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EQUIVARIANT MAPS FOR MEASURABLE COCYCLES
WITH VALUES INTO HIGHER RANK LIE GROUPS

ALESSIO SAVINI

Let G be a semisimple Lie group of noncompact type and let XG be the Rie-
mannian symmetric space associated to it. Suppose XG has dimension n and
does not contain any factor isometric to either H2 or SL(3,R)/SO(3). Given
a closed n-dimensional complete Riemannian manifold N , let 0 = π1(N) be
its fundamental group and Y its universal cover. Consider a representation
ρ : 0 → G with a measurable ρ-equivariant map ψ : Y → XG . Connell
and Farb described a way to construct a map F : Y→XG which is smooth,
ρ-equivariant and with uniformly bounded Jacobian.

We extend the construction of Connell and Farb to the context of mea-
surable cocycles. More precisely, if (�,µ�) is a standard Borel probability
0-space, let σ : 0×�→ G be measurable cocycle. We construct a measur-
able map F : Y ×�→XG which is σ -equivariant, whose slices are smooth
and they have uniformly bounded Jacobian. For such equivariant maps we
define also the notion of volume and we prove a sort of mapping degree
theorem in this particular context.

1. Introduction

The barycenter construction appeared for the first time in the paper of Douady and
Earle [1986], who wanted to extend self-maps of the circle to the whole Poincaré
disk. So far this technique has been widely developed and it has been fruitfully
used to obtain several strong rigidity statements in geometric topology. For instance
Besson, Courtois, and Gallot [1995; 1996; 1998] used the barycenter method to
prove the minimal entropy conjecture in the case of rank-one locally symmetric
manifolds. More precisely, given a continuous map f : N → M between compact
rank-one manifolds, they constructed the so-called natural maps by applying the
barycenter to a family of measures that are equivariant with respect to the induced
morphism π1( f ). Natural maps are smooth, equivariant maps whose Jacobian is
uniformly bounded by 1 and the equality at a point is attained if and only if the
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differential on the tangent space is a homothety. Similar applications of natural maps
in the study of real hyperbolic manifolds were given for instance in [Boland, Connell,
and Souto 2005; Francaviglia and Klaff 2006; Francaviglia 2009]. Francaviglia and
Klaff constructed the natural map associated to a representation ρ : 0→ PO(m, 1),
where 0 ≤ PO(n, 1) is a torsion-free lattice and m ≥ n ≥ 3. The existence of such
a maps allowed to define the notion of volume of representations and to show that
this numerical invariant is rigid. Indeed, Vol(ρ) ≤ Vol(0\Hn

R) holds for every
representation ρ : 0 → PO(m, 1) and the equality is attained if and only if the
representation ρ is discrete and faithful. Successively, the author extended the
same notion to the context of complex and quaternionic lattices getting a stronger
rigidity phenomenon. As shown in [Francaviglia and Savini 2020; Savini 2020b],
the volume function is actually rigid also at the ideal points of the character variety,
leading to a proof of Guilloux’s conjecture [2018, Conjecture 1] for n = 2.

The attempt to extend the proof of the minimal entropy conjecture to semisimple
Lie groups of higher rank led Connell and Farb [2003a; 2003b] to define natural
maps also in this different context. This strategy allowed the authors to prove the
conjecture for manifolds which are quotients of products of rank-one symmetric
spaces. Similarly they extended the mapping degree theorem for continuous maps
between higher rank manifolds. Under the higher rank assumption, it is worth
mentioning also the volume rigidity for representations of lattices obtained by Kim
and Kim [2014] via continuous bounded cohomology.

Among the other possible applications of the barycenter construction and natural
maps, it is worth mentioning the rigidity result obtained in [Boland and Connell
2002] for foliations of Riemannian manifolds with negatively curved leaves and the
rigidity phenomena proved in [Boland and Newberger 2001] for Finsler manifolds
and in [Adeboye, Bray, and Constantine 2019; Savini 2021] for Benoist manifolds.
To conclude this historical introduction, we recall also the work of Lafont and
Schmidt [2006]. Using the barycenter construction they showed the positivity of
simplicial volume of locally symmetric manifolds of higher rank and the surjectivity
of the comparison map in bounded cohomology for a specific range of indices.

As already done by the author for measurable cocycles of rank-one lattices [Savini
2019; 2020a], in this paper we would like to apply the barycenter to build natural
maps for measurable cocycles taking values into higher rank Lie groups. Let G be
a semisimple Lie group of noncompact type with rank bigger than or equal to 2
and let XG be the Riemannian symmetric space associated to it. Suppose XG has
no factor isometric to either H2 or SL(3,R)/SO(3). If we denote by n = dim(XG)

the dimension, we are going to show the following:

Theorem 1.1. Let N be a closed n-dimensional complete Riemannian manifold
with fundamental group 0 = π1(N ) and universal cover Y. Let (�,µ�) be a
standard Borel probability 0-space. Let σ : 0×�→ G be a measurable cocycle.
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Then there exists a measurable map F : Y ×�→ XG which is σ -equivariant,
whose slice Fx : Y → XG is differentiable for almost every x ∈� and there exists a
constant C > 0 such that

Jaca Fx < C

for every a ∈ Y and almost every x ∈�. Here C is a constant depending only on
the dimension n and on the geometry of both Y and XG .

Theorem 1.1 should be interpreted as a generalization of the Connell–Farb
theorem to the wider context of measurable cocycle theory. The proof will be based
crucially on the existence of a measurable equivariant map proved in Lemma 3.1.
Indeed we are going to consider the pushforward of a suitable equivariant family of
measures on Y and then we are going to take the convolution with the Patterson–
Sullivan density associated to G (see [Patterson 1976; Sullivan 1979; Albuquerque
1997; 1999]). Since this convolution is fully supported on the Furstenberg–Poisson
boundary B(G) of G, we can apply correctly the barycenter to get our desired
map. The computation on slices is exactly the one made by Connell and Farb
[2003a; 2003b]. Notice that when 0 is a higher rank lattice, the existence of
such a map can be argued by Zimmer superrigidity theorem [1980], since the
cocycle may be trivialized.

Given a measurable cocycle σ :0×�→G, let us assume we have a measurable
map 8 : Y ×�→ XG which is σ -equivariant and whose slices 8x : Y → XG ,
8x(a) :=8(a, x) are smooth for almost every x ∈�. If the Jacobian of the slices
is uniformly bounded (that is 8 has essentially bounded slices), then we define the
notion of volume Vol(8) of the measurable map 8. Notice that an example of such
a map is exactly the natural map we constructed. Additionally, in the particular
case of Zariski dense cocycles of higher rank lattices, the volume boils down to the
covolume of the lattice itself.

Since, given a continuous function between compact manifolds allows to pullback
measurable cocycles, we state a result which should be interpreted as a mapping
degree theorem for measurable equivariant maps. More precisely we have:

Proposition 1.2. Let N ,M be a closed n-dimensional Riemannian manifolds
with fundamental groups 0 = π1(N ),3 = π1(M) and universal covers Y, X,
respectively. Suppose that there exists a smooth function f : N → M with non-
vanishing degree and uniformly bounded Jacobian. Let (�,µ�) be a standard
Borel probability 3-space and let σ : 3 × � → G be a measurable cocycle.
Given a measurable σ -equivariant map 8 : Y ×�→ XG with smooth essentially
bounded slices, it holds that

|deg( f )| ≤
Vol( f ∗8)

Vol(8)
.



508 ALESSIO SAVINI

Plan of the paper. In Section 2 we recall basic definitions and results that we
need for our exposition. We start with Section 2A where we remind the notion
of measurable cocycle, cohomology class and equivariant map. Then we move
to Section 2B where we describe the Patterson–Sullivan density associated to a
higher rank Lie group. Section 2C is devoted to the description of the barycenter
method and to the definition of Connell–Farb natural map. In Section 3 we prove
Theorem 1.1 and we compare our definition of natural map with the one of Connell
and Farb (Proposition 3.5). We then show in Proposition 3.6 how natural maps vary
in a specific cohomology class. The definition of volume of a equivariant map is
given in Section 4, where we prove also Proposition 1.2.

2. Preliminary definitions and results

In this section we are going to recall all the definitions and the results we are going
to need throughout the paper. We will first give a brief introduction about the notion
of measurable cocycle. Then we will introduce a key tool in order to construct our
natural maps: the Patterson–Sullivan family of measures associated to a higher rank
semisimple Lie group. This family will generalize the standard construction made
by both Patterson [1976] and Sullivan [1979] in case of rank-one Lie groups of
noncompact type. Finally we are going to recall the barycenter construction of a
probability measure supported on the Furstenberg–Poisson boundary.

2A. Measurable cocycles. In this section we are going to recall the main definition
of measurable cocycles. The following will be a short introduction and we refer to
[Furstenberg 1973; 1981; Zimmer 1979; 1984] for a more detailed description.

Let G, H be two locally compact second countable groups and endow both with
their Haar σ -algebras and measurable structures. Fix a standard Borel probability
space (�,µ) where µ has no atoms. If G acts on � by measure preserving transfor-
mations, we are going to call (�,µ) a standard Borel probability G-space. If (2, ν)
is another measure space, we denote by Meas(�,2) the space of measurable maps
endowed with the topology of convergence in measure.

With the notation above, we are now ready to give the following:

Definition 2.1. A measurable map σ : G ×�→ H is a measurable cocycle (or
Zimmer’s cocycle) if

(1) σ(g1g2, x)= σ(g1, g2.x)σ (g2, x)

for every g1, g2 ∈ G and almost every x ∈�. Here the notation g2.x refers to the
action of G on the space �.

It is worth noticing that (1) can be suitably interpreted as a sort of generalization of
the chain rule for derivatives in this context. For the reader who is familiar with group
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cohomology, we want to underline that by viewing σ ∈ Meas(G,Meas(�, H)),
equation (1) is equivalent to requiring that σ is a Borel 1-cocycle in the sense
of Eilenber–MacLane (see [Feldman and Moore 1977; Zimmer 1979]). Using
the latter interpretation, we can naturally ask which is the right condition on two
cocycles for being cohomologous.

Definition 2.2. Let σ : G×�→ H be a measurable cocycle. Given a measurable
map f :�→ H, the twisted cocycle with respect to f and σ is given by

f.σ : G×�→ H, ( f.σ )(g, x) := f (g.x)−1σ(g, x) f (x)

for every g ∈ G and almost every x ∈�. Two measurable cocycles

σ1, σ2 : G×�→ H

are cohomologous (or equivalent) if there exists a measurable map f : �→ H
such that

σ2 = f.σ1.

The role played by measurable cocycles in mathematics is central. We will
particularly be interested in the examples coming from representation theory.

Definition 2.3. Let ρ : G→ H be a continuous representation. Fix any standard
Borel probability G-space (�,µ). The measurable cocycle associated to ρ is
defined as

σρ : G×�→ H, σρ(g, x) := ρ(g)

for every g ∈ G and almost every x ∈�.

The above definition should suggest how representation theory can be suitably
seen inside the wider context of measurable cocycles theory. We want to underline
that even if the definition above depends actually also on the choice of Borel space�,
we prefer to omit this dependence from the notation σρ . It is worth noticing that
when G is a discrete group every representation is automatically continuous.

We conclude this short introduction about measurable cocycles by recalling the
notion of equivariant maps and how they change along cohomology classes.

Definition 2.4. Let σ :G×�→ H be a measurable cocycle. Assume that G and H
act continuously on two topological spaces Y and X, respectively. A measurable
map ψ : Y ×�→ X is σ -equivariant if

ψ(g.a, g.x)= σ(g, x)ψ(a, x)

for every g ∈ G and almost every a ∈ Y, x ∈�.
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Assume that σ : G×�→ H is a measurable cocycle and let ψ : Y ×�→ X be
a measurable σ -equivariant map as above. Given a measurable map f :�→ H,
we can define the map

f.ψ : Y ×�→ X, ( f.ψ)(a, x)= f (x)−1ψ(a, x)

for almost every a ∈ Y, x ∈�. It is easy to verify that the map f.ψ is a measurable
f.σ -equivariant map.

2B. Patterson–Sullivan measures. In this section we are going to recall the defi-
nition of Patterson–Sullivan density associated to a lattice is a semisimple Lie group
of noncompact type. For rank-one Lie groups we mainly refer to the pioneering
work of Patterson [1976] and Sullivan [1979]. In the case of negatively curved
spaces we suggest [Burger and Mozes 1996]. However, since we will be mainly
interested in the case of higher rank Lie groups, we refer the reader to [Albuquerque
1997; 1999] for a more detailed description of the argument.

Let G be a semisimple Lie group of noncompact type and let XG the Riemannian
symmetric space associated to G. We denote by ∂∞ XG the boundary at infinity
of XG endowed with the cone topology. Given a point a ∈ XG , the Busemann
function pointed at a is the map

βa : XG ×∂∞ XG→ R, βa(b, ξ) := lim
t→∞

dG(c(t), a)− dG(c(t), b),

where dG( · , · ) is the distance associated to the Riemannian structure on XG and
c : [0,∞)→ XG is the unique geodesic ray starting at c(0) = a and ending at
c(∞) = ξ . Busemann functions are convex and this convexity property will be
crucial to apply correctly the barycenter construction, as we will see in Section 2C.

Definition 2.5. Fix any basepoint a ∈ XG . The critical exponent δG associated to
a semisimple Lie group G of noncompact type is given by

δG := inf
{

s ∈ R

∣∣∣ ∫
G

e−sdG(a,g.a)dµG(g) <∞
}
,

where µG is the Haar measure on G. It is worth noticing that the definition we gave
does not depend on the particular choice of the basepoint a ∈ XG .

Recall that the volume entropy of the symmetric space XG is given by

h(XG) := lim
r→∞

log(Vol(Br (a)))
r

,

where Br (a) is the Riemannian ball pointed at a of radius r and Vol is the standard
Riemannian volume on XG . By [Albuquerque 1997, Theorem 2; 1999, Theorem C]



EQUIVARIANT MAPS FOR MEASURABLE COCYCLES 511

we know that the critical exponent of G it is equal to the critical exponent of any of
its lattices and it coincides with the volume entropy, that is

δG = h(XG).

We are now ready to give the definition of Patterson–Sullivan family associated
to the group G. This will actually be included in the more general definition of
conformal density. In order to proceed, given any topological space X, we are going
to denote by M1(X) the space of positive probability measure on X.

Definition 2.6. Let α > 0 be a positive real number. An α-conformal density is a
measurable map

ν : XG→M1(∂∞ XG), ν(a) := νa,

such that

(i) each measure νa has no atoms;

(ii) given two points a, b ∈XG , the measures νa , νb are absolutely continuous and

dνa

dνb
(ξ)= e−αβb(a,ξ),

where ξ ∈ ∂∞ XG and βb(a, ξ) is the Busemann function pointed at b ∈ XG .

A Patterson–Sullivan density is the h(XG)-conformal density.

The existence of a Patterson–Sullivan density is proved by Albuquerque, who
proved also that such a density is essentially unique up to a multiplicative constant
[1999, Proposition D].

The last remarkable property of the Patterson–Sullivan measures is related
to their support. More precisely the support of the measure νa coincides with
the Furstenberg–Poisson boundary B(G) of G, as shown in [Albuquerque 1997,
Theorem; 1999, Theorem C]. The latter can be seen as the unique G-orbit of a
regular point in ∂∞ XG and it is usually identified with the homogeneous space G/P,
where P is any minimal parabolic subgroup. Notice that when the rank of G is
equal to 1 every point in ∂∞ XG is regular and the Furstenberg–Poisson boundary
is equal to the boundary at infinity.

We conclude by underling that the measure νa of the Patterson–Sullivan density
associated to G is the unique probability measure on B(G)which is Ka :=StabG(a)-
invariant. The previous remark guarantees also the fact that the density ν is a
G-equivariant map, that is νg.a = g∗νa , where g∗νa is the push-forward measure.

2C. Barycenter and Connell–Farb construction. The main subject of this section
will be the barycenter construction introduced by Douady and Earle [1986]. This
construction was exploited by Besson, Courtois, and Gallot [1995; 1996; 1998] to
construct natural maps for rank-one Lie groups of noncompact type. The same ap-
proach was extended by Connell and Farb [2003a; 2003b] to higher rank Lie groups.
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Let G be a semisimple Lie group of noncompact type and let XG the Riemannian
symmetric space associated to G. As before, denote by ∂∞ XG the boundary
at infinity of XG . Let ν be a positive probability measure on ∂∞ XG , that is,
ν ∈M1(∂∞ XG). If we fix a basepoint o ∈ XG , using the measure ν we can define
the map

Bν : XG→ R, Bν(a) :=
∫
∂∞ XG

βo(a, ξ)dν(ξ),

where βo is the Busemann function pointed at o ∈ XG (see Section 2B). Even if a
priori the Busemann function is not strictly convex, since we are not necessarily
considering the rank one case, under suitable hypothesis we can say something
about the convexity of the function Bν . As shown by Connell and Farb [2003c,
Proposition 12], when the measure ν is fully supported on the Furstenberg–Poisson
boundary B(G), then the function Bν is strictly convex. Hence there exists a unique
point which attains the minimum.

Definition 2.7. Let ν ∈ M1(∂∞ XG) be a positive probability measure whose
support coincides with the Furstenberg–Poisson boundary of XG , that is, supp(ν)=
B(G). Then the barycenter of the measure ν is the point in the symmetric space XG

defined as
barB(ν) := argmin(Bν),

where argmin is the point where Bν attains its minimum.

The subscript B we used in the definition of the barycenter suggests the depen-
dence of the construction on the function Bν , and hence on Busemann functions.

We report below a brief list of properties of the barycenter.

• The barycenter is weak-∗ continuous. More precisely given a sequence (νk)k∈N

of probability measures such that νk converges to ν in the weak-∗ topology
and they are all supported on the boundary B(G), we have

lim
k→∞

barB(νk)= barB(ν).

• The barycenter is G-equivariant. Given an element g ∈ G and a probability
measure ν supported on B(G), we have

barB(g∗ν)= g barB(ν),

where g∗ν denotes the pushforward measure with respect to g.

• The barycenter of a probability measure ν supported on B(G) satisfies the
implicit equation

(2)
∫

B(G)
dβo|(barB(ν),ξ)( · )dν(ξ)= 0,

where dβo denotes the differential of the Busemann function βo.
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Since we will need to compare it with our version of natural map in the case of
measurable cocycle, we will conclude the section by recalling briefly Connell and
Farb’s approach to natural maps [2003a; 2003b]. Let N be a closed n-dimensional
complete Riemannian manifold whose fundamental group is 0 = π1(N ) and with
universal cover Y. Fix first a positive real number s > h(Y ), where h(Y ) is the
volume entropy of Y. Denoting by µ the Riemannian volume measure on Y we can
define the following family of measures in terms of the Radon–Nikodym derivative

(3)
dµs

a

dµ
:=

e−sdY (a,z)∫
Y

e−sdY (a,z) dµ(z)
,

where a ∈ Y and dY ( · , · ) stands for the Riemannian distance on Y. This is the same
family defined for instance in [Connell and Farb 2003a] and it is clearly equivariant
with respect to the natural action of 0, that is,

µs
γ a = γ∗(µ

s
a),

where γ ∈ 0 and γ∗ is the pushforward measure.
Let now ρ :0→G be a representation. Consider a measurable map ψ : Y→XG

which is ρ-equivariant. Then one can define the following family of measures:

(4) λs
a := ((ψ)∗(µ

s
a)) ∗ {νb}b∈XG

for every a ∈ Y. The convolution that appears in (4) is defined as follows:

λs
a(U ) :=

∫
XG

νb(U )d((ψ)∗(µs
a))(b)=

∫
Y
νψ(z)(U )dµs

a(z)

for every Borel subset U ⊆ B(G). Since we used the Patterson–Sullivan family in
the convolution, for every a ∈ Y the measure λs

a is supported on the boundary B(G).
Thus we can correctly apply the barycenter to get a point XG . Indeed Connell and
Farb [2003a; 2003b] defined the map

F s
: Y → XG,

F s(a) := barB(λs
a)= barB

(( ∫
Y

e−sdY (a,z)−h(XG)βo(ψ(z),ξ) dµ(z)
)

dνo(ξ)
)
.

If we now substitute this expression into the implicit equation (2) we obtain

(5)
∫

B(G)
dβo|(F s(a),ξ)( · ) dλs

a(ξ)= 0,

and by differentiating it we get

(6)
∫

B(G)
∇ dβo|(F s(a),ξ)(Da F s(u), v) dλs

a(ξ)

= s
∫

Y

∫
B(G)

dβo|(F s(a),ξ)(v) · 〈grada dY (a, z), u〉 dνψ(z)(ξ) dµs
a(z)

for every a ∈ Y, u ∈ TaY and v ∈ TF s(a) XG . Here ∇ is the Levi–Civita connection
associated to the standard Riemannian structure on XG and grada is the Riemannian
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gradient on Y. In the next section we will see that the equation above will hold at
every slice of our natural map associated to a fixed measurable cocycle.

3. Natural maps associated to measurable cocycles of higher rank lattices

Let G be a semisimple Lie group of noncompact type with rank bigger than or
equal to 2 and denote by XG the associated symmetric space. If dim(XG) = n,
let N be a closed n-dimensional complete Riemannian manifold with fundamental
group 0 = π1(N ) and universal cover Y. In this section we are going to construct
explicitly natural maps associated to Zimmer’s cocycles valued into G. The main
strategy to construct these maps will be to consider a suitable equivariant family of
measures on Y, consider their pushforward with respect a measurable σ -equivariant
map and then apply the convolution with the Patterson–Sullivan family introduced
in Section 2B. The existence of natural maps, that is σ -equivariant maps with dif-
ferentiable slices and uniformly bounded Jacobian, will generalize the construction
already developed in [Savini 2019] for torsion-free lattices in rank-one Lie groups.
However it is worth noticing that the approach we are going to develop here is quite
different with respect to the one of [Savini 2019]. Indeed here we are going to use
measurable equivariant map defined on Y and on the symmetric space XG rather
then boundary maps.

Before proving the existence of a measurable equivariant map, we need first to
recall the definition of measurable fundamental domain with respect to the action
of 0 on Y. A measurable subset 10 ⊂ Y is a measurable fundamental domain if

µ(10 ∩ γ10)= 0

for every non trivial element γ ∈ 0, and

µ

(
Y \

⋃
γ∈0

γ10

)
= 0.

Recall that µ is the measure induced by the Riemannian structure on Y. In literature
one can impose more restrictive conditions to define a measurable fundamental
domain (for instance one may require that the above equations hold everywhere and
not only almost everywhere). Nevertheless for our purposes it is sufficient to deal
with the definition we gave, since we will care only about functions defined almost
everywhere (for instance the equivariance must hold only on a full measure subset
and, similarly, the construction of the natural map is not affected if we change along
a measure zero subset the starting equivariant function).

Lemma 3.1. Let 0 = π1(N ) be the fundamental group of a closed n-dimensional
complete Riemannian manifold N and let Y be its universal cover. Fix a standard
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Borel probability 0-space. Given a measurable cocycle σ : 0×�→G, there exists
a measurable σ -equivariant map

ψ : Y ×�→ XG .

Proof. Recall that 0 acts freely, properly discontinuously and by isometries on Y
(it is worth noticing that 0 is actually lattice in the isometry group Isom(Y ), where
the latter is endowed with the compact-open topology; see for instance [Löh and
Sauer 2009, Lemma 4.2] for a detailed proof). For such an action a measurable
fundamental domain exists (an explicit example of measurable fundamental domain
is the one given by the Dirichlet condition, that is,

10 :=
{
a ∈ Y | dY (a, o) < dY (a, γ .o) for every γ ∈ 0 \ {e0}

}
,

where o is a fixed based point in Y ).
Given a measurable fundamental domain 10, consider a measurable function

q :10 ×�→ XG . We can get a measurable map ψ : Y ×�→ XG as follows:

ψ(a, x) :=
{

q(a, x) if a ∈10,
σ (γ, x0)q(a0, x0) if (a, x)= γ.(a0, x0).

The function ψ is well-defined since10 is a measurable fundamental domain and 0
acts on � by measure preserving transformations. It is worth noticing that ψ could
actually be an almost everywhere defined function (for instance if we consider the
Dirichlet condition). In that case one may extend it to a measurable function by
defining the extension to be constant on the missing subset of null measure.

By construction ψ is equivariant in the sense of Definition 2.4. Additionally the
measurability of ψ follows by the measurability of both σ and q , and the statement
is proved. �

Remark 3.2. The crucial aspect in the previous proof is the existence of a measur-
able fundamental domain of the 0-action on the universal cover Y. On the contrary,
in the case of boundaries the 0-action is not smooth in the sense of [Zimmer 1984,
Definition 2.1.9], thus it cannot admit a measurable fundamental domain. This is
one of the reasons for which proving the existence of boundary maps reveals much
more difficult.

Now we are going to use the measurable equivariant map ψ : Y ×�→ XG to
define the equivariant family of measures we need. Given almost every point x ∈�,
we can define the slice associated to the point x as the map

ψx : Y → XG, ψx(a) := ψ(a, x).

Since� is a standard Borel space, by [Fisher, Morris, and Whyte 2004, Lemma 2.6]
it follows that the map ψx is measurable for almost every x ∈�. Additionally the
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equivariance of the map ψ implies the following relation on the slices:

ψγ.x(γ · )= σ(γ, x)ψx( · )

for every γ ∈ 0 and almost every x ∈�. If now {νb}b∈XG is the Patterson–Sullivan
family defined in Section 2B, by fixing a number s > h(Y ), we can define

(7) µs
a,x := ((ψx)∗(µ

s
a)) ∗ {νb}b∈XG ,

where a ∈ Y, x ∈� and µs
a is the measure defined in (3). In a similar way for the

convolution appearing in Section 2C, the convolution of (7) is defined as follows:

µs
a,x(U ) :=

∫
XG

νb(U )d((ψx)∗(µ
s
a))(b)=

∫
Y
νψx (z)(U )dµ

s
a(z)

for every measurable subset U ⊆ B(G).
We are going now to prove that the family {µs

a,x}a∈Y,x∈� is equivariant with
respect to the σ -action.

Lemma 3.3. Let 0 = π1(N ) be the fundamental group of a closed n-dimensional
Riemannian manifold N and let Y be its universal cover. Fix (�,µ�) a standard
Borel probability 0-space. Suppose σ : 0×�→ G is a measurable cocycle with
measurable equivariant map ψ : Y ×�→ XG which is σ -equivariant. Then the
family of measures {µs

a,x}a∈Y,x∈� defined by (7) is supported on the Furstenberg
boundary B(G) and it is σ -equivariant, that is,

µs
γ.a,γ .x = σ(γ, x)∗(µs

a,x)

for every γ ∈ 0 and almost every a ∈ Y and x ∈�.

Proof. Since µs
a,x is defined via the convolution with the Patterson–Sullivan family

{νb}b∈XG and each of these measures is supported on the Furstenberg–Poisson
boundary B(G), the same holds for µs

a,x .
We now prove that the family is equivariant. Consider a measurable subset

U ⊆ B(G). Then for every γ ∈ 0 and almost every a ∈ Y and x ∈� we have

µs
γ.a,γ .x(U )=

∫
XG

νψγ.x (b)(U ) dµs
γ.a(b)

=

∫
XG

νψγ.x (b)(U ) d((γ∗)(µs
a))(b)

=

∫
XG

νψγ.x (γ b)(U ) dµs
x(b)

=

∫
XG

νσ(γ,x)ψx (b)(U ) dµs
x(b)

=

∫
XG

(σ (γ, x)∗)(νψx (b))(U ) dµs
x(b)= (σ (γ, x)∗)(µs

a,x)(U ),



EQUIVARIANT MAPS FOR MEASURABLE COCYCLES 517

where to move from the first line to the second one we use the equivariance of the
family {µs

a}a∈Y , to pass from the second line to the third one we use the direct image
theorem, to move from the third line to the fourth one we apply the σ -equivariance
of ψ and finally we use again the equivariance of the Patterson–Sullivan family.
The statement now follows. �

Thanks to the previous lemma we can now prove the existence of natural maps.

Proof of Theorem 1.1. Since by assumption we have a measurable map

ψ : Y ×�→ XG

which is σ -equivariant, we can define the family of measures {µs
a,x}a∈Y,x∈� given

by (7).
For every s > h(Y ), we can define the map

F s
: Y ×�→ XG,

F s(a, x) := barB(µs
a,x)= barB

(( ∫
Y

e−sdY (a,z)−h(XG)βo(ψ(z,x),ξ) dµ(z)
)

dνo(ξ)
)
.

Clearly F s is a well-defined map since the support of the measure µs
a,x is the

Furstenberg–Poisson boundary because we define it using the convolution with the
Patterson–Sullivan family {νb}b∈XG . As a consequence of Lemma 3.3 we know that
the family {µs

a,x}a∈Y,x∈� is σ -equivariant. The equivariance property implies that

F s(γ.a, γ .x)= barB(µs
γ.a,γ .x)

= barB(σ (γ, x)∗(µs
a,x))

= σ(γ, x) barB(µs
a,x)= σ(γ, x)F s(a, x)

for every γ ∈ 0 and almost every a ∈ Y and x ∈ �. This implies the equivari-
ance of F s. Now for almost every x ∈ � we define the slice associated to the
point x as F s

x : Y → XG, F s
x (a) := F s(a, x). Since � is a standard Borel space,

by [Fisher, Morris, and Whyte 2004, Lemma 2.6] it follows that the function
F̂ s
: �→ Meas(Y,XG) is measurable, and hence F s

x is measurable for almost
every x ∈�.

We are going to prove that for almost every x ∈� the map F s
x has actually more

regularity. Recall that the implicit equation (2) is satisfied by the barycenter; in this
particular context, it becomes

(8)
∫

B(G)
dβo|(F s

x (a),ξ)( · ) dµs
a,x(ξ)= 0.

Following either Besson, Courtois and Gallot [1995; 1996; 1998] or Connell and
Farb [2003a; 2003b] we have that the implicit equation above implies that the
map F s

x is actually differentiable for almost every x ∈�.
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The last thing we want to prove is the uniform bound on the Jacobian of F s
x . We

are going to follow the line of the proof of [Connell and Farb 2003a, Theorem A].
To do this we need to differentiate (8) again. In this way, for almost every x ∈�
and every a ∈ Y we obtain

(9)
∫

B(G)
∇ dβo|(F s

x (a),ξ)(Da F s
x (u), v) dµs

a,x(ξ)

= s
∫

Y

∫
B(G)

dβo|(F s
x (a),ξ)(v) · 〈grada dY (a, z), u〉 dνψx (z)(ξ) dµs

a(z),

where u ∈ TaY, v ∈ TF s
x (a) XG and ψx : Y → XG is the slice of ψ associated to

x ∈�. Here ∇ is the Levi–Civita connection associated to the standard Riemannian
metric on XG and grada is the Riemannian gradient computed at the point a ∈ Y.
If we now consider the determinant of (9) we get

(10) Jaca F s
x

= sn
det
(∫

Y

∫
B(G)

dβo|(F s
x (a),ξ)( ·)·〈grada dY (a, z), · 〉dνψx (z)(ξ)dµ

s
a(z)

)
det
(∫

B(G)
∇ dβo|(F s

x (a),ξ)( · , ·)dµ
s
a,x(ξ)

) ,

where on both the nominator and the denominator we considered the determinant of
the bilinear forms which appear in (9). By applying the Cauchy–Schwarz inequality
with respect to the numerator of the right-hand side of (10) we get

(11) Jaca F s
x ≤ sn det

(∫
B(G)

(
dβo|(F s

x (a),ξ)( · )
)2 dµs

a,x(ξ)
) 1

2

×

det
(∫

Y
〈grada dY (a, z), · 〉2 dµs

a(z)
) 1

2

det
(∫

B(G)
∇ dβo|(F s

x (a),ξ)( · , · ) dµs
a,x(ξ)

)
Since the trace satisfies tr〈grada dY (a, z), · 〉2 = 1 outside a measure zero set,

we have

det
(∫

Y
〈grada dY (a, z), · 〉2 dµs

a(z)
) 1

2
≤

(
1
√

n

)n

,

Inequality (11) boils down to

(12) Jaca F s
x ≤

(
s
√

n

)n det
(∫

B(G)

(
dβo|(F s

x (a),ξ)( · )
)2 dµs

a,x(ξ)
) 1

2

det
(∫

B(G)
∇ dβo|(F s

x (a),ξ)( · , · ) dµs
a,x(ξ)

) .
Following the same computation of [Connell and Farb 2003a, Section 4.2] one

can prove that without loss of generality it is possible to assume G irreducible and
then the desired estimate follows now by [Connell and Farb 2003b], as desired. �
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Remark 3.4. It is worth noticing that for constructing the σ -equivariant family
{µs

a,x}a∈Y,x∈� and hence for defining the map F s
: Y ×�→ XG we exploited the

existence of a measurable map ψ : Y ×�→ XG and not of a boundary map as in
[Savini 2019].

So far we have shown that, given a measurable cocycle σ : 0×�→ G which
admits a measurable σ -equivariant map ψ : Y ×�→XG , for every s > h(Y ), there
exists a map

F s
: Y ×�→ XG

which is σ -equivariant and its slices are differentiable. It is quite natural to ask
what can happen if σ is actually a measurable cocycle induced by a representation
ρ : 0→ G. More precisely one could ask which relation exists between the natural
map defined in Theorem 1.1 and the natural map defined by Connell and Farb
[2003a]. This is exactly the content of the following:

Proposition 3.5. Let 0 = π1(N ) be the fundamental group of a closed Riemannian
manifold N whose universal cover is Y. Consider ρ : 0→ G a representation. Let
ψ : Y → XG be a measurable ρ-equivariant map. Denote by F s

: Y → XG and
by σρ : 0×�→ XG the natural map and the measurable cocycle associated to ρ,
respectively. Then for every s > h(Y ) the natural map associated to σρ is given by

F̃ s
: Y ×�→ XG, F̃ s(a, x) := F s(a).

Proof. Starting from the map ψ : Y → XG we can define the measurable map

ψ̃ : Y ×�→ XG, ψ̃(a, x) := ψ(a),

which is clearly σρ-equivariant, since ψ is ρ-equivariant. In particular for every
x ∈� we have the equality ψx = ψ . By applying the definition which appears in
the proof of Theorem 1.1 we have that

F̃ s(a, x)= barB
(
((ψx)∗(µ

s
a)) ∗ {νb}b∈XG

)
= barB

(
((ψ)∗(µ

s
a)) ∗ {νb}b∈XG

)
= F s(a),

and the statement follows. �

The proposition above can be compared with [Savini 2019, Proposition 3.2],
which should be interpreted as analogous statement for rank-one Lie groups.
We conclude the section by showing how the natural map F s change along the
G-cohomology class of a fixed measurable cocycle (compare with [Savini 2019,
Proposition 3.3]).
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Proposition 3.6. Let 0 = π1(N ) be the fundamental group of a closed Riemannian
manifold N whose universal cover is Y. Let σ :0×�→G be a measurable cocycle
with measurable σ -equivariant map ψ : Y ×�→ XG . Then, given a measurable
map f :�→ G, the natural map associated to the cocycle f.σ is given by

f.F s
: Y ×�→ XG, ( f.F s)(a, x)= f (x)−1 F s(a, x).

Proof. If ψ : Y ×�→ XG is a measurable σ -equivariant map, then the map

f.ψ : Y ×�→ XG, ( f.ψ)(a, x) := f (x)−1ψ(a, x),

defined for almost every a ∈Y and x ∈�, is clearly measurable and f.σ -equivariant.
Using the definition of natural map we have

( f.F s)(a, x)= barB((( f.ψx)∗(µ
s
a)) ∗ {νb}b∈XG )

= f (x)−1 barB(((ψx)∗(µ
s
a)) ∗ {νb}b∈XG )= f (x)−1 F s(a, x),

where we used the G-equivariance of the barycenter (see Section 2C) to pass from
the first line to the second one. Hence the claim follows. �

4. Volume of equivariant maps

Let G be a semisimple Lie group of noncompact factor and denote by XG the
Riemannian symmetric space associated to it. Suppose dim(XG)= n. Consider a
closed n-dimensional complete Riemannian manifold N with fundamental group
0=π1(N ) and universal cover Y. Fix (�,µ�) a standard Borel probability 0-space.
Given a measurable cocycle σ :0×�→G, in this section we are going to deal with
a measurable σ -equivariant map 8 : Y ×�→ XG . Under suitable hypothesis on
such a map, we are going to define the notion of volume associated it. To properly
define this notion we will need to assume a uniform bound on the Jacobian of the
slices. This will allow to consider the pullback of the volume form on XG and to
integrate it first along the probability space � and then on the manifold N. The
volume of equivariant map will enable us to state a degree theorem for equivariant
maps similar to the one given by [Savini 2019, Proposition 1.3].

Let8 :Y×�→XG be a measurable σ -equivariant map. For almost every x ∈�
we define the slice associated to x , 8x : Y → XG and we are going to assume that
these maps are smooth for almost every x ∈�. Hence it makes sense to speak about
the Jacobian Jaca Fx for every a ∈ XG . We are going to say that 8 is essentially
bounded, or it has essentially bounded slices, if there exists C > 0 such that

Jaca 8x < C

for every a ∈ XG and almost every x ∈ �. Assume now that 8 is essentially
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bounded. If we denote by ωG and ωY the Riemannian volume forms on XG and Y,
respectively, then, imitating [Savini 2019], we can consider

ωx :=8
∗

xωG = Jaca8x ·ωY

for almost every x ∈ �. Since the Jacobian is uniformly bounded and � is a
probability space, we can consider the integral

ω̂8 :=
∫
�
ωx dµ�(x).

More precisely, given a n-tuple {u1, . . . , un} of vectors in TaY, we have

ω̂8(u1, . . . , un) :=
∫
�
ωx(u1, . . . , un)dµ�(x)

=

∫
�
ωG(Da8x(u1), . . . , Da8x(un))dµ�(x).

The same strategy exposed in [Savini 2019, Section 4] shows that the form ω̂8

is a smooth 0-invariant differential form on Y and hence it induces a differential
form ω8 ∈�

n(N ). This allows us to give the following:

Definition 4.1. Let 0 be the fundamental group of a closed n-dimensional Rie-
mannian manifold N whose universal cover is Y. Fix a standard Borel probability
0-space (�,µ�). If we have σ :0×�→G a measurable cocycle, we denote the set

D(σ ) :=
{
8 : Y ×�→ XG |8 essentially bounded σ -equivariant map

with differentiable slices
}

Given an element 8 ∈ D(σ ) we define the volume of the map 8 as

Vol(8) :=
∫

N
ω8 =

∫
N

∫
�
ωx dµ�(x).

Remark 4.2. In a similar way for what happens in [Savini 2019] for rank-one
Lie groups, if a measurable cocycle σ : 0 ×�→ G admits a measurable map
ψ : Y ×�→ XG which is σ -equivariant, then the set D(σ ) is not empty. Indeed,
for s > h(Y ), the map F s

: Y ×�→ XG has differentiable slices by Theorem 1.1.
Additionally, by the same statement, we know that there exists a uniform C > 0
such that

Jaca F s
x ≤ C

( s
h(XG)

)n

for every a ∈Y and almost every x ∈�. This means exactly that the map F s is essen-
tially bounded and hence F s

∈D(σ ). Moreover, the bound on the Jacobian implies

(13) Vol(F s)≤ C
( s

h(XG)

)n
Vol(N ).
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Remark 4.3. In the particular case when 0 is a lattice in G and the cocycle is
cohomologous to a representation ρ : 0→ G, the estimate (13) can be improved.
Indeed, in that case, by Proposition 3.5 the volume of F s boils down to the volume
of the representation discussed in [Kim and Kim 2014] and for that volume we have

Vol(F s)= Vol(ρ)≤ Vol(0\XG).

By [Kim and Kim 2014, Theorem 1.2] we know that the equality is attained if and
only if the representation is discrete and faithful. As a consequence we get that

Vol(F s)= Vol(0\XG)

for the natural map F s associated to a Zariski dense cocycle σ : 0 ×�→ XG

(recall that such a cocycle is cohomologous to a discrete and faithful representation
by the Zimmer superrigidity theorem [1980]).

We want to conclude the section by showing a suitable version of mapping degree
theorem for measurable equivariant maps associated to cocycles. In order to do this
we are going to follow both [Moraschini and Savini 2020, Section 6] and [Savini
2019, Section 5] to introduce the notion of pullback of a measurable cocycle along
a continuous map. Let N ,M be a closed n-dimensional Riemannian manifolds with
fundamental groups 0=π1(N ),3=π1(M) and universal covers Y, X, respectively.
Let f : N → M be a smooth function with nonvanishing degree. Suppose that the
Jacobian of f is uniformly bounded. For instance this is the case when3 is a torsion-
free uniform lattice in the isometry group of a nonpositively curved symmetric
space by the existence of natural maps. We denote by π1( f ) : 0→3 the induced
map on the fundamental groups. Given a measurable cocycle σ : 3×�→ G,
where� is the usual standard Borel probability3-space, we can define the pullback
cocycle as follows:

f ∗σ : 0×�→ G, f ∗σ(γ, x) := (π1( f )(γ ), x),

where the structure of 0-space on � is induced by π1( f ). As proved in [Moraschini
and Savini 2020, Lemma 6.1] the previous cocycle is well-defined.

Let f̃ : Y → X the lift of the map f to the universal covers. The existence of
such a map allows to consider the pullback of measurable σ -equivariant map with
respect to the continuous map f . More precisely, given an element 8 ∈ D(σ ) we
can define the map

f ∗8 : Y ×�→ XG, f ∗8(a, x) :=8( f̃ (a), x)

for every a ∈ Y and almost every x ∈�. Notice that f ∗8 ∈ D( f ∗σ) by the bound-
edness assumption on the Jacobian of f , and hence it has a well-defined volume.

Having introduced all the notation we need, we are ready to prove the main
proposition.
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Proof of Proposition 1.2. The proof follows the line of [Savini 2019, Proposition 1.3].
Let ωN and ωM the volume form associated to the Riemannian structure on N
and M, respectively. By changing suitably the orientation of either N or M, we can
suppose without loss of generality that the degree deg( f ) is positive.

By definition of volume of equivariant maps, we have

Vol( f ∗8)=
∫

N

∫
�
( f ∗8)∗xωG dµ�(x)=

∫
N

(∫
�

Jaca( f ∗8x) dµ�(x)
)
ωN

=

∫
N

Jaca f
(∫

�
Jac f̃ (a)8x dµ�(x)

)
ωN ,

where we used the equivariance of the map f̃ : Y → X to move from the first line
to the second one. If we now apply the coarea formula we obtain∫

N
Jaca f

(∫
�

Jac f̃ (a)8x dµ�(x)
)
ωM =

∫
M
N (b)

(∫
�

Jacb 8x dµ�(x)
)
ωM

≥ deg( f ) ·
∫

M

(∫
�

Jacb 8x dµ�(x)
)
ωM

= deg( f ) ·Vol(8),

where we denoted by N (b) the cardinality of the set

N (b)= card(( f̃ )−1(b)).

The statement now follows. �
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