
w(	;L∞(0, T ;H σ )) ∩ L

p

P (	;L2(0, T ;V σ )) , (2.11)

ϕ ∈ L
p

P (	;C0([0, T ];H)) ∩ Lp
w(	;L∞(0, T ;V1)) ∩ L

p

P (	;L2(0, T ;V2)) , (2.12)

|ϕ(ω,x, t)| < 1 for a.a. (ω, x, t) ∈ 	 ×O × (0, T ) , (2.13)

μ := −�ϕ + F ′(ϕ) ∈ L
p

P (	;L2(0, T ;H)) , (2.14)

(u(0), ϕ(0)) = (u0, ϕ0) , (2.15)

and

(u(t),v)H σ +
t∫

0

⎡⎣〈Au(s),v〉V ∗
σ ,V σ

+ 〈B(u(s),u(s)),v〉V ∗
σ ,V σ

−
∫
O

μ(s)∇ϕ(s) · v
⎤⎦ ds

= (u0,v)H σ +
⎛⎝ t∫

G1(u(s))dW1(s),v

⎞⎠ ∀ t ∈ [0, T ] , P -a.s. (2.16)
0 H σ
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(ϕ(t),ψ)H +
t∫

0

∫
O

[u(s) · ∇ϕ(s) + μ(s)]ψ ds

= (ϕ0,ψ)H +
⎛⎝ t∫

0

G2(ϕ(s))dW2(s),ψ

⎞⎠
H

∀ t ∈ [0, T ] , P -a.s. (2.17)

for every v ∈ V σ and ψ ∈ V1.

Remark 2.6. Note that in Definitions 2.4 and 2.5 one has in particular that ̂u ∈ C0
w([0, T ];H σ )

P̂ -almost surely and u ∈ C0
w([0, T ];H σ ) P -almost surely, respectively. Here, the subscript “w” 

stands for weak continuity in time. Thus the initial conditions (2.8) and (2.15) make sense.

The first main result is the existence of a martingale solution.

Theorem 2.7. Assume (A1)-(A3) and let p > 2. Then, for every initial datum (u0, ϕ0) satisfying 
(2.2)-(2.3) there exists a martingale solution ((	̂, F̂ , (F̂t )t∈[0,T ], ̂P ), Ŵ1, Ŵ2, ̂u, ̂ϕ) to problem 
(1.7)–(1.12) satisfying the energy inequality

1

2
sup

τ∈[0,t]
Ê‖û(τ )‖2

H σ
+ 1

2
sup

τ∈[0,t]
Ê‖∇ϕ̂(τ )‖2

H + sup
τ∈[0,t]

Ê‖F(ϕ̂(τ ))‖L1(O)

+ Ê

t∫
0

[
‖∇û(s)‖2

H σ
+ ‖μ̂(s)‖2

H

]
ds

≤
(

C2
G1

+ L2
2

2
|O|

)
t + 1

2
Ê‖û0‖2

H σ
+ 1

2
Ê‖∇ϕ̂0‖2

H + Ê‖F(ϕ̂0)‖L1(O)

+ C2
G1

Ê

t∫
0

‖û(τ )‖2
H σ

dτ + L2
2

2
Ê

t∫
0

‖∇ϕ̂(τ )‖2
H dτ (2.18)

for every t ∈ [0, T ], P̂ -almost surely. Here |O| stands for the Lebesgue measure of O. Further-

more, there exists π̂ ∈ L
p
2
P (	̂; W−1,∞(0, T ; H)) such that

T∫
0

〈
∂t (̂u − G1(̂u) · Ŵ1)(t) + Lû(t) + B (̂u(t), û(t)),v(t)

〉
(H 1

0(O))∗,H 1
0(O)

dt

= (̂u0,v)H σ +
T∫

0

∫
O

μ̂(t)∇ϕ̂(t) · v(t)dt + 〈π̂ ,divv〉([
C∞

0 ((0,T )×O)
]d)∗

,
[
C∞

0 ((0,T )×O)
]d

(2.19)

for every v ∈ [
C∞((0, T ) ×O)

]d
, P̂ -almost surely. Finally, the following estimate holds:
0
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‖π̂‖
L

p
2 (	̂;W−1,∞(0,T ;H))

≤ C
(

1 + ‖û‖
L

p
2 (	̂;L∞(0,T ;H σ ))

+ ‖û‖
L

p
2 (	̂;L2(0,T ;V σ ))

+ ‖û‖2
Lp(	̂;L2(0,T ;V σ ))

+‖ϕ̂‖2
Lp(	̂;L2(0,T ;V2))

+ ‖F ′(ϕ̂)‖2
Lp(	̂;L2(0,T ;H))

)
. (2.20)

Remark 2.8. The above result still holds if the viscosity depends on ϕ in a smooth way and 
it is bounded from below by a positive constant. Moreover, we recall that, in [33], the energy 
inequality is written P -a.s. in a distributional sense.

The second is a stronger result in dimension two, namely, the existence of a (unique) 
probabilistically-strong solution.

Theorem 2.9. Assume (A1)-(A3), let d = 2, p > 2, and Y = V ∗
σ in (A2). Then, for every ini-

tial datum (u0, ϕ0) satisfying (2.2)–(2.3), there exists a unique probabilistically-strong solution 

(u, ϕ) for problem (1.7)–(1.12) and a pressure π ∈ L
p
2
P (	; W−1,∞(0, T ; H)), which satisfy 

on the original probability space (	, F , P ) the analogous of the energy inequality (2.18), the 
pressure-variational formulation (2.19), and the estimate (2.20).

Remark 2.10. Referring to [33], we observe that a more general G1(u, ϕ) can be considered. 
Instead, considering G2(u, ϕ) would require appropriate assumptions on account of (A3). For 
instance, in place of gk(ψ) we could suppose to have gk(ψ)hk(u) for a suitable {hk}k∈N+ . Fur-
thermore, the nature the noises W1 and W2 may also be generalised. As for W1, one could in 
principle consider a general infinite-dimensional martingale M1, by including for example jump-
diffusion noises or Levy-type noises. For W2 the extension is more subtle, due to the presence of 
the singular term F ′′ in the Itô formula: we believe that the techniques may also apply to a con-
tinuous square-integrable martingale M2 instead, but the extension to discontinuous martingales 
requires a ad hoc treatment. This is surely an interesting matter to pursue and will be object of 
future investigation.

3. Proof of Theorem 2.7

Here we prove the existence of martingale solutions to problem (1.7)–(1.12). For the sake of 
clarity, the proof is split into several steps.

3.1. Regularization of the singular potential

First of all, note that assumption (A1) implies that the function

γ : (−1,1) → R , γ (x) := F ′(x) + cF x , x ∈ (−1,1) ,

can be identified with a maximal monotone graph in R ×R. Consequently, one can consider, for 
every λ ∈ (0, 1), the resolvent operator and the Yosida approximation of β , defined as follows

Jλ, γλ : R→ R , Jλ(x) := (I + λγ )−1(x) , γλ(x) := λ−1(x − Jλ(x)) , x ∈ R .
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For notation and general properties of monotone operators we refer the reader to [8]. For every 
λ ∈ (0, 1), we define an approximation of F as follows

Fλ : R→ [0,+∞) , Fλ(x) := F(0) +
x∫

0

γλ(s) ds − cF

2
x2 , x ∈R . (3.1)

Thus it holds

F ′
λ(x) = γλ(x) − cF x ∀x ∈R . (3.2)

In order to preserve the scaling of the Yosida-approximation on F ′, we analogously define the 
λ-approximation of G2 by setting

G2,λ := G2 ◦ Jλ : H → L 2(U2,H). (3.3)

Notice that, by assumption (A3) and the non-expansivity of Jλ, the operator G2,λ is L2-Lipschitz-
continuous (therefore uniformly in λ), and converges pointwise to G2 as λ → 0+. Now, we 
consider the λ-approximated (formal) problem

duλ + [−�uλ + (uλ · ∇)uλ + ∇pλ − μλ∇ϕλ] dt = G1(uλ)dW1 in (0, T ) ×O, (3.4)

∇ · uλ = 0 in (0, T ) ×O, (3.5)

dϕλ + [uλ · ∇ϕλ + μλ] dt = G2,λ(ϕλ)dW2 in (0, T ) ×O, (3.6)

μλ = −�ϕλ + F ′
λ(ϕλ) in (0, T ) ×O, (3.7)

uλ = 0, ∂nϕλ = 0 in (0, T ) × ∂O,

(3.8)

uλ(0) = u0 , ϕλ(0) = ϕ0 in O. (3.9)

3.2. Faedo-Galerkin approximation

A discretization scheme is now applied to problem (3.4)-(3.9). Let us consider the (countably 
many) eigencouples of the negative Laplace operator with homogeneous Neumann boundary 
condition, namely the couples {(αj , ej )}j∈N+ ⊂ R × V2 such that{

−�ej = αjej , in O,

∂nej = 0 on ∂O,
j ∈ N+.

Analogously, we also consider the (countably many) eigencouples of the Stokes operator, namely 
the couples {(βk, ek)}k∈N+ ⊂ R × V σ , and {πk}k∈N+ ⊂ L2

0(O) such that⎧⎪⎨⎪⎩
−�ek + ∇πk = βkek in O,

∇ · ek = 0 in O,

e = 0 on ∂O,

k ∈N+.
k
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It is well known that, up to a renormalization, the set {ej }j∈N+ (resp. {ek}k∈N+ ) is an orthonormal 
system in H (resp. H σ ) and an orthogonal system in V1 (resp. V σ ). Let n ∈ N+ and consider 
the finite-dimensional spaces Zn := span{e1, . . . , en} and Zn := span{e1, . . . , en}, both endowed 
with the L2-norm. In order to approximate the stochastic perturbation, we define the operators 
G1,n and G2,λ,n as

G1,n : Zn → L 2(U1,H σ ), G2,λ,n : Zn → L 2(U2,H)

and such that

G1,n(v)u1
k :=

n∑
j=1

(G1(v)u1
k, ej )H σ ej , G2,λ,n(v)u2

k :=
n∑

j=1

(G2,λ(v)u2
k, ej )H ej

for any k ∈ N , v ∈ Zn and v ∈ Zn. Notice that, fixed any v ∈ Zn and v ∈ Zn, G1,n(v) and 
G2,λ,n(v) are actually well defined as elements of L 2(U1, Zn) and L 2(U2, Zn), respectively. 
Indeed, for instance,

‖G1,n(v)‖2
L 2(U1,Zn)

= ‖G1,n(v)‖2
L 2(U1,H σ )

=
+∞∑
k=1

‖G1,n(v)u1
k‖2

H σ

=
+∞∑
k=1

n∑
j=1

|(G1(v)u1
k, ej )H σ |2

≤
+∞∑
k=1

+∞∑
j=1

|(G1(v)u1
k, ej )H σ |2 = ‖G1(v)‖2

L 2(U1,H σ )
.

(3.10)

Moreover, since G1 is L1-Lipschitz continuous in the sense of assumption (A2) and the orthog-
onal projection on Zn is non-expansive as an operator from V σ to itself, we can deduce by the 
same argument that G1,n is also L1-Lipschitz continuous as an operator from Y to L 2(U1, Y). 
Similar considerations also apply to G2,λ,n. More precisely, we have

Proposition 3.1. Let λ ∈ (0, 1) and n ∈N+. The operators

G1,n : Zn → L 2(U1,Zn), G2,λ,n : Zn → L 2(U2,Zn)

are well defined and uniformly Lipschitz continuous with respect to n and λ. In particular, G1,n

is L1-Lipschitz continuous from Y to L 2(U1, Y) and G2,λ,n is L2-Lipschitz continuous from H
to L 2(U1, H).

Next, we define suitable projections (orthogonal with respect to the L2-inner products) of initial 
data (evaluated at some point in 	) on the discrete spaces Zn and Zn, namely, for all n ∈ N+, 
we set

u0,n =
n∑

(u0, ej )H σ ej , ϕ0,n =
n∑

(ϕ0, ej )H ej .
j=1 j=1
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It is now possible to formulate the discretized problem, which reads

duλ,n + [−�uλ,n + (uλ,n · ∇)uλ,n + ∇pλ,n − μλ,n∇ϕλ,n

]
dt = G1,n(uλ,n)dW1

in (0, T ) ×O, (3.11)

∇ · uλ,n = 0 in (0, T ) ×O, (3.12)

dϕλ,n + [
uλ,n · ∇ϕλ,n + μλ,n

]
dt = G2,λ,n(ϕλ,n)dW2 in (0, T ) ×O, (3.13)

μλ,n = −�ϕλ,n + F ′
λ(ϕλ,n) in (0, T ) ×O, (3.14)

uλ,n = 0, ∂nϕλ,n = 0 in (0, T ) × ∂O, (3.15)

uλ,n(0) = u0,n , ϕλ,n(0) = ϕ0,n in O. (3.16)

The variational formulation of problem (3.11)-(3.16) is given by

(uλ,n(t),v)H σ
+

t∫
0

[〈
Auλ,n(s),v

〉
V ∗

σ ,V σ
+ 〈

B(uλ,n(s),uλ,n(s)),v
〉
V ∗

σ ,V σ

−
∫
O

μλ,n(s)∇ϕλ,n(s) · v
⎤⎥⎦ ds

= (u0,n,v)H σ
+

⎛⎝ t∫
0

G1,n(uλ,n(s))dW1(s),v

⎞⎠
H σ

∀ t ∈ [0, T ] , P -a.s. (3.17)

(ϕλ,n(t),ψ)H +
t∫

0

∫
O

[
uλ,n(s) · ∇ϕλ,n(s) + μλ,n(s)

]
ψ ds

= (ϕ0,n,ψ)H +
⎛⎝ t∫

0

G2,λ,n(ϕλ,n(s))dW2(s),ψ

⎞⎠
H

∀ t ∈ [0, T ] , P -a.s. (3.18)

for every v ∈ Zn and ψ ∈ Zn. Fixed any λ ∈ (0, 1) and n ∈N+, we search for a weak solution to 
(3.17)-(3.18) of the form

uλ,n =
n∑

j=1

a
j
λ,nej , ϕλ,n =

n∑
j=1

b
j
λ,nej , μλ,n =

n∑
j=1

c
j
λ,nej , (3.19)

where

aλ,n = (a1
λ,n, a

2
λ,n, ..., a

n
λ,n) : 	 × [0, T ] →Rn,

bλ,n = (b1
λ,n, b

2
λ,n, ..., b

n
λ,n) : 	 × [0, T ] →Rn,

cλ,n = (c1
λ,n, c

2
λ,n, ..., c

n
λ,n) : 	 × [0, T ] →Rn,
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are suitable stochastic processes. Inserting (3.19) into (3.17)-(3.18) and choosing as test functions 
ψ = ei and v = ei for each i ∈ {1, . . . , n}, we deduce that the three processes aλ,n, bλ,n and cλ,n

satisfy the system of 3n ordinary stochastic differential equations

dai
λ,n + βia

i
λ,n +

n∑
j=1

n∑
k=1

a
j
λ,na

k
λ,nb(ej , ek, ei ) −

n∑
j=1

n∑
k=1

c
j
λ,nb

k
λ,n

∫
O

ej∇ek · ei

=
⎛⎝G1,n

⎛⎝ n∑
j=1

a
j
λ,nej

⎞⎠ dW1, ei

⎞⎠
H σ

(3.20)

dbi
λ,n + ci

λ,n =
⎛⎝G2,λ,n

⎛⎝ n∑
j=1

b
j
λ,nej

⎞⎠ dW2, ei

⎞⎠
H

(3.21)

ci
λ,n = αib

i
λ,n +

∫
O

F ′
λ

⎛⎝ n∑
j=1

b
j
λ,nej

⎞⎠ ei, (3.22)

ai
λ,n(0) = (u0, ei )H σ (3.23)

bi
λ,n(0) = (ϕ0, ei)H (3.24)

Let us point out that, in order to derive (3.20)-(3.24), we exploited the fact that, for every choice 
of integers j and k between 1 and n,

∫
O

ej · ∇ek dx = −
∫
O

ek∇ · ej dx +
∫

∂O

ekej · n dσ = 0, (3.25)

as well as the orthogonality in V σ of the basis {ej }j∈N . The stochastic integrals in (3.20)-(3.21)
have to be regarded as Gi

1,λ,n dW1 and Gi
2,λ,n dW2 for every i = 1, . . . , n, where

Gi
1,λ,n : Zn → L 2(U1,R), Gi

1,λ,n(uλ,n)u
1
k :=

⎛⎝G1,n

⎛⎝ n∑
j=1

a
j
λ,nej

⎞⎠u1
k, ei

⎞⎠
H σ

and

Gi
2,λ,n : Zn → L 2(U2,R), Gi

2,λ,n(ϕλ,n)u
2
k :=

⎛⎝G2,λ,n

⎛⎝ n∑
j=1

b
j
λ,nej

⎞⎠u2
k, ei

⎞⎠
H

,

for every k ∈ N . By Lipschitz continuity of all the nonlinearities appearing in (3.20)-(3.24), the 
standard theory of abstract stochastic evolution equations applies. Therefore, we are able to infer 
that
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Proposition 3.2. For every λ ∈ (0, 1) and n ∈N+, there exists a unique triplet of (Ft )t -adapted 
processes aλ,n, bλ,n, cλ,n satisfying problem (3.20)-(3.24). Furthermore, for every r ≥ 2, we 
have

aλ,n,bλ,n, cλ,n ∈ Lr(	;C0([0, T ];Rn)),

implying

uλ,n ∈ Lr(	;C0([0, T ];Zn)), ϕλ,n,μλ,n ∈ Lr(	;C0([0, T ];Zn)).

3.3. Uniform estimates with respect to n

First of all, we prove some uniform estimates with respect to the Galerkin parameter n, keep-
ing λ ∈ (0, 1) fixed. Hereafter, the symbol C (possibly numbered) denote positive constants 
whose special dependencies are explicitly pointed out when necessary. Its dependence on λ is al-
ways explicited by the symbol Cλ. In some cases, in order to ease notation, we may use the same 
symbol to denote different constants throughout the same argument. In any case, such constants 
are always independent of n.

First estimate. We exploit the Itô formula for the H -norm of ϕλ,n given in [63, Theorem 4.2.5]. 
This gives

1

2
‖ϕλ,n(t)‖2

H +
t∫

0

[
‖∇ϕλ,n(τ )‖2

H + (
ϕλ,n(τ ),F ′

λ(ϕλ,n(τ ))
)
H

]
dτ

= 1

2
‖ϕ0,n‖2

H +
t∫

0

(
ϕλ,n(τ ),G2,λ,n(ϕλ,n(τ ))dW2(τ )

)
H

+ 1

2

t∫
0

‖G2,λ,n(ϕλ,n(τ ))‖2
L 2(U2,H)

dτ. (3.26)

Let us now address the above equality term by term. First of all, recalling (3.2) and that F ′
λ(0) =

0, we find (
ϕλ,n(τ ),F ′

λ(ϕλ,n(τ ))
)
H

≥ −cF ‖ϕλ,n(τ )‖2
H . (3.27)

Next, owing to (3.10) and (A3), we have

‖G2,λ,n(ϕλ,n(τ ))‖2
L 2(U2,H)

≤ ‖G2,λ(ϕλ,n(τ ))‖2
L 2(U2,H)

=
+∞∑
k=1

‖gk(Jλ(ϕλ,n(τ )))‖2
H

≤
+∞∑
k=1

‖gk‖2
W 1,∞(−1,1)

|O|

≤ L2|O|.

(3.28)
2
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Finally, by 1-Lipschitz-continuity of the projection �n : H → H , it follows

‖ϕ0,n‖2
H ≤ ‖ϕ0‖2

H . (3.29)

Thus, combining (3.27)-(3.29) with (3.26), letting p ∈ [2, +∞), multiplying the resulting in-
equality by two, taking p

2 -powers, the supremum on the interval [0, t] and expectations, we 
arrive at

E sup
τ∈[0,t]

‖ϕλ,n(τ )‖p
H

+E

∣∣∣∣∣∣
t∫

0

‖∇ϕλ,n(τ )‖2
H dτ

∣∣∣∣∣∣
p
2

≤ C

⎡⎢⎣1 +E‖ϕ0‖p
H

+E

t∫
0

‖ϕλ,n(τ )‖p
H

dτ +E sup
s∈[0,t]

∣∣∣∣∣∣
s∫

0

(
ϕλ,n(τ ),G2,λ,n(ϕλ,n(τ ))

)
H

dW2(τ )

∣∣∣∣∣∣
p
2

⎤⎥⎦ ,

where C depends on p and also on cF , L2, |O|, T . The Burkholder-Davis-Gundy and Hölder 
inequalities jointly with (3.28) entail

E sup
s∈[0,t]

∣∣∣∣∣∣
s∫

0

(
ϕλ,n(τ ),G2,λ,n(ϕλ,n(τ ))dW2(τ )

)
H

∣∣∣∣∣∣
p
2

≤ CE

∣∣∣∣∣∣
t∫

0

‖ϕλ,n(τ )‖2
H ‖G2,λ,n(ϕλ,n(τ ))‖2

L 2(U2,H)
dτ

∣∣∣∣∣∣
p
4

≤ CE

∣∣∣∣∣∣ sup
τ∈[0,t]

‖ϕλ,n(τ )‖2
H

t∫
0

‖G2,λ,n(ϕλ,n(τ ))‖2
L 2(U2,H)

dτ

∣∣∣∣∣∣
p
4

≤ CL
p
2
2 |O| p

4 t
p
4 E sup

τ∈[0,t]
‖ϕλ,n(τ )‖

p
2
H , (3.30)

where C only depends on p. In turn, thanks to (3.30) and the Young inequality, we can refine the 
estimate and get

E sup
τ∈[0,t]

‖ϕλ,n(τ )‖p
H +E

∣∣∣∣∣∣
t∫

0

‖∇ϕλ,n(τ )‖2
H dτ

∣∣∣∣∣∣
p
2

≤ C

⎡⎣1 +E‖ϕ0‖p
H +E

t∫
0

‖ϕλ,n(τ )‖p
H dτ

⎤⎦ .

The Gronwall lemma entails that there exists C1, independent of n and λ, but depending on p
and the structural data of the problem, such that

‖ϕλ,n‖L
p

P(	;C0([0,T ];H)) + ‖ϕλ,n‖L
p

P(	;L2([0,T ];V1))
≤ C1, (3.31)

for every fixed p ≥ 2. Second estimate. We devise a similar argument for the Hσ -norm of uλ,n. 
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Still exploiting [63, Theorem 4.2.5], the Itô formula implies

1

2
‖uλ,n(t)‖2

H σ
+

t∫
0

[
‖∇uλ,n(τ )‖2

H σ
− μλ,n(τ )∇ϕλ,n(τ ) · uλ,n(τ )

]
dτ

= 1

2
‖u0,n‖2

H σ
+

t∫
0

(
uλ,n(τ ),G1,n(uλ,n(τ ))dW1(τ )

)
H σ

+ 1

2

t∫
0

‖G1,n(uλ,n(τ ))‖2
L 2(U1,H σ )

dτ. (3.32)

Next, we want to apply the standard Itô formula to the regularized energy functional Eλ : Zn ×
Zn → R+

Eλ(ϕλ,n,uλ,n) := 1

2

∫
O

|∇ϕλ,n|2 + 1

2

∫
O

|uλ,n|2 +
∫
O

Fλ(ϕλ,n).

However, notice that Eλ exactly contains the kinetic energy contribution linked to the fluid veloc-
ity field which we just handled in (3.32). Thus, it is sufficient to apply the Itô formula only to the 
portion of the energy linked to the order parameter ϕλ,n. Let us stress that this is only possible 
since no coupling energy terms are present. We set

�λ : Zn → R+, �λ(v) := 1

2

∫
O

|∇v|2 +
∫
O

Fλ(v).

It has already been shown in [71, Subsection 3.2] that �λ is twice Fréchet-differentiable. Thus it 
is possible to apply the Itô formula in its classical version [23, Theorem 4.32]. This yields

�λ(ϕλ,n(t) +
t∫

0

[
‖μλ,n(τ )‖2

H + μλ,n(τ )∇ϕλ,n(τ ) · uλ,n(τ )
]

dτ

= �λ(ϕ0,n) + 1

2

t∫
0

⎡⎣∥∥∇G2,λ,n(ϕλ,n(τ ))
∥∥2
L 2(U2,H )

+
∞∑

k=1

∫
O

F ′′
λ (ϕλ,n(τ ))|gk(Jλ(ϕλ,n(τ )))|2

⎤⎦ dτ

+
t∫

0

(
μλ,n(τ ),G2,λ,n(ϕλ,n(τ ))dW2(τ )

)
H

,

(3.33)

where we recall that D�λ(ϕλ,n) = μλ,n. Adding (3.32) and (3.33) together, we find

1

2
‖uλ,n(t)‖2

H σ
+ �λ(ϕλ,n(t)) +

t∫ [
‖∇uλ,n(τ )‖2

H σ
+ ‖μλ,n(τ )‖2

H

]
dτ
0
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= 1

2
‖u0,n‖2

H σ
+ �λ(ϕ0,n)

+ 1

2

t∫
0

[
‖G1,n(uλ,n(τ ))‖2

L 2(U1,H σ )
+ ∥∥∇G2,λ,n(ϕλ,n(τ ))

∥∥2
L 2(U2,H )

]
dτ

+ 1

2

t∫
0

∞∑
k=1

∫
O

F ′′
λ (ϕλ,n(τ ))|gk(Jλ(ϕλ,n(τ )))|2 dτ

+
t∫

0

(
uλ,n(τ ),G1(uλ,n(τ ))dW1(τ )

)
H σ

+
t∫

0

(
μλ,n(τ ),G2,λ,n(ϕλ,n(τ ))dW2(τ )

)
H

.

(3.34)

Fix now p ∈ [2, +∞). Taking p
2 -powers, supremum over [0, t], and expectations of both sides 

of (3.34) yield

E sup
τ∈[0,t]

‖uλ,n(τ )‖p
Hσ

+E sup
τ∈[0,t]

‖∇ϕλ,n(τ )‖p
H +E sup

τ∈[0,t]
‖Fλ(ϕλ,n)‖

p
2
L1(O)

+E

∣∣∣∣∣∣
t∫

0

‖∇uλ,n(τ )‖2
Hσ

dτ

∣∣∣∣∣∣
p
2

+E

∣∣∣∣∣∣
t∫

0

‖μλ,n(τ )‖2
H dτ

∣∣∣∣∣∣
p
2

≤ C

⎡⎢⎢⎣E‖u0,n‖p
Hσ

+E‖∇ϕ0,n‖p
H +E‖Fλ(ϕ0,n)‖

p
2
L1(O)

+E

∣∣∣∣∣∣
t∫

0

‖G1,n(uλ,n(τ ))‖2
L 2(U1,Hσ )

dτ

∣∣∣∣∣∣
p
2

+E

∣∣∣∣∣∣
t∫

0

∥∥∇G2,λ,n(ϕλ,n(τ ))
∥∥2
L 2(U2,H )

dτ

∣∣∣∣∣∣
p
2

+E

∣∣∣∣∣∣
t∫

0

∞∑
k=1

∫
O

|F ′′
λ (ϕλ,n(τ ))||gk(Jλ(ϕλ,n(τ )))|2 dτ

∣∣∣∣∣∣
p
2

+E sup
s∈[0,t]

∣∣∣∣∣∣
s∫

0

(
uλ,n(τ ),G1(uλ,n(τ ))dW1(τ )

)
Hσ

∣∣∣∣∣∣
p
2

+E sup
s∈[0,t]

∣∣∣∣∣∣
s∫

0

(
μλ,n(τ ),G2,λ,n(ϕλ,n(τ ))dW2(τ )

)
H

∣∣∣∣∣∣
p
2

⎤⎥⎦ , (3.35)

where C only depends on p. Next, we address the terms on the right hand side of (3.35). By 
(3.10) and Assumption (A2), we deduce

‖G1,n(uλ,n(τ ))‖2
L 2(U1,H σ )

≤ ‖G1(uλ,n(τ ))‖2
L 2(U1,H σ )

≤ 2C2
G1

(
1 + ‖uλ,n(τ ))‖2

H σ

)
. (3.36)

Since ϕλ,n(τ ) ∈ V1, recalling assumption (A3), (3.28), and the non-expansivity of Jλ, we have

∥∥∇G2,λ,n(ϕλ,n(τ ))
∥∥2

2 ≤ ∥∥∇G2,λ(ϕλ,n(τ ))
∥∥2

2
L (U2,H ) L (U2,H )
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=
∞∑

k=1

‖g′
k(Jλ(ϕλ,n(τ )))∇Jλ(ϕλ,n(τ ))‖2

H

≤
∞∑

k=1

‖gk‖2
W 1,∞(−1,1)

‖∇ϕλ,n(τ )‖2
H

≤ L2
2‖∇ϕλ,n(τ )‖2

H . (3.37)

Furthermore, since F ′′ = γ ′ − cF , by (3.2) we have that, for all x ∈R,

F ′′
λ (x) = γ ′

λ(x) − cF = γ ′(Jλ(x))J ′
λ(x) − cF = F ′′(Jλ(x))J ′

λ(x) + cF (J ′
λ(x) − 1).

Thus, thanks to (A3) and the non-expansivity of Jλ, we get

∞∑
k=1

∫
O

|F ′′
λ (ϕλ,n(τ ))||gk(Jλ(ϕλ,n(τ )))|2 ≤

∞∑
k=1

∫
O

|F ′′(Jλ(ϕλ,n(τ )))||gk(Jλ(ϕλ,n(τ )))|2

+ 2cF |O|
∞∑

k=1

‖gk‖2
W 1,∞(−1,1)

≤ |O|L2
2 (1 + 2cF ) . (3.38)

Finally, we address the stochastic integrals. Using (3.36) jointly with the Burkholder-Davis-
Gundy and Young inequalities, for every δ > 0 we obtain

E sup
τ∈[0,t]

∣∣∣∣∣∣
t∫

0

(
uλ,n(τ ),G1,n(uλ,n(τ ))dW1(τ )

)
H σ

∣∣∣∣∣∣
p
2

≤ CE

∣∣∣∣∣∣
t∫

0

‖uλ,n(τ )‖2
H σ

‖G1,n(uλ,n(τ ))‖2
L 2(U1,H σ )

dτ

∣∣∣∣∣∣
p
4

≤ C2
p
4 C

p
2
G1

E

∣∣∣∣∣∣ sup
τ∈[0,t]

‖uλ,n(τ )‖2
H σ

t∫
0

(
1 + ‖uλ,n(τ )‖2

H σ

)
dτ

∣∣∣∣∣∣
p
4

≤ δE sup
τ∈[0,t]

‖uλ,n(τ )‖p
H σ

+ Cp,δE

t∫
0

(
1 + ‖uλ,n(τ )‖p

H σ

)
dτ, (3.39)

where C only depends on δ, p, and T . Moreover, by (3.28) and the same inequalities, we also 
get

E sup
τ∈[0,t]

∣∣∣∣∣∣
t∫ (

μλ,n(τ ),G2,λ,n(ϕλ,n(τ ))dW2(τ )
)
H

∣∣∣∣∣∣
p
2

0
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≤ CE

∣∣∣∣∣∣
t∫

0

‖μλ,n(τ )‖2
H ‖G2,λ,n(ϕλ,n(τ ))‖2

L 2(U2,H)
dτ

∣∣∣∣∣∣
p
4

≤ CL
p
2
2 |O| p

4 E

∣∣∣∣∣∣
t∫

0

‖μλ,n(τ )‖2
H dτ

∣∣∣∣∣∣
p
4

≤ C + δE

∣∣∣∣∣∣
t∫

0

‖μλ,n(τ )‖2
H dτ

∣∣∣∣∣∣
p
2

, (3.40)

where C only depends on p, δ, and O. Finally, the non-expansivity of the orthogonal projectors 
on Wn and Wn imply

‖u0,n‖p
H σ

≤ ‖u0‖p
H σ

, ‖∇ϕ0,n‖p
H ≤ ‖∇ϕ0‖p

H (3.41)

whereas, since F ′
λ is linearly bounded, being Lipschitz-continuous, Fλ is quadratically bounded 

so that

‖Fλ(ϕ0,n)‖
p
2
L1(O)

≤ Cλ

(
1 + ‖ϕ0,n‖p

H

) ≤ C
(
1 + ‖ϕ0‖p

H

)
, (3.42)

where Cλ depends on λ and p. Collecting (3.36)-(3.42) and choosing δ small enough, from (3.35)
we infer that

E sup
τ∈[0,t]

‖uλ,n(t)‖p
H σ

+E sup
τ∈[0,t]

‖∇ϕλ,n(τ )‖p
H +E sup

τ∈[0,t]
‖Fλ(ϕλ,n)‖

p
2
L1(O)

+E

∣∣∣∣∣∣
t∫

0

‖∇uλ,n(τ )‖2
H σ

dτ

∣∣∣∣∣∣
p
2

+ 1

2
E

∣∣∣∣∣∣
t∫

0

‖μλ,n(τ )‖2
H dτ

∣∣∣∣∣∣
p
2

≤ Cλ

⎡⎣1 +E‖ϕ0‖p
V +E‖u0‖p

H σ
+E

t∫
0

‖uλ,n(τ )‖p
H σ

dτ +E

t∫
0

∥∥∇ϕλ,n(τ )
∥∥p

H
dτ

⎤⎦ .

(3.43)

Here Cλ depends on λ and p. An application of the Gronwall lemma entails the existence of 
C2, C3, C4, depending on λ, p and T , such that

‖uλ,n‖L
p

P(	;C0([0,T ];H σ )) + ‖uλ,n‖L
p

P(	;L2(0,T ;V1))
≤ C2, (3.44)

‖ϕλ,n‖L
p

P(	;C0([0,T ];V1))
≤ C3, (3.45)

‖μλ,n‖L
p

P(	;L2(0,T ;H)) + ‖Fλ(ϕλ,n)‖L
p/2
P (	;C0([0,T ];L1(O)))

≤ C4. (3.46)

Further estimates. The Lipschitz-continuity of F ′
λ and the fact that F ′

λ(0) = 0 entail

|F ′
λ(ϕλ,n(t))| ≤ Cλ|ϕλ,n(t)|,

for some Cλ only depending on λ. Therefore, thanks to (3.31) we also get the estimate
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‖F ′
λ(ϕλ,n)‖L

p

P(	;L2(0,T ;H)) ≤ C5. (3.47)

Additionally, by comparison in (3.14), we get

‖ϕλ,n‖L
p

P(	;L2(0,T ;V2))
≤ C6. (3.48)

Here C5 or C6 depend on λ, p, and T . In light of (3.36), (3.37) and on account of (3.44) and 
(3.45), we deduce

‖G1,n(uλ,n)‖L
p

P(	;L∞(0,T ;L 2(U1,H σ ))) ≤ C7,

(3.49)

‖G2,λ,n(ϕλ,n)‖L
p

P(	;L∞(0,T ;L 2(U2,V1)))
+ ‖G2,λ,n(ϕλ,n)‖L∞(	×(0,T );L 2(U2,H)) ≤ C8.

(3.50)

Here, again, the constants C7, C8 depend on λ. As a consequence of [36, Lemma 2.1], the fol-
lowing estimates on the Itô integrals hold:∥∥∥∥∥∥

·∫
0

G1,n(uλ,n(τ ))dW1(τ )

∥∥∥∥∥∥
Lp(	;Wk,p(0,T ;H σ ))

≤ C9, (3.51)

∥∥∥∥∥∥
·∫

0

G2,λ,n(ϕλ,n(τ ))dW2(τ )

∥∥∥∥∥∥
Lp(	;Wk,p(0,T ;V1))∩Lq(	;Wk,q (0,T ;H))

≤ C10, (3.52)

for every k ∈ (0, 12 ) and q ≥ 1, where C9 and C10 depend on λ, p, q, k, and T . Estimates (3.51)
and (3.52) enable us to carry out two comparison arguments. Let us interpret (3.18) as an equality 
in V ∗

1 ,

〈ϕλ,n(t),ψ〉V ∗
1 ,V1 = −

t∫
0

∫
O

[
uλ,n(s) · ∇ϕλ,n(s) + μλ,n(s)

]
ψ ds

+ 〈ϕ0,n,ψ〉V ∗
1 ,V1 +

⎛⎝ t∫
0

G2,λ,n(ϕλ,n(s))dW2(s),ψ

⎞⎠
H

for all ψ ∈ V1 such that ‖ψ‖V1 = 1, t ∈ [0, T ], P -almost-surely. It is clear that, by the Hölder 
inequality, ∣∣∣∣∣∣

∫
O

ψuλ,n · ∇ϕλ,n + ψμλ,n

∣∣∣∣∣∣ ≤ ‖uλ,n‖H σ ‖∇ϕλ,n‖L4(O) + ‖μλ,n‖H (3.53)

implying (see (3.44), (3.46), and (3.48))
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∥∥∥∥∥∥
t∫

0

∫
O

[
uλ,n(s) · ∇ϕλ,n(s) + μλ,n(s)

]
ds

∥∥∥∥∥∥
L

p

P(	;H 1(0,T ;V ∗
1 ))

≤ Cλ (3.54)

for some Cλ depending on λ, p and T . Then, recalling that

|〈ϕ0,n,ψ〉V ∗
1 ,V1 | ≤ ‖ϕ0,n‖H ≤ ‖ϕ0‖H ,

and estimate (3.52) as well as Lemma 2.1, we find

‖ϕλ,n‖L
p

P(	;Wβ,p(0,T ;V ∗
1 )) ≤ C11 (3.55)

for some β = β(p) ∈ ( 1
p
, 12 ) if p > 2, and for all β ∈ (0, 12 ) if p = 2. The constant C11 may 

depend on λ, β, p, and T .

Remark 3.3. Observe that β is always well defined. Here, we apply Lemma 2.1 with r = 2 and 
X = V ∗

1 . If α denotes the Sobolev fractional exponent given by Lemma 2.1, then the following 
alternative holds:

(a) if p = 2, then any value of α ∈ (0, 1) is valid, and therefore we can set an arbitrary β ∈ (0, 12 );
(b) if p > 2, then any value of α ∈ (0, 2

p
] is valid, and therefore we can set an arbitrary β ∈

( 1
p
, min( 2

p
, 12 )) ⊂ ( 1

p
, 12 ).

Similarly, we consider the weak formulation of the discretized Navier–Stokes equation

〈uλ,n(t),v〉V ∗
σ ,V σ

= −
t∫

0

[〈
Auλ,n(s),v

〉
V ∗

σ ,V σ
+ 〈

B(uλ,n(s),uλ,n(s)),v
〉
V ∗

σ ,V σ

]
ds

−
t∫

0

∫
O

μλ,n(s)∇ϕλ,n(s) · v ds + (u0,n,v)H σ

+
⎛⎝ t∫

0

G1,n(uλ,n(s))dW1(s),v

⎞⎠
H σ

for all v ∈ V σ such that ‖v‖V σ = 1, t ∈ [0, T ], P -almost-surely. Then, we have

|〈u0,n,v〉V ∗
σ ,V σ

| ≤ ‖u0,n‖H σ ≤ ‖u0‖H σ .

Owing to (3.44) and the continuity of A, we infer∥∥∥∥∥∥
·∫

0

Auλ,n(s)ds

∥∥∥∥∥∥
p 1 ∗

≤ Cλ,
LP(	;H (0,T ;V σ ))
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for some Cλ depending on λ, p and T , but independent of n. Next, we recall the well-known 
inequality

‖B(uλ,n,uλ,n)‖V ∗
σ

≤ ‖uλ,n‖2− d
2

H σ
‖uλ,n‖

d
2
V σ

. (3.56)

Therefore, we find ∥∥∥∥∥∥
·∫

0

B(uλ,n(s),uλ,n(s))ds

∥∥∥∥∥∥
L

p
2
P(	;W 1, 4

d (0,T ;V ∗
σ ))

≤ Cλ.

Furthermore, since by the Hölder, Gagliardo–Nirenberg and Young inequalities, we have∣∣∣∣∣∣
∫
O

μλ,n∇ϕλ,n · v
∣∣∣∣∣∣ ≤ ‖μλ,n‖H ‖∇ϕλ,n‖L3(O)‖v‖L6(O) ≤ C‖μλ,n‖H ‖ϕλ,n‖

1
2
L6(O)

‖ϕλ,n‖
1
2
V2

(3.57)
for both d = 2 and d = 3. Thus we get∥∥∥∥∥∥

·∫
0

μλ,n(s)∇ϕλ,n(s)ds

∥∥∥∥∥∥
L

p
2
P(	;W 1, 4

3 (0,T ;V ∗
σ ))

≤ Cλ.

Summing up, also owing to (3.50) and Lemma 2.1, we arrive at

‖uλ,n‖
L

p
2
P(	;Wγ,p(0,T ;V ∗

σ ))
≤ C12, (3.58)

for some γ = γ (p) ∈ ( 1
p
, 12 ) if p > 2, and for all γ ∈ (0, 12 ) if p = 2. Here C12 depends on 

λ, γ, p, and T .

Remark 3.4. Observe that γ is always well defined. In this case, we apply Lemma 2.1 with r = 4
3

and X = V ∗
σ . Let α denote once again the fractional Sobolev exponent given by Lemma 2.1. 

Given any p > 2 > 4
3 , we have that any value of α ∈ (0, 4

3p
] is valid, and therefore we can set an 

arbitrary γ ∈ ( 1
p
, min( 4

3p
, 12 )) ⊂ ( 1

p
, 12 ). If p = 2 then we get any value of α ∈ (0, 23 ]. Hence we 

can choose any γ ∈ (0, 12 ).

In the following, we assume that, given p ≥ 2, the exponents β = β(p) and γ = γ (p) are fixed. 
Notice that if p > 2, then trivially β and γ are both greater than 1.

3.4. Passage to the limit as n → +∞

Owing to the previously proven uniform estimates, we now pass to the limit as n → +∞
keeping λ ∈ (0, 1) fixed. Let p > 2.
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Lemma 3.5. The family of laws of (uλ,n)n∈N is tight in the space Zu := L2(0, T ; H σ ) ∩
C0([0, T ]; D(A−δ)) for any δ ∈ (0, 12 ). The family of laws of (ϕλ,n)n∈N is tight in the space 
Zϕ := L2(0, T ; V1) ∩ C0([0, T ]; H).

Proof. To prove the claims, we follow a standard argument (refer, for instance, to [71, Subsection 
3.3] or [81, Proposition 1]). We first recall we have that the embeddings (see [76, Corollary 5])

L∞(0, T ;V1) ∩ Wβ,p(0, T ;V ∗
1 ) ↪→ C0([0, T ];H),

L∞(0, T ;H σ ) ∩ Wγ,p(0, T ;V ∗
σ ) ↪→ C0([0, T ];D(A−δ)),

L2(0, T ;V2) ∩ Wβ,p(0, T ;V ∗
1 ) ↪→ L2(0, T ;V1),

L2(0, T ;V σ ) ∩ Wγ,p(0, T ;V ∗
σ ) ↪→ L2(0, T ;H σ ),

are compact (the intersection spaces are endowed with their canonical norm), since β, γ > 1
p

, 

p > 2. Here, δ ∈ (0, 12 ). Let us prove the first one, the other three cases being similar. For any 
R > 0, let BR denote the closed ball of radius R in L∞(0, T ; V1) ∩ Wβ,p(0, T ; V ∗

1 ). Then the 
Markov inequality, jointly with estimates (3.45) and (3.58), implies

P
{
ϕλ,n ∈ BC

R

}
= P

{
‖ϕλ,n‖L∞(0,T ;V1)∩Wβ,p(0,T ;V ∗

1 ) > R
}

≤ 1

Rp
E‖ϕλ,n‖p

L∞(0,T ;V1)∩Wβ,p(0,T ;V ∗
1 )

≤ Cλ

Rp
,

for some Cλ > 0 depending on λ> This yields

lim
n→+∞ sup

n∈N
P

{
ϕλ,n ∈ BC

R

}
= 0,

so that the first claim is proven. The remaining claims can be proven analogously, replacing the 
spaces accordingly and exploiting the corresponding estimates. �
We now set

G1,n(uλ,n) · W1 :=
·∫

0

G1,n(uλ,n(τ ))dW1(τ ),

G2,λ,n(ϕλ,n) · W2 :=
·∫

0

G2,λ,n(ϕλ,n(τ ))dW2(τ ).

With a little modification in the proof of Lemma 3.5, we can also prove

Lemma 3.6. The family of laws of (G1,n(uλ,n) · W1)n∈N is tight in the space C0([0, T ]; V ∗
σ ). 

The family of laws of (G2,λ,n(ϕλ,n) · W2)n∈N is tight in the space C0([0, T ]; H).
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Proof. By [36, Theorem 2.2], since βp > 1 and γp > 1, we have that the embeddings

Wβ,p(0, T ;V1) ↪→ C0([0, T ];H), Wγ,p(0, T ;H σ ) ↪→ C0([0, T ];V ∗
σ )

are compact. The argument of the proof of Lemma 3.5, recalling estimates (3.51) and (3.52), is 
enough to conclude the claims. �
Next, we consider the constant sequences of cylindrical Wiener processes

W1,n ≡ W1, W2,n ≡ W2.

Lemma 3.7. The family of laws of (W1,n)n∈N is tight in C0([0, T ]; U0
1 ). The family of laws of 

(W2,n)n∈N is tight in C0([0, T ]; U0
2 ).

Proof. It directly follows from the fact that every measure on a complete separable metric space 
is tight. �
Finally, we consider the sequences of approximated initial conditions.

Lemma 3.8. The family of laws of (u0,n)n∈N is tight in V ∗
σ . The family of laws of (ϕ0,n)n∈N is 

tight in H .

Proof. It is a third iteration of the proof of Lemma 3.5, exploiting the compact embeddings

H σ ↪→ V ∗
σ , V1 ↪→ H,

and the Markov inequality on closed balls of Hσ and V1, respectively. �
As an immediate consequence of Lemmas 3.5-3.8, we get that the family of laws of

(uλ,n, ϕλ,n,G1,n(uλ,n) · W1,n,G2,λ,n(ϕλ,n) · W2,n,W1,n,W2,n,u0,n, ϕ0,n)n∈N

is tight in the product space

Zu × Zϕ × C0([0, T ];V ∗
σ ) × C0([0, T ];H) × C0([0, T ];U0

1 ) × C0([0, T ];U0
2 ) × V ∗

σ × H.

Owing to the Prokhorov and Skorokhod theorems (see [57, Theorem 2.7] and [82, Theorem 
1.10.4, Addendum 1.10.5]), there exists a probability space (	̃, F̃ , ̃P ) and a sequence of random 
variables Xn : (	̃, F̃ ) → (	, F ) such that the law of Xn is P for every n ∈ N , namely P̃ ◦
X−1 = P (so that composition with Xn preserves laws), and the following convergences hold
n
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ũλ,n := uλ,n ◦ Xn → ũλ in Zu = L2(0, T ;Hσ ) ∩ C0([0, T ];D(A−δ)), P -a.s.;
ϕ̃λ,n := ϕλ,n ◦ Xn → ϕ̃λ in Zϕ := L2(0, T ;V1) ∩ C0([0, T ];H), P -a.s.;

Ĩλ,n := (G1,n(uλ,n) · W1,n) ◦ Xn → Ĩλ in C0([0, T ];V ∗
σ ), P -a.s.;

J̃λ,n := (G2,λ,n(ϕλ,n) · W2,n) ◦ Xn → J̃λ in C0([0, T ];H), P -a.s.;
W̃1,n := W1,n ◦ Xn → W̃1 in C0([0, T ];U0

1 ), P -a.s.;
W̃2,n := W2,n ◦ Xn → W̃2 in C0([0, T ];U0

2 ), P -a.s.;
ũ0,n := u0,n ◦ Xn → ũ0 in V ∗

σ , P -a.s.;
ϕ̃0,n := ϕ0,n ◦ Xn → ϕ̃0 in H, P -a.s.,

for some limiting processes ̃uλ, ̃ϕλ, ̃Iλ, J̃λ, W̃1, W̃2, ̃u0, ̃ϕ0 belonging to the specified spaces. Let 
us recall that, for the sake of what follows, if (S, M, ν) is a finite positive measure space and X
is any Banach space, then the Bochner space Lr(S; X) is reflexive if and only if Lr(S, ν) and 
X are reflexive (see, for instance, [29, Corollary 2, p. 100]). By the previously proven uniform 
estimates and the preservation of laws under Xn, up to a subsequence which we do not relabel, 
the Vitali convergence theorem, the Eberlein-Smulian theorem and the Banach-Alaoglu theorem 
entail

ũλ,n → ũλ in Lq(	̃;L2(0, T ;H σ ) ∩ C0([0, T ];D(A−δ))) if q < p,

ũλ,n ⇀ ũλ in Lp(	̃;L2(0, T ;V σ )),

ũλ,n
∗
⇀ ũλ in Lp

w(	̃;L∞(0, T ;H σ )) ∩ L
p
2 (	̃;Wγ,p(0, T ;V ∗

σ )),

ϕ̃λ,n → ϕ̃λ in Lq(	̃;L2(0, T ;V1) ∩ C0([0, T ];H)) if q < p,

ϕ̃λ,n ⇀ ϕ̃λ in Lp(	̃;L2(0, T ;V2)),

ϕ̃λ,n
∗
⇀ ϕ̃λ in Lp

w(	̃;L∞(0, T ;V1)) ∩ Lp(	̃;Wβ,p(0, T ;V ∗
1 )),

Ĩλ,n → Ĩλ in Lq(	̃;C0([0, T ];V ∗
σ )) if q < p,

J̃λ,n → J̃λ in Lq(	̃;C0([0, T ];H)) if q < p,

W̃1,n → W̃1 in Lq(	̃;C0([0, T ];U0
1 )) if q < p,

W̃2,n → W̃2 in Lq(	̃;C0([0, T ];U0
2 )) if q < p,

ũ0,n → ũ0 in Lq(	̃;V ∗
σ ) if q < p,

ϕ̃0,n → ϕ̃0 in Lq(	̃;H) if q < p.

Let us now define

μ̃λ,n := μλ,n ◦ Xn.

By uniform boundedness and weak compactness, there exists some μ̃λ such that

μ̃λ,n ⇀ μ̃λ in Lp(	̃;L2(0, T ;H)).
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Observe that, from the proof of the Skorokhod theorem (see, for instance [23, Proof of Theorem 
2.3]), we have that the probability space (	̃, F̃ , P̃ ) is independent of λ. Indeed, one may choose 
(	̃, F̃ , P̃ ) = ([0, 1), B([0, 1)), dx) where dx denotes the 1-dimensional Lebesgue measure. 
Taking into account the previous considerations and further straightforward weak convergences, 
the limit processes fulfill the following regularity properties:

ũλ ∈ L
p
2 (	̃;Wγ,p(0, T ;V ∗

σ )) ∩ Lp(	̃;
C0([0, T ];D(A−δ)) ∩ L2(0, T ;V σ )) ∩ Lp

w(	̃;L∞(0, T ;H σ ));
ϕ̃λ ∈ Lp(	̃;Wβ,p(0, T ;V ∗

1 )

∩ C0([0, T ];H) ∩ L2(0, T ;V2)) ∩ Lp
w(	̃;L∞(0, T ;V1));

μ̃λ ∈ Lp(	̃;L2(0, T ;H));
Ĩλ ∈ Lp(	̃;C0([0, T ];V ∗

σ ));
J̃λ ∈ Lp(	̃;C0([0, T ];H));
W̃1 ∈ Lp(	̃;C0([0, T ];U0

1 ));
W̃2 ∈ Lp(	̃;C0([0, T ];U0

2 ));
ũ0 ∈ Lp(	̃;H σ );
ϕ̃0 ∈ Lp(	̃;B ∩ V1).

From this starting point, we now address several issues.

The nonlinearities. First of all, by Lipschitz-continuity of F ′
λ, it follows that

F ′
λ(ϕ̃λ,n) → F ′

λ(ϕ̃λ) in Lp(	̃;L2(0, T ;H)).

Moreover, since G1,n is uniformly Lipschitz-continuous (recall Proposition 3.1) and

‖G1,n(̃uλ,n) − G1(̃uλ)‖Lp(	̃,L2(0,T ;L 2(U1,Y )))

≤ ‖G1,n(̃uλ,n) − G1,n(̃uλ)‖Lp(	̃,L2(0,T ;L 2(U1,Y )))

+ ‖G1,n(̃uλ) − G1(̃uλ)‖Lp(	̃,L2(0,T ;L 2(U1,Y ))),

we conclude

G1,n(̃uλ,n) → G1(̃uλ) in Lq(	̃;L2(0, T ;L 2(U1, Y ))) if q < p.

A very similar computation also shows

G2,λ,n(ϕ̃λ,n) → G2,λ(ϕ̃λ) in Lq(	̃;L2(0, T ;L 2(U2,H))) if q < p.

Next, we address the Korteweg term representing the capillary force. Let us prove that

μ̃λ,n∇ϕ̃λ,n ⇀ μ̃λ∇ϕ̃λ in L1(	̃ × (0, T ) ×O).
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Indeed, for any w ∈ L∞(	̃ × (0, T ) ×O),∣∣∣∣∣∣∣Ẽ
∫

O×(0,T )

(μ̃λ,n∇ϕ̃λ,n − μ̃λ∇ϕ̃λ) · w

∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣Ẽ
∫

O×(0,T )

μ̃λ,n(∇ϕ̃λ,n − ∇ϕ̃λ) · w

∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣Ẽ
∫

O×(0,T )

(μ̃λ,n − μ̃λ)∇ϕ̃λ · w

∣∣∣∣∣∣∣
≤ ‖w‖L∞(	̃×(0,T )×O)‖μ̃λ,n‖L2(	̃×(0,T )×O)‖∇ϕ̃λ,n − ∇ϕ̃λ‖L2(	̃×(0,T )×O)

+

∣∣∣∣∣∣∣Ẽ
∫

O×(0,T )

(μ̃λ,n − μ̃λ)∇ϕ̃λ · w

∣∣∣∣∣∣∣
and both terms tend to zero as n → +∞ by the above convergences (note that ∇ϕ̃λ ·w ∈ L2(	̃×
(0, T ) ×O)). Here, Ẽ stands for the expectation with respect to the probability P̃ . As far as the 
other nonlinear term appearing in the Navier-Stokes equations, we have, as a straightforward 
application of (3.56),

B(uλ,n,uλ,n) → B(uλ,uλ) in Lq(	̃;L 4
d (0, T ;V ∗

σ )) if q <
p

2
.

Finally, we address the convective term. Observe that

ũλ,n · ∇ϕ̃λ,n − ũλ · ∇ϕ̃λ = (̃uλ,n − ũλ) · ∇ϕ̃λ,n + ũλ · (∇ϕ̃λ,n − ∇ϕ̃λ).

Thus, by the Hölder inequality, it holds that

ũλ,n · ∇ϕ̃λ,n ⇀ ũλ · ∇ϕ̃λ in L
p
2 (	̃;L1(0, T ;L 3

2 (O)) ∩ L2(0, T ;L1(O))).

The stochastic integrals. Let us now identify Ĩλ and J̃λ. The procedure is standard, for instance 
see [23, Section 8.4]. We introduce a family of filtrations on (	̃, F̃ , ̃P ), namely we set

F̃λ,n,t := σ
{̃
uλ,n(s), ϕ̃λ,n(s), Ĩλ,n(s), J̃λ,n(s), W̃1,n(s), W̃2,n(s), ũ0,n, ϕ̃0,n, s ∈ [0, t]} ,

for any t ≥ 0, n ∈ N and λ ∈ (0, 1), in such a way that both W̃1,n and W̃2,n are adapted. In 
particular, by preservation of laws and the definitions of Wiener process and stochastic integral, 
we readily have that Wi,n is a Q0

i -Wiener process on U0
i and

Ĩλ,n =
t∫

0

G1,n(̃uλ,n(τ )) dW̃1,n(τ ), J̃λ,n =
t∫

0

G2,λ,n(ϕ̃λ,n(τ )) dW̃2,n(τ ),

are respectively a V ∗
σ -valued and an H -valued martingale. Let us iterate the same procedure on 

the limit processes: we define
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F̃λ,t := σ
{̃
uλ(s), ϕ̃λ(s), Ĩλ(s), J̃λ(s), W̃1(s), W̃2(s), ũ0, ϕ̃0, s ∈ [0, t]} .

It is easy to infer, by the proven convergences, that both W̃1(0) and W̃2(0) are zero. Let now 
t > 0, s ∈ [0, t] and set

Zu,s := L2(0, s;H σ ) ∩ C0([0, s];D(A−δ)),

Zϕ,s := L2(0, s;V1) ∩ C0([0, s];H),

Xs := Zu,s × Zϕ,s × C0([0, s];V ∗
σ ) × C0([0, s];H) × C0([0, s];U0

1 )

× C0([0, s];U0
2 ) × V ∗

σ × H.

Let ψ : Xs → R be a bounded and continuous function. By definition of martingale, we have

Ẽ
[(

W̃i,n(t) − W̃i,n(s)
)
ψ

(
ϕ̃λ,n, ũλ,n, Ĩλ,n, J̃λ,n, W̃1,n, W̃2,n, ũ0,n, ϕ̃0,n

)] = 0 (3.59)

for i = 1, 2. Here, the arguments of ψ are intended to be restricted over [0, s] when necessary 
and Ẽ denotes the expectation with respect to P̃ . Letting n → +∞ in (3.59), an application of 
the dominated convergence theorem, owing to the proven convergences and the properties of ψ , 
entails

Ẽ
[(

W̃i(t) − W̃i(s)
)
ψ

(
ϕ̃λ,n, ũλ,n, Ĩλ, J̃λ, W̃1, W̃2, ũ0, ϕ̃0

)] = 0, (3.60)

which expresses the fact that W̃i is a U0
i -valued (F̃λ,t )t -martingale for i = 1, 2. The charac-

terization of Q-Wiener processes given in [23, Theorem 4.6] leads us to compute the quadratic 
variation of W̃i . To this end, notice that (3.60) means that, for every v, w ∈ U0

i

Ẽ
[((

W̃i,n(t), v
)
U0

i

(
W̃i,n(t),w

)
U0

i
− (

W̃i,n(s), v
)
U0

i

(
W̃i,n(s),w

)
U0

i

−(t − s)
(
Q0

i v,w
)

U0
i

)
ψ

(
ϕ̃λ,n, ũλ,n, Ĩλ,n, J̃λ,n, W̃1,n, W̃2,n, ũ0,n, ϕ̃0,n

)]
= 0,

and using once more the dominated convergence theorem, we get

Ẽ
[((

W̃i(t), v
)
U0

i

(
W̃i(t),w

)
U0

i
− (

W̃i(s), v
)
U0

i

(
W̃i(s),w

)
U0

i

−(t − s)
(
Q0

i v,w
)

U0
i

)
ψ

(
ϕ̃λ, ũλ, Ĩλ, J̃λ, W̃1, W̃2, ũ0, ϕ̃0

)]
= 0,

namely 〈〈
W̃i

〉〉
(t) = tQ0

i , t ∈ [0, T ],

which is enough to conclude that W̃i is a Q0
i -Wiener process, adapted to (F̃λ,t )t , owing to [23, 

Theorem 4.6]. We are now in a position to study the stochastic integrals. Arguing exactly as in 
(3.59)-(3.60), we find that Ĩλ (resp. J̃λ) is a V ∗

σ -valued (resp. an H -valued) martingale. As far as 
the quadratic variations are concerned, an application of [23, Theorem 4.27] yields
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〈〈
Ĩλ,n

〉〉
(t) =

t∫
0

G1,n(̃uλ,n(τ )) ◦ G1,n(̃uλ,n(τ ))∗ dτ,

〈〈
J̃λ,n

〉〉
(t) =

t∫
0

G2,λ,n(ϕ̃λ,n(τ )) ◦ G2,λ,n(ϕ̃λ,n(τ ))∗ dτ,

for every t ∈ [0, T ]. Let us outline the argument for the first sequence (similar considerations 
hold for the second one). Once again, fixing v, w ∈ V σ , we have

Ẽ
[(〈

Ĩλ,n(t),v
〉
V ∗

σ ,V σ

〈
Ĩλ,n(t),w

〉
V ∗

σ ,V σ
− 〈

Ĩλ,n(s),v
〉
V ∗

σ ,V σ

〈
Ĩλ,n(s),w

〉
V ∗

σ ,V σ

−
t∫

0

(
G1 (̃uλ(τ )) ◦ G1 (̃uλ(τ ))∗v,w

)
Hσ

dτ

⎞⎠ψ
(
ϕ̃λ,n, ũλ,n, Ĩλ,n, J̃λ,n, W̃1,n, W̃2,n, ũ0,n, ϕ̃0,n

)⎤⎦ = 0,

and, as n → +∞, the dominated convergence theorem implies that

Ẽ
[(〈

Ĩλ(t),v
〉
V ∗

σ ,V σ

〈
Ĩλ(t),w

〉
V ∗

σ ,V σ
− 〈

Ĩλ(s),v
〉
V ∗

σ ,V σ

〈
Ĩλ(s),w

〉
V ∗

σ ,V σ

−
t∫

0

(
G1(̃uλ(τ )) ◦ G1(̃uλ(τ ))∗v,w

)
H σ

dτ

⎞⎠ψ
(
ϕ̃λ, ũλ, Ĩλ, J̃λ, W̃1, W̃2, ũ0, ϕ̃0

)⎤⎦ = 0.

Notice that in the above equality the dualities are necessary. The quadratic variation of Ĩλ is 
therefore

〈〈
Ĩλ

〉〉
(t) =

t∫
0

G1(̃uλ(τ )) ◦ G1(̃uλ(τ ))∗ dτ, t ∈ [0, T ].

Let us identify Ĩλ with the martingale

M̃λ(t) :=
t∫

0

G1(̃uλ(τ )) dW̃1(τ ),

which is a V ∗
σ -valued (F̃λ,t )t -martingale having the same quadratic variation of Ĩλ. By [67, 

Theorem 3.2], we can write〈〈
M̃λ − Ĩλ

〉〉 = 〈〈
M̃λ

〉〉 + 〈〈
Ĩλ

〉〉 − 2
〈〈
M̃λ, Ĩλ

〉〉
= 2

·∫
0

G1(̃uλ(τ )) ◦ G1(̃uλ(τ ))∗ dτ − 2

·∫
0

G1(̃uλ(τ )) d
〈〈
W̃1, Ĩλ

〉〉
(τ ).

(3.61)

Thus, we now compute the cross quadratic variation appearing on the right hand side in (3.61). 
To this end, notice that by [67, Theorem 3.2], we have
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〈〈
Ĩλ,n, W̃1,n

〉〉 = ·∫
0

G1,n(̃uλ,n(τ )) ◦ ι−1
1 d

〈〈
W̃1,n, W̃1,n

〉〉
(τ )

=
·∫

0

G1,n(̃uλ,n(τ )) ◦ ι−1
1 ◦ Q0

1 dτ

=
·∫

0

G1,n(̃uλ,n(τ )) ◦ ι−1
1 ◦ ι1 ◦ ι∗1 dτ

=
·∫

0

G1,n(̃uλ,n(τ )) ◦ ι∗1 dτ,

where we also used the fact that Q0
1 = ι1 ◦ ι∗1, where ι1 : U1 → U0

1 is the classical Hilbert-Schmidt 
embedding. This implies that

〈〈
W̃1,n, Ĩλ,n

〉〉 = ·∫
0

ι1 ◦ G1,n(̃uλ,n(τ ))∗ dτ.

A further application of the dominated convergence theorem entails that, as n → +∞,

〈〈
W̃1, Ĩλ

〉〉 = ·∫
0

ι1 ◦ G1(̃uλ(τ ))∗ dτ. (3.62)

The identification follows injecting (3.62) in (3.61).

Identification of the limit solution. We are now left to prove that the limiting processes solve the 
regularized Allen-Cahn-Navier-Stokes system (3.4)-(3.9). Testing (3.11) by some v ∈ V σ and 
integrating the obtained identity with respect to time yield

(uλ,n(t),v)H σ +
t∫

0

[〈
Auλ,n(s),v

〉
V ∗

σ ,V σ
+ 〈

B(uλ,n(s),uλ,n(s)),v
〉
V ∗

σ ,V σ

+
∫
O

μλ,n(s)∇ϕλ,n(s) · v
⎤⎦ ds

= (̃u0,n,v)H σ +
⎛⎝ t∫

0

G1,n(uλ,n(s))dW1(s),v

⎞⎠
H σ

∀ t ∈ [0, T ] , P -a.s..

Letting n → +∞, owing to above convergences and using the dominated convergence theorem, 
we obtain
411



A. Di Primio, M. Grasselli and L. Scarpa Journal of Differential Equations 387 (2024) 378–431
(̃uλ(t),v)H σ +
t∫

0

⎡⎣〈Aũλ(s),v〉V ∗
σ ,V σ

+ 〈B (̃uλ(s), ũλ(s)),v〉V ∗
σ ,V σ

+
∫
O

μλ(s)∇ϕλ(s) · v
⎤⎦ ds

= (̃u0,v)H σ +
⎛⎝ t∫

0

G1(̃uλ(s))dW̃1(s),v

⎞⎠
H σ

∀ t ∈ [0, T ] , P -a.s. (3.63)

Next, we identify the limit chemical potential. Testing (3.14) by some v ∈ V1, passing to the limit 
as n → +∞ yields and exploiting the proven convergences entail∫

O

μ̃λv = −
∫
O

�ϕ̃λv +
∫
O

F ′
λ(ϕ̃λ)v, (3.64)

almost everywhere in [0, T ] and P -almost surely. Finally, consider the approximating Allen-
Cahn equation. Testing (3.13) by some v ∈ V1 and passing to the limit as n → +∞, we get

(ϕ̃λ(t), v)H +
t∫

0

∫
O

[̃uλ(s) · ∇ϕ̃λ(s) + μ̃λ(s)]v ds = (ϕ̃0, v)H +
⎛⎝ t∫

0

G2,λ(ϕ̃λ(s))dW2(s), v

⎞⎠
H

.

Therefore, system (3.4)-(3.9) is satisfied (in the weak sense) once we identify (the law of) the 
initial state. By the properties of Xn, we know that

ϕ̃0,n
L= ϕ0,n, ũ0,n

L= u0,n

for any n ∈N , and by uniqueness of the distributional limit (jointly with the above convergences) 
we conclude

ϕ̃0
L= ϕ0, ũ0

L= u0.

The initial conditions are therefore attained in law.

3.5. Uniform estimates with respect to λ

Here, we prove further uniform estimates, now independent of the Yosida parameter λ. The 
symbol K (possibly numbered) denotes a positive constant, always independent of λ, which may 
change from line to line.

First estimate. Notice that the constant C1 in (3.31) does not depend on λ. By lower semiconti-
nuity and preservation of laws of Xn, we infer

‖ϕ̃λ‖L
p

P(	;C0([0,T ];H)) + ‖ϕ̃λ‖L
p

P(	;L2(0,T ;V1))
≤ K1. (3.65)

Second estimate. Let us collect, in (3.35), all controls which are already uniform with respect to 
λ, that is, the bounds on the diffusion coefficients (3.36) and (3.37), the bounds on the stochastic 
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terms (3.39) and (3.40), and the initial data bounds given in (3.41). This can be summarized as 
follows (we can express the result in the new variables since Xn preserves laws)

Ẽ sup
τ∈[0,t]

‖ũλ,n(t)‖p
H σ

+ Ẽ sup
τ∈[0,t]

‖∇ϕ̃λ,n(τ )‖p
H + Ẽ sup

τ∈[0,t]
‖Fλ(ϕ̃λ,n)‖

p
2
L1(O)

+ Ẽ

∣∣∣∣∣∣
t∫

0

‖∇ũλ,n(τ )‖2
H σ

dτ

∣∣∣∣∣∣
p
2

+ Ẽ

∣∣∣∣∣∣
t∫

0

‖μ̃λ,n(τ )‖2
H dτ

∣∣∣∣∣∣
p
2

≤ C

⎡⎢⎣Ẽ‖Fλ(ϕ0,n)‖
p
2
L1(O)

+ 1 + Ẽ

∣∣∣∣∣∣
t∫

0

‖ũλ,n(τ )‖2
H σ

dτ

∣∣∣∣∣∣
p
2

+ Ẽ

∣∣∣∣∣∣
t∫

0

∥∥∇ϕ̃λ,n(τ )
∥∥2

H
dτ

∣∣∣∣∣∣
p
2

+Ẽ

∣∣∣∣∣∣
t∫

0

∞∑
k=1

∫
O

|F ′′
λ (ϕ̃λ,n(τ ))||gk(Jλ(ϕ̃λ,n(τ )))|2 dτ

∣∣∣∣∣∣
p
2
⎤⎥⎦ , (3.66)

where C depends on p but is independent of λ. Next, we would like to take the limit as n → +∞
in (3.66). On the left hand side, the previously proven uniform estimates, convergences and 
weak lower semicontinuity of the norms are enough to pass to the limit. Moreover, it is easily 
seen, by Lipschitz-continuity of F ′

λ, that Fλ(ϕ0,n) → Fλ(ϕ0) in L
p
2 (	̃; L1(O)) by the dominated 

convergence theorem. Finally, in order to pass to the limit in the last term at right hand side, we 
bound each term of the sequence as follows:∫

O

|F ′′
λ (ϕ̃λ,n(τ ))||gk(Jλ(ϕ̃λ,n(τ )))|2 =

∫
O

|F ′′
λ (ϕ̃λ,n(τ ))||gk(Jλ(ϕ̃λ,n(τ )))|2

≤ |O|‖gk ◦ Jλ‖2
L∞(R) sup

x∈R
|F ′′

λ (x)|

= |O|‖gk‖2
L∞(−1,1) sup

x∈R
|F ′′

λ (x)|.

Thanks to the proven convergences, it is straightforward to conclude that (cfr. [71])

|F ′′
λ (ϕ̃λ,n(τ ))||gk(Jλ(ϕ̃λ,n(τ )))|2 → |F ′′

λ (ϕ̃λ(τ ))||gk(Jλ(ϕ̃λ(τ )))|2

almost everywhere in 	̃ ×O × (0, T ). Therefore, applying the dominated convergence theorem 
and the weak lower semicontinuity of the norms, we find

Ẽ sup
τ∈[0,t]

‖ũλ(t)‖p
H σ

+ Ẽ sup
τ∈[0,t]

‖∇ϕ̃λ(τ )‖p
H + Ẽ sup

τ∈[0,t]
‖Fλ(ϕ̃λ)‖

p
2
L1(O)

+ Ẽ

∣∣∣∣∣∣
t∫
‖∇ũλ(τ )‖2

H σ
dτ

∣∣∣∣∣∣
p
2

+ Ẽ

∣∣∣∣∣∣
t∫
‖μ̃λ(τ )‖2

H dτ

∣∣∣∣∣∣
p
2

0 0
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≤ C

⎡⎢⎣Ẽ‖Fλ(ϕ0)‖
p
2
L1(O)

+ 1 + Ẽ

∣∣∣∣∣∣
t∫

0

‖ũλ(τ )‖2
H σ

dτ

∣∣∣∣∣∣
p
2

+ Ẽ

∣∣∣∣∣∣
t∫

0

‖∇ϕ̃λ(τ )‖2
H dτ

∣∣∣∣∣∣
p
2

+Ẽ

∣∣∣∣∣∣
t∫

0

∞∑
k=1

∫
O

|F ′′
λ (ϕ̃λ(τ ))||gk(Jλ(ϕ̃λ(τ )))|2 dτ

∣∣∣∣∣∣
p
2
⎤⎥⎦ . (3.67)

We now need to find uniform bounds with respect to λ for the two terms involving Fλ. Notice 
first that, as customary,

‖Fλ(ϕ0)‖L1(O) ≤ ‖F(ϕ0)‖L1(O),

which is finite by the hypotheses on the initial datum. Concerning the other term, we have

t∫
0

∞∑
k=1

∫
O

|F ′′
λ (ϕ̃λ(τ ))||gk(Jλ(ϕ̃λ(τ )))|2 dτ

=
t∫

0

∞∑
k=1

∫
O

|β ′
λ(ϕ̃λ(τ )) − cF ||gk(Jλ(ϕ̃λ(τ )))|2 dτ

≤ cF L2
2|O|t +

t∫
0

∞∑
k=1

∫
O

|β ′(Jλ(ϕ̃λ(τ )))J ′
λ(ϕ̃λ(τ ))||gk(Jλ(ϕ̃λ(τ )))|2 dτ

≤ cF L2
2|O|t +

t∫
0

∞∑
k=1

∫
O

|F ′′(Jλ(ϕ̃λ(τ ))) + cF ||gk(Jλ(ϕ̃λ(τ )))|2 dτ

≤ 2cF L2
2|O|t + ‖F ′′g2

k‖L∞(−1,1)|O|t
≤ (2cF + 1)L2

2|O|t,

where we made use of (A3) and we exploited the non-expansivity of Jλ. Collecting the two 
results in (3.67), we get

Ẽ sup
τ∈[0,t]

‖ũλ(t)‖p
H σ

+ Ẽ sup
τ∈[0,t]

‖∇ϕ̃λ(τ )‖p
H + Ẽ sup

τ∈[0,t]
‖Fλ(ϕ̃λ)‖

p
2
L1(O)

+ Ẽ

∣∣∣∣∣∣
t∫

0

‖∇ũλ(τ )‖2
H σ

dτ

∣∣∣∣∣∣
p
2

+ Ẽ

∣∣∣∣∣∣
t∫

0

‖μ̃λ(τ )‖2
H dτ

∣∣∣∣∣∣
p
2

≤ Cp

⎡⎣1 + Ẽ

t∫
0

‖ũλ(τ )‖p
H σ

dτ + Ẽ

t∫
0

‖∇ϕ̃λ(τ )‖p
H dτ

⎤⎦ , (3.68)
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and an application of the Gronwall lemma to (3.68) gives

‖ũλ‖L
p

P(	̃;L∞([0,T ];H σ )) + ‖ũλ‖L
p

P(	̃;L2(0,T ;V1))
≤ K2, (3.69)

‖ϕ̃λ‖L
p

P(	̃;L∞([0,T ];V1))
≤ K3, (3.70)

‖μ̃λ,n‖L
p

P(	̃;L2(0,T ;H)) + ‖Fλ(ϕ̃λ,n)‖
L

p
2
P(	̃;C0([0,T ];L1(O)))

≤ K4. (3.71)

Further estimates. Choosing v = βλ(ϕ̃λ) in (3.64) yields:

∫
O

μ̃λF
′
λ(ϕ̃λ) + cF

∫
O

[
μ̃λϕ̃λ − ϕ̃λF

′
λ(ϕ̃λ)

] =
∫
O

β ′
λ(ϕ̃λ)∇ϕ̃λ · ∇ϕ̃λ +

∫
O

|F ′
λ(ϕ̃λ)|2,

and exploiting the monotonicity of βλ, the Hölder and the Young inequalities, after an integration 
over [0, t], we get

1

2
‖F ′

λ(ϕ̃λ)‖2
L2(0,T ;H)

≤ 3

2
‖μ̃λ‖2

L2(0,T ;H)
+ 3c2

F

2
‖ϕ̃λ‖2

L2(0,T ;H)
.

Therefore, by estimates (3.65) and (3.71), we find

‖F ′
λ(ϕ̃λ)‖L

p

P(	̃;L2(0,T ;H)) ≤ K5. (3.72)

Again, by comparison in (3.7), we also obtain

‖ϕ̃λ‖L
p

P(	̃;L2(0,T ;V2))
≤ K6. (3.73)

The remaining estimates can be obtained following line by line the work already showed in 
Subsection 3.3. In this way, we also recover the following: given any k ∈ (0, 12 ) and p ≥ 2, there 
exist β = β(p) and γ = γ (p), satisfying βp > 1 and γp > 1 if p > 2 (see Remarks 3.3 and 3.4), 
such that ∥∥∥∥∥∥

·∫
0

G1(̃uλ(τ ))dW1(τ )

∥∥∥∥∥∥
L

p

P(	̃;Wk,p(0,T ;H σ ))

≤ K7, (3.74)

∥∥∥∥∥∥
·∫

0

G2,λ(ϕ̃λ(τ ))dW2(τ )

∥∥∥∥∥∥
L

p

P(	̃;Wk,p(0,T ;V1))

≤ K8, (3.75)

‖ϕ̃λ‖L
p

P(	̃;Wβ,p(0,T ;V ∗
1 )) ≤ K9 (3.76)

‖ũλ‖ p
2 ˜ γ,p ∗ ≤ K10. (3.77)
LP(	;W (0,T ;V σ ))
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3.6. Passage to the limit as λ → 0+

We are now in a position to let λ → 0+ (along a suitable subsequence). The argument is 
similar to the one of Subsection 3.4, thus we will omit some details for the sake of brevity. 
Iterating the proofs of Lemmas 3.5-3.7, we learn that the family of laws of

(̃uλ, ϕ̃λ,G1(̃uλ) · W̃1,λ,G2,λ(ϕ̃λ) · W̃2,λ, W̃1,λ, W̃2,λ, ũ0,λ, ϕ̃0,λ)λ∈(0,1)

is again tight in the product space

Zu × Zϕ × C0([0, T ];V ∗
σ ) × C0([0, T ];H) × C0([0, T ];U0

1 ) × C0([0, T ];U0
2 ) × V ∗

σ × H.

Here, we recall that W̃i,λ ≡ W̃i and we set ̃u0,λ ≡ ũ0 and ̃ϕ0,λ ≡ ϕ̃0 for i = 1, 2 and any λ ∈ (0, 1). 
Owing to the Prokhorov and Skorokhod theorems (see [57, Theorem 2.7] and [82, Theorem 
1.10.4, Addendum 1.10.5]), there exists a probability space (	̂, F̂ , ̂P ) and a family of random 
variables Yλ : (	̂, F̂ ) → (	̃, F̃ ) such that the law of Yλ is P̃ for every λ ∈ (0, 1), namely P̂ ◦
Y−1

λ = P̃ (so that composition with Yλ preserves laws), and the following convergences hold as 
λ → 0+:

ûλ := ũλ ◦ Yλ → û in Lq(	̂;L2(0, T ;H σ ) ∩ C0([0, T ];D(A−δ))) if q < p,

ûλ ⇀ û in Lp(	̂;L2(0, T ;V σ )),

ûλ
∗
⇀ û in Lp

w(	̂;L∞(0, T ;H σ )) ∩ L
p
2 (	̂;Wγ,p(0, T ;V ∗

σ )),

ϕ̂λ := ϕ̃λ ◦ Yλ → ϕ̂ in Lq(	̂;L2(0, T ;V1) ∩ C0([0, T ];H)) if q < p,

ϕ̂λ ⇀ ϕ̂ in Lp(	̂;L2(0, T ;V2)),

ϕ̂λ
∗
⇀ ϕ̂ in Lp

w(	̂;L∞(0, T ;V1)) ∩ Lp(	̂;Wβ,p(0, T ;V ∗
1 )),

Îλ := (G1(ϕ̃λ) · W̃1,λ) ◦ Yλ → Î in Lq(	̂;C0([0, T ];V ∗
σ )) if q < p,

Ĵλ := (G2,λ(ϕ̃λ) · W̃1,λ) ◦ Yλ → Ĵ in Lq(	̂;C0([0, T ];H)) if q < p,

Ŵ1,λ := W̃1,λ ◦ Yλ → Ŵ1 in Lq(	̂;C0([0, T ];U0
1 )) if q < p,

Ŵ2,λ := W̃2,λ ◦ Yλ → Ŵ2 in Lq(	̂;C0([0, T ];U0
2 )) if q < p,

û0,λ := ũ0,λ ◦ Yλ → û0 in Lq(	̃;V ∗
σ ) if q < p,

ϕ̂0,λ := ϕ̃0,λ ◦ Yλ → ϕ̂0 in Lq(	̃;H) if q < p,

for some limiting processes satisfying

û ∈ L
p
2 (	̂;Wγ,p(0, T ;V ∗

σ )) ∩ Lp(	̂;C0([0, T ];D(A−δ)) ∩ L2(0, T ;V σ ))

∩ Lp
w(	̂;L∞(0, T ;H σ ));

ϕ̂ ∈ Lp(	̂;Wβ,p(0, T ;V ∗
1 ) ∩ C0([0, T ];H)

∩ L2(0, T ;V2)) ∩ Lp
w(	̂;L∞(0, T ;V1));

μ̂ ∈ Lp(	̂;L2(0, T ;H));
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Î ∈ Lp(	̂;C0([0, T ];V ∗
σ ));

Ĵ ∈ Lp(	̂;C0([0, T ];H));
Ŵ1 ∈ Lp(	̂;C0([0, T ];U0

1 ));
Ŵ2 ∈ Lp(	̂;C0([0, T ];U0

2 ));
û0 ∈ Lp(	̂;H σ );
ϕ̂0 ∈ Lp(	̂;B ∩ V1).

Again, by estimate (3.71), we also have the following weak convergence of the redefined chem-
ical potentials

μ̂λ := μ̃λ ◦ Yλ ⇀ μ̂ in Lp(	̂;L2(0, T ;H)).

Mimicking the arguments illustrated in Subsection 3.4, we now address several issues.

The nonlinearities. First of all, we show that

F ′
λ(ϕ̂λ) → F ′(ϕ̂) in Lp(	̂;L2(0, T ;H)).

This comes from the weak-strong closure of maximal monotone operators (see, for instance, [8, 
Proposition 2.1]) combined with the strong convergence for ̂ϕλ proved above (recall that F ′

λ(x) =
γλ(x) − cF x). Next, the diffusion coefficients. As for G1, it is easy by Lipschitz continuity to 
deduce

G1(̂uλ) → G1(̂u) in Lq(	̂;L2(0, T ;L 2(U1, Y ))) if q < p.

Moreover, arguing similarly (recall also Proposition 3.1), we get

‖G2,λ(ϕ̂λ) − G2(ϕ̂)‖Lp(	̂,L2(0,T ,L 2(U2,H)))

≤ ‖G2,λ(ϕ̂λ) − G2,λ(ϕ̂)‖Lp(	̂,L2(0,T ,L 2(U2,H)))

+ ‖G2,λ(ϕ̂) − G2(ϕ̂)‖Lp(	̂,L2(0,T ,L 2(U2,H))),

and we conclude

G2,λ(ϕ̂λ) → G2(ϕ̂) in Lq(	̂;L2(0, T ;L 2(U2,H))) if q < p.

Regarding the convective term and the Korteweg force, on account of the obtained convergences, 
we deduce that

μ̂λ∇ϕ̂λ ⇀ μ̂∇ϕ̂ in L1(O × (0, T ));
B (̂uλ, ûλ) → B (̂u, û) in Lq(	̃;L 4

d (0, T ;V ∗
σ ) if q <

p

2
;

ûλ · ∇ϕ̂λ ⇀ û · ∇ϕ̂ in L
p
2 (	̂;L2(0, T ;L1(O)) ∩ L1(0, T ;L 3

2 (O))).
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The stochastic integrals. Following line by line the argument presented in Subsection 3.4, it is 
possible to identify the limits Î and Ĵ . Indeed, we have

Î (t) =
t∫

0

G1(̂u(τ )) dŴ1(τ ), Ĵ (t) =
t∫

0

G2(ϕ̂(τ )) dŴ2(τ ),

which are a V ∗
σ and an H -valued martingale, respectively, adapted with respect to a suitable 

filtration (F̂t )t .

Identification of the limit solution. Again, a multiple application of the dominated convergence 
theorem allows us to infer that the limit processes form a martingale solution of the original 
problem. The existence of a martingale solution is proved.

3.7. The energy inequality

We are left to prove the energy inequality. To this end, we simply pass to the limit in a suitable 
approximating energy inequality. Let us add (3.32) and (3.33) together and take expectations. 
Recalling that stochastic integrals are martingales, we obtain the identity

1

2
E‖uλ,n(t)‖2

H σ
+ 1

2
E‖∇ϕλ,n‖2

H +E‖Fλ(ϕλ,n)‖L1(O)

+E

t∫
0

[
‖∇uλ,n(τ )‖2

H σ
+ ‖μλ,n(τ )‖2

H

]
dτ

= 1

2
E‖u0,n‖2

H σ

+ 1

2
E‖∇ϕ0,n‖2

H +E‖Fλ(ϕ0,n)‖L1(O) + 1

2
E

t∫
0

‖G1,n(uλ,n(τ ))‖2
L 2(U1,H σ )

dτ

+ 1

2
E

t∫
0

⎡⎣∥∥∇G2,λ,n(ϕλ,n(τ ))
∥∥2

L 2(U2,H )
+

∞∑
k=1

∫
O

F ′′
λ (ϕλ,n(τ ))|gk(Jλ(ϕλ,n(τ )))|2

⎤⎦ dτ.

(3.78)

Thank to (3.36) and (3.37), from (3.78) we infer

1

2
E‖uλ,n(t)‖2

H σ
+ 1

2
E‖∇ϕλ,n‖2

H +E‖Fλ(ϕλ,n)‖L1(O)

+E

t∫
0

[
‖∇uλ,n(τ )‖2

H σ
+ ‖μλ,n(τ )‖2

H

]
dτ

≤ C2
G t + 1

E‖u0,n‖2
H + 1

E‖∇ϕ0,n‖2
H +E‖Fλ(ϕ0,n)‖L1(O)
1 2 σ 2
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+ C2
G1

E

t∫
0

‖uλ,n(τ )‖2
H σ

dτ

+ L2
2

2
E

t∫
0

∥∥∇ϕλ,n(τ )
∥∥2

H
dτ + 1

2
E

t∫
0

∞∑
k=1

∫
O

F ′′
λ (ϕλ,n(τ ))|gk(Jλ(ϕλ,n(τ )))|2 dτ.

(3.79)

Exploiting the preservation of laws by Xn, and letting n → +∞, we find

1

2
Ẽ‖ũλ(t)‖2

H σ
+ 1

2
Ẽ‖∇ϕ̃λ‖2

H + Ẽ‖Fλ(ϕ̃λ)‖L1(O)

+ Ẽ

t∫
0

[
‖∇ũλ(τ )‖2

H σ
+ ‖μ̃λ(τ )‖2

H

]
dτ

≤ C2
G1

t + 1

2
Ẽ‖ũ0‖2

H σ
+ 1

2
Ẽ‖∇ϕ̃0‖2

H + Ẽ‖Fλ(ϕ̃0)‖L1(O) + C2
G1

Ẽ

t∫
0

‖ũλ(τ )‖2
H σ

dτ

+ L2
2

2
Ẽ

t∫
0

‖∇ϕ̃λ(τ )‖2
H dτ + 1

2
Ẽ

t∫
0

∞∑
k=1

∫
O

F ′′
λ (ϕ̃λ(τ ))|gk(Jλ(ϕ̃λ(τ )))|2 dτ.

(3.80)

Here we have used the lower semicontinuity of the norms and the dominated convergence theo-
rem. A second passage to the limit entails the claimed inequality. Indeed, exploiting preservation 
of laws by Yλ in (3.80) as well as (A3), and letting λ → 0+, we get

1

2
Ê‖û(t)‖2

H σ
+ 1

2
Ê‖∇ϕ̂‖2

H + Ê‖F(ϕ̂)‖L1(O)

+ Ê

t∫
0

[
‖∇û(τ )‖2

H σ
+ ‖μ̂(τ )‖2

H

]
dτ

≤
(

C2
G1

+ L2
2

2
|O|

)
t + 1

2
Ê‖û0‖2

H σ
+ 1

2
Ê‖∇ϕ̂0‖2

H + Ê‖F(ϕ̂0)‖L1(O)

+ C2
G1

Ê

t∫
0

‖û(τ )‖2
H σ

dτ + L2
2

2
Ê

t∫
0

‖∇ϕ̂(τ )‖2
H dτ.

(3.81)

Observe that, passing in the limit in the third term on the left hand side of (3.80) is possible by 
lower semicontinuity since recalling that

|Jλϕ̂λ − ϕ̂| ≤ |Jλϕ̂λ − ϕ̂λ| + |ϕ̂λ − ϕ̂| ≤ λ|βλ(ϕ̂λ)| + |ϕ̂λ − ϕ̂|,
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it follows Jλϕ̂λ → ϕ̂ almost everywhere in ̂	×O×(0, T ). Fixed any t > 0, the energy inequality 
follows taking the supremum over [0, t] in both sides of (3.81).

3.8. Recovery of the pressure

It is possible to recover a pressure through a generalization of the classical De Rham theorem 
to stochastic processes (see [60]). The result is of independent interest and we report it hereafter 
for reader’s convenience.

Theorem 3.9 ([60, Theorem 4.1]). Let O be a bounded Lipschitz domain of Rd and let (	, F , P )

be a complete probability space. Let s1 ∈ R and r0, r1 ∈ [1, +∞]. Let

h ∈ Lr0(	;Ws1,r1(0, T ; (H 1
0(O))∗))

be such that, for all v ∈ [
C∞

0 (O)
]d

satisfying divv = 0,

〈h,v〉([
C∞

0 (O)
]d)∗

,
[
C∞

0 (O)
]d = 0 in

(
C∞

0 (0, T )
)∗

, P -a.s.

Then there exists a unique (up to a constant)

π ∈ Lr0(	;Ws1,r1(0, T ;H))

such that

∇π = h in
([
C∞

0 ((0, T ) ×O)
]d

)∗
, P -a.s.

and ∫
O

π = 0 in
(
C∞

0 (0, T )
)∗

, P -a.s.

Furthermore, there exists a positive constant C = C(O), independent of h, such that

‖π‖Ws1,r1 (0,T ;H) ≤ C(O)‖h‖Ws1,r1 (0,T ;(H 1
0(O))∗) P -a.s.

Let us now find suitable values for the parameters r0, r1 and s1. By choosing v ∈ [
C∞

0 (O)
]d with 

divv = 0 in (1.7), after elementary rearrangements and integration by parts we obtain that

〈
∂t (̂u − G1(̂u) · Ŵ1)(t),v

〉
(H 1

0(O))∗,H 1
0(O)

+
∫
O

∇û(t) : ∇v

+ 〈B (̂u(t), û(t)),v〉(H 1
0(O))∗,H 1

0(O) −
∫
O

μ̂(t)∇ϕ̂(t) · v = 0

for almost every t ∈ (0, T ), P̂ -almost surely. Hence, by setting
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h := ∂t (̂u − G1(̂u) · Ŵ1) + Lû + B (̂u, û) − μ̂∇ϕ̂,

one has in particular, for all v ∈ [
C∞

0 (O)
]d

with divv = 0, that

〈h,v〉([
C∞

0 (O)
]d)∗

,
[
C∞

0 (O)
]d = 0 in

(
C∞

0 (0, T )
)∗

, P̂ -a.s.

Let us recover the regularity of h. Observing that ̂u − G1(̂u) · Ŵ1 ∈ L
p

P (	; L∞(0, T ; H )) and 
that ∂t : L∞(0, T ; H ) → W−1,∞(0, T ; H ) is linear and continuous, we have

∂t (̂u − G1(̂u) · Ŵ1) ∈ L
p

P (	̂;W−1,∞(0, T ;H σ )) ⊂ L
p

P (	̂;W−1,∞(0, T ; (H 1
0(O))∗)).

Furthermore, recalling that L1(0, T ; (H 1
0(O))∗) ↪→ W−1,∞(0, T ; (H 1

0(O))∗) thanks to the fun-
damental theorem of calculus as shown in the proof of [60, Theorem 2.2], one has that

Lû ∈ L
p

P (	̂;L2(0, T ; (H 1
0(O))∗)) ⊂ L

p

P (	̂;W−1,∞(0, T ; (H 1
0(O))∗)).

Moreover, since for d ∈ {2, 3} the bilinear form

B : V σ × V σ → L
6
5 (O) ↪→ (H 1

0(O))∗

is continuous, thanks to the regularity of ̂u it follows that

B (̂u, û) ∈ L
p
2
P (	̂;L1(0, T ; (H 1

0(O))∗)) ↪→ L
p
2
P (	̂;W−1,∞(0, T ; (H 1

0(O))∗)).

Eventually, iterating the computations in (3.57), we obtain

μ̂∇ϕ̂ ∈ L
p
2
P (	̂;L 4

3 (0, T ; (H 1
0(O))∗)) ↪→ L

p
2
P (	̂;W−1,∞(0, T ; (H 1

0(O))∗)).

Hence, we have shown that h ∈ L
p
2 (	̂; W−1,∞(0, T ; (H 1

0(O))∗)) and an application of Theo-
rem 3.9 with r0 = p

2 , s1 = −1 and r1 = +∞ yields the existence of the (unique up to a constant) 

pressure π ∈ L
p
2 (	̂; W−1,∞(0, T ; H)). Finally, we derive an estimate for π . The continuous 

dependence given by Theorem 3.9 implies that

‖π̂‖
W−1,∞(0,T ;H)

≤ C

(
‖û − G1 (̂u) · Ŵ1‖L∞(0,T ;Hσ ) + ‖û‖

L2(0,T ;V σ )
+ ‖û‖2

L2(0,T ;V σ )
+ ‖μ̂∇ϕ̂‖

L
4
3 (0,T ;(H 1

0(O))∗)

)
.

Knowing that

‖μ̂∇ϕ̂‖
L

4
3 (0,T ;V ∗

1)
≤ C

(
‖μ̂‖2

L2(0,T ;H)
+ ‖ϕ̂‖2

L2(0,T ;V2)

)
≤ C

(
‖F ′(ϕ̂)‖2

2 + 2‖ϕ̂‖2
2

)
,

L (0,T ;H) L (0,T ;V2)
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and exploiting the Burkholder-Davis-Gundy inequality together with assumption (A2), we arrive 
at

‖π̂‖
L

p
2
P(	̂;W−1,∞(0,T ;H))

≤ C

(
1 + ‖û‖

L

p
2
P(	̂;L∞(0,T ;H σ ))

+ ‖û‖
L

p
2 (	̂;L2(0,T ;V σ ))

+ ‖û‖2
Lp(	̂;L2(0,T ;V σ ))

+‖ϕ̂‖2
Lp(	̂;L2(0,T ;V2))

+ ‖F ′(ϕ̂)‖2
Lp(	̂;L2(0,T ;H))

)
.

The proof of Theorem 2.7 is complete.

4. Existence of probabilistically-strong solutions when d = 2

This section is devoted to proving Theorem 2.9. To this end, we will use a standard approach, 
namely we shall deduce it from pathwise uniqueness of martingale solutions.

Proposition 4.1. Let d = 2 and p ∈ (2, +∞). Assume (A1)-(A3) and consider two sets of initial 
conditions (u0,i , ϕ0,i ) for i = 1, 2 complying with the hypotheses of Theorem 2.7. Let (ϕ̂i , ̂ui )

denote some martingale solutions to (1.7)-(1.12), defined on the same suitable filtered space 
(	̂, F̂ , (F̂t )t , ̂P ) and with respect to a pair of Wiener processes Ŵ1, Ŵ2. Then, there exist a 
sequence of positive real numbers (Cn)n and a sequence of stopping times {ζn}n, with ζn ↗ T

P̂ -almost surely as n → ∞, such that the following continuous dependence estimate holds

‖(̂u1 − û2)
ζn‖L

p

P(	̂;C0([0,T ];V ∗
σ ))∩L

p

P(	̂;L2(0,T ;H))

+ ‖(ϕ̂1 − ϕ̂2)
ζn‖L

p

P(	̂;C0([0,T ];H))∩L
p

P(	̂;L2(0,T ;V1))

≤ Cn

(
‖û0,1 − û0,2‖Lp(	̂;V ∗

σ ) + ‖ϕ̂0,1 − ϕ̂0,2‖Lp(	̂;H)

)
.

In particular, the martingale solution to (1.7)-(1.12) is pathwise unique.

Proof. Let us set

û := û1 − û2,

ϕ̂ := ϕ̂1 − ϕ̂2,

μ̂ := μ̂1 − μ̂2,

û0 := u0,1 − u0,2,

ϕ̂0 := ϕ0,1 − ϕ0,2.

For every n ∈N and i ∈ {1, 2} we define the stopping time ζ i
n : 	̂ → R as

ζ i
n := inf

⎧⎨⎩t ∈ [0, T ] : sup
s∈[0,t]

‖ûi (s)‖2
H σ

+
t∫ (

‖ûi (s)‖2
V σ

+ ‖ϕ̂i (s)‖2
V2

)
ds ≥ n2

⎫⎬⎭ ,
0
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with the usual convention that inf∅ = T , and set

ζn := ζ 1
n ∧ ζ 2

n .

Clearly, ζn ↗ T almost surely as n → ∞. Let us also introduce the functionals

�1 : V ∗
σ → R, �1(v) := 1

2
‖∇A−1v‖2

H σ
,

�2 : V1 → R, �2(v) := 1

2
‖∇v‖2

H .

We point out, once and for all, that what follows is valid P̂ -almost surely for every t ∈ [0, T ]. 
Let us consider at first �1. First of all, let us compute its first two Fréchet derivatives. If we set

�0 : V σ → R, �0(v) := 1

2
‖∇v‖2

H σ
,

then we have �1 = �0 ◦ A−1. Therefore, an application of the chain rule implies that D�1 :
V ∗

σ → V ∗∗
σ is defined by

D�1(v) = D(�0 ◦ A−1)(v)

= D�0(A
−1v) ◦ DA−1(v)

= AA−1v ◦ A−1

= v ◦ A−1.

Here, of course, we exploited the facts that D�0 = A and that A−1 ∈ L(V ∗
σ , V σ ). The above 

identity must be understood as follows

〈D�1(v),w〉V ∗∗
σ ,V ∗

σ
=

〈
v,A−1w

〉
V ∗

σ ,V σ

=
(
v,A−1w

)
H σ

.

Moreover, by the properties of the inverse of the Stokes operator, it holds〈
v,A−1w

〉
V ∗

σ ,V σ

=
(
∇A−1v,∇A−1w

)
H σ

=
〈
w,A−1v

〉
V ∗

σ ,V σ

(4.1)

for every v, w ∈ V ∗
σ . Notice that D�1 ∈ L(V ∗

σ , V ∗∗
σ ) and thus D2�1(v) = D�1 for every v ∈

V ∗
σ . Applying the Itô lemma [23, Theorem 4.32] to �1(̂u) and stopping at time ζn, we obtain

1

2
‖∇A−1û(t ∧ ζn)‖2

H σ
+

t∧ζn∫
0

[〈̂
u(τ ),A−1 [B (̂u1(τ ), û1(τ )) − B (̂u2(τ ), û2(τ ))]

〉
V ∗

σ ,V σ

]
dτ

+
t∧ζn∫ [

‖û(τ )‖2
H σ

−
〈̂
u(τ ),A−1 [μ̂1(τ )∇ϕ̂1(τ ) − μ̂2(τ )∇ϕ̂2(τ )]

〉
V ∗

σ ,V σ

]
dτ
0
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= 1

2
‖∇A−1û0‖2

H σ
+

t∧ζn∫
0

〈̂
u(τ ),A−1 [(

G1(̂u1(τ )) − G1(̂u2(τ ))
)
dŴ1(τ )

]〉
V ∗

σ ,V σ

+ 1

2

t∧ζn∫
0

‖A−1G1(̂u1(τ )) − A−1G1(̂u2(τ ))‖2
L 2(U1,H σ )

dτ. (4.2)

For the ease of notation, throughout computations we may omit the evaluation of the functions 
at the time τ ∈ [0, ζn(ω)], for P̂ -almost every ω ∈ 	̂. We address the various terms in (4.2)
separately. First of all, notice that, by (4.1),〈̂

u,A−1 [B (̂u1, û1) − B (̂u2, û2)]
〉
V ∗

σ ,V σ

=
〈
B (̂u1, û1),A

−1û
〉
V ∗

σ ,V σ

−
〈
B (̂u2, û2),A

−1û
〉
V ∗

σ ,V σ

= (u ⊗ u1,∇A−1u)H σ + (u2 ⊗ u,∇A−1u)H σ ,

on account of the incompressibility condition

(ui · ∇)ui = −div(ui ⊗ ui )

for i = 1, 2. Then, using the Hölder, Young and Ladyzhenskaya inequalities, together with the 
definition of ζn, we find∣∣∣(u ⊗ u1,∇A−1u)H σ + (u2 ⊗ u,∇A−1u)H σ

∣∣∣
≤

(
‖û1‖L4(O) + ‖û2‖L4(O)

)
‖û‖H σ ‖∇A−1u‖L4(O)

≤ C

(
‖û1‖

1
2
H σ

+ ‖û2‖
1
2
H σ

) (
‖û1‖

1
2
V σ

+ ‖û2‖
1
2
V σ

)
‖û‖

3
2
H σ

‖∇A−1u‖
1
2
H σ

≤ 1

6
‖û‖2

H σ
+ Cn2

(
‖û1‖2

V σ
+ ‖û2‖2

V σ

)
‖∇A−1û‖2

H σ
. (4.3)

Here, we also used the well-known fact that ‖Au‖H σ is an equivalent norm in H 2(O) ∩ V σ . 
Next, we address the coupling term. We make use of the customary formula

μ̂i∇ϕ̂i = −div(∇ϕ̂i ⊗ ∇ϕ̂i ) + ∇
(

1

2
∇|ϕ̂i |2 + F(ϕ̂i)

)
for i = 1, 2. The above makes sense in V ∗

σ , since the chemical potential is not regular enough. 
Therefore, integrating by parts, we recover the identities〈̂

u,A−1 [μ̂1∇ϕ̂1 − μ̂2∇ϕ̂2]
〉
V ∗

σ ,V σ

=
〈
μ̂1∇ϕ̂1 − μ̂2∇ϕ̂2,A

−1û
〉
V ∗

σ ,V σ

= (∇ϕ̂1 ⊗ ∇ϕ̂1 − ∇ϕ̂2 ⊗ ∇ϕ̂2,∇A−1û)H

= (∇ϕ̂ ⊗ ∇ϕ̂,∇A−1û) + (∇ϕ̂ ⊗ ∇ϕ̂ ,∇A−1û) .
1 H σ 2 H σ
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On the other hand, by Hölder, Young and Ladyzhenskaya inequalities, we obtain∣∣∣(∇ϕ̂1 ⊗ ∇ϕ̂,∇A−1û)H + (∇ϕ̂ ⊗ ∇ϕ̂2,∇A−1û)H

∣∣∣
≤

(
‖∇ϕ̂1‖L4(O) + ‖∇ϕ̂2‖L4(O)

)
‖∇ϕ̂‖H ‖∇A−1û‖L4(O)

≤
(

‖ϕ̂1‖
1
2
L∞(O)

‖ϕ̂1‖
1
2
V2

+ ‖ϕ̂2‖
1
2
L∞(O)

‖ϕ̂2‖
1
2
V2

)
‖∇ϕ̂‖H ‖û‖

1
2
H σ

‖∇A−1û‖
1
2
H σ

≤ 1

6
‖û‖2

H σ
+ 1

4
‖∇ϕ̂‖2

H + C
(

1 + ‖ϕ̂1‖2
V2

+ ‖ϕ̂2‖2
V2

)
‖∇A−1û‖2

H σ
. (4.4)

By Assumption (A2) we also get (recall that Y = V ∗
σ ),

‖A−1G1(̂u1) − A−1G1(̂u2)‖2
L 2(U1,H σ )

= ‖G1(̂u1) − G1(̂u2)‖2
L 2(U1,V

∗
σ )

≤ L2
1‖û‖V ∗

σ
≤ CL2

1‖∇A−1û‖2
H σ

, (4.5)

since ‖∇A−1u‖H σ is an equivalent norm in V ∗
σ . Collecting (4.3)-(4.5), we infer from (4.2) that

1

2
‖∇A−1û(t ∧ ζn)‖2

H σ
+

t∧ζn∫
0

[
4

6
‖û(τ )‖2

H σ
− 1

4
‖∇ϕ̂(τ )‖2

H

]
dτ

= 1

2
‖∇A−1û0‖2

H σ
+ sup

s∈[t∧ζn]

∣∣∣∣∣∣
s∫

0

〈̂
u(τ ),A−1 [(

G1(̂u1(τ )) − G1(̂u2(τ ))
)
dŴ1(τ )

]〉
V ∗

σ ,V σ

∣∣∣∣∣∣
+ Cn2

t∧ζn∫
0

(
1 + ‖û1(τ )‖2

V σ
+ ‖û2(τ )‖2

V σ
+ ‖ϕ̂1(τ )‖2

V2
+ ‖ϕ̂2(τ )‖2

V2

)
‖∇A−1û(τ )‖2

H σ
dτ.

(4.6)

Before dealing with the stochastic integral in (4.6), we consider �2. Applying the Itô lemma to 
�2(ϕ̂) yields, thanks to [63, Theorem 4.2.5],

1

2
‖ϕ̂(t ∧ ζn)‖2

H +
t∧ζn∫
0

[
(ϕ̂(τ ), μ̂(τ ))H + (ϕ̂(τ ), û1(τ ) · ∇ϕ̂1(τ ) − û2(τ ) · ∇ϕ̂2(τ ))H

]
dτ

= 1

2
‖ϕ̂0‖2

H + 1

2

t∧ζn∫
0

‖G2(ϕ̂1(τ )) − G2(ϕ̂2(τ ))‖2
L 2(U2,H)

dτ

+
t∧ζn∫
0

(ϕ̂(τ ), [G2(ϕ̂1(τ )) − G2(ϕ̂2(τ ))] dŴ2(τ ))H . (4.7)

Observe now that, by the mean value theorem and (A1),
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(ϕ̂, μ̂)H = ‖∇ϕ̂‖2
H + (F ′(ϕ̂1) − F ′(ϕ̂2), ϕ̂)H

≥ ‖∇ϕ̂‖2
H − cF ‖ϕ̂‖2

H .
(4.8)

Moreover, we have∣∣(ϕ̂, û1 · ∇ϕ̂1 − û2 · ∇ϕ̂2)H
∣∣ = ∣∣(ϕ̂, û · ∇ϕ̂1)H + (ϕ̂, û2 · ∇ϕ̂)H

∣∣
= ∣∣(ϕ̂, û · ∇ϕ̂1)H

∣∣
≤ ‖û‖H σ ‖ϕ̂‖L4(O)‖∇ϕ̂1‖L4(O)

≤ ‖û‖H σ ‖ϕ̂‖
1
2
H ‖ϕ̂‖

1
2
V1

‖ϕ̂1‖
1
2
L∞(O)

‖ϕ̂1‖
1
2
V2

≤ 1

6
‖û‖2

H σ
+ 1

4
‖∇ϕ̂‖2

H + C
(

1 + ‖ϕ̂1‖2
V2

)
‖ϕ̂‖2

H . (4.9)

By (A3), we easily deduce

‖G2(ϕ̂1) − G2(ϕ̂2)‖2
L 2(U2,H)

≤ L2
2‖ϕ̂‖2. (4.10)

On account of (4.8)-(4.10), from (4.7) we arrive at

1

2
‖ϕ̂(t ∧ ζn)‖2

H +
t∧ζn∫
0

[
3

4
‖∇ϕ̂(τ )‖2

H − 1

6
‖û(τ )‖2

H σ

]
dτ

≤ 1

2
‖ϕ̂0‖2

H + sup
s∈[0,t∧ζn]

∣∣∣∣∣∣
s∫

0

(ϕ̂(τ ), [G2(ϕ̂1(τ )) − G2(ϕ̂2(τ ))] dŴ2(τ ))H

∣∣∣∣∣∣
+ C

t∧ζn∫
0

(
1 + ‖ϕ̂1(τ )‖2

V2

)
‖ϕ̂(τ )‖2

H dτ. (4.11)

Adding (4.6) and (4.11) together, we obtain

1

2
‖∇A−1û(t ∧ ζn)‖2

H σ
+ 1

2
‖ϕ̂(t ∧ ζn)‖2

H + 1

2

t∧ζn∫
0

[
‖∇ϕ̂(τ )‖2

H + ‖û(τ )‖2
H σ

]
dτ

≤ 1

2
‖∇A−1û0‖2

H σ
+ 1

2
‖ϕ̂0‖2

H

+ sup
s∈[t∧ζn]

∣∣∣∣∣∣
s∫

0

〈̂
u(τ ),A−1(

G1(̂u1(τ )) − G1(̂u2(τ ))
)
dŴ1(τ )

〉
V ∗

σ ,V σ

∣∣∣∣∣∣
+ sup

s∈[0,t∧ζn]

∣∣∣∣∣∣
s∫
(ϕ̂(τ ), [G2(ϕ̂1(τ )) − G2(ϕ̂2(τ ))] dŴ2(τ ))H

∣∣∣∣∣∣

0
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+ Cn2

t∧ζn∫
0

⎡⎣1 +
∑
i=1,2

(
‖ûi (τ )‖2

V σ
+ ‖ϕ̂i (τ )‖2

V2

)⎤⎦ (
‖∇A−1û(τ )‖2

H σ
+ ‖ϕ̂(τ )‖2

H

)
dτ,

(4.12)

so that the Gronwall Lemma and the definition of ζn yield

‖∇A−1û(t ∧ ζn)‖2
H σ

+ ‖ϕ̂(t ∧ ζn)‖2
H +

t∧ζn∫
0

[
‖∇ϕ̂(τ )‖2

H + ‖û(τ )‖2
H σ

]
dτ

≤ eC(T +n4)
(
‖∇A−1û0‖2

H σ
+ ‖ϕ̂0‖2

H

)
+ 2eC(T +n4) sup

s∈[t∧ζn]

∣∣∣∣∣∣
s∫

0

〈̂
u(τ ),A−1(

G1(̂u1(τ )) − G1(̂u2(τ ))
)
dŴ1(τ )

〉
V ∗

σ ,V σ

∣∣∣∣∣∣
+ 2eC(T +n4) sup

s∈[0,t∧ζn]

∣∣∣∣∣∣
s∫

0

(ϕ̂(τ ), [G2(ϕ̂1(τ )) − G2(ϕ̂2(τ ))] dŴ2(τ ))H

∣∣∣∣∣∣ . (4.13)

Take now p
2 -powers, the supremum (with respect to time) and expectations (with respect to P̂ ): 

let us deal with the stochastic integrals on the right hand side of (4.13). The Burkholder-Davis-
Gundy inequality combined with the Young inequality and (A2) entail, for every δ > 0, that

Ê sup
s∈[t∧ζn]

∣∣∣∣∣∣
s∫

0

〈̂
u(τ ),A−1(

G1(̂u1(τ )) − G1(̂u2(τ ))
)
dŴ1(τ )

〉
V ∗

σ ,V σ

∣∣∣∣∣∣
p
2

≤ CÊ

⎛⎝ t∧ζn∫
0

‖∇A−1û(s)‖2
H σ

‖G1(̂u1(s)) − G1(̂u2(s))‖2
L 2(U1,V

∗
σ )

ds

⎞⎠
p
4

≤ CÊ

⎛⎝ sup
s∈[0,t∧ζn]

‖∇A−1û(s)‖2
H σ

t∧ζn∫
0

‖û(τ )‖2
V ∗

σ
dτ

⎞⎠
p
4

≤ δÊ sup
s∈[0,t∧ζn]

‖∇A−1û(s)‖p
H σ

+ CδÊ

t∧ζn∫
0

‖∇A−1û(τ )‖p
H σ

dτ, (4.14)

while the same inequalities and (A3) also yield

Ê sup
s∈[t∧ζn]

∣∣∣∣∣∣
τ∫
(ϕ̂(s), [G2(ϕ̂1(s)) − G2(ϕ̂2(s))] dŴ2(s))H

∣∣∣∣∣∣
p
2

0
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≤ CÊ

⎛⎝ t∧ζn∫
0

‖ϕ̂(s)‖2
H ‖G2(ϕ̂1(s)) − G2(ϕ̂2(s))‖2

L 2(U2,H)
ds

⎞⎠
p
4

≤ δÊ sup
s∈[t∧ζn]

‖ϕ̂(s)‖p
H + CδE

t∧ζn∫
0

‖ϕ̂(τ )‖p
H dτ. (4.15)

Taking (4.14) and (4.15) into account in (4.13) and choosing δ small enough, an application of 
the Gronwall lemma entails the claimed continuous dependence estimate. In turn, upon choosing 
û0,1 = û0,2 and ϕ̂0,1 = ϕ̂0,2, this also yields û1 = û2 and ϕ̂1 = ϕ̂2 on the stochastic interval 
�0, ζn� for every n ∈N . Hence pathwise uniqueness of the solution follows since ζn ↗ T almost 
surely. �
The existence of a probabilistically-strong solution follows from standard results (see, for in-
stance, [68, Theorem 2.1]) and, by Proposition 4.1, also turns out to be unique. The existence 
and uniqueness (up to a constant) of a pressure π ∈ L

p
2 (	; W−1,∞(0, T ; H)) can be deduced 

arguing as in Subsection 3.8. The proof of Theorem 2.9 is finished.
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