
Fraud Detection Under Siege: Practical Poisoning Atacks and Defense

Strategies

TOMMASO PALADINI, FRANCESCO MONTI, MARIO POLINO, MICHELE CARMINATI,
and STEFANO ZANERO, Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB), Politecnico di

Milano, Italy

Machine learning (ML) models are vulnerable to adversarial machine learning (AML) attacks. Unlike other contexts, the fraud
detection domain is characterized by inherent challenges that make conventional approaches hardly applicable. In this paper,
we extend the application of AML techniques to the fraud detection task by studying poisoning attacks and their possible
countermeasures. First, we present a novel approach for performing poisoning attacks that overcomes the fraud detection
domain-speciic constraints. It generates fraudulent candidate transactions and tests them against a machine learning-based
Oracle, which simulates the target fraud detection system aiming at evading it. Misclassiied fraudulent candidate transactions
are then integrated into the target detection system’s training set, poisoning its model and shifting its decision boundary.
Second, we propose a novel approach that extends the adversarial training technique to mitigate AML attacks: during the
training phase of the detection system, we generate artiicial frauds by modifying random original legitimate transactions;
then, we include them in the training set with the correct label. By doing so, we instruct our model to recognize evasive
transactions before an attack occurs. Using two real bank datasets, we evaluate the security of several state-of-the-art fraud
detection systems by deploying our poisoning attack with diferent degrees of attacker’s knowledge and attacking strategies.
The experimental results show that our attack works even when the attacker has minimal knowledge of the target system.
Then, we demonstrate that the proposed countermeasure can mitigate adversarial attacks by reducing the stolen amount of
money up to 100%.

CCS Concepts: ·Applied computing→Online banking; · Computing methodologies→Machine learning; · Security
and privacy → Software and application security.

Additional Key Words and Phrases: adversarial machine learning, poisoning attacks, fraud detection systems, adversarial

training

1 INTRODUCTION

Machine learning (ML) techniques are employed in multiple ields, such as speech recognition [22], computer
vision [35], natural language processing [40], and anomaly detection [49]. Nowadays, machine learning solutions
are also widely used to detect banking frauds [4, 7, 14, 15, 18, 37, 47, 61]. Unfortunately, machine learning
models are vulnerable to adversarial machine learning (AML) attacks [6, 54]. For example, an attacker may craft
ładversarial examplesž, i.e., malicious perturbated input with additional non-random noise that the machine
learning model conidently misclassiies. Such examples can be exploited to systematically evade the classiier
(evasion attacks) and if included in the training set, may degrade the performance of the learned model (poisoning

Authors’ address: Tommaso Paladini, tommaso.paladini@polimi.it; Francesco Monti, francesco4.monti@mail.polimi.it; Mario Polino, mario.
polino@polimi.it; Michele Carminati, michele.carminati@polimi.it; Stefano Zanero, stefano.zanero@polimi.it, Dipartimento di Elettronica,
Informazione e Bioingegneria (DEIB), Politecnico di Milano, Via Giuseppe Ponzio 34/5, 20133, Milano (MI), Italy.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for proit or commercial advantage and that copies bear this notice and the full citation on the irst page.
Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior speciic permission and/or a fee. Request permissions from
permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
2471-2566/2023/8-ART $15.00
https://doi.org/10.1145/3613244

ACM Trans. Priv. Sec.

HTTPS://ORCID.ORG/0000-0003-2570-1957
HTTPS://ORCID.ORG/0000-0002-0925-2306
HTTPS://ORCID.ORG/0000-0001-8284-6074
HTTPS://ORCID.ORG/0000-0003-4710-5283
https://orcid.org/0000-0003-2570-1957
https://orcid.org/0000-0002-0925-2306
https://orcid.org/0000-0001-8284-6074
https://orcid.org/0000-0003-4710-5283
https://doi.org/10.1145/3613244
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3613244&domain=pdf&date_stamp=2023-08-08

2 • Paladini et al.

attacks) [12]. Interestingly, adversarial examples crafted against a model are usually efective against similar
models. This phenomenon, referred to as the łtransferability propertyž [21, 51], suggests that a malicious agent
can craft adversarial examples to conduct an attack without a comprehensive knowledge of the target system. The
good news is that the success of adversarial examples can be reduced via defense techniques such as adversarial
training [26], anomaly detection [44], and feature distillation [39], or through statistical tests [27]. Only a small
fraction of research work demonstrates the feasibility of AML attacks and defenses in the fraud detection domain.
Among them, Carminati et al. [17] show how a determined attacker, with limited resources and standard machine
learning algorithms, can build a surrogate of the original fraud detection system (FDS) and use it to evaluate
carefully crafted frauds before submitting them on behalf of their victims. Other approaches solve an optimization
problem to generate transactions that mimic the victim behavior [16] or adapt existing solutions used in the
image recognition domain [19]. Since an attacker can only indirectly interact with the target model, traditional
approaches are hardly applicable to this context. The same problem also afects the proposed countermeasures.
Existing mitigation strategies in computer vision require assumptions that do not hold for the instances of AML
attacks against FDSs. In particular, adversarial training may not generalize to our problem: fraudulent transactions
that evade the classiier may not resemble adversarial examples because they are not obtained by directly adding
noise in feature space. Other mitigations for poisoning attacks involve outlier detection mechanisms [44, 50].
To directly identify poison samples in the training set before the training phase of the ML model happens, they
apply label sanitization algorithms on the training dataset [45] and robust learning algorithms that detect input
samples that degrade the performance of the model [30]. In the attacks against FDSs, malicious transactions are
not outliers with respect to legitimate transactions, but inliers crafted to mimic the original behavior of the victim.
Furthermore, the attacker cannot tamper with the training dataset of the FDS since the labels of the transactions
are directly assigned by the inancial institution. This demonstrates the importance of deepening the research in
the fraud detection ield from both the point of view of attacking and defensive strategies.

In this paper, we study the application of poisoning attacks and their possible countermeasures in the inancial
fraud detection context. We propose 1○ a novel approach to craft poisoning samples that adapts and expands
existing solutions, overcoming the challenges of the domain under analysis; 2○ a novel defense strategy in the
form of an adversarial data augmentation scheme, directly inspired by adversarial training [26], for reducing the
probability of successful evasion of the FDS classiier.
The proposed AML attack is based on a hybrid combination of machine learning techniques and parametric

decision rules, working together to generate and validate evasion and poisoning samples, which are iteratively
reined to reduce their suspiciousness. First, we generate candidate adversarial transactions exploiting parametric
decision rules (i.e., heuristics), which consider the speciic constraints of the fraud detection domain. Then, we
use a machine learning-based Oracle, which simulates the target fraud detection system, to validate the generated
frauds. After that, we test the frauds validated by the Oracle against the detection systems under attack, aiming
at evading it. If the target fraud detection system lags the adversarial examples as legitimate, it will integrate
them into its training set, poisoning its model and shifting its decision boundary in favor of the attacker ś e.g.,
by progressively increasing the stolen amount of funds during the poisoning attack. We model an attacker with
diferent degrees of knowledge of the target system: perfect knowledge (white-box), partial knowledge (gray-box),
and no knowledge (black-box). We also design diferent attack strategies, which deine the attacker’s behavior,
i.e., the number, the amount of money, the nationality of frauds injected, and the poisoning process speed. Finally,
we study diferent update policies ś i.e., how often the models are retrained to include new data.

The proposed defense strategy aims at countering adversarial attackers by training the target detection system
to recognize their stealthy patterns. First, we simulate adversarial attacks by generating artiicial frauds that
mimic the user’s behavior through simple heuristics. Then, we use the FDS to classify them, similarly to what the
attacker does with the Oracle. Finally, we add the misclassiied samples in the training dataset and retrain the
FDS model. By adopting such a strategy, we show examples of adversarial fraud to the model before the attack

ACM Trans. Priv. Sec.

Fraud Detection Under Siege: Practical Poisoning Atacks and Defense Strategies • 3

occurs, anticipating the attacker’s behavior. In particular, to replicate the adversarial frauds submitted by the
attacker, we modify random original legitimate transactions based on the prior knowledge of the input features
that the attacker can directly control while committing fraud.

Using two real anonymized bank datasets with only legitimate transactions augmentedwith synthetic frauds, we
show how a malicious attacker can compromise state-of-the-art fraud detection systems by deploying adversarial
attacks. Our attack ś with no mitigation ś achieves diferent outcomes depending on the experimental settings.
Unsurprisingly, our attacks go unnoticed in the white-box scenario, and the attacker steals up to a million euros
from thirty pseudo-randomly selected victims. In the more realistic gray-box and black-box scenarios, the attacks
are detected between 55% and 91% of the time. However, the attacks last, on average, enough time ś up to a couple
of months ś to steal large amounts of money from victims’ funds (on average between e 41,995 and e 388,342).
Our defense strategy mitigates such attacks by detecting most adversarial frauds placed by the attacker at their
irst evasion attempt. When the attacker has limited knowledge of the system, we can sometimes detect all
the frauds and completely stop the attack. In worse cases, we can still detect a suicient number of frauds and
decrease the average stolen amount from 31.89% to 95.55%. In the full knowledge scenario, where the attacker is
aware of all the system details and its mitigation, our countermeasure still reduces the overall stolen amount
between 18.12% and 84.26% with respect to the base coniguration of the system. The only exception is the active
learning (AL) based model, a variant of [57] and [37], for which we record lower improvements and even some
cases of deterioration. In brief, our results show that we thwart the attempts of the attacker to ind new evasive
transactions and, therefore, force them to search for more complex strategies to evade classiication. In addition,
we evaluate the performance trade-of between the detection of adversarial transactions and the increase of the
false positive rate, varying the number of artiicial frauds injected during training with our countermeasure. We
observe a collateral increase of false positives, between 13.37% and 82.72%, depending on the ML model used by
the FDS. Finally, we compare the proposed defense technique with state-of-the-art mitigations based on anomaly
detection [44] and adversarial training [26]. Our solution outperforms such mitigations that achieve no signiicant
improvement against adversarial attacks and, in some cases, even scarcely reduce the system’s performance.

The main contributions of this paper are:

• A novel approach based on a hybrid combination of machine learning techniques and parametric decision
rules to perform poisoning attacks against fraud detection methods under diferent degrees of attacker’s
knowledge. To the best of our knowledge, this is the irst work about poisoning attacks in the fraud
detection context. We evaluate our attack against state-of-the-art fraud detection systems simulating
diferent fraudsters’ strategies.

• A novel plug-and-play and non-intrusive adversarial-training-based approach to mitigate the adversarial
machine learning attacks in the fraud detection domain.

The remaining of the paper is structured as follows: in Section 2, we review the theoretical background required
to understand the problem statement, then we present the given problem, the state-of-the-art solutions, and the
challenges that we must overcome. In Section 3, we report the threat model of the poisoning attack. In Section 4,
we provide an overview of the banking dataset used for our experimental validation, while in Section 7.2, we
describe the fraud detection systems under attack. In Section 5 and Section 6, we respectively describe in detail
our attack and mitigation approaches. In Section 7, we describe the experimental validation process and discuss
the obtained results. In Section 8, we describe the main limitations of our approach and give possible directions
for future research work. Finally, in Section 9, we summarize the results of our work and draw conclusions.

2 BACKGROUND AND RELATED WORKS

Along with electronic payments, Internet banking fraud keeps increasing in terms of volume and value by each
year, resulting in considerable inancial losses for institutions and their customers [33]. Among the diferent

ACM Trans. Priv. Sec.

4 • Paladini et al.

typologies of fraud, banks consider large-scale cyberattacks as themost dangerous threat [33]. Financial institutions
face well-organized ś and sometimes even state-backed ś cybercriminal groups, who are responsible for digital
heists [53]. Malicious actors also foster a virtual underground economy [25] on the dark web, where they sell
malware tools and customers’ private information. Fraud is a costly phenomenon for inancial institutions, which
estimate to recover only less than 25% of the economic losses, leading to the conclusion that fraud prevention is
essential [33]. Typical schemes of Internet banking fraud are information stealing and transaction hijacking [16].
In information stealing, the fraudster steals the credentials and other relevant information from its victim, like a
one-time password (OTP) code, to connect to their account and perform fraudulent transactions. In this case,
the connection is established on the attacker’s device. With the transaction hijacking scheme, the attacker takes
over legitimate transactions made by the victim and redirects them to controlled bank accounts. This scheme
is more challenging to identify because of the connection originating on the victim’s device. Common means
that fraudsters exploit for Internet banking fraud are phishing, the practice of deceiving a victim by presenting
them with a highly credible fraudulent website, usually as an alternate version of a legitimate one [23]; banking
trojans, a class of malware purposely designed to steal credentials and inancial information from infected devices;
social engineering, the practice of manipulating individuals into divulging sensitive information to a malicious
actor [36].

2.1 Banking Fraud Detection Systems

As manual inspections of the entire low of banking transactions by human experts may require an unreasonable
amount of resources, researchers and experts in the cybersecurity ield have produced automated tools, fraud
detection systems (FDSs). Such tools eiciently distinguish fraudulent behavior from legitimate one based on
historical data. Fraud detection is essential for a variety of domains such as banking fraud [2, 14, 15, 20], credit
card transactions [31, 43], and e-Commerce fraud [41]. Research in banking fraud detection is restrained by the
lack of publicly available datasets and privacy-related issues [15].
In literature, there exist examples of FDS solutions based on supervised ML algorithms, such as neural

networks (NNs) [7, 13, 43], support vector machines (SVMs) [8, 34, 48], random forest (RF) [4, 8, 34, 58, 59], logistic
regression (LR) [4, 29, 58], Extreme Gradient Boosting (XGBoost) [61], hierarchical attention mechanisms [2].
There are also examples of unsupervised solutions [41] and works that adopt hybrid approaches, combining
diferent techniques to provide multiple perspectives on the same problem [13, 15, 37, 57]. In the last years, also
pseudo-recommender system problem have been proposed to solve the banking fraud detection problem. We refer
the reader to [1, 3] for further details of fraud detection systems functioning.

2.2 AML Atacks against Fraud Detection Systems

Banking fraud detection systems, like other ML-based solutions, are vulnerable to adversarial machine learning
attacks. AML is an emerging ield that explores machine learning under the condition that an adversary tries
to disrupt the correct functioning of a learning algorithm [28]. The goal of AML is to produce robust learning
models i.e., models capable of resisting the opponent. Popular kinds of AML attacks are evasion and poisoning

attacks. In evasion attacks, smart attackers craft examples that evade classiication at inference time [9]. In
poisoning attacks, attackers craft or modify examples in the training dataset, causing the ML algorithms to learn
poor-performing models [11, 12]. The success of these approaches has been mostly proved in the domain of
image classiication [26, 55]. However, in the context of fraud detection, such approaches for adversarial attacks
hardly adapt since samples are manipulated and evaluated with aggregated features and not with their direct
features. A possible attacker can only submit raw transactions to the banking system, where the only input is
represented by a few attributes, e.g., the amount, the recipient’s IBAN, and the time instant of the operation
execution [17]. The aggregated features on which the transactions are evaluated by the FDS are computed using

ACM Trans. Priv. Sec.

Fraud Detection Under Siege: Practical Poisoning Atacks and Defense Strategies • 5

historical data of the banking customers. Therefore, as directly operating on aggregated examples may lead to
unfeasible sequences of transactions, the attacker has to ind the sequences of raw adversarial transactions that,
once aggregated, resemble the desired aggregated adversarial example.
In the fraud detection context, AML attacks pose a direct threat in terms of economic damage to inancial

institutions and their customers. Moreover, in literature, few research works demonstrate AML attacks against
FDSs [16, 17, 19].

These systems are vulnerable to mimicry attacks [16], in which the attacker disguises their frauds as legitimate
transactions to avoid alerting the detector. The attacker infects their victims’ devices through diferent means
(see Section 2), observes their spending patterns, and uses such useful information to mimic them (i.e., reproduce
their behavior). Meanwhile, the attacker will try to maximize their illegitimate proit while remaining undetected.
This attack can be formulated as an optimization problem [16].

FDSs are also vulnerable to evasion attacks, as shown by Carminati et al. [17]. Their approach works as follows:
the attacker, depending on their knowledge of the target FDS in terms of features, dataset, learning algorithm,
parameters/hyperparameters, and past data of their victims, builds a surrogate of the real FDS, called Oracle.
After observing their victims’ behavior, the attacker crafts stealthy frauds to be submitted on their victims’ behalf
by choosing the least suspicious timestamp and amount. At last, the attacker aggregates such transactions with
the victims’ data at their disposal, classiies them using their Oracle, and sends only the fraudulent transfers
classiied as legitimate. The described attack results in an integrity violation.
Cartella et al. [19] adapt state-of-the-art adversarial attacks to tabular data with custom constraints on non-

editable input variables of transactions, decision thresholds, and loss function. The authors also address the
imperceptibility of the adversarial samples, i.e., the similarity of the generated adversarial transactions to regular
ones to the eye of a human operator, by evaluating their distance from original samples on a custom norm.

2.3 AML Mitigations

In the last few years, various mitigations have been proposed against AML attacks. Given the scope of this work,
we focus on the defense mechanisms against poisoning attacks. We refer the reader to [5, 38, 60] for a detailed
overview of mitigations against evasion attacks.

The setting of poisoning attack mitigations can be modeled as a game between two players [50]: the attacker
and the defender. The former wants the ML algorithm to learn a bad model, and the latter tries to learn the
correct one. Training on a poisoned dataset means that the defender has failed. Defenses for poisoning can be
ixed if they do not depend on the generated poisonous data or data-dependent otherwise. In practice, unless the
defender knows the true distribution that generates poisonous data, ixed defenses are unfeasible. In general,
such defenses require strong assumptions on the attacker’s goal and the procedure that generates the poisoning
samples [24, 30, 44, 45]. The approach proposed by Paudice et al. [44] consists in building a distance-based
anomaly detector to ind poisoning data using only a small fraction of trusted data points, the trusted dataset.
Their solution cannot be applied to our approach since one of its main assumptions does not hold against

our attack: adversarial transactions are not outliers with respect to the users’ regular behaviors [17]. Other
approaches [45] work with the assumption that the attacker can directly control the labels in the training dataset
of the FDS, which also does not hold in our case. Jagielski et al. [30] propose an algorithm for regression with
high robustness against a wide class of poisoning attacks, in particular, poisoning attacks formalized as a bi-level
optimization problem with gradient ascent. The algorithm removes points with large residuals, focusing on inliers,
poisoned points with a similar distribution of the training dataset. Adversarial transactions are inliers that are
meant to degrade the performances of the model only for a particular class of users, i.e., the victims of the attack.
Furthermore, the attacker’s poisoning process may be so slow that observing a signiicant performance reduction
would require collecting a large number of adversarial transactions over a long period of time. The economic

ACM Trans. Priv. Sec.

6 • Paladini et al.

damage posed by fraud requires our approach to reject them as soon as possible to avoid losing large amounts of
capital to the fraudster. Consequently, the approach proposed by Jagielski et al. [30] may not be directly applied
to this research work.

Adversarial training, introduced by Goodfellow et al. [26], is a mitigation approach that reduces the success of
the evasion of adversarial examples against deep convolutional neural networks. The principle of adversarial
training is to teach the model how to recognize adversarial examples by encoding a procedure that generates
adversarial examples, such as the Fast Gradient Sign Method (FGSM), within the training algorithm. The authors
achieve this goal by including an adversarial regularization term in the loss function of the ML model, as follows:

�̃ (� , �, �) = � � (� , �, �) + (1 − �) � (� , � + �sign(∇� � (� , �, �))) (1)

Geiping et al. [24] extend such a framework and propose a generic approach for defending against training-time
poisoning attacks. During each iteration of batch gradient descent, the drafted batch of samples is split into
two sets with probability � . Then, on one of the sets, a data poisoning attack is applied until its samples are
reclassiied with the desired label. Last, the batches are merged into a single one, the poisoned samples have the
correct label, and the model is regularly trained. The proposed approach proves efective in image classiication,
but there is no direct solution for applying such a strategy to our domain and to models that cannot be optimized
with gradient descent. Furthermore, Bai et al. [5] examine the generalization capability of adversarial training
under three perspectives: standard generalization, adversarially robust generalization, and generalization on
unseen attacks. In general, with respect to the irst two properties, the authors argue that adversarial training
falls short for its performance trade-of with regular examples and for the tendency of adversarially trained
models to overit on perturbed examples of the training set. However, the last property is the one that interests us
the most: adversarial training generalizes poorly to new, unseen attacks. This suggests that the attacks developed
so far do not represent the space of all the possible perturbations and, for this limitation, a model trained with
adversarial regularization should be able to solve the evasion of examples generated with the Fast Gradient Sign
Method (FGSM), but not to recognize the adversarial transactions generated according to our attack approach.

3 THREAT MODEL

To properly deine the scope of our work, we identify the threat model according to a framework commonly used
in literature [6, 10, 12, 21]. This framework deines the attacker’s goals, their knowledge of the system under
attack, and their inluence over the input data i.e., which manipulations are allowed.

3.1 Atacker’s Goal

AML attacks may violate diferent security properties of the system, manipulate a diferent set of samples, and
have diferent inluences on the target algorithm. An attacker may bypass the defending system, thus gaining
access to the services or the resources protected (integrity violation), or compromise the system functionalities for
everyone, including legitimate users (availability violation), or retrieve conidential information from the learning
algorithm, such as user personal data (privacy violation). The attack speciicity property refers to which samples
the attacker wants the model to misclassify. They may either misclassify a small set of selected samples (targeted
attack) or ind and then exploit misclassiied samples starting from any possible set (indiscriminate attack). The
inluence refers to the impact the attacker has on the classiier itself. In a causative attack, the attacker interacts
with the training set. They directly inluence the learning algorithm, by changing its decision boundaries. Instead,
in an exploratory attack, the attacker only interacts with the test set. They use their knowledge of the target
classiier (already trained) to craft samples that are misclassiied at test time. The error speciicity refers to what
kind of misclassiication the attacker is interested in and is relevant only in multi-class scenarios. The objective

ACM Trans. Priv. Sec.

Fraud Detection Under Siege: Practical Poisoning Atacks and Defense Strategies • 7

can either be to classify the sample to any class diferent from the true one (generic misclassiication) or to classify
the sample as a speciic target class, diferent from the true one (speciic misclassiication).

In our work, the threat model is deined as follows: the attacker performs a causative poisoning attack, which
is an integrity violation. The attack is targeted against some speciic users (i.e., the ones that had their credit
card information stolen and/or have installed a Trojan), but usually, the information-gathering process is generic
(e.g., whoever falls for a phishing campaign). The classiication is binary: the error speciicity corresponds to
performing fraudulent transactions on behalf of a legitimate user and having them accepted as legitimate.

3.2 Atacker’s Knowledge

We model the attacker’s knowledge of the target FDS as a tuple � = (�,�,�, �,� , �), where F represents the
knowledge of the machine learning model features, A represents the knowledge of the particular learning
algorithm, w represents the knowledge of the parameters/hyperparameters of the model, D represents the
knowledge of the model training set, U represents the knowledge of the past transactions of the victims, P
represents the knowledge of the update policy of the FDS, the time interval between each new training phase of
the system. The poisoning attack unfolds in diferent scenarios depending on the attacker’s knowledge of the
system. The possible attack scenarios are the following: white-box, gray-box, black-box. We identify the type of
knowledge of one of the variables with the following symbols: � refers to full knowledge, �̃ to partial knowledge,
�̂ to no knowledge.

Black-box. The black-box scenario represents the best case for the defender, the one in which the attacker has
zero knowledge of the target system. They only have at their disposal some of the past victims’ transactions in
order to compute aggregated features. The tuple describing this scenario is ��� = (�̂ , �̂, �̂, �̂, �̃ , �̂).

Gray-box. In this scenario, the attacker has only partial knowledge of the target system. They know the features
used by the learning algorithm, its training update policy, and some past data of the victims but have no knowledge
of the actual algorithm, parameters/hyperparameters, and training dataset. The tuple describing this scenario is
��� = (�, �̂, �̂, �̂, �̃ , �).

White-box. The white-box scenario, instead, represents the worst case for the defender: the attacker has full
knowledge of the target system. This scenario is hardly achievable in reality, considering the vastness of security
measures applied by banks but provides an overview of the worst-case economic damages. The tuple describing
this scenario is ��� = (�,�,�, �,� , �).

3.3 Atacker’s Capability

The constraints on the attacker’s actions and data manipulation within the target system’s data processing
pipeline are deined by the attacker’s capabilities. In the context of banking fraud detection, the attacker can
observe the banking movements of their victims and submit transactions on their behalf or hijack legitimate ones
toward a controlled account. These assumptions are realistic if we consider the possible technological means at
their disposal. As for the data manipulation side, the attacker can place examples in the FDS training dataset,
but they cannot control all of the input and aggregated features. Aggregated features of the transactions are
out of the attacker’s control: the FDS will automatically aggregate the transactions with past user data. The
attacker can place an arbitrary number of transactions against a victim and for each of them, they control the
input amount and timestamp, the time instant of the banking transfer execution. The attacker has also no label

inluence, meaning that they cannot control the labels of their fraudulent transactions in the FDS dataset, which
are instead assigned by the system itself.

ACM Trans. Priv. Sec.

8 • Paladini et al.

4 DATASET ANALYSIS

We use three datasets containing real bank transfers from an Italian bank: DO2012_13, DO2014_15a, DA2014_15b.
As their names suggest, each dataset contains transactions recorded in a speciic time interval. Datasets DO2012_13
and DO2014_15a have been manually inspected by domain experts and contain only legitimate transfers.
DA2014_15b contains real examples of frauds. The datasets respectively contain 583,920, 470,950, and 627 banking
transfers (i.e., the łtransactionsž) and 53,823, 58,504, and 97 unique customers. More details are provided in Sec-
tion 7.1. In all of the datasets, users’ sensitive personal data have been replaced with their hashed values, in order
to respect privacy while preserving valuable information. The attributes that appear in our datasets are: Amount
(amount of the bank transfer in EUR), UserID (unique identiier of the customer), Timestamp (date and time of
the execution of the bank transfer), IP (IP address of the client that requested the transaction), IBAN (IBAN code
associated to the beneiciary account), IBAN_CC (country code (CC) of the transfer beneiciary IBAN), ASN_CC
(tuple of CC and autonomous system number (ASN) of the connection), and SessionID (unique identiier of the
online banking session).

5 POISONING ATTACK APPROACH

Our attack approach works under the following assumptions:

[A1] Automatic and periodic FDS re-training. The ML model of the FDS is periodically updated by re-
training on new incoming transactions, according to speciic update policies. This assumption represents
the expected behavior of state-of-the-art FDSs.

[A2] Attacker dataset. The attacker possesses a banking dataset with real bank transfers, which allows them
to train their Oracle. This assumption is diicult to satisfy because banks do not publicly share their data.

[A3] Victim control. The attacker has observed past transactions of their victims, they are capable of observing
victims’ transactions during the attack and can submit transactions on their behalf. The attacker can
realistically achieve it using inancial malware and it is necessary to build an approximation of the user’s
behaviors.

[A4] Attack detection. The attack is detected if the FDS classiies as a fraud in one of the transactions submitted
by the attacker.

[A5] Victim protection. A victim is protected only if fraud against him is detected by the FDS. This assumption
is realistic because usually bank operators manually review only the transactions lagged by the FDS.

5.1 Overview

As shown in Figures 1 and 2, our attack approach consists of two phases: evasion phase and poisoning phase.
During the evasion phase, the attacker makes their irst attempt at evading the FDS classiier against the chosen
victims. The poisoning phase starts after the evasion phase and spans the entire duration of the attack. In this phase,
the attacker keeps committing frauds with increasingly higher value over time after the victims are successfully
defrauded during the irst phase. From this point on, having in mind that the fraudulent transactions crafted by
an attacker can be functionally both evasion and poisoning examples for the target FDS, we refer to them as
adversarial transactions. In fact, such transactions are evasion examples since their goal is to be misclassiied by
the target system, and poisoning examples since, if misclassiied, they are placed in the training dataset with the
wrong label, causing the classiier to learn an altered concept. We also divide adversarial transactions into two
categories depending on which phase the attacker crafts and injects them: evasion phase transactions (EPTs) and
poisoning phase transactions (PPTs). On an operational level, we subdivide both phases into three consecutive
steps: Snooping, Crafting, and Injection. As shown in ig. 2, the attacker repeatedly follows such steps: the
irst iteration represents the evasion phase, while the following ones represent the poisoning phase. The irst
step, Snooping, consists of retrieving the victims’ past transactions. The attacker furtively collects and gathers

ACM Trans. Priv. Sec.

Fraud Detection Under Siege: Practical Poisoning Atacks and Defense Strategies • 9

Banking
Dataset

Training

Past
Transactions
of the Victim

Generate
Adversarial

Transactions

Aggregation
and

Classification

?
LegitimateDecrease

Amount Injection

FDS

Classification

?

Fraud

Fraud
Dataset

Model
Training

Attacker Bank

Legitimate
Dataset

Legitimate

Oracle

Fraud

Step 1 Step 2

Step 3

Fig. 1. Overview of our poisoning atack approach.

Snooping Crafting Injection

Evasion
Phase

Poisoning
Phase

Fig. 2. Atack phases and inner steps.

information about the victims to understand their behavior. During the Crafting step, the attacker generates their
adversarial transactions relying on domain-based decision rules (heuristics) and the victims’ spending patterns
collected so far. The attacker checks the crafted adversarial transactions with the Oracle, a surrogate of the real
ML-based detector. The Oracle predicts the suspiciousness of each transaction by outputting a conidence score,
a scalar value between 0 (legitimate) and 1 (fraud). Then, they select the frauds with conidence scores smaller
than a predeined threshold, which depends on their knowledge of the target system. When the Oracle rejects
a fraud, the attacker regenerates it by lowering its value. Decreasing the amount of a fraudulent transaction
reduces its suspiciousness, as frauds generally tend to have higher monetary value than legitimate transactions
[42]. This loop continues until either the Oracle accepts the transaction or the amount becomes smaller than a
ixed value. In the latter case, the attacker discards the transaction because it no longer brings signiicant proit.
During the last step, Injection, the attacker commits the frauds iltered by the Oracle on behalf of their victims by
diferent technical means at their disposal. The target FDS will analyze such transactions by aggregating them
with historical user data and ultimately classify the resulting example. If the frauds deceive the FDS, they are
successfully injected into the banking database as legitimate examples. Otherwise, the FDS will discard them, and
the user enters a state of protection. In this case, the attacker can no longer defraud the victim, as their account is
on hold until further investigation by the inancial institution. Let us recall that the attacker’s Oracle is not a
perfect replica of the target FDS. This step ends with the attacker passively waiting for the FDS to re-train on the
poisoned training dataset accordingly to its update policy. As a result, the FDS will possibly learn a model altered
by the injected adversarial transactions. With successful injection attempts, the attacker can iterate the whole
process over time, exploiting the poisoned FDS and crafting frauds with higher amounts.

ACM Trans. Priv. Sec.

10 • Paladini et al.

5.2 Oracle

The attacker strives to replicate the FDS under attack with their Oracle. Their similarity depends on the attacker’s
knowledge of the target system. In the white-box scenario, the attacker can build an Oracle that fully replicates
the FDS. However, in limited knowledge scenarios (black-box and gray-box), the attacker has only incomplete
information available. Under these knowledge conditions, the attacker can only build a surrogate model. They do
not also know the training dataset used by the FDS nor its algorithm class. Therefore, the attacker has to use
an alternative dataset to train its replicas and select the best-performing one among them. In particular, in the
black-box scenario, the attacker has even less knowledge of their target: they do not know the features of the
FDS model and its update policy. We assume that the attacker builds their aggregate features like the FDS and
updates their Oracle according to a bi-weekly update policy since it leads to fewer updates of the Oracle. The
attacker does not also know the actual function used to assign sample weights. Given t as the diference in hours
between the Oracle training timestamp and the transaction timestamp, and k constant, we approximate it with
the following linear function: �̂����������� = 1 − �

�
.

5.3 Crating Step: Generating Adversarial Transactions

We assume that the attacker can interact with the FDS by directly controlling the number of adversarial trans-
actions to inject, their timestamps, and amounts. Aggregated features are directly calculated by the FDS once
transactions are submitted. Other attributes cannot be decided arbitrarily by the attacker without afecting
their own fraudulent goal, e.g., IBAN, UserID. Therefore, we assign random values to other ields of the crafted
adversarial transaction. Considering that most of the frauds have an international IBAN_CC, we assign a national
IBAN_CC (i.e., łITž) with a probability of 50% and an international one in the remaining cases.

The timestamp states the speciic instant of time when a transaction is executed. We design a simple algorithm
for the identiication and replication of the victim’s temporal behavior and the selection of proper transaction
timestamps. Our algorithm limits the number of frauds to be executed in the same day and hour as multiple
transactions in a short period of time are suspicious. In addition, we design an algorithm for the selection of the
amount of monetary value stolen with each fraud. With our algorithm, we analyze past victim spending behavior,
extracting meaningful data such as the mean and the standard deviation of the transaction values, and choose
the amount accordingly. Our procedure progressively increments the number of adversarial transactions during
the poisoning phase of the attack to exploit the poisoned FDS. The count is the number of frauds potentially
executed during each attack iteration. Similarly to the amount, the attacker computes how many transactions
the victim usually makes, then they increment it according to their strategy. The attacker can adopt diferent
attack strategies for their choice of count and amount of adversarial transactions. We design these strategies to
deine the will of the attacker to act more carefully or recklessly. Depending on the chosen strategy, the amount
increase during the poisoning phase can be faster (higher short-term gain, but less stealthy) or slower (lower
short-term gain, but more stealthy).

5.4 Atacker strategies

We design three diferent attackers strategies: greedy, medium, and conservative strategy. The greedy strategy is
the most miopic one, as the attacker maximizes the short-term gains, committing few transactions with high
amounts. With the conservative strategy, the attacker acts more carefully and slowly increases the fraud value
over time. The medium strategy falls between the last two, with the attacker trying to balance the number of
transactions and the amount stolen. Strategies also deine the limit over the value of the attacker’s adversarial
transactions over time, providing upper and lower bounds. In order to avoid detection, they set an upper bound
on the value increase in terms of raw amount increase and standard deviation with respect to the user spending

ACM Trans. Priv. Sec.

Fraud Detection Under Siege: Practical Poisoning Atacks and Defense Strategies • 11

Table 1. Configurations of the atacker’s strategies.

Attacker’s Strategy

Conservative Medium Greedy

Count Increase (%) 40 33.33 25
Amount Increase (%) 75 125 175
Min Increase (e) 25 40 50
Max Increase (e) 2,500 4,000 5,000

StD Max Increase (%) 75 100 150
Min Increment from Previous Iteration (%) 20 30 40

power. The lower bound ensures that the attacker follows their goal, maximizing proits over time. The exact
values of the aforementioned variables are deined in Table 1.

6 MITIGATION APPROACH

Our mitigation approach is inspired by the adversarial training technique, adapted in the form of adversarial
data augmentation, to a broad variety of ML models and to the domain of fraud detection [26]. It requires the
following additional assumptions:

[A6] Trusted dataset. The training dataset of the FDS, before the attack takes place, is trusted and contains no
adversarial transactions. This assumption is realistic as the inancial institution can build it by having its
own banking activities manually inspected by human experts, as for our dataset (see Section 4).

[A7] Knowledge of the threat model. The inancial institution is aware of the threat model of AML attacks,
such as the one described in this paper (see Section 3 and Section 5). However, the defender (i.e., the
institution) has no knowledge of the speciic coniguration used by the attacker, e.g., the attacker’s Oracle,
the particular strategy adopted by the attacker, and the attacker’s knowledge of the target system. This
assumption captures a scenario where the institution is only aware of the existence and the general
operation of adversarial attacks and, in particular, attacks against fraud detection systems, but it is not
aware of the speciic instance of the attacker. As shown by Jagielski et al. [30] and Paudice et al. [44], the
knowledge of the threat model is often exploited to develop a defense mechanism.

6.1 Overview

The main principle behind our solution is the same as adversarial training [26]: we instruct our models on how
to recognize adversarial examples by modifying the standard training procedure. As for the case of adversarial
examples in the domain of image classiication, the adversarial transactions crafted by the attacker are examples
drawn from a diferent distribution from the one that generates other points within the same class. These
transactions are less likely to appear in a regular banking transactions dataset and, therefore, they can be easily
misclassiied by the FDS. Given the similarity of the task, we build our defensive approach by drawing inspiration
from the original adversarial training technique described in Goodfellow et al. [26]. In particular, we re-adapt it
in the form of data augmentation, and modify randomly sampled transactions according to a set of heuristics
that capture the assumptions over the attacker’s behavior. As speciied in Section 2.3, a similar, but more generic
approach, has been also proposed by Geiping et al. [24], but we show its practical application and possible
beneits in the fraud detection context. We start from the observation that adversarial training includes the attack
procedure in the training procedure with the addition of a regularization term to the original stochastic gradient
descent formula, which results in training the model on the original example and its adversarial counterpart

ACM Trans. Priv. Sec.

12 • Paladini et al.

Banking
Dataset

Data
Aggregation Pre-training

Inject Past
Artificial Adv.
Transactions

Pre-trained FDS

? Artificial
Adversarial

Transactions

Fraud LegitimateDiscard

Random
Candidate
Selection

Adversarial
Transactions
Generation

Data
Aggregation

Substitute
Original

Transactions

Final
Augmented

Dataset

FDS
Training

1st Step

2nd Step

3rd Step

4th Step

Classification

raw
features

aggregated
features

Same
hyperparameters,
features, and
learner type of
the standard
FDS.

Final FDS

Fig. 3. Overview of the proposed mitigation.

obtained with FGSM (see Equation (1)). We obtain a similar efect by generating adversarial counterparts of real
transactions from the training dataset and replacing them before the training phase of the ML model.
By anticipating the attacker, we are able to generate surrogate adversarial transactions and show them to

the detector before the attack takes place. In this way, we can non-intrusively strengthen the original base FDS
model, regardless of the choice of its implementation, feature set, and hyperparameters, and avoid designing an
entirely new system.
As shown in Figure 3, we split the whole process into four steps: Pre-Training, Crafting, Augmentation, and

Final Training. The irst step consists in injecting into the training dataset the previously generated artiicial
adversarial transactions if any, and regularly training the FDS model using the same hyperparameters, feature
set, and learner type found during the model selection steps. The pre-trained model will be used to classify the
artiicial adversarial transactions generated by our procedure. In the second step, we generate artiicial adversarial
transactions by modifying random original transactions, rather than creating new ones, and use the trained model
to label the artiicial samples, just like the attacker does with their Oracle. We only consider the artiicial frauds
that the FDS misclassiies as legitimate transactions and discard those correctly classiied as frauds. In compliance
with [A7], our decision rules for the generation of adversarial transactions are based on prior knowledge of
the raw input features that the attacker can directly inluence while committing frauds. In the third step, we
replace the original candidates in our training dataset with their corresponding artiicial adversarial counterparts
that have successfully evaded the pre-trained model. We insert such transactions with their correct label, i.e.,
fraud. We refer to the resulting dataset as the adversarial augmented dataset. Finally, we obtain the inal model
that will be used for the classiication of the incoming transactions by training again the FDS on the adversarial
augmented dataset. The described adversarial training procedure is executed for each consecutive training phase
of the FDS, deined accordingly to its update policy.

ACM Trans. Priv. Sec.

Fraud Detection Under Siege: Practical Poisoning Atacks and Defense Strategies • 13

6.2 Adversarial Transaction Generation

We generate artiicial adversarial transactions by directly modifying random original legitimate transactions, then
calculate the aggregated features and try to evade the classiication of the pre-trained model. Let us recall that
the FDS does not label transactions directly in input space, the one with the raw transactions feature set (e.g., IP,
IBAN, IBAN_CC, etc.), but aggregates transactions with past user data and evaluates them in the aggregated feature
space (see Section 7.2). Reverting an aggregated transaction in feature space to a sequence of raw transactions
represents a complex solution also for the defender. Therefore, also their adversarial transactions can be obtained
more easily directly in the raw input space.
We start by randomly picking incoming transactions in the time interval between the last training instance

and the current training time of the FDS. Let us call the set of selected transactions as candidate transactions.
Before picking the original transactions, we ilter users by the number of transactions they have performed
and discard those with an insuicient amount of data (e.g., taking into account only those that have at least
three transactions). We choose candidate transactions with diferent rules depending on whether they will be
transformed into EPT or PPT examples. For EPT examples we allow users whose transactions have never been
selected in past iterations. For PPT examples, we ensure that the transaction executioner belongs to the set of
users of previously generated artiicial adversarial transactions. With regard to the number of transactions to
choose from, we select at each training iteration the same number � of transactions from the dataset. Only at the
irst iteration all of the transactions generated will be EPT ones. In the next iterations, we subdivide the total
number of adversarial samples � into EPT and PPT samples: we split � into ⌈��⌉ PPT samples and � − ⌈��⌉

EPT samples.
We let the defender exploit their domain knowledge of the described AML attacks against FDSs in order

to turn original transactions into adversarial counterparts that are more general than the ones created by the
attacker. Such modiications can be achieved by changing the values of the features that are out of the adversary’s
control while leaving intact those under their control. In particular, the defender is aware that the attacker can
only control the number of transactions, their amount, and timestamp and that they select the least suspicious
amount and timestamp depending on the victims’ past behavior. Therefore, when generating a new EPT sample,
we randomly change IBAN, IBAN_CC, ASN_CC, IP, Confirm_SMS, SessionID and leave untouched Amount and
Timestamp. The only attributes which are not completely random are IBAN_CC and ASN_CC. We assign them
by selecting random values according to their distribution in the original dataset. When generating a new PPT
sample, for each of the features as IBAN, IBAN_CC, ASN_CC, IP, Confirm_SMS, SessionID with probability � = 0.5,
we change them with new random values or use the value generated for the last adversarial sample against
the same victim. Again, we keep the same Amount and Timestamp from the original candidate transaction. This
simulates an attacker changing the beneiciary international bank account number (IBAN) and/or connection for
the following frauds against the same victim.
In essence, the intuition behind our strategy is the following: an attacker, aiming to imitate regular user

behavior, initiates transactions that closely resemble legitimate ones in most aspects (e.g., amount and timestamp).
However, these transactions possess some inherent diferences that cannot be overcome. These diferences reside
in raw features such as IBAN, IBAN_CC, ASN_CC, IP, SessionID. When we transform each candidate transaction
into its adversarial counterpart by changing the aforementioned features, we obtain transactions that could have
been plausibly submitted by a stealthy attacker1. To avoid leaking the attacker’s decision rules and introducing
any speciic trend in the selected amount and timestamp over time, we avoid choosing any speciic strategy
when transforming original samples into PPTs. This ensures that Assumption [A7] is not violated. Therefore,
our approach may be general enough to cover for variations of the attacker’s decision rules and search in any
possible direction after the evasion phase.

1For simplicity, as the attacker does, we let the defender focus on the fraud type of information stealing.

ACM Trans. Priv. Sec.

14 • Paladini et al.

Amount 3100.0

CC_ASN IT,AS3269

confirm_SMS 1

IBAN fcee514…
IBAN_CC IT

SessionID 2d90d9a…
IP cdb452a…
Timestamp 2014-10-24 18:03:31

UserID ebbd51e…
Fraud 0

Amount 3100.0

CC_ASN IT,AS12874

confirm_SMS 0

IBAN 48c8c58…
IBAN_CC ES

SessionID 1e1b0d0…
IP eda9d1d…
Timestamp 2014-10-24 18:03:31

UserID ebbd51e…
Fraud 1

Fig. 4. Example of transformation of a candidate transaction into an artificial adversarial transaction.

We aggregate the adversarial transactions with the entire user history and then evaluate them with the pre-
trained model, as the attacker does with their Oracle, emulating their principles but for defense purposes. We
save for later use the accepted artiicial adversarial transactions, namely the ones that are classiied as legitimate,
and discard the rejected ones. We must pay attention to the fact that, when calculating aggregated features for
PPT samples, we must substitute also all of the original candidates with past generated adversarial samples. Also,
when transactions are aggregated, known fraudulent transactions are excluded since they are not part of the user
spending behavior. Therefore, we temporarily replace the labels of past adversarial samples with the label of the
legitimate class to ensure their proper inclusion in the aggregation process. We repeat the entire Crafting step
from the selection of candidates until we either ind the desired number � of adversarial transactions or we reach
a maximum number of iterations (�max). After each training over time, the FDS becomes more resistant to the
artiicial adversarial transactions, and it takes an increasingly longer time to pick valid candidate transactions.

7 EXPERIMENTAL EVALUATION

In this section, we present the experimental setting and discuss the inal results. We describe the preliminary
steps of data augmentation with synthetic frauds to build a dataset close to a real-world scenario with multiple
fraudulent campaigns. Using the augmented dataset, we perform the feature engineering and optimization steps for
the fraud detection systems targeted by our attack. In addition, we evaluate each ML model against the synthetic
fraudulent scenarios and select the attacker’s Oracle. Finally, we present the metrics that we use for the evaluation
of our approaches and the inal results. We perform four experiments. First, we evaluate the efectiveness of
the poisoning attack against the fraud detection systems, considering the diferent attacking strategies and
knowledge scenarios. Then, we evaluate the impact of the number of artiicial adversarial transactions injected in
the training set on the classiier performances. Finally, we test our mitigation against the AML attacks, comparing
its performance with state-of-the-art mitigations.

7.1 Dataset Augmentation with Synthetic Frauds

Real banking datasets are highly imbalanced: frauds represent around 1% of the entire dataset [15]. To replicate a
real banking dataset, we augment our datasets, briely described in Section 4, with fraudulent artiicial transfers
generated by a procedure validated by banking domain experts [15]. In our procedure, we group users of the
datasets in diferent sets of "banking proiles" depending on the number of banking transfers recorded and the
average volume of expenses. We randomly pick an equal number of victims from the three proiles and generate
1% of fraudulent transactions. We simulate the two most common real attack schemes: information stealing
and transaction hijacking briely described in Section 2. The main diference between the two schemes is that

ACM Trans. Priv. Sec.

Fraud Detection Under Siege: Practical Poisoning Atacks and Defense Strategies • 15

Table 2. Number of users, transactions and time interval of the augmented datasets.

Users Transactions Fraud Ratio Time Interval

DA2012_13 53823 588211 0.73% 12/2012 - 09/2013
DA2014_15 58508 475767 1.02% 10/2014 - 02/2015

with the latter, the fraudster uses the user’s connection, so frauds will show as transactions having the same
IP, SessionID and ASN_CC of the legitimate transactions initially submitted. We generate national transactions
(i.e., IBAN_CC is łITž) only in 40% of the cases. We also simulate diferent strategies for our fraudsters. We model
these strategies by selecting diferent values for three parameters: the amount of each transaction, the count
(i.e., the number of frauds against a victim), and the attack duration. The fraudster may prioritize short-term
gains, selecting a high amount or a high count in a short duration. They may also adopt an opposite approach,
performing long-term attacks and committing multiple low-amount transactions over time. We also assume that
to avoid detection, the fraudster may study the victim’s spending behavior and stealthy craft frauds which try to
mimic it. Last, the fraudster may perform only one high-value transfer during their attack, with a single fraud
attack. Using the aforementioned technique, we create artiicial frauds for our datasets. Finally, we merge real and
artiicial data into two datasets, DA2012_13 and DA2014_15, briely described in Table 2. DA2012_13 contains real
legitimate transactions from DO2012_13 and synthetic frauds; DA2014_15 contains real legitimate transactions
from DO2014_15a, real frauds from DA2014_15b, and synthetic frauds.

7.2 Modelling Target Fraud Detection Systems

We evaluate our attack and mitigation approaches against six fraud detection systems, built on top of the most
common algorithms used in literature for fraud detection: logistic regression (LR) [4, 29, 58], support vector
machine (SVM) [8, 34, 48], random forest (RF) [4, 8, 34, 58, 59], neural network (NN) [7, 13, 43], Extreme Gradient
Boosting (XGBoost) [61], and a variant of an active learning (AL) system [37, 57]. We follow a system-centric

approach [16] by training a supervised machine learning model to recognize anomalous global patterns from
aggregated transactions.

Feature Engineering and Aggregated Features. From the augmented datasets, we calculate the aggregated
datasets which comprise a set of direct features and aggregated features. Direct features are obtained by input
features of each sample, while aggregated features are obtained by aggregating transactions with past legitimate
transactions of the same user. The direct features are:

• amount: no transformation from the original attribute Amount;
• time_{x,y}: cyclic encoding of the time of the transaction execution, directly calculated from the Timestamp
attribute. Using sine and cosine transformations, time is encoded in two dimensions: time_x and time_y.
This encoding solves the distance calculation between hours directly indicated with a number in the range
[0, 24). For example, the distance between 23 and 22 is 23 − 22 = 1, but the distance between midnight and
23 is 0 − 23 = −23. We obtain the encoding as follows:

� = ��ℎ ∗ 3, 600 + ����� ∗ 60 + ����� (2)

time_x = cos
� ∗ 2�

86400
(3)

time_y = sin
� ∗ 2�

86400
(4)

• is_national_iban: a Boolean value indicating if the beneiciary IBAN has the same nationality of the
online bank (i.e., IT country code);

ACM Trans. Priv. Sec.

16 • Paladini et al.

• is_international: a Boolean value that indicates if the beneiciary IBAN has the same nationality of the
customer;

• confirm_sms: a Boolean value that indicates if the transaction requires an SMS message for conirmation.

Before proceeding with aggregated features, we deine three sets: group, function, time.

• group is the set of original attributes composed by IP, IBAN, IBAN_CC, ASN_CC, SessionID;
• function is the set of operations composed by count, sum, mean, std, where:
– count is the operation that returns the count of the given instances;
– sum is the operation that returns the sum of the amounts of the transactions;
– mean is the operation for the calculation of the average amount of the given transactions;
– std is the operation that calculates the standard deviation of the transaction amounts;

• time is the set of possible time spans of 1h, 1d, 7d, 14d, 30d, respectively indicating one hour, one day,
seven days, fourteen days, and thirty days.

Consider group, function, time as a value taken from the corresponding set, then the aggregated features are:

• group_function_time: obtained by grouping past user transactions by the given group attribute, then
sliding a time window of length time and applying function on the resulting set of transactions. For example,
iban_count_1d is the aggregated feature that indicates the count of transactions in the last 24 hours toward
the same IBAN.

• time_since_same_group: time elapsed in hours since the last transaction made by the same user and
toward the same group attribute value. For example, time_since_same_ip is the time elapsed in hours
from the last transaction executed with the same IP address.

• time_from_previous_trans_global: time elapsed in hours since the last transaction made by the same
user.

• difference_from_group_meantime: diference of amount between the current transaction and the set of
transactions in time window long as time and toward the same group attribute value.

• is_new_group: a Boolean value that indicates if the user is submitting a transaction toward the value of
the given attribute group for the irst time. For example, is_new_asn_cc indicates whether it is the irst
time a user has connected from a certain ASN and associated CC.

Update Policy and Concept Drift. The simulation of the poisoning attack covers a period of two months of
incoming transactions. We design our FDS to deal with the concept drift, intended as the changes of the customers’
spending power over time, by adopting two diferent solutions. First, we include new data in batches at two ixed
time intervals of respectively one and two weeks, which are chosen before the simulation of the attack. We refer
to the intervals as weekly and bi-weekly update policies. Then, we assign discount weights to each example in the
dataset. The discount exponential function increases the importance of the most recent transactions. Given � as
the time diference in hours between the timestamp of the training phase and the timestamp of the transaction
and a constant � = 4380ℎ (0.5�), we assign transaction weights as follows:�transaction = �−

�

� .

Feature Selection and Hyperparameter Tuning. We split dataset DA2014_15 (see Section 4) into training and
test set. The resulting test set comprises the last two months of transactions, accounting for 35.76% of the original
dataset. We use the training set to select hyperparameters and feature sets of the supervised models for fraud
detection under attack. We start by reducing the large initial feature space, which accounts for 174 direct and
aggregated features, with a ilter method for feature selection. We exclude from pairs of highly correlated features
the ones with lower correlation to the target variable. Then, for each model, we search for an initial optimal set
of hyperparameters, following a grid search approach. In particular, as a validation strategy, we minimize the
cross-validation error on the training set split in 3 folds of increasing size. Naively assessing the generalization
performance of our models in terms of standard accuracy, given the high-class imbalance of our datasets, may

ACM Trans. Priv. Sec.

Fraud Detection Under Siege: Practical Poisoning Atacks and Defense Strategies • 17

Table 3. Final performance evaluation of the FDS models.

Model C-Accuracy Precision Recall F1-Score FPR FNR W-MCC AUC-ROC AUC-PRC Dataset

FDSs

AL 92.08% 11.52% 93.66% 20.52% 9.36% 5.80% 84.22% 97.12% 77.89% DA2014_15

LR 92.83% 19.70% 90.54% 32.36% 4.87% 9.46% 85.76% 96.61% 56.72% DA2014_15

NN 93.92% 20.91% 92.45% 34.10% 4.61% 6.01% 87.87% 97.89% 73.66% DA2014_15

RF 93.20% 14.54% 93.66% 25.17% 7.27% 6.62% 86.40% 97.44% 77.20% DA2014_15

SVM 92.91% 21.36% 90.21% 34.54% 4.38% 9.75% 85.96% ś 2 ś 2 DA2014_15

XGBoost 94.30% 19.72% 93.62% 32.57% 5.03% 6.37% 88.60% 98.14% 81.71% DA2014_15

Oracle

XGBoost 96.43% 23.5% 95.45% 37.71% 2.58% 4.55% 92.88% 99.35% 84.63% DA2012_13

lead to incorrect model choices. A model that always outputs the legitimate class label for every test sample
scores an accuracy close to 99% [13]. Another remark is that false positives and false negatives do not bring
the same cost to the inancial institution: the highest damage is brought by undetected fraud and not by false
alarms [37]. We solve this problem by evaluating the performance of the FDSs on a custom performance metric
inspired by other works [37, 58], which we refer to as C-Accuracy. This metric drastically increases the weight
associated with the correct classiication of frauds (False Negatives, True Positives) with respect to legitimate
transactions. Using the deinitions of Cost [58] and Normalized Cost [37], where

Cost = �� + � ∗ �� (5)

and

Norm_Cost =
Cost

�� + �� + � ∗ (�� + ��)
(6)

We deine the C-Accuracy that estimates the saved costs by the inancial institutions as:

C_Accuracy = 1 − Norm_Cost (7)

Instead of arbitrarily setting the value of k, the weight of false negatives, we empirically estimate its value as
the ratio of legitimate transactions over frauds to resemble a balanced accuracy metric:

� =

�� + ��

�� + ��
(8)

Then, we run an additional round of feature selection with a wrapper method to further reduce the di-
mensionality of the feature space and obtain unique feature sets for each FDS. We inally optimize the model
hyperparameters on the inal feature sets.
According to our selection steps, we obtain 5 diferent FDS models, with 5 diferent feature sets, as shown

in Table 4. Logistic regression (LR) uses L2 regularization with� =
1
�
= 5.46. The neural network (NN) model is a

Feed-Forward Neural Network, composed of multiple dense layers. The irst input layer has a ixed dimension
given by the selected input features (see Table 4). There are two hidden layers, each comprising 32 neurons with
the "tanh" activation function. A dropout layer with a dropout rate of 0.30 is placed between the hidden layers.
The last layer is responsible for the binary classiication task, containing a single neuron activated by the sigmoid
activation function. The random forest (RF) model is composed of 40 decision trees with max depth 5 and the
łentropyž criterion. The SVM has a linear kernel with the squared hinge as a loss function and � =

1
�
= 0.28.

The XGBoost model uses 32 decision trees as base learners with a max depth of 2 and a learning rate of 0.4. Our
model of active learning (AL) adopts an ensemble of two models, a supervised and an unsupervised method. We
use the previously described random forest model alongside an autoencoder for the unsupervised part.

ACM Trans. Priv. Sec.

18 • Paladini et al.

Table 4. Selected feature sets of the FDS models.

Model Features

FDSs

Shared iban_sum30d, amount_count7d, is_national_iban, iban_count1d, iban_count30d, iban_std7d,

iban_sum1d, iban_mean30d, is_international, Amount, iban_count7d, iban_std1d,

time_since_same_iban_cc, iban_cc_mean14d, iban_sum14d, iban_std14d, amount_sum1d,

iban_count14d, amount_sum7d, iban_sum7d

LR amount_sum14d, time_since_same_asn_cc, iban_cc_mean1d, iban_std30d, amount_sum30d,

is_new_iban, ip_mean30d, iban_cc_mean7d, difference_from_amount_mean30d, amount_count14d,

iban_cc_mean30d, Time_x

NN amount_sum14d, iban_cc_mean1d, difference_from_iban_mean30d, iban_std30d,

difference_from_iban_mean7d, is_new_iban, difference_from_iban_mean14d, ip_mean30d,

iban_cc_mean7d, time_since_same_ip, amount_count14d, time_since_same_iban,

difference_from_iban_mean1d, Time_x

RF, AL time_since_same_asn_cc, iban_std30d, difference_from_iban_mean30d,

difference_from_iban_mean7d, difference_from_iban_mean14d, time_since_same_ip,

iban_cc_mean7d, amount_count14d, time_since_same_iban, difference_from_iban_mean1d

SVM amount_sum14d, time_since_same_asn_cc, iban_cc_mean1d, amount_sum30d, iban_cc_count1h,

is_new_iban, difference_from_iban_mean14d, ip_mean30d, iban_cc_mean7d,

difference_from_amount_mean30d, amount_count14d, time_since_same_iban, iban_cc_mean30d,

Time_x

XGBoost amount_sum14d, time_since_same_asn_cc, iban_cc_mean1d, iban_std30d,

difference_from_iban_mean30d, difference_from_iban_mean7d, difference_from_iban_mean14d,

ip_mean30d, time_since_same_ip, is_new_iban, time_since_same_iban,

difference_from_iban_mean1d, Time_x

Oracle

XGBoost time_since_same_iban, iban_count7d, difference_from_iban_mean7d, iban_std14d, iban_std7d,

iban_count14d, difference_from_iban_mean14d, is_national_iban, iban_count30d,

is_international, iban_sum30d, iban_std30d, iban_sum7d, difference_from_iban_mean30d,

time_since_same_iban_cc, iban_mean30d, time_since_same_ip, time_since_same_asn_cc,

iban_sum1d, ip_mean30d, Amount, iban_cc_mean1d, asn_cc_mean30d, amount_count7d,

difference_from_amount_mean7d

Detection Performance Evaluation.We evaluate the performances of our FDSs on the test set. We use the
measures of precision, recall, F1-score, false positive rate (FPR), false negative rate (FNR), area under curve of
receiver operating characteristic (AUC-ROC), area under curve of precision recall curve (AUC-PRC), matthews
correlation coeicient (MCC), and C-Accuracy. Table 3 collects the values scored by the FDSs. All of the FDSs
achieve recall higher than 90% but have low precision values (and consequently, F1-score), between 14.54% and
21.36%. This is a direct consequence of selecting models that maximize our C-Accuracy metric: the chosen FDSs
prefer to raise many false alarms in exchange for a high fraud detection rate. However, attacking suspicious
classiiers represents a worst-case scenario for the attacker. In fact, a suspicious FDS may lag higher volumes of
transactions as false positives, requiring more efort for the attacker to craft adversarial transactions that remain
undetected.

2The implementation of SVM that we use does not output class probabilities, so we cannot reliably calculate the estimate for this metric.

ACM Trans. Priv. Sec.

Fraud Detection Under Siege: Practical Poisoning Atacks and Defense Strategies • 19

Attacker’s Oracle. We select the Oracle model on the dataset DA2012_13, in accordance with Assumption [A2].
In particular, we split the dataset into training and test set, the latter being the last 20% of the recorded transactions.
Among the same ive options that we consider for our FDSs, we choose the XGBoost model for the Oracle, as it
achieves the highest C-Accuracy score on the training set. Then, we optimize its feature set and hyperparameters
following the same steps we use for the FDSs. The inal performance scores are reported in Table 3.

7.3 Atack Evaluation Metrics

We evaluate the impact of the attack and the efectiveness of the mitigations using ad hoc evaluation metrics.
First, we deine the following terms: �� is the set of all the adversarial transactions generated by the attacker;
�� is the set of the adversarial transactions iltered by the attacker’s Oracle, where �� ⊆ ��; �� is the set of the
adversarial transactions generated by the attacker and misclassiied by the FDS, where �� ⊆ �� ; �� is the set of
the adversarial transactions generated by the attacker and correctly classiied by the FDS, where �� ⊆ �� ; � is
the set of all the transactions, where (�� ∪ ��) ⊆ � , respectively with the wrong (i.e., legitimate) and correct (i.e.,
fraud) class labels; � is the set of the victims of the poisoning attack; � is the set of victims protected by the FDS
during the attack;� is the set of weeks of the attack simulation, where� = {0..7}; �� is the amount of a fraud
� , where � ∈ ��; �� is the total stolen amount in week� ∈� ; Δ�� is the time diference between the time of
execution of fraud � and the beginning of the attack. We evaluate the performance of our attack according to the
following metrics:

• Detection Rate. Metric that identiies the number of the victims of the attack protected by the FDS with
respect to the total number of victims.

Detection Rate =
|� |

|� |
(9)

• Weekly Increase. Metric that calculates the average increase of capital stolen from all victims by each
week.

Weekly Increase =
1

|� |
∗
︁

�∈�

��+1 −��

��
(10)

• Evasion Rate. Ratio of frauds that successfully evade the FDS with respect to the total number of frauds
submitted.

Evasion Rate =
|�� |

|�� |
(11)

• Injection Rate. Proportion of adversarial transactions crafted by the attacker and classiied as legitimate
by the attacker’s Oracle with respect to the number of frauds generated.

Injection Rate =
|�� |

|�� |
(12)

• Poisoning Rate. Ratio of adversarial transactions injected in the banking dataset in relation to the total
number of transactions.

Poisoning Rate =
|�� |

|� |
(13)

• Detection Time. Metric that represents the median time in days before an adversarial transaction is
detected by the FDS.

Detection Time = Median{∀� ∈ �� : Δ�� } (14)

ACM Trans. Priv. Sec.

20 • Paladini et al.

• Money Stolen. Metric that represents the total amount stolen against all the victims with a single attack.

Money Stolen =

︁

� ∈��

�� (15)

From the defender’s perspective, given the baseline performance of the system against the attack, a mitigation
approach should achieve lower values of Money Stolen, Poisoning Rate, Injection Rate, Evasion Rate, Detection
Time, Weekly Increase and higher value of Detection Rate.

7.4 Experiment 1: Poisoning atack against banking FDSs

In this experiment, we simulate our poisoning attack approach against all of the chosen FDS models with the
feature sets listed in Table 4, using every combination of the attacker’s strategy (greedy, medium, conservative,
see Section 5.4), attacker’s knowledge of the system (white-box, gray-box, black-box, see Section 3.2), and FDS
update policy (weekly, bi-weekly, see Section 7.2). For each simulation, the attacker selects thirty random victims
with diferent spending capabilities from the banking dataset DA2014_15. To reduce the variance of the results,
we run three simulations and provide the average of the results as the inal estimate. We consider the results
of this experiment as the baseline performance of our FDSs against the poisoning attack. Our results show no
substantial diferences in the success of the attack against FDSs using weekly and bi-weekly update policies.
Therefore, in Table 5 and Table 6, we report only the results obtained against FDSs with bi-weekly update policy,
as in such a scenario, their update timestamps and the ones of the attacker’s Oracle are synchronized. We mention
the meaningful diferences between the two update policies where present. As shown by Table 5, the attacker
generally meets their goal if no mitigation is employed, even with little to no knowledge of the target system
at all. Most of the FDSs block an insuicient amount of EPTs within the irst two weeks of the attack, as their
Detection Rate ranges from 53.33% and 91.11%. This phenomenon allows attackers to poison the detection system
and steal substantial money capital from their victims over time. The attacker increases their proit on average
between 22.92% and 127.69%, as shown by the Weekly Increase metric. We also observe that in all knowledge
scenarios, the greediest strategies tend to be more rewarding for the attacker than the more conservative ones.
Under certain conditions, the medium and conservative strategies outperform the greedy one. However, we ind
only two meaningful patterns. First, the medium strategy wins against the random forest model only if the FDS
uses a weekly update policy. Second, against the neural network, more conservative strategies win only if the
model is attacked under a white-box knowledge scenario. From these patterns, we deduce that the attacker has
to balance their long and short-term goals if the detector under attack is strongly suspicious (i.e., with a high
number of FPs).

As shown in Table 5, the Injection Rate values obtained within the limited knowledge setting provide an idea of
the efort required by the attacker to successfully craft adversarial transactions. On average, the attacker’s Oracle
rejects 9 out of 10 generated adversarial transactions. The remaining transactions that are efectively injected
by the attacker, are accepted by the target fraud detection systems with acceptance rates between 49.18% and
83.12%. The latter values are provided by the Evasion Rate and depend on the particular classiier employed by
the inancial institution. As a side note, these indings also show that adversarial transactions generated against
one Oracle are also able to transfer to diferent ML models, as shown by Carminati et al. [17]. However, it is
important to note that the Injection Rate metric, in this scenario, is constrained by the attacker’s use of the same
ML algorithm as the Oracle (i.e., XGBoost, see Section 7.2). Conversely, in the white-box scenario, the attacker’s
Oracle is an exact replica of the target FDS, meaning that the Injection Rate in this case depends on the defender’s
classiier. Table 6 highlights the varying levels of efort required by the attacker across the target systems. The
results show that the hardest to attack is AL, while the least amount of efort is required against SVM.
Finally, we observe that the economic impact of the attack strongly depends on the classiier employed by

the FDS. The choice of hyperparameters and feature sets besides the particular learning algorithm may also

ACM Trans. Priv. Sec.

Fraud Detection Under Siege: Practical Poisoning Atacks and Defense Strategies • 21

Table 5. Poisoning atack results in limited knowledge scenarios against FDSs with a bi-weekly update policy and without

any mitigation. We highlight in green the best value for each metric and in red the worst.

AL LR NN RF SVM XGBoost

Black-box
G
re
e
d
y

Money Stolen €62,549 €238,913 €273,443 €65,107 €349,876 €264,530
Weekly Increase 34.48% 127.69% 101.47% 39.55% 105.41% 97.29%
Detection Time 9.99d 4.00d 5.35d 10.34d 4.45d 9.73d
Detection Rate 84.44% 70.00% 60.00% 91.11% 56.67% 71.11%
Evasion Rate 53.46% 73.27% 77.69% 49.18% 76.28% 70.40%
Injection Rate 12.63% 12.48% 13.61% 12.65% 12.66% 10.28%
Poisoning Rate (10−4) 135.20% 165.32% 223.45% 114.89% 236.75% 201.74%

M
e
d
iu
m

Money Stolen €49,278 €299,681 €309,195 €57,037 €335,487 €148,696
Weekly Increase 21.57% 97.15% 86.74% 27.77% 87.67% 81.66%
Detection Time 10.47d 2.89d 3.81d 10.31d 2.61d 10.07d
Detection Rate 87.78% 60.00% 54.44% 86.67% 61.11% 71.11%
Evasion Rate 57.29% 79.31% 83.12% 58.30% 73.96% 68.53%
Injection Rate 11.81% 12.25% 12.83% 13.04% 12.72% 11.78%
Poisoning Rate (10−4) 135.90% 212.24% 217.14% 149.21% 197.53% 212.94%

C
o
n
se
rv
a
ti
v
e

Money Stolen €46,622 €230,800 €217,882 €41,995 €187,034 €146,790
Weekly Increase 21.25% 77.38% 77.85% 22.92% 72.36% 78.10%
Detection Time 12.53d 4.24d 6.93d 16.18d 2.69d 14.26d
Detection Rate 83.33% 57.78% 62.22% 88.89% 66.67% 72.22%
Evasion Rate 63.66% 79.37% 74.90% 61.91% 74.23% 69.89%
Injection Rate 9.17% 12.48% 9.24% 9.00% 11.67% 10.27%
Poisoning Rate (10−4) 168.12% 192.63% 206.64% 184.92% 153.41% 215.04%

Gray-box

G
re
e
d
y

Money Stolen €60,338 €371,697 €310,000 €105,473 €304,903 €190,480
Weekly Increase 40.27% 84.78% 74.12% 63.70% 83.18% 82.35%
Detection Time 9.27d 2.64d 6.15d 13.79d 3.99d 9.63d
Detection Rate 86.67% 63.33% 80.00% 86.67% 57.78% 76.67%
Evasion Rate 52.16% 78.26% 70.70% 64.67% 79.08% 65.96%
Injection Rate 13.31% 15.75% 18.49% 11.51% 13.63% 12.56%
Poisoning Rate (10−4) 120.49% 201.04% 192.63% 181.43% 194.73% 191.23%

M
e
d
iu
m

Money Stolen €50,892 €388,342 €266,144 €64,698 €241,863 €167,102
Weekly Increase 31.80% 82.20% 54.61% 42.02% 63.62% 56.49%
Detection Time 10.77d 3.66d 4.28d 10.69d 3.91d 11.93d
Detection Rate 90.00% 53.33% 72.22% 84.44% 61.11% 62.22%
Evasion Rate 51.57% 82.21% 73.70% 64.39% 76.99% 75.54%
Injection Rate 11.94% 14.88% 14.53% 11.33% 11.79% 10.67%
Poisoning Rate (10−4) 131.00% 239.55% 165.32% 177.22% 182.83% 222.75%

C
o
n
se
rv
a
ti
v
e

Money Stolen €60,172 €188,065 €252,878 €74,085 €205,869 €117,235
Weekly Increase 35.29% 59.52% 53.33% 35.60% 66.54% 63.49%
Detection Time 13.81d 3.75d 3.72d 10.25d 3.92d 12.43d
Detection Rate 86.67% 66.67% 66.67% 85.56% 58.89% 67.78%
Evasion Rate 63.45% 74.61% 76.39% 55.66% 79.82% 69.35%
Injection Rate 9.43% 12.70% 13.04% 12.45% 10.16% 9.19%
Poisoning Rate (10−4) 164.62% 163.92% 202.44% 148.51% 186.33% 215.04%

inluence this phenomenon. In general, our results highlight that shallower model such as logistic regression,
neural network, and SVM allows the attacker to steal the highest amounts of money capital from their victims.
For such models, we record the worst values of Evasion Rate, Weekly Increase, and Money Stolen. The attacker
gains the highest proits mostly from the SVM classiier.

ACM Trans. Priv. Sec.

22 • Paladini et al.

Table 6. Poisoning atack results in white-box scenario against FDSs, with a bi-weekly update policy and without any

mitigation. We highlight in green the best value for each metric, in red the worst.

AL LR NN RF SVM XGBoost

White-box
G
re
e
d
y

Money Stolen €279,612 €871,092 €488,120 €347,093 €1,029,231 €468,046
Weekly Increase 51.22% 82.34% 91.00% 53.90% 81.84% 82.67%
Detection Time ś ś ś ś ś ś
Detection Rate 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Evasion Rate 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
Injection Rate 2.08% 16.90% 12.65% 2.24% 22.18% 5.33%
Poisoning Rate (10−4) 209.45% 385.21% 241.66% 208.75% 351.60% 341.80%

M
e
d
iu
m

Money Stolen €327,907 €785,315 €461,355 €270,600 €835,888 €441,908
Weekly Increase 45.77% 75.17% 76.99% 59.08% 78.42% 72.52%
Detection Time ś ś ś ś ś ś
Detection Rate 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Evasion Rate 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
Injection Rate 3.70% 11.65% 14.98% 2.38% 28.53% 5.09%
Poisoning Rate (10−4) 259.87% 334.10% 261.27% 265.47% 401.31% 341.80%

C
o
n
se
rv
a
ti
v
e

Money Stolen €213,026 €362,366 €555,422 €265,448 €895,550 €362,870
Weekly Increase 43.83% 59.46% 65.49% 50.39% 82.79% 66.62%
Detection Time ś ś ś ś ś ś
Detection Rate 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Evasion Rate 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
Injection Rate 3.03% 10.42% 14.16% 2.60% 18.41% 5.38%
Poisoning Rate (10−4) 322.19% 273.88% 371.91% 261.27% 423.71% 425.81%

Black-box. In the black-box scenario, the attacker has no information about the target FDS, and their attacks use
surrogate knowledge. The attacker gains from a minimum of e41,995 up to e349,876. The latter value, obtained
from the SVM classiier, is around 5.37 times the amount stolen from a FDS using random forest, with the same
attack strategy and update policy setup. Out of the 5 detectors, we observe that only random forest is able to
shield the victims from the attack at a consistent rate. The attacker can achieve an Evasion Rate of 61.91% against
the latter model. Other fraud detectors allow for higher values of Evasion Rate, up to 83.12% against neural
network.

Gray-box. Our results show that the additional knowledge of the gray-box scenario does not bring a consistent
beneit for the attacker, as observed by Carminati et al. [17]. Interestingly, the attack success against the FDS
using XGBoost is mostly unchanged from the black-box scenario. Against this model, the attacker steals at most
an amount of e190,480.21. Even when unknowingly using the same algorithm of the FDS for their Oracle, the
knowledge of the relative feature set does not prove beneicial. However, the attacker has slightly more success
only against the model of random forest: for every considered coniguration, they obtain higher proits, peaking
at e105,473, around 1.61 times the attacker’s best record in the black-box scenario against the same random
forest model.

White-box. In this scenario, the attacker possesses the required knowledge to probe the exact blind spots of the
FDS models. This enables the attacker to remain undetected and maximize their illegal proits. For the random
forest model, which proved to be the best-performing model in the limited knowledge scenarios, the attacker
steals from 4.74 up to 6.32 times more money than the black-box scenario, reaching at most a capital of e347,093.
However, these results are sensibly better than the ones obtained by other models, even when considering limited
attacker’s knowledge scenarios. The outcome for SVM and logistic regression shows the full potential of the
attack. For example, by adopting a greedy strategy, the attacker manages to steal from a FDS that adopts a SVM
model and a bi-weekly update policy, an amount of e1,029,231 by the end of the attack. This scenario also

ACM Trans. Priv. Sec.

Fraud Detection Under Siege: Practical Poisoning Atacks and Defense Strategies • 23

0 10 20 30 40 50
Injection Percentage

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ad
ve

rs
ar

ia
l S

et
 E

rro
r

Active Learning
Logistic Regression
Neural Network

Random Forest
SVM
XGBoost

Fig. 5. Classification error over the adversarial validation set with diferent injection percentages.

highlights that the attacker spends more efort to craft their adversarial transactions against random forest and
XGBoost and the least efort against SVM, as shown in Table 6 by the corresponding values of Injection Rate.
Furthermore, if employing a weekly update policy, the outcome against the neural network model is sensibly
worse for the defender under this knowledge scenario. In fact, the attacker reaches amounts of Money Stolen
between e728,843 and e913,697, almost double of the Money Stolen against the same FDS with a bi-weekly
update policy. However, we do not record such an increase for the other detectors.

7.5 Experiment 2: Performance trade-of with the proposed countermeasure

The goal of this experiment is to evaluate the impact of the number of artiicial adversarial transactions injected
in the training set on the classiier performances. In particular, we assess the performances 1○ on adversarial
transactions and 2○ on regular examples of fraud. As a side efect, this experiment estimates the percentage of
artiicial adversarial transactions to inject to guarantee an efective mitigation of adversarial attacks. First, as
in Goodfellow et al. [26], we evaluate the error rate of the FDSs, employing our countermeasure with diferent
hyperparameters, on an adversarial validation set, i.e., a set comprising only of adversarial examples. We refer to
such an error as the adversarial set error. We build our adversarial validation set by randomly picking adversarial
transactions generated by the white-box attacks of the previous experiment. Thus, we avoid leaking decisions
made by the attacker’s Oracle trained on the attacker’s dataset. We calculate the adversarial set error by assigning
to each adversarial transaction a weight corresponding to the distance in hours between its timestamp and the
beginning of the attack. Therefore, transactions that are far in time will have the smallest weights, as correctly
identifying them will not bring any meaningful economical beneit to the defender. The inal error estimate is
given by the sum of the weights of the misclassiied adversarial transactions over the sum of all the weights. We
test diferent conigurations of our countermeasure by varying the percentage of injected artiicial transactions
into the training set of the FDSs. We refer to this percentage as Injection Percentage. As shown by Figure 5, as we
inject more artiicial adversarial transactions, the adversarial set errors of most of the FDSs tend to decrease, but
not monotonically. The errors of logistic regression and SVM are the only ones that keep decreasing after 10%.
The errors of the other models tend to decrease until 30%, after which they start increasing again but never reach

ACM Trans. Priv. Sec.

24 • Paladini et al.

the error recorded in the absence of mitigation, with the only exception of active learning. Finally, we observe
that not all the models achieve comparable errors: active learning, random forest, and XGBoost achieve the best
scores, reaching the lowest errors on adversarial transactions. The other models generally assess worse scores,
with logistic regression and SVM obtaining the worst results, even when trained on a dataset with half-regular
examples of frauds and half of the artiicial ones generated by our mitigation.

Using the same set of hyperparameters of our countermeasure approach, we evaluate the performance trade-of
of the FDSs on the test set of dataset DA2014_15, which does not contain adversarial transactions generated
with our attack approach. By doing so, we assess the entity and the nature of the generalization performance
trade-of of our FDSs due to the application of our defense approach. Speciically, we focus on their ability to
recognize regular legitimate transactions and fraudulent transactions. We slide a time window of two weeks
over the set, and, at each iteration, we train our FDSs with our countermeasure, evaluate the classiication error
on the following two weeks of transactions, and last, merge them into the training set. We then estimate the
error as the average of the computed errors. In general, as we increase the quantity of artiicial adversarial
transactions injected, the C-Accuracy scores of the models slowly decreases. Our results show again that the
behavior of the FDSs difers, with unequal performance variations. Some models are complex enough (in terms of
hyperparameters, and feature sets) to distinguish artiicial adversarial transactions from legitimate transactions
to a greater extent. As shown in Figure 6b, the C-Accuracy scores of random forest, active learning, XGBoost,
and SVM do not drop below 0.9 even with 50% of artiicial frauds injected. Meanwhile, the performances of
neural network signiicantly drop after 20%, and logistic regression after 40%. In particular, as shown in Figure 6c
and Figure 6d, the performance reduction of the FDSs is mostly associated to the increase of the false positives.
Again, the only exception is active learning, which shows a decrease of both true and false positive rates for
Injection Percentage higher than 30%. However, as the rate of true positives does not generally decrease, except
for SVM and active learning, our countermeasure approach mostly preserves the ability of the fraud detectors to
recognize regular examples of frauds. Furthermore, the variation of the false positives for most of the models is
relatively contained, steadily increasing each week. The only model that shows a signiicant divergence of false
positives is the neural network, which records the steepest decrease of C-Accuracy. Therefore, it is possible to set
a coniguration of our countermeasure that possibly improves the response of the FDSs against the attack, while
also limiting the collateral increase of the false positive rate.

7.6 Experiment 3: Performance of our countermeasure against the atack

In this experiment, we discuss the performance of our countermeasure against the poisoning attack. For each
model, we use a coniguration of hyperparameters that minimizes the adversarial set error and does not increase
the false positives to more than double the value obtained without any mitigation. Therefore, in all of the
conigurations, we inject 50% artiicial adversarial transactions for SVM, 40% for logistic regression, 30% for
random forest, 20% for neural network and active learning, and 10% for XGBoost. The inal results, listed in Table 7
and Table 8, show that our approach substantially reduces the monetary damage against all of the FDSs, in
all of the attacker’s knowledge scenarios and strategies adopted. In general, the XGBoost model achieves the
best detection of the attack by almost completely halting it in the black and gray-box scenarios. In one of the
tests performed against the XGBoost model, the attacker cannot evade the system even by having complete
knowledge of the system (this explains the Evasion Rate lowering to 66.67%). The FDSs that scored the best
results without any mitigation ś random forest and active learning ś achieved more contained improvements
with our countermeasure. The former scores values of Detection Rate between 95.56% and 100%, i.e., meaning that
we can also stop the attack for random forest. The latter model, instead, gains less beneit from our mitigation
and represents the only exception where our approach occasionally increases the attack’s success, as we observe
a single increase of Money Stolen up to 31.89%. However, results collected with the weekly policy show that the

ACM Trans. Priv. Sec.

Fraud Detection Under Siege: Practical Poisoning Atacks and Defense Strategies • 25

Active Learning Logistic Regression Neural Network Random Forest SVM XGBoost

(a) Legend.

0 10 20 30 40 50
Injection Percentage

0.8

0.9

1.0

C-
Ac

cu
ra

cy

(b) C-Accuracy scores on the test set for

diferent injection percentages.

0 10 20 30 40 50
Injection Percentage

0.80

0.85

0.90

0.95

1.00

Tr
ue

 P
os

iti
ve

 R
at

e

(c) True positive rate on the test set for

diferent injection percentages.

0 10 20 30 40 50
Injection Percentage

0.00

0.05

0.10

0.15

0.20

Fa
lse

 P
os

iti
ve

 R
at

e

(d) False positive rate on the test set for

diferent injection percentages.

Fig. 6. In-depth analysis of C-Accuracy decrease with diferent percentages of artificial adversarial transactions injected in

the training set by our countermeasure.

attacker occasionally has slightly more success even in the other knowledge scenarios, recording few increases
of Money Stolen, up to 38.70%. For the FDS that shows the weakest response against the attack in the absence of
mitigation, SVM, our defense approach can reduce the Money Stolen up to 99.50%, and lower the Evasion Rate
down a minimum of 8.94%, 88.80% less than the corresponding value obtained without our approach. We observe
the weakest improvements on neural network, logistic regression, and active learning, for which our mitigation
approach reduces the Money Stolen up to 91.88%.

Black and gray-box: evasion phase mitigation. We observe from Table 7 that for the black and gray-box
conigurations, with our countermeasure, the Detection Time metric generally decreases with respect to the
baseline, at most by 83.63%. This suggests that our countermeasure improves the detection of the attack during
the evasion phase and blocks most, if not all, of the EPTs. Depending on the number of adversarial transactions
detected by the irst week of the attack, we observe various improvements in Detection Rate, raising it between
75.56% (25.93% more than the baseline value) and 100%. In general, considering the results obtained in terms of
Detection Time and Detection Rate, we record signiicant improvements of the other metrics with respect to the
baseline. This is to be expected since by blocking most of the EPTs, the attacker commits transactions on behalf
of fewer victims, thus stealing a reduced amount of capital and poisoning the system to a lesser extent.

Black and gray-box: poisoning phase mitigation. For the poisoning phase of the attack, meaningful metrics
are the Weekly Increase, Evasion Rate, Injection Rate, and Poisoning Rate. As shown on Table 7, our mitigation
approach always reduces the Poisoning Rate and Evasion Rate with respect to the baseline, respectively by at
least 45.81% and 14.11%. On the Injection Rate metric at irst glance, our countermeasure seems to achieve worse
results than the baseline in the limited knowledge scenarios. This result is rather counter-intuitive: since the
attacker has fewer victims at their disposal after the evasion phase, they generate fewer frauds, but most of the
frauds they generate are accepted by the already poisoned system. Furthermore, the experimental results show
that besides the overall decrease of Money Stolen and Poisoning Rate, a trend is still present, as shown by the

ACM Trans. Priv. Sec.

26 • Paladini et al.

Table 7. Poisoning atack results in limited knowledge scenarios, against FDSs adopting a bi-weekly update policy and our

mitigation approach. We highlight in red metric values that are worse than the baseline.

AL LR NN RF SVM XGBoost

Black-box

G
re
e
d
y

Money Stolen €54,517 (-12.84%) €36,243 (-84.83%) €151,071 (-44.75%) €4,330 (-93.35%) €30,637 (-91.24%) €0 (-100.00%)
Weekly Increase 67.24% (95.04%) 102.87% (-19.44%) 86.91% (-14.34%) 26.69% (-32.52%) 204.17% (93.69%) 0.00% (-100.00%)
Detection Time 2.82d (-71.80%) 2.37d (-40.68%) 3.99d (-25.45%) 2.91d (-71.85%) 3.05d (-31.50%) 2.80d (-71.27%)
Detection Rate 90.00% (6.58%) 92.22% (31.75%) 75.56% (25.93%) 97.78% (7.32%) 95.56% (68.63%) 100.00% (40.62%)
Evasion Rate 44.87% (-16.07%) 36.87% (-49.68%) 61.92% (-20.30%) 13.46% (-72.63%) 28.39% (-62.78%) 0.00% (-100.00%)
Injection Rate 14.15% (12.01%) 14.41% (15.51%) 14.63% (7.48%) 15.92% (25.84%) 13.24% (4.57%) 15.22% (48.10%)
Poisoning Rate (10−4) 58.85% (-56.47%) 37.83% (-77.12%) 119.79% (-46.39%) 14.71% (-87.19%) 24.52% (-89.64%) 0.00% (-100.00%)

M
e
d
iu
m

Money Stolen €32,380 (-34.29%) €123,942 (-58.64%) €151,665 (-50.95%) €0 (-100.00%) €20,926 (-93.76%) €720 (-99.52%)
Weekly Increase 48.53% (124.94%) 96.01% (-1.17%) 75.72% (-12.71%) 0.00% (-100.00%) 86.83% (-0.96%) 16.64% (-79.63%)
Detection Time 2.28d (-78.24%) 3.26d (12.71%) 2.55d (-33.07%) 2.83d (-72.55%) 2.89d (10.59%) 2.83d (-71.86%)
Detection Rate 87.78% (0.00%) 87.78% (46.30%) 80.00% (46.94%) 100.00% (15.38%) 97.78% (60.00%) 100.00% (40.62%)
Evasion Rate 48.40% (-15.52%) 55.38% (-30.17%) 51.73% (-37.76%) 0.00% (-100.00%) 18.90% (-74.45%) 4.50% (-93.43%)
Injection Rate 16.76% (41.93%) 16.12% (31.57%) 14.31% (11.54%) 14.48% (10.99%) 13.57% (6.72%) 17.18% (45.88%)
Poisoning Rate (10−4) 57.45% (-57.73%) 71.46% (-66.33%) 98.07% (-54.84%) 0.00% (-100.00%) 18.22% (-90.78%) 3.50% (-98.35%)

C
o
n
se
rv
a
ti
v
e

Money Stolen €61,491 (31.89%) €28,696 (-87.57%) €38,868 (-82.16%) €7,177 (-82.91%) €23,409 (-87.48%) €3,270 (-97.77%)
Weekly Increase 32.53% (53.10%) 61.20% (-20.91%) 57.29% (-26.40%) 17.19% (-24.99%) 64.07% (-11.46%) 17.07% (-78.15%)
Detection Time 2.88d (-77.03%) 2.34d (-44.87%) 2.43d (-64.90%) 2.65d (-83.63%) 2.24d (-16.62%) 2.73d (-80.87%)
Detection Rate 84.44% (1.33%) 90.00% (55.77%) 88.89% (42.86%) 97.78% (10.00%) 98.89% (48.33%) 95.56% (32.31%)
Evasion Rate 43.88% (-31.07%) 42.54% (-46.40%) 40.43% (-46.03%) 14.29% (-76.93%) 8.55% (-88.49%) 15.03% (-78.49%)
Injection Rate 13.38% (45.98%) 12.65% (1.35%) 14.17% (53.39%) 14.78% (64.18%) 15.42% (32.09%) 14.94% (45.43%)
Poisoning Rate (10−4) 71.46% (-57.50%) 46.24% (-76.00%) 50.44% (-75.59%) 16.81% (-90.91%) 7.01% (-95.43%) 16.11% (-92.51%)

Gray-box

G
re
e
d
y

Money Stolen €17,725 (-70.62%) €63,516 (-82.91%) €164,229 (-47.02%) €30,054 (-71.51%) €96,294 (-68.42%) €0 (-100.00%)
Weekly Increase 59.59% (47.95%) 77.39% (-8.72%) 74.47% (0.47%) 59.14% (-7.15%) 256.13% (207.91%) 0.00% (-100.00%)
Detection Time 2.94d (-68.32%) 2.49d (-5.54%) 4.51d (-26.71%) 2.75d (-80.09%) 2.39d (-40.14%) 2.30d (-76.10%)
Detection Rate 94.44% (8.97%) 88.89% (40.35%) 82.22% (2.78%) 95.56% (10.26%) 95.56% (65.38%) 100.00% (30.43%)
Evasion Rate 29.89% (-42.70%) 46.44% (-40.66%) 60.72% (-14.11%) 22.86% (-64.64%) 32.10% (-59.40%) 0.00% (-100.00%)
Injection Rate 14.83% (11.40%) 14.84% (-5.81%) 16.99% (-8.11%) 14.34% (24.58%) 14.41% (5.68%) 15.71% (25.08%)
Poisoning Rate (10−4) 28.02% (-76.74%) 51.84% (-74.21%) 104.38% (-45.81%) 27.32% (-84.94%) 28.72% (-85.25%) 0.00% (-100.00%)

M
e
d
iu
m

Money Stolen €22,883 (-55.04%) €99,872 (-74.28%) €21,607 (-91.88%) €9,162 (-85.84%) €10,752 (-95.55%) €0 (-100.00%)
Weekly Increase 13.70% (-56.91%) 78.48% (-4.53%) 43.80% (-19.80%) 52.19% (24.20%) 64.52% (1.41%) 0.00% (-100.00%)
Detection Time 2.91d (-73.00%) 3.74d (2.07%) 3.49d (-18.38%) 2.30d (-78.49%) 3.22d (-17.64%) 2.44d (-79.55%)
Detection Rate 95.56% (6.17%) 87.78% (64.58%) 90.00% (24.62%) 95.56% (13.16%) 96.67% (58.18%) 100.00% (60.71%)
Evasion Rate 18.52% (-64.09%) 51.80% (-36.99%) 44.25% (-39.96%) 20.71% (-67.83%) 17.82% (-76.85%) 0.00% (-100.00%)
Injection Rate 15.87% (32.90%) 13.83% (-7.05%) 14.56% (0.18%) 16.03% (41.39%) 15.15% (28.46%) 14.22% (33.30%)
Poisoning Rate (10−4) 28.02% (-78.61%) 68.65% (-71.34%) 56.05% (-66.10%) 23.12% (-86.95%) 13.31% (-92.72%) 0.00% (-100.00%)

C
o
n
se
rv
a
ti
v
e

Money Stolen €35,483 (-41.03%) €98,163 (-47.80%) €105,742 (-58.18%) €2,785 (-96.24%) €1,024 (-99.50%) €0 (-100.00%)
Weekly Increase 34.06% (-3.49%) 79.59% (33.73%) 67.38% (26.35%) 22.83% (-35.88%) 27.22% (-59.10%) 0.00% (-100.00%)
Detection Time 3.08d (-77.66%) 3.19d (-14.88%) 2.78d (-25.33%) 2.68d (-73.81%) 3.12d (-20.51%) 2.39d (-80.80%)
Detection Rate 88.89% (2.56%) 84.44% (26.67%) 82.22% (23.33%) 97.78% (14.29%) 97.78% (66.04%) 100.00% (47.54%)
Evasion Rate 41.55% (-34.53%) 57.21% (-23.32%) 56.16% (-26.48%) 9.72% (-82.53%) 8.94% (-88.80%) 0.00% (-100.00%)
Injection Rate 13.58% (44.03%) 14.98% (17.91%) 16.59% (27.24%) 13.37% (7.37%) 13.89% (36.69%) 15.11% (64.42%)
Poisoning Rate (10−4) 57.45% (-65.10%) 76.36% (-53.42%) 97.37% (-51.90%) 9.81% (-93.40%) 6.31% (-96.62%) 0.00% (-100.00%)

Weekly Increase metric. The latter metric is generally lower from the baseline; however, in some situations, our
approach leads to a few occasional higher increases. We record some of the high increases of Weekly Increase
for SVM and active learning, respectively, up to 207.91% and 124.94%. Recall that for such cases, the Money
Stolen is still reduced by 91.24% and 34.29%, respectively. However, this phenomenon suggests that once the
attacker successfully evades the FDS with an EPT, the target FDS is, at that point, poisoned. The attacker can
keep exploiting the FDS, which becomes gradually more accustomed to their behavior and struggles to detect the
PPTs submitted by the attacker. In conclusion, our approach can stop most of the transactions during the irst

ACM Trans. Priv. Sec.

Fraud Detection Under Siege: Practical Poisoning Atacks and Defense Strategies • 27

Table 8. Poisoning atack results in the white-box knowledge scenario, against FDSs adopting a bi-weekly update policy and

our mitigation approach. We highlight in red metric values that are worse than the baseline.

AL LR NN RF SVM XGBoost

White-box

G
re
e
d
y

Money Stolen €210,141 (-24.85%) €360,892 (-58.57%) €374,888 (-23.20%) €126,509 (-63.55%) €161,967 (-84.26%) €146,059 (-68.79%)
Weekly Increase 81.90% (59.90%) 84.01% (2.03%) 96.03% (5.52%) 79.14% (46.84%) 75.86% (-7.30%) 72.74% (-12.02%)
Detection Time ś (0.00%) ś (0.00%) ś (0.00%) ś (0.00%) ś (0.00%) ś (0.00%)
Detection Rate 0.00% (0.00%) 0.00% (0.00%) 0.00% (0.00%) 0.00% (0.00%) 0.00% (0.00%) 0.00% (0.00%)
Evasion Rate 100.00% (0.00%) 100.00% (0.00%) 100.00% (0.00%) 100.00% (0.00%) 100.00% (0.00%) 100.00% (0.00%)
Injection Rate 6.18% (197.30%) 11.45% (-32.25%) 10.23% (-19.11%) 4.99% (123.14%) 9.87% (-55.50%) 6.90% (29.51%)
Poisoning Rate (10−4) 131.70% (-37.12%) 156.92% (-59.26%) 222.05% (-8.12%) 107.18% (-48.65%) 91.07% (-74.10%) 104.39% (-69.46%)

M
e
d
iu
m

Money Stolen €240,591 (-26.63%) €230,812 (-70.61%) €377,757 (-18.12%) €76,589 (-71.70%) €307,815 (-63.18%) €84,849 (-80.80%)
Weekly Increase 96.31% (110.42%) 77.52% (3.12%) 94.17% (22.32%) 55.09% (-6.74%) 91.87% (17.15%) 79.97% (10.28%)
Detection Time ś (0.00%) ś (0.00%) ś (0.00%) ś (0.00%) ś (0.00%) ś (0.00%)
Detection Rate 0.00% (0.00%) 0.00% (0.00%) 0.00% (0.00%) 0.00% (0.00%) 0.00% (0.00%) 0.00% (0.00%)
Evasion Rate 100.00% (0.00%) 100.00% (0.00%) 100.00% (0.00%) 100.00% (0.00%) 100.00% (0.00%) 100.00% (0.00%)
Injection Rate 7.17% (93.78%) 10.41% (-10.69%) 9.59% (-36.02%) 4.64% (95.19%) 13.61% (-52.29%) 6.60% (29.75%)
Poisoning Rate (10−4) 182.83% (-29.64%) 118.40% (-64.56%) 212.94% (-18.50%) 58.85% (-77.83%) 125.40% (-68.75%) 107.18% (-68.64%)

C
o
n
se
rv
a
ti
v
e

Money Stolen €169,580 (-20.39%) €292,364 (-19.32%) €226,713 (-59.18%) €64,540 (-75.69%) €270,540 (-69.79%) €76,353 (-78.96%)
Weekly Increase 69.35% (58.22%) 68.71% (15.55%) 74.74% (14.12%) 60.34% (19.74%) 77.42% (-6.48%) 44.91% (-32.60%)
Detection Time ś (0.00%) ś (0.00%) ś (0.00%) ś (0.00%) ś (0.00%) ś (0.00%)
Detection Rate 0.00% (0.00%) 0.00% (0.00%) 0.00% (0.00%) 0.00% (0.00%) 0.00% (0.00%) 0.00% (0.00%)
Evasion Rate 100.00% (0.00%) 100.00% (0.00%) 100.00% (0.00%) 100.00% (0.00%) 100.00% (0.00%) 66.67% (-33.33%)
Injection Rate 5.88% (93.98%) 9.19% (-11.74%) 9.50% (-32.90%) 4.20% (61.43%) 18.88% (2.54%) 2.76% (-48.64%)
Poisoning Rate (10−4) 146.41% (-54.56%) 135.91% (-50.38%) 186.34% (-49.90%) 69.36% (-73.45%) 191.24% (-54.87%) 58.15% (-86.34%)

evasion attempts, reducing the attack’s impact as soon as possible, but it does not detect PPTs to the same degree
of eiciency.

White-box scenario. According to the principle of security through obscurity, we evaluate our countermeasure
in a white-box scenario, assuming that the attacker knows every detail of the system and its mitigation. In this
scenario, the attacker achieves the best results for all the considered metrics, but they cannot achieve the same
devastating results obtained without mitigation. By having complete knowledge of the system, the attacker is still
never detected by the FDSs, achieving again 0% Detection Rate and 100% Evasion Rate (see Table 8). However,
with our mitigation approach, the overall Money Stolen is reduced from 18.12% up to 84.26% from the baseline.
To observe this phenomenon, let us consider the metric of Poisoning Rate, which tells us how many transactions
have been successfully injected into the banking dataset by the attacker. With our countermeasure, this metric is
reduced between 8.12% and 86.34%. This shows that the attacker cannot generate EPTs only by choosing the least
suspicious timestamp and the most probable amount for any given victim. Even by progressively reducing the
value of EPTs, the attacker evades the system against fewer victims. The reduction of Poisoning Rate, even in the
white-box scenario, hints that the attacker needs to improve their strategy for evading the detector. Furthermore,
in this scenario, we observe the irst consistent improvement of the Injection Rate for three of the models, logistic
regression, neural network, and SVM. We quantify these reductions between 10.69% and 55.50%. Recall that the
Injection Rate tells us how many of the frauds generated by the attacker are efectively accepted by their Oracle,
which, in this case, is the FDS itself. The lower this value is, the less of the frauds generated by the attacker are
accepted by the FDS, and the more is the computational efort required for them to ind transactions that evade
classiication. In conclusion, this result suggests that the attacker, for three of the tested models, usually crafts
and injects adversarial transactions with the increased computational efort needed without mitigation.

ACM Trans. Priv. Sec.

28 • Paladini et al.

Table 9. Results of our poisoning atack against FDSs with a bi-weekly and diferent mitigation approaches, in limited

atacker’s knowledge scenarios. For each metric, we provide the average on all atacker’s strategies. For each machine learning

model we highlight in red the worst value among all the tested mitigations, and in green the best.

AL LR NN RF SVM XGBoost

Black-box

Money Stolen

AD (OTS) €56,449 (6.88%) €250,027 (-2.51%) €297,387 (11.45%) €68,122 (24.51%) €321,947 (10.71%) €242,523 (29.92%)
AD (AE) €61,616 (16.66%) €288,605 (12.53%) €227,809 (-14.63%) €79,861 (45.96%) €235,640 (-18.97%) €178,045 (-4.62%)
Our approach €49,463 (-6.35%) €62,960 (-75.45%) €113,868 (-57.33%) €3,836 (-92.99%) €24,991 (-91.41%) €1,330 (-99.29%)
Adv. training ś ś €301,997 (13.18%) ś ś ś

Weekly Increase

AD (OTS) 30.79% (19.51%) 86.91% (-13.73%) 94.13% (6.14%) 32.56% (8.23%) 88.34% (-0.15%) 94.34% (10.11%)
AD (AE) 29.79% (15.63%) 97.65% (-3.06%) 83.46% (-5.89%) 38.03% (26.41%) 80.08% (-9.49%) 80.34% (-6.24%)
Our approach 49.43% (91.86%) 86.70% (-13.94%) 73.31% (-17.34%) 14.63% (-51.37%) 118.36% (33.77%) 11.23% (-86.89%)
Adv. training ś ś 103.73% (16.96%) ś ś ś

Detection Time

AD (OTS) 10.04d (-8.69%) 3.14d (-15.25%) 4.18d (-21.99%) 13.41d (9.25%) 3.23d (-0.62%) 15.67d (38.02%)
AD (AE) 11.05d (0.48%) 3.13d (-15.77%) 4.30d (-19.73%) 14.99d (22.10%) 3.31d (1.87%) 14.52d (27.83%)
Our approach 2.66d (-75.83%) 2.66d (-28.41%) 2.99d (-44.26%) 2.80d (-77.22%) 2.73d (-16.13%) 2.79d (-75.46%)
Adv. training ś ś 3.44d (-35.90%) ś ś ś

Detection Rate

AD (OTS) 89.63% (5.22%) 66.30% (5.92%) 62.96% (6.92%) 87.04% (-2.08%) 62.59% (1.81%) 64.81% (-9.33%)
AD (AE) 83.70% (-1.74%) 68.89% (10.06%) 65.93% (11.95%) 81.48% (-8.33%) 61.48% (0.00%) 70.37% (-1.55%)
Our approach 87.41% (2.61%) 90.00% (43.79%) 81.48% (38.36%) 98.52% (10.83%) 97.41% (58.43%) 98.52% (37.82%)
Adv. training ś ś 66.30% (12.58%) ś ś ś

Evasion Rate

AD (OTS) 51.67% (-11.13%) 76.01% (-1.69%) 77.34% (-1.57%) 59.84% (5.97%) 79.39% (6.10%) 72.58% (4.27%)
AD (AE) 56.25% (-3.24%) 74.51% (-3.63%) 75.58% (-3.81%) 63.08% (11.71%) 78.42% (4.81%) 69.95% (0.50%)
Our approach 45.72% (-21.36%) 44.93% (-41.89%) 51.36% (-34.63%) 9.25% (-83.62%) 18.61% (-75.13%) 6.51% (-90.64%)
Adv. training ś ś 75.72% (-3.63%) ś ś ś

Injection Rate

AD (OTS) 12.81% (14.39%) 12.31% (-0.76%) 12.46% (4.76%) 12.84% (11.02%) 13.19% (6.83%) 10.00% (-7.22%)
AD (AE) 12.09% (7.92%) 12.68% (2.26%) 11.77% (-1.06%) 10.55% (-8.83%) 12.68% (2.67%) 10.92% (1.37%)
Our approach 14.76% (31.79%) 14.39% (16.05%) 14.37% (20.83%) 15.06% (30.20%) 14.08% (13.97%) 15.78% (46.44%)
Adv. training ś ś 11.46% (-3.67%) ś ś ś

Poisoning Rate (10−4)

AD (OTS) 127.49% (-12.92%) 168.82% (-11.18%) 194.03% (-10.06%) 161.58% (7.96%) 194.27% (-0.83%) 241.19% (14.90%)
AD (AE) 148.74% (1.59%) 173.02% (-8.97%) 188.20% (-12.77%) 186.09% (24.33%) 191.23% (-2.38%) 221.58% (5.56%)
Our approach 62.58% (-57.25%) 51.84% (-72.72%) 89.43% (-58.55%) 10.51% (-92.98%) 16.58% (-91.54%) 6.54% (-96.88%)
Adv. training ś ś 180.03% (-16.56%) ś ś ś

Gray-box

Money Stolen

AD (OTS) €51,083 (-10.59%) €280,430 (-11.27%) €300,112 (8.60%) €77,425 (-4.90%) €317,273 (26.46%) €170,570 (7.77%)
AD (AE) €41,586 (-27.21%) €267,961 (-15.21%) €264,225 (-4.38%) €55,604 (-31.71%) €250,216 (-0.26%) €163,914 (3.56%)
Our approach €25,364 (-55.61%) €87,184 (-72.41%) €97,193 (-64.83%) €14,000 (-82.80%) €36,023 (-85.64%) €0 (-100.00%)
Adv. training ś ś €265,699 (-3.85%) ś ś ś

Weekly Increase

AD (OTS) 31.76% (-11.25%) 81.80% (8.34%) 69.09% (13.84%) 45.39% (-3.65%) 76.03% (6.92%) 73.06% (8.34%)
AD (AE) 24.53% (-31.45%) 80.70% (6.89%) 69.35% (14.27%) 35.44% (-24.76%) 72.12% (1.41%) 69.92% (3.68%)
Our approach 35.78% (-0.01%) 78.49% (3.95%) 61.88% (1.97%) 44.72% (-5.07%) 115.95% (63.05%) 0.00% (-100.00%)
Adv. training ś ś 63.10% (3.97%) ś ś ś

Detection Time

AD (OTS) 10.62d (-5.84%) 3.56d (6.39%) 4.48d (-5.05%) 12.91d (11.51%) 3.85d (-2.35%) 15.66d (38.17%)
AD (AE) 10.91d (-3.27%) 3.31d (-1.21%) 4.50d (-4.68%) 12.25d (5.81%) 3.06d (-22.49%) 14.50d (27.93%)
Our approach 2.98d (-73.62%) 3.14d (-6.25%) 3.59d (-23.83%) 2.58d (-77.74%) 2.91d (-26.18%) 2.38d (-79.03%)
Adv. training ś ś 3.95d (-16.28%) ś ś ś

Detection Rate

AD (OTS) 87.78% (0.00%) 61.85% (1.21%) 71.85% (-1.52%) 87.41% (2.16%) 57.04% (-3.75%) 70.00% (1.61%)
AD (AE) 92.96% (5.91%) 62.96% (3.03%) 74.07% (1.52%) 86.67% (1.30%) 60.74% (2.50%) 68.15% (-1.08%)
Our approach 92.96% (5.91%) 87.04% (42.42%) 84.81% (16.24%) 96.30% (12.55%) 96.67% (63.12%) 100.00% (45.16%)
Adv. training ś ś 69.63% (-4.57%) ś ś ś

Evasion Rate

AD (OTS) 52.28% (-6.19%) 77.12% (-1.59%) 73.21% (-0.52%) 59.10% (-4.02%) 80.87% (2.85%) 71.66% (1.96%)
AD (AE) 50.98% (-8.51%) 76.04% (-2.96%) 72.29% (-1.78%) 59.34% (-3.63%) 79.81% (1.50%) 71.59% (1.85%)
Our approach 29.98% (-46.20%) 51.82% (-33.88%) 53.71% (-27.02%) 17.77% (-71.14%) 19.62% (-75.04%) 0.00% (-100.00%)
Adv. training ś ś 75.70% (2.86%) ś ś ś

Injection Rate

AD (OTS) 13.33% (15.32%) 13.56% (-6.10%) 13.95% (-9.12%) 11.77% (0.03%) 12.09% (1.93%) 10.98% (1.62%)
AD (AE) 11.95% (3.38%) 13.18% (-8.74%) 14.99% (-2.38%) 10.92% (-7.20%) 11.64% (-1.87%) 11.41% (5.62%)
Our approach 14.76% (27.67%) 14.55% (0.72%) 16.05% (4.51%) 14.58% (23.91%) 14.48% (22.08%) 15.02% (38.94%)
Adv. training ś ś 14.65% (-4.57%) ś ś ś

Poisoning Rate (10−4)

AD (OTS) 131.93% (-4.88%) 194.50% (-3.47%) 178.16% (-4.62%) 163.68% (-3.18%) 195.67% (4.10%) 229.98% (9.69%)
AD (AE) 123.76% (-10.77%) 191.00% (-5.21%) 173.25% (-7.25%) 151.54% (-10.36%) 180.96% (-3.73%) 219.71% (4.79%)
Our approach 37.83% (-72.73%) 65.62% (-67.43%) 85.93% (-54.00%) 20.08% (-88.12%) 16.11% (-91.43%) 0.00% (-100.00%)
Adv. training ś ś 194.50% (4.12%) ś ś ś

ACM Trans. Priv. Sec.

Fraud Detection Under Siege: Practical Poisoning Atacks and Defense Strategies • 29

Table 10. Results of our poisoning atack against FDSs with a bi-weekly and diferent mitigation approaches, in the white-box

scenario. For each metric, we provide the average on all atacker’s strategies. For each machine learning model we highlight

in red the worst value among all the tested mitigations, and in green the best.

AL LR NN RF SVM XGBoost

White-box

Money Stolen

AD (OTS) €285,762 (4.48%) €649,354 (-3.50%) €697,900 (39.13%) €284,469 (-3.37%) €766,343 (-16.72%) €390,891 (-7.87%)
AD (AE) €309,838 (13.28%) €751,404 (11.66%) €691,589 (37.87%) €289,942 (-1.51%) €744,962 (-19.05%) €476,434 (12.29%)
Our approach €206,770 (-24.40%) €294,690 (-56.21%) €326,453 (-34.92%) €89,213 (-69.69%) €246,774 (-73.18%) €102,420 (-75.86%)
Adv. training ś ś €472,592 (-5.79%) ś ś ś

Weekly Increase

AD (OTS) 46.61% (-0.71%) 70.01% (-3.20%) 83.71% (7.56%) 51.61% (-5.22%) 71.64% (-11.58%) 71.74% (-2.98%)
AD (AE) 53.15% (13.23%) 69.49% (-3.91%) 83.28% (7.00%) 49.97% (-8.24%) 74.61% (-7.90%) 73.27% (-0.90%)
Our approach 82.52% (75.79%) 76.75% (6.11%) 88.31% (13.47%) 64.86% (19.10%) 81.72% (0.87%) 65.87% (-10.91%)
Adv. training ś ś 69.68% (-10.46%) ś ś ś

Detection Time

AD (OTS) ś (0.00%) ś (0.00%) ś (0.00%) ś (0.00%) ś (0.00%) ś (0.00%)
AD (AE) ś (0.00%) ś (0.00%) ś (0.00%) ś (0.00%) ś (0.00%) ś (0.00%)
Our approach ś (0.00%) ś (0.00%) ś (0.00%) ś (0.00%) ś (0.00%) ś (0.00%)
Adv. training ś ś ś (0.00%) ś ś ś

Detection Rate

AD (OTS) 0.00% (0.00%) 0.00% (0.00%) 0.00% (0.00%) 0.00% (0.00%) 0.00% (0.00%) 0.00% (0.00%)
AD (AE) 0.00% (0.00%) 0.00% (0.00%) 0.00% (0.00%) 0.00% (0.00%) 0.00% (0.00%) 0.00% (0.00%)
Our approach 0.00% (0.00%) 0.00% (0.00%) 0.00% (0.00%) 0.00% (0.00%) 0.00% (0.00%) 0.00% (0.00%)
Adv. training ś ś 0.00% (0.00%) ś ś ś

Evasion Rate

AD (OTS) 100.00% (0.00%) 100.00% (0.00%) 100.00% (0.00%) 100.00% (0.00%) 100.00% (0.00%) 100.00% (0.00%)
AD (AE) 100.00% (0.00%) 100.00% (0.00%) 100.00% (0.00%) 100.00% (0.00%) 100.00% (0.00%) 100.00% (0.00%)
Our approach 100.00% (0.00%) 100.00% (0.00%) 100.00% (0.00%) 100.00% (0.00%) 100.00% (0.00%) 88.89% (-11.11%)
Adv. training ś ś 100.00% (0.00%) ś ś ś

Injection Rate

AD (OTS) 2.58% (-12.29%) 13.14% (1.19%) 15.55% (11.64%) 2.95% (22.66%) 20.50% (-11.04%) 5.22% (-0.95%)
AD (AE) 2.74% (-6.84%) 14.20% (9.32%) 14.04% (0.76%) 2.77% (15.21%) 22.28% (-3.28%) 5.72% (8.60%)
Our approach 6.41% (118.29%) 10.35% (-20.32%) 9.77% (-29.84%) 4.61% (91.69%) 14.12% (-38.71%) 5.42% (2.96%)
Adv. training ś ś 17.48% (25.48%) ś ś ś

Poisoning Rate (10−4)

AD (OTS) 246.57% (-6.55%) 333.39% (0.70%) 355.10% (21.77%) 281.35% (14.76%) 323.36% (-17.55%) 378.67% (2.40%)
AD (AE) 251.00% (-4.86%) 352.77% (6.56%) 363.03% (24.49%) 275.98% (12.57%) 368.40% (-6.07%) 377.97% (2.21%)
Our approach 153.65% (-41.76%) 137.07% (-58.60%) 207.11% (-28.98%) 78.46% (-68.00%) 135.90% (-65.35%) 89.91% (-75.69%)
Adv. training ś ś 284.15% (-2.56%) ś ś ś

7.7 Experiment 4: Performance comparison with other countermeasures

In this experiment, we compare the performance of our countermeasure approach with two state-of-the-art
approaches for mitigating AML attacks. First, we test the approach based on anomaly detection with diferent
unsupervised algorithms, autoencoder (AE), a type of feed-forward neural network, and one-time sampling
(OTS) [52], based on k-Nearest Neighbor. Then, we study an adversarial training strategy originally conceived
for adversarial examples in image classiication [26]. Our results show no meaningful diferences in the efect of
the tested mitigations that depend on the attacker’s strategies or the two update policies. Therefore, we provide
in two distinct tables, Table 9 and Table 10, the average of each metric for all the attacker’s strategies against the
fraud detection systems, adopting the bi-weekly update policy as a baseline again.

Anomaly Detection. As shown in Table 9 and Table 10, the mitigation based on anomaly detection, with both
one-time sampling (łAD (OTS)ž) and the autoencoders (łAD (AE)ž), does not bring any consistent beneit against
the attack with respect to the baseline performance of the FDSs. This result conirms our expectations, given
the assumptions over the adversarial transactions generated by the attacker: such frauds are not outliers with
respect to regular banking transactions. On average, the results obtained with both anomaly detectors tend
to oscillate between lower and higher values of Money Stolen. We attribute such oscillations to the choice of
diferent victims made by the attacker at the beginning of the simulation rather than to the tested approach
actively improving the performances of the FDSs. We mitigated such a side efect by repeating the experiments
three times. If we take metrics that link to both the evasion and the poisoning phase of the attack, we can also
observe no distinct improvement. However, with the one-time sampling algorithm, this approach achieves slightly
better values in terms of Money Stolen in the white-box scenario for all of the models, except for active learning

ACM Trans. Priv. Sec.

30 • Paladini et al.

and neural network model, for which it allows the attacker to steal respectively on average 4.48% and 39.13%
more capital. This result may suggest that even if the attacker is slowly poisoning the system, only in the long
run, this mitigation may start detecting transactions that drift largely from the regular user behavior and force
the attacker to commit transactions with lower monetary value. OTS also reduces the average Weekly Increase
in the white-box scenario, from 2.98% to 11.58%. Remark that with our countermeasure, in the same knowledge
scenario, the total capital stolen by the attacker is, on average, reduced between 24.40% and 75.86%.

Adversarial Training. For this mitigation, the only meaningful comparisons regard the results obtained with all
of the other FDS conigurations that adopt the neural network model. The neural network trained with adversarial
training, which we refer to as łAdv. trainingž in Table 9 and Table 10, shows neither constant improvements
nor excessive decay of the baseline performance of the neural network model against the poisoning attack. On
average, this mitigation achieves slightly better results than the baseline only in the gray and white-box scenarios,
but it does not match the results obtained with our mitigation approach. We observe that, on average, of the
attacker’s strategies, the Money Stolen is respectively 3.85% and 5.79% lower than the result obtained with the
regularly trained neural network model. However, with our countermeasure, the monetary damage is reduced
on average by 64.83% and 34.92%. Adversarial training obtains sensibly worse results in the black-box scenario,
where it allows the attacker to steal on average 13.18% more than in the absence of the mitigation. With respect
to the other metrics, we observe no meaningful improvement with respect to the standard neural network model.
In conclusion, by adopting adversarial training ś based on FGSM [26] ś as a generic adversarial training strategy,
we bring no beneits to the FDSs with respect to their standard performance. This shows that adversarial training
techniques bring small beneits over unseen attacks [5]: strengthening a model against FGSM may not provide a
suicient cover for the adversarial transactions generated according to our poisoning attack and the evasion
attack proposed by Carminati et al. [17]. The adversarial samples crafted by the attacker resemble legitimate
transactions only by their direct features (i.e., Amount, Timestamp, etc.). The attacker tries to mimic the victim
during the evasion phase, selecting amounts and timestamps that appear less suspicious to our FDSs. Probably,
the same samples may show in feature space very diferent perturbations than the ones obtained with the Fast
Gradient Sign Method.

8 LIMITATIONS AND FUTURE WORKS

The datasets used in this work come from the same institution; therefore, even if not belonging to the same
temporal period, the attacker trains their Oracle on a dataset that shows similarities to the one used by the FDSs
under attack. Consequently, in our experimental settings, we did not consider the possible impacts of diferent
data distributions. An interesting development could consist in analyzing such a relation by having the attacker
and the defender use diferent training data in terms of data distribution and size, and ultimately evaluate the
efects on our attack and defense approach. Our banking datasets also lack a suicient amount of real frauds, so
we had to augment them with artiicial data.

Another important aspect is that we test our attack and defense approaches against system-centric FDSs. An
interesting development could be to evaluate the eicacy of our attack and countermeasure against FDSs with
diferent architectures, including those built with the application of deep learning. Such systems may be able
to automatically ind better features from data and eventually achieve better results overall. The last important
limitation that we identiied is that our mitigation approach seems to be more efective in countering the evasion
phase of the poisoning attack. After the poisoning phase, a diferent approach may be required to distinguish
transactions placed by a stealthy attacker from the ones of their victims. There is a large room for improvement:
our procedure for the generation of PPTs is too general and does not capture as efectively the behavior of
the attacker. Possible solutions could consist in increasing the amount of candidate PPTs over time or forcing
the procedure to ind transactions with a higher amount of the previously generated adversarial transactions

ACM Trans. Priv. Sec.

Fraud Detection Under Siege: Practical Poisoning Atacks and Defense Strategies • 31

against the same victim. As a consequence of searching candidate PPTs in a reduced portion of feature space,
the performance trade-of of such an approach could be more contained with respect to our current solution.
Therefore, we propose, as an input for future research, to extend our countermeasure by exploring diferent
strategies for generating PPTs and studying their eicacy against diferent attacker’s strategies, under a game
theoretic framework. In addition, the capabilities and limitations of the defense strategy that we proposed can
be further explored under diferent, more formal perspectives, potentially taking into account whether formal
guarantees [32] can be formulated, as done in the malware detection domain [46]. Paired with the experimental
results that we have shown in our work, such a study may bring a more comprehensive vision of this problem.
Another possible development could consist in evaluating the robustness of our defense approach against adaptive
attacks [56]. Future works may also be directed toward our poisoning attack, rather than the defense. In particular,
a signiicant extension of our work may consist in identifying and exploring possible strategies for the retrieval
of an input transaction, or part of it, from a sample in feature space (often referred to through our work as
łaggregated transactionž). This study may allow us to ind a feasible approach to estimate the gradient of the
loss of the target FDS model for a given input transaction. Furthermore, this will allow us to extend our current
formulation of the attack to the commonly employed optimization problem and allow the attacker to adapt AML
attacks developed in other contexts.

9 CONCLUSIONS

This paper proposed 1○ a novel approach to craft poisoning samples that expands existing solutions and 2○ a
novel defense strategy, directly inspired by adversarial training [26], that mitigates adversarial machine learning
attacks ś the one proposed in this paper and by Carminati et al. [17] ś overcoming the challenges of the fraud
detection domain. We validated our ofensive approach by simulating attacks against six diferent FDSs with
two update policies, under increasing attacker’s knowledge scenarios, and diferent strategies. In our mitigation
approach, we strengthened the supervised, system-centric, fraud detection system classiiers against evasion by
adapting the principle behind adversarial training, originally conceived for protecting visual classiiers against
the evasion of adversarial examples, to a diferent domain and to a broad class of machine learning models. Our
results showed that our attack was successful even in a black-box scenario, i.e., a case in which the attacker
doesn’t have any information about the target system. The attacks were detected between 55% and 91% of the time,
but they lasted enough time to steal signiicant amounts of money. We showed that FDSs are more vulnerable to
greedier attack strategies. With our mitigation, we efectively reduced the economic damage of the attacks in
every knowledge scenario, by recognizing most of the adversarial transactions crafted by the attacker during the
irst evasion attempt. We achieved this result at a low generalization performance trade-of and we were able to
consistently detect the attack as soon as possible, reducing the base detection time by at most 90%. Even in the
worst-case scenario, where the attacker possesses every detail of the fraud detection system, we were able to
reduce the number of frauds injected by the attacker on average from 28.98% to 75.69%. We showed that naively
adopting existing defense mechanisms ś anomaly detection and adversarial training ś do not pose an efective
strategy for the defender since they fail at recognizing adversarial transactions carefully crafted by a stealthy
attacker that aims at replicating the original user behavior and fooling the classiier. Our results suggest that
we can reduce and sometimes even completely stop the attack by building a strong supervised system-centric
detector that blocks all of the irst attempts at evasion.

REFERENCES

[1] Aisha Abdallah, Mohd Aizaini Maarof, and Anazida Zainal. 2016. Fraud detection system: A survey. J. Netw. Comput. Appl. 68 (2016),
90ś113. https://doi.org/10.1016/j.jnca.2016.04.007

[2] Idan Achituve, Sarit Kraus, and Jacob Goldberger. 2019. Interpretable Online Banking Fraud Detection Based On Hierarchical Attention
Mechanism. In 29th IEEE InternationalWorkshop onMachine Learning for Signal Processing, MLSP 2019, Pittsburgh, PA, USA, October

ACM Trans. Priv. Sec.

https://doi.org/10.1016/j.jnca.2016.04.007

32 • Paladini et al.

13-16, 2019. IEEE, 1ś6. https://doi.org/10.1109/MLSP.2019.8918896
[3] Khaled GubranAl-Hashedi and PritheegaMagalingam. 2021. Financial fraud detection applying datamining techniques: A comprehensive

review from 2009 to 2019. Comput. Sci. Rev. 40 (2021), 100402. https://doi.org/10.1016/j.cosrev.2021.100402
[4] Alejandro Correa Bahnsen, Djamila Aouada, Aleksandar Stojanovic, and Björn E. Ottersten. 2016. Feature engineering strategies for

credit card fraud detection. Expert Syst. Appl. 51 (2016), 134ś142. https://doi.org/10.1016/j.eswa.2015.12.030
[5] Tao Bai, Jinqi Luo, Jun Zhao, Bihan Wen, and Qian Wang. 2021. Recent Advances in Adversarial Training for Adversarial Robustness. ,

4312ś4321 pages. https://doi.org/10.24963/ijcai.2021/591
[6] Marco Barreno, Blaine Nelson, Russell Sears, Anthony D. Joseph, and J. D. Tygar. 2006. Can machine learning be secure?. In Proceedings

of the 2006 ACM Symposium on Information, Computer and Communications Security, ASIACCS 2006, Taipei, Taiwan, March 21-24,
2006, Ferng-Ching Lin, Der-Tsai Lee, Bao-Shuh Paul Lin, Shiuhpyng Shieh, and Sushil Jajodia (Eds.). ACM, 16ś25. https://doi.org/10.
1145/1128817.1128824

[7] A. Bekirev, V. Klimov, M. Kuzin, and B. Shchukin. 2015. Payment card fraud detection using neural network committee and clustering.
Optical Memory and Neural Networks 24 (07 2015), 193ś200. https://doi.org/10.3103/S1060992X15030030

[8] Siddhartha Bhattacharyya, Sanjeev Jha, Kurian K. Tharakunnel, and J. Christopher Westland. 2011. Data mining for credit card fraud: A
comparative study. Decis. Support Syst. 50, 3 (2011), 602ś613. https://doi.org/10.1016/j.dss.2010.08.008

[9] Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim Srndic, Pavel Laskov, Giorgio Giacinto, and Fabio Roli. 2013. Evasion
Attacks against Machine Learning at Test Time. In Machine Learning and Knowledge Discovery in Databases - European Conference,
ECML PKDD 2013, Prague, Czech Republic, September 23-27, 2013, Proceedings, Part III (Lecture Notes in Computer Science, Vol. 8190),
Hendrik Blockeel, Kristian Kersting, Siegfried Nijssen, and Filip Zelezný (Eds.). Springer, 387ś402. https://doi.org/10.1007/978-3-642-
40994-3_25

[10] Battista Biggio, Giorgio Fumera, and Fabio Roli. 2017. Security Evaluation of Pattern Classiiers under Attack. CoRR abs/1709.00609
(2017). arXiv:1709.00609 http://arxiv.org/abs/1709.00609

[11] Battista Biggio, Blaine Nelson, and Pavel Laskov. 2012. Poisoning Attacks against Support Vector Machines. In Proceedings of the
29th International Conference on Machine Learning, ICML 2012, Edinburgh, Scotland, UK, June 26 - July 1, 2012. icml.cc / Omnipress.
http://icml.cc/2012/papers/880.pdf

[12] Battista Biggio and Fabio Roli. 2018. Wild patterns: Ten years after the rise of adversarial machine learning. Pattern Recognit. 84 (2018),
317ś331. https://doi.org/10.1016/j.patcog.2018.07.023

[13] Rüdiger W. Brause, Timm Sebastian Langsdorf, and Hans-Michael Hepp. 1999. Neural Data Mining for Credit Card Fraud Detection. In
11th IEEE International Conference on Tools with Artiicial Intelligence, ICTAI ’99, Chicago, Illinois, USA, November 8-10, 1999. IEEE
Computer Society, 103ś106. https://doi.org/10.1109/TAI.1999.809773

[14] Michele Carminati, Alessandro Baggio, Federico Maggi, Umberto Spagnolini, and Stefano Zanero. 2018. FraudBuster: Temporal
Analysis and Detection of Advanced Financial Frauds. In Detection of Intrusions and Malware, and Vulnerability Assessment - 15th
International Conference, DIMVA 2018, Saclay, France, June 28-29, 2018, Proceedings (Lecture Notes in Computer Science, Vol. 10885),
Cristiano Giufrida, Sébastien Bardin, and Gregory Blanc (Eds.). Springer, 211ś233. https://doi.org/10.1007/978-3-319-93411-2_10

[15] Michele Carminati, Roberto Caron, Federico Maggi, Ilenia Epifani, and Stefano Zanero. 2015. BankSealer: A decision support system for
online banking fraud analysis and investigation. Comput. Secur. 53 (2015), 175ś186. https://doi.org/10.1016/j.cose.2015.04.002

[16] Michele Carminati, Mario Polino, Andrea Continella, Andrea Lanzi, Federico Maggi, and Stefano Zanero. 2018. Security Evaluation of a
Banking Fraud Analysis System. ACM Trans. Priv. Secur. 21, 3 (2018), 11:1ś11:31. https://doi.org/10.1145/3178370

[17] Michele Carminati, Luca Santini, Mario Polino, and Stefano Zanero. 2020. Evasion Attacks against Banking Fraud Detection Systems. In
23rd International Symposium on Research in Attacks, Intrusions and Defenses, RAID 2020, San Sebastian, Spain, October 14-15, 2020,
Manuel Egele and Leyla Bilge (Eds.). USENIX Association, 285ś300. https://www.usenix.org/conference/raid2020/presentation/carminati

[18] Michele Carminati, Luca Valentini, and Stefano Zanero. 2017. A Supervised Auto-Tuning Approach for a Banking Fraud Detection
System. In Cyber Security Cryptography and Machine Learning - First International Conference, CSCML 2017, Beer-Sheva, Israel, June
29-30, 2017, Proceedings (Lecture Notes in Computer Science, Vol. 10332), Shlomi Dolev and Sachin Lodha (Eds.). Springer, 215ś233.
https://doi.org/10.1007/978-3-319-60080-2_17

[19] Francesco Cartella, Orlando Anunciação, Yuki Funabiki, Daisuke Yamaguchi, Toru Akishita, and Olivier Elshocht. 2021. Adversarial
Attacks for Tabular Data: Application to Fraud Detection and Imbalanced Data. In Proceedings of theWorkshop on Artiicial Intelligence
Safety 2021 (SafeAI 2021) co-located with the Thirty-Fifth AAAI Conference on Artiicial Intelligence (AAAI 2021), Virtual, February 8,
2021 (CEUR Workshop Proceedings, Vol. 2808), Huáscar Espinoza, John Alexander McDermid, Xiaowei Huang, Mauricio Castillo-Efen,
Xin Cynthia Chen, José Hernández-Orallo, Seán Ó hÉigeartaigh, and Richard Mallah (Eds.). CEUR-WS.org. http://ceur-ws.org/Vol-
2808/Paper_4.pdf

[20] Jipeng Cui, Chungang Yan, and Cheng Wang. 2021. ReMEMBeR: Ranking Metric Embedding-Based Multicontextual Behavior Proiling
for Online Banking Fraud Detection. IEEE Trans. Comput. Soc. Syst. 8, 3 (2021), 643ś654. https://doi.org/10.1109/TCSS.2021.3052950

[21] Ambra Demontis, Marco Melis, Maura Pintor, Matthew Jagielski, Battista Biggio, Alina Oprea, Cristina Nita-Rotaru, and Fabio Roli.
2019. Why Do Adversarial Attacks Transfer? Explaining Transferability of Evasion and Poisoning Attacks. In 28th USENIX Security

ACM Trans. Priv. Sec.

https://doi.org/10.1109/MLSP.2019.8918896
https://doi.org/10.1016/j.cosrev.2021.100402
https://doi.org/10.1016/j.eswa.2015.12.030
https://doi.org/10.24963/ijcai.2021/591
https://doi.org/10.1145/1128817.1128824
https://doi.org/10.1145/1128817.1128824
https://doi.org/10.3103/S1060992X15030030
https://doi.org/10.1016/j.dss.2010.08.008
https://doi.org/10.1007/978-3-642-40994-3_25
https://doi.org/10.1007/978-3-642-40994-3_25
https://arxiv.org/abs/1709.00609
http://arxiv.org/abs/1709.00609
http://icml.cc/2012/papers/880.pdf
https://doi.org/10.1016/j.patcog.2018.07.023
https://doi.org/10.1109/TAI.1999.809773
https://doi.org/10.1007/978-3-319-93411-2_10
https://doi.org/10.1016/j.cose.2015.04.002
https://doi.org/10.1145/3178370
https://www.usenix.org/conference/raid2020/presentation/carminati
https://doi.org/10.1007/978-3-319-60080-2_17
http://ceur-ws.org/Vol-2808/Paper_4.pdf
http://ceur-ws.org/Vol-2808/Paper_4.pdf
https://doi.org/10.1109/TCSS.2021.3052950

Fraud Detection Under Siege: Practical Poisoning Atacks and Defense Strategies • 33

Symposium, USENIX Security 2019, Santa Clara, CA, USA, August 14-16, 2019, Nadia Heninger and Patrick Traynor (Eds.). USENIX
Association, 321ś338. https://www.usenix.org/conference/usenixsecurity19/presentation/demontis

[22] Li Deng and Xiao Li. 2013. Machine Learning Paradigms for Speech Recognition: An Overview. IEEE Trans. Speech Audio Process. 21,
5 (2013), 1060ś1089. https://doi.org/10.1109/TASL.2013.2244083

[23] Rachna Dhamija, J. D. Tygar, and Marti A. Hearst. 2006. Why phishing works. In Proceedings of the 2006 Conference on Human Factors
in Computing Systems, CHI 2006, Montréal, Québec, Canada, April 22-27, 2006, Rebecca E. Grinter, Tom Rodden, Paul M. Aoki, Edward
Cutrell, Robin Jefries, and Gary M. Olson (Eds.). ACM, 581ś590. https://doi.org/10.1145/1124772.1124861

[24] Jonas Geiping, Liam Fowl, Gowthami Somepalli, Micah Goldblum, Michael Moeller, and Tom Goldstein. 2021. What Doesn’t Kill You
Makes You Robust(er): Adversarial Training against Poisons and Backdoors. arXiv:2102.13624 https://arxiv.org/abs/2102.13624

[25] Miguel Gomez. 2020. Dark Web Price Index 2020. https://www.privacyafairs.com/dark-web-price-index-2020/
[26] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. 2015. Explaining and Harnessing Adversarial Examples. (2015). http:

//arxiv.org/abs/1412.6572
[27] Kathrin Grosse, Praveen Manoharan, Nicolas Papernot, Michael Backes, and Patrick D. McDaniel. 2017. On the (Statistical) Detection of

Adversarial Examples. CoRR abs/1702.06280 (2017). arXiv:1702.06280 http://arxiv.org/abs/1702.06280
[28] Ling Huang, Anthony D. Joseph, Blaine Nelson, Benjamin I. P. Rubinstein, and J. D. Tygar. 2011. Adversarial machine learning. In

Proceedings of the 4th ACMWorkshop on Security and Artiicial Intelligence, AISec 2011, Chicago, IL, USA, October 21, 2011, Yan Chen,
Alvaro A. Cárdenas, Rachel Greenstadt, and Benjamin I. P. Rubinstein (Eds.). ACM, 43ś58. https://doi.org/10.1145/2046684.2046692

[29] Fayaz Itoo, Satwinder Singh, et al. 2021. Comparison and analysis of logistic regression, Naïve Bayes and KNN machine learning
algorithms for credit card fraud detection. International Journal of Information Technology 13, 4 (2021), 1503ś1511.

[30] Matthew Jagielski, Alina Oprea, Battista Biggio, Chang Liu, Cristina Nita-Rotaru, and Bo Li. 2018. Manipulating Machine Learning: Poi-
soning Attacks and Countermeasures for Regression Learning. In 2018 IEEE Symposium on Security and Privacy, SP 2018, Proceedings,
21-23 May 2018, San Francisco, California, USA. IEEE Computer Society, 19ś35. https://doi.org/10.1109/SP.2018.00057

[31] Sanjeev Jha, Montserrat Guillen, and J. Christopher Westland. 2012. Employing transaction aggregation strategy to detect credit card
fraud. Expert Syst. Appl. 39, 16 (2012), 12650ś12657. https://doi.org/10.1016/j.eswa.2012.05.018

[32] Jinyuan Jia, Xiaoyu Cao, and Neil Zhenqiang Gong. 2021. Intrinsic Certiied Robustness of Bagging against Data Poisoning Attacks. In
Thirty-Fifth AAAI Conference on Artiicial Intelligence, AAAI 2021, Thirty-Third Conference on Innovative Applications of Artiicial
Intelligence, IAAI 2021, The Eleventh Symposium on Educational Advances inArtiicial Intelligence, EAAI 2021, Virtual Event, February
2-9, 2021. AAAI Press, 7961ś7969. https://ojs.aaai.org/index.php/AAAI/article/view/16971

[33] KPMG. 2019. Global Banking Fraud Survey. https://assets.kpmg/content/dam/kpmg/xx/pdf/2019/05/global-banking-fraud-survey.pdf
[34] Seeja K.R. and Masoumeh Zareapoor. 2014. FraudMiner: A Novel Credit Card Fraud Detection Model Based on Frequent Itemset Mining.

TheScientiicWorldJournal 2014 (09 2014), 252797. https://doi.org/10.1155/2014/252797
[35] Alex Krizhevsky, Ilya Sutskever, and Geofrey E. Hinton. 2017. ImageNet classiication with deep convolutional neural networks.

Commun. ACM 60, 6 (2017), 84ś90. https://doi.org/10.1145/3065386
[36] Katharina Krombholz, Heidelinde Hobel, Markus Huber, and Edgar R. Weippl. 2015. Advanced social engineering attacks. J. Inf. Secur.

Appl. 22 (2015), 113ś122. https://doi.org/10.1016/j.jisa.2014.09.005
[37] Danilo Labanca, Luca Primerano, Marcus Markland-Montgomery, Mario Polino, Michele Carminati, and Stefano Zanero. 2022. Amaretto:

An Active Learning Framework for Money Laundering Detection. IEEE Access 10 (2022), 41720ś41739. https://doi.org/10.1109/ACCESS.
2022.3167699

[38] Qiang Liu, Pan Li, Wentao Zhao, Wei Cai, Shui Yu, and Victor C. M. Leung. 2018. A Survey on Security Threats and Defensive Techniques
of Machine Learning: A Data Driven View. IEEE Access 6 (2018), 12103ś12117. https://doi.org/10.1109/ACCESS.2018.2805680

[39] Zihao Liu, Qi Liu, Tao Liu, Nuo Xu, Xue Lin, Yanzhi Wang, and Wujie Wen. 2019. Feature Distillation: DNN-Oriented JPEG Compression
Against Adversarial Examples. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA,
June 16-20, 2019. Computer Vision Foundation / IEEE, 860ś868. https://doi.org/10.1109/CVPR.2019.00095

[40] Marc Moreno Lopez and Jugal Kalita. 2017. Deep Learning applied to NLP. CoRR abs/1703.03091 (2017). arXiv:1703.03091 http:
//arxiv.org/abs/1703.03091

[41] SamuelMarchal and Sebastian Szyller. 2019. Detecting organized eCommerce fraud using scalable categorical clustering. In Proceedings of
the 35th Annual Computer Security Applications Conference, ACSAC 2019, San Juan, PR, USA, December 09-13, 2019, David Balenson
(Ed.). ACM, 215ś228. https://doi.org/10.1145/3359789.3359810

[42] Italian Ministry of Economy and Finance. 2021. Statistical reports on payment card fraud (italian version). Technical Re-
port. https://www.dt.mef.gov.it/export/sites/sitodt/modules/documenti_it/antifrode_mezzi_pagamento/antifrode_mezzi_pagamento/
Rapporto-statistico-sulle-frodi-con-le-carte-di-pagamento-edizione-2021.pdf

[43] Raghavendra Patidar, Lokesh Sharma, et al. 2011. Credit card fraud detection using neural network. International Journal of Soft
Computing and Engineering (IJSCE) 1, 32-38 (2011).

[44] Andrea Paudice, Luis Muñoz-González, András György, and Emil C. Lupu. 2018. Detection of Adversarial Training Examples in Poisoning
Attacks through Anomaly Detection. arXiv:1802.03041 http://arxiv.org/abs/1802.03041

ACM Trans. Priv. Sec.

https://www.usenix.org/conference/usenixsecurity19/presentation/demontis
https://doi.org/10.1109/TASL.2013.2244083
https://doi.org/10.1145/1124772.1124861
https://arxiv.org/abs/2102.13624
https://arxiv.org/abs/2102.13624
https://www.privacyaffairs.com/dark-web-price-index-2020/
http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1412.6572
https://arxiv.org/abs/1702.06280
http://arxiv.org/abs/1702.06280
https://doi.org/10.1145/2046684.2046692
https://doi.org/10.1109/SP.2018.00057
https://doi.org/10.1016/j.eswa.2012.05.018
https://ojs.aaai.org/index.php/AAAI/article/view/16971
https://assets.kpmg/content/dam/kpmg/xx/pdf/2019/05/global-banking-fraud-survey.pdf
https://doi.org/10.1155/2014/252797
https://doi.org/10.1145/3065386
https://doi.org/10.1016/j.jisa.2014.09.005
https://doi.org/10.1109/ACCESS.2022.3167699
https://doi.org/10.1109/ACCESS.2022.3167699
https://doi.org/10.1109/ACCESS.2018.2805680
https://doi.org/10.1109/CVPR.2019.00095
https://arxiv.org/abs/1703.03091
http://arxiv.org/abs/1703.03091
http://arxiv.org/abs/1703.03091
https://doi.org/10.1145/3359789.3359810
https://www.dt.mef.gov.it/export/sites/sitodt/modules/documenti_it/antifrode_mezzi_pagamento/antifrode_mezzi_pagamento/Rapporto-statistico-sulle-frodi-con-le-carte-di-pagamento-edizione-2021.pdf
https://www.dt.mef.gov.it/export/sites/sitodt/modules/documenti_it/antifrode_mezzi_pagamento/antifrode_mezzi_pagamento/Rapporto-statistico-sulle-frodi-con-le-carte-di-pagamento-edizione-2021.pdf
https://arxiv.org/abs/1802.03041
http://arxiv.org/abs/1802.03041

34 • Paladini et al.

[45] Andrea Paudice, Luis Muñoz-González, and Emil C. Lupu. 2018. Label Sanitization Against Label Flipping Poisoning Attacks. In
ECML PKDD 2018Workshops - Nemesis 2018, UrbReas 2018, SoGood 2018, IWAISe 2018, and Green Data Mining 2018, Dublin, Ireland,
September 10-14, 2018, Proceedings (Lecture Notes in Computer Science, Vol. 11329), Carlos Alzate, Anna Monreale, Haytham Assem,
Albert Bifet, Teodora Sandra Buda, Bora Caglayan, Brett Drury, Eva García-Martín, Ricard Gavaldà, Stefan Kramer, Niklas Lavesson,
Michael Madden, Ian M. Molloy, Maria-Irina Nicolae, and Mathieu Sinn (Eds.). Springer, 5ś15. https://doi.org/10.1007/978-3-030-13453-
2_1

[46] Fabio Pierazzi, Feargus Pendlebury, Jacopo Cortellazzi, and Lorenzo Cavallaro. 2020. Intriguing Properties of Adversarial ML Attacks
in the Problem Space. In 2020 IEEE Symposium on Security and Privacy, SP 2020, San Francisco, CA, USA, May 18-21, 2020. IEEE,
1332ś1349. https://doi.org/10.1109/SP40000.2020.00073

[47] Javier Fernández Rodríguez, Michele Papale, Michele Carminati, and Stefano Zanero. 2022. A Natural Language Processing Approach
for Financial Fraud Detection. In Proceedings of the Italian Conference on Cybersecurity (ITASEC 2022), Rome, Italy, June 20-23, 2022
(CEUR Workshop Proceedings, Vol. 3260), Camil Demetrescu and AlessandroMei (Eds.). CEUR-WS.org, 135ś149. http://ceur-ws.org/Vol-
3260/paper10.pdf

[48] Y Sahin and Ekrem Duman. 2010. Detecting credit card fraud by decision trees and support vector machines. In World Congress on
Engineering 2012. July 4-6, 2012. London, UK., Vol. 2188. International Association of Engineers, 442ś447.

[49] Taeshik Shon and Jongsub Moon. 2007. A hybrid machine learning approach to network anomaly detection. Inf. Sci. 177, 18 (2007),
3799ś3821. https://doi.org/10.1016/j.ins.2007.03.025

[50] Jacob Steinhardt, PangWei Koh, and Percy Liang. 2017. Certiied Defenses for Data Poisoning Attacks. In Advances in Neural Information
Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA,
Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett (Eds.).
3517ś3529. https://proceedings.neurips.cc/paper/2017/hash/9d7311ba459f9e45ed746755a32dcd11-Abstract.html

[51] Octavian Suciu, Radu Marginean, Yigitcan Kaya, Hal Daumé III, and Tudor Dumitras. 2018. When Does Machine Learning FAIL?
Generalized Transferability for Evasion and Poisoning Attacks. In 27th USENIX Security Symposium, USENIX Security 2018, Baltimore,
MD, USA, August 15-17, 2018, William Enck and Adrienne Porter Felt (Eds.). USENIX Association, 1299ś1316. https://www.usenix.org/
conference/usenixsecurity18/presentation/suciu

[52] Mahito Sugiyama and Karsten M. Borgwardt. 2013. Rapid Distance-Based Outlier Detection via Sampling. (2013), 467ś475. https:
//proceedings.neurips.cc/paper/2013/hash/d296c101daa88a51f6ca8cfc1ac79b50-Abstract.html

[53] Symantec. 2017. ISTR - Financial Threats Review 2017. https://docs.broadcom.com/doc/istr-inancial-threats-review-2017-en
[54] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian J. Goodfellow, and Rob Fergus. 2014. Intriguing

properties of neural networks. In 2nd International Conference on Learning Representations, ICLR 2014, Banf, AB, Canada, April 14-16,
2014, Conference Track Proceedings, Yoshua Bengio and Yann LeCun (Eds.). http://arxiv.org/abs/1312.6199

[55] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian J. Goodfellow, and Rob Fergus. 2014. Intriguing
properties of neural networks. (2014). http://arxiv.org/abs/1312.6199

[56] Florian Tramèr, Nicholas Carlini, Wieland Brendel, and Aleksander Madry. 2020. On Adaptive Attacks to Adversarial Example
Defenses. In Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems
2020, NeurIPS 2020, December 6-12, 2020, virtual, Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and
Hsuan-Tien Lin (Eds.). https://proceedings.neurips.cc/paper/2020/hash/11f38f8ecd71867b42433548d1078e38-Abstract.html

[57] Kalyan Veeramachaneni, Ignacio Arnaldo, Vamsi Korrapati, Constantinos Bassias, and Ke Li. 2016. AIˆ2: Training a Big Data Machine to
Defend. In 2nd IEEE International Conference on Big Data Security on Cloud, BigDataSecurity 2016, IEEE International Conference on
High Performance and Smart Computing, HPSC 2016, and IEEE International Conference on Intelligent Data and Security, IDS 2016,
New York, NY, USA, April 9-10, 2016. IEEE, 49ś54. https://doi.org/10.1109/BigDataSecurity-HPSC-IDS.2016.79

[58] Christopher Whitrow, David J. Hand, Piotr Juszczak, David John Weston, and Niall M. Adams. 2009. Transaction aggregation as a
strategy for credit card fraud detection. Data Min. Knowl. Discov. 18, 1 (2009), 30ś55. https://doi.org/10.1007/s10618-008-0116-z

[59] Shiyang Xuan, Guanjun Liu, Zhenchuan Li, Lutao Zheng, Shuo Wang, and Changjun Jiang. 2018. Random forest for credit card fraud
detection. In 15th IEEE International Conference on Networking, Sensing and Control, ICNSC 2018, Zhuhai, China, March 27-29, 2018.
IEEE, 1ś6. https://doi.org/10.1109/ICNSC.2018.8361343

[60] Xiaoyong Yuan, Pan He, Qile Zhu, and Xiaolin Li. 2019. Adversarial Examples: Attacks and Defenses for Deep Learning. IEEE Trans.
Neural Networks Learn. Syst. 30, 9 (2019), 2805ś2824. https://doi.org/10.1109/TNNLS.2018.2886017

[61] Yixuan Zhang, Jialiang Tong, Ziyi Wang, and Fengqiang Gao. 2020. Customer Transaction Fraud Detection Using Xgboost Model. In 2020
International Conference on Computer Engineering and Application (ICCEA). 554ś558. https://doi.org/10.1109/ICCEA50009.2020.00122

ACM Trans. Priv. Sec.

https://doi.org/10.1007/978-3-030-13453-2_1
https://doi.org/10.1007/978-3-030-13453-2_1
https://doi.org/10.1109/SP40000.2020.00073
http://ceur-ws.org/Vol-3260/paper10.pdf
http://ceur-ws.org/Vol-3260/paper10.pdf
https://doi.org/10.1016/j.ins.2007.03.025
https://proceedings.neurips.cc/paper/2017/hash/9d7311ba459f9e45ed746755a32dcd11-Abstract.html
https://www.usenix.org/conference/usenixsecurity18/presentation/suciu
https://www.usenix.org/conference/usenixsecurity18/presentation/suciu
https://proceedings.neurips.cc/paper/2013/hash/d296c101daa88a51f6ca8cfc1ac79b50-Abstract.html
https://proceedings.neurips.cc/paper/2013/hash/d296c101daa88a51f6ca8cfc1ac79b50-Abstract.html
https://docs.broadcom.com/doc/istr-financial-threats-review-2017-en
http://arxiv.org/abs/1312.6199
http://arxiv.org/abs/1312.6199
https://proceedings.neurips.cc/paper/2020/hash/11f38f8ecd71867b42433548d1078e38-Abstract.html
https://doi.org/10.1109/BigDataSecurity-HPSC-IDS.2016.79
https://doi.org/10.1007/s10618-008-0116-z
https://doi.org/10.1109/ICNSC.2018.8361343
https://doi.org/10.1109/TNNLS.2018.2886017
https://doi.org/10.1109/ICCEA50009.2020.00122

	Abstract
	1 Introduction
	2 Background and Related Works
	2.1 Banking Fraud Detection Systems
	2.2 AML Attacks against Fraud Detection Systems
	2.3 AML Mitigations

	3 Threat Model
	3.1 Attacker's Goal
	3.2 Attacker's Knowledge
	3.3 Attacker's Capability

	4 Dataset Analysis
	5 Poisoning Attack Approach
	5.1 Overview
	5.2 Oracle
	5.3 Crafting Step: Generating Adversarial Transactions
	5.4 Attacker strategies

	6 Mitigation Approach
	6.1 Overview
	6.2 Adversarial Transaction Generation

	7 Experimental Evaluation
	7.1 Dataset Augmentation with Synthetic Frauds
	7.2 Modelling Target Fraud Detection Systems
	7.3 Attack Evaluation Metrics
	7.4 Experiment 1: Poisoning attack against banking FDSs
	7.5 Experiment 2: Performance trade-off with the proposed countermeasure
	7.6 Experiment 3: Performance of our countermeasure against the attack
	7.7 Experiment 4: Performance comparison with other countermeasures

	8 Limitations and Future Works
	9 Conclusions
	References

