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Appendix A
As mentioned in Section 3.1, the formulation in (P1) is non-
linear, due to the last term in the objective function. Never-
theless, it can be linearized by introducing a set of additional
variables ξn, representing the minimum deployment cost on
node n ∈ N , and γjn, corresponding to the deployment cost
to run job j on node n until its execution is completed. The
linearized formulation reads:

min
∑
j∈J

(ωjτj + ρωj τ̂j) + µ
∑
n∈N
v∈V

Gvynv −
∑
j∈J
g∈Gv

gxjnvg

 +
∑
n∈N

ξn

(P1a)
subject to:

(P1b) - (P1s) and:

ξn ≥
∑
j∈J

γjn ∀n ∈ N (P1b)

γjn ≤ πjn ∀j ∈ J , ∀n ∈ N (P1c)

γjn ≤ M̂c
j αjn ∀j ∈ J , ∀n ∈ N (P1d)

πjn − M̂c
j (1 − αjn) ≤ γjn ∀j ∈ J , ∀n ∈ N (P1e)

ξn ≥ 0 ∀n ∈ N (P1f)
γjn ≥ 0 ∀j ∈ J , ∀n ∈ N . (P1g)

Given the Constraints (P1b)-(P1g), it is easy to verify that
if αjn = 1, then ξn equals the deployment cost of the first
job j ∈ J completing under the selected GPUs assignment.
Indeed:

• If αjn = 1, then the corresponding Constraint (P1c) is
more restrictive than the Constraints (P1d) γjn ≤ M̂ c

j

since πjn ≤ M̂ c
j . Moreover, from the corresponding

Constraint (P1e) γjn ≥ πjn, we get γjn = πjn. Finally,
since we have a minimization problem, also Constraints
(P1b) hold as equalities and γjn is equal to the cost to
execute job j ∈ J completely under the selected GPUs
assignment.

• If αjn = 0, then Constraint (P1d) entails γjn ≤ 0.
Due to Constraint (P1g) we get γjn = 0. Moreover, the
corresponding Constraint (P1e) becomes γjn ≥ πjn−M̂ c

j ,
which is always satisfied since the right-hand side is
negative.

Since we have a minimization problem, also Constraints
(P1b) hold as equalities and ξn is equal to the only γjn

corresponding to αjn = 1, i.e., it amounts to the cost to
execute entirely the first job j ∈ J that will end under the
selected GPUs assignment on node n ∈ N .

Appendix B
In the following, we detail how the complexity of our proposed
method (see Section 3.3) can be computed.

Let J be the cardinality of the list of jobs J , N the
cardinality of the set of nodes N , and C =

∑
v∈V Gv the

cardinality of the set V ×Gv, i.e., the total number of available
configurations. Finally, let σ denote the number of candi-
date good-quality solutions saved in the set S∗. The overall
complexity of our method can be derived as described in the
following.

First of all, the complexity of the preprocessing stage
is given by O (JC), due to the update of all processing
times. The postprocessing phase has instead a complexity of

O (N + J). Finally, the complexity of the scheduling process
is given by the sum of different terms.

First of all, the randomized construction process deter-
mines a term O (J log J), due to the sorting operation required
to build the list Js. To support the best-fit approach imple-
mented in the selection of the best configuration, the set D∗

j is
built as an ordered multimap. This introduces a complexity of
O (C log C), but reduces the selection to an O (1) operation.
The assignment process has, for all jobs in J , a complexity
of O (N log N) in the case of the assignment to an existing
node, of O (Gv∗) (that can be approximated as O (1), since
Gv is considerably smaller than all the other dimension for
all v ∈ V) in the case of the assignment to a new node, and
of O (CN) for the assignment to a suboptimal configuration.
Having determined the configuration for all jobs, a final term
O (log σ) is due to the insertion of the new candidate solution
in the set S∗. Similarly to D∗

j , this is defined as an ordered
map, so that the candidate solutions are automatically sorted
with respect to the relative cost.

Since the randomized construction procedure is repeated
MaxItRG times, its overall complexity is given by:
O (MaxItRG (J log J + J (C log C + N log N + CN) + log σ)) .

We can assume that C and σ are significantly lower than
J and N , therefore this can be reduced to:

O (MaxItRG (J log J + JN log N)) .

The path relinking procedure is characterized by a com-
plexity of O (JN) for what concerns the GET_MOVES function.
If M is the number of feasible moves in M, given that the
exploration step has a worst-case complexity of O (J + JN),
we have an additional term O (MJ + MJN) = O (MJN). It
is worth noting that the complexity of the exploration step
is reduced, in the average case, to O (JN), which is due to
the recursion. Indeed, the choice of an unordered associative
container to represent the schedule assigned to each job entails
that the average access cost is O (1). Since the path relinking
procedure is repeated MaxItPR times, its complexity is:

O (σ MaxItPR M J N) .

Thus, neglecting the terms due to preprocessing and post-
processing, that are significantly lower than the others, the
overall complexity of our method can be written as:

O (MaxItRG (J log J + JN log N) + σ MaxItPR M J N) .

Appendix C
The results presented in Section 4.3 have been validated
statistically, proving the significance of the observed differ-
ences among the proposed methods. In particular, we have
considered the Analysis of Covariance (ANCOVA) method: it
can be used to test the null hypothesis that the means of two
or more populations are equal in the presence of a covariate
variable, likely to correlate with the dependent variable [31].
In our context, we test the difference in the mean among the
total cost obtained with all heuristic methods variants, and
the difference in the outcome produced by the Hierarchical
Method. Our covariate is the number of nodes in the system,
which directly impacts the total cost of an experiment. In par-
ticular, we have considered, for each inter-arrival distribution
described in Section 4.1, two different scenarios: a small-scale
system scenario, characterized by a number of nodes N ≤ 30,
and a large-scale system scenario, identified by N ≥ 40.
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(a) Exponential inter-arrival times
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(b) High rate
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(c) Mixed rate
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Figure 1: Hypothesis: linearity between the covariate and the outcome variable in each group, for small and large systems.

The ANCOVA method can be applied under the following
hypothesis:

• Linearity between the covariate and the outcome variable
at each level of the grouping variable, which has been
tested as shown in Figure 1 obtaining a value of R2

ranging between 0.93 and 0.99 in all considered scenarios.
• Homogeneity of regression slopes, which evaluates that

there is no interaction between the outcome and the co-
variate. This has been checked by performing an ANOVA
test [21] on the interaction between outcome and co-
variate, obtaining, in all considered scenarios, p-values
between 0.01 and 0.8.

• Normality of the outcome variable in each group. This has
been checked through the Shapiro-Wilk test of normality
[32], obtaining p-values between 0.26 and 0.71 in all
considered scenarios.

• Homogeneity of variance for all groups. This has been
checked through the Bartlett test [33], obtaining, in all
considered scenarios, p-values between 0.74 and 0.99.

• No significant outliers in all groups.
The results of the ANCOVA test are reported in Figure 2.

We observe statistical significance in all the considered sce-
narios, with the only exception of the small system with low
rate. As previously mentioned, a low rate in small systems
drastically decreases the load, reducing the difference between
the various algorithms in terms of solution quality. In general,
it is worth observing that the difference between the costs ob-
tained with our heuristic algorithm and with the Hierarchical
Method is always more significant in large systems, where the
higher load makes it harder to find solutions that minimize
due date violations. In these situations, we can observe that
the Path Relinking algorithm usually guarantees a solution
cost significantly lower than Randomized Greedy and pure
Greedy methods. Even if this cannot be observed in smaller
systems, we can notice in Figure 2a, Figure 2b and Figure 2c
that Path Relinking, Randomized Greedy and pure Greedy
obtain significantly lower costs than the Hierarchical Method.

As a final consideration, we did not perform statistical
tests to evaluate the significance of the cost reduction obtained
by our algorithms with respect to the dynamic programming-
based methods presented in Section 4.2.1. Indeed, such meth-
ods always yield to higher costs than the Hierarchical Method,
which has already been proved to obtain significantly worse
performance than our Path Relinking algorithm.

Appendix D
The plots in Figure 3 report the average total costs obtained
with the different methods in the setting discussed in Section
4.5. In particular, these scenarios were generated considering
problem instances with N available nodes for our methods,
while considering instances with the same job traces, but
2N , 4N or 8N available nodes for Earliest Deadline First
(EDF) and the Dynamic Programming (DP)-based methods
presented in Section 4.2.1.

We can observe that the results in the 4N and 8N scenar-
ios are almost identical, because the number of available nodes
in the 4N setting is large enough to execute all the concurrent
jobs, and no advantages are introduced by considering a larger
amount of resources. The DP(AdjWCT) method always yields
to lower costs with respect to the other DP-based methods in
the 4N and 8N scenarios. Indeed, the others tend to always
select the fastest configuration to execute all jobs, which is not
necessary and possibly more expensive when there are enough
available resources to run all jobs. In the 2N case, a similar
pattern can be obseved in the mixed and low rate settings,
where the system load is lower.

Despite the larger amount of resources exploited by EDF
and the DP-based methods, Path Relinking yields better
results in all the considered scenarios, even if the percentage
cost reduction is reduced, in the worst case, from 96 to 10%
with respect to EDF and from 39 to 8% against DP(AdjWCT)
(see Figure 4).
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Figure 2: Results of ANCOVA model for small and large systems

(a) Exponential inter-arrival times (b) High rate (c) Low rate

Figure 3: Average total costs comparison in the 2N , 4N and 8N scenarios - Note: the number of nodes reported on the x-axis is the one
used by EDF and the DP-based methods
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(a) Exponential inter-arrival times
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(b) High rate
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Figure 4: Percentage cost reduction obtained by Path Relinking with respect to the other methods in the 2N , 4N and 8N
scenarios
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