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Abstract
Access to affordable, reliable, and modern energy remains a critical goal under the Agenda 2030 for
Sustainable Development, especially in remote areas of developing countries. Based on traditional
engineering approaches, many energy solution planning tools have been developed to identify the
optimal solution in these areas to assess the competition across different technological options.
Nevertheless, these approaches, based on an economic optimum, do not necessarily grant
long-term sustainability of the solution in specific local contexts, since they are not able to capture
the social implications within the Energy-Development nexus. Moreover, also in light of the 2030
Agenda, scientific and grey literature on energy access highlights how energy solutions planning
methodologies developed in the last decades need to be complemented by a more comprehensive
view, able to integrate evidence from various disciplines, especially engineering and social sciences.
Based on the above considerations, this paper introduces a novel framework under the name of
CESP, where three social sciences-based phases complement three engineering phases, each one
characterized by specific tools, to offer an informed decision framework for the local planner.
CESP encompasses a set of techno-economic and socio-technical actions to prevent potential
failure as evidenced by a counterfactual analysis used to identify the reasons behind past project
failures. The CESP framework presents a sequential and iterative structure that underlines the
cyclic perspective of a holistic decision process where social sciences feed the engineering analysis
and vice versa. Finally, CESP emerges as a practical and applicable framework for supporting
energy access planning in critical areas.

List of Abbreviations

ADB Asian Development Bank
BM Business model
CESP Comprehensive Energy Solution

Planning
CA Capability Approach
DAC Development Assistance Committee
DCs Developing Countries
DG Distributed generation
ESMAP Energy Sector Management Assistance

Program
GHG Greenhouse gases
GTF Global Tracking Framework
LCOE Levelised cost of electricity

MTF Multi-tier Framework
NPC Net present cost
OECD Organization for Economic

Cooperation and Development
PCM Project Cycle Management
SHS Solar Home System
SSA Sub-saharan Africa
WB World Bank

1. Introduction

In the 2030 Agenda for Sustainable Development,
Goal 7 aims to ‘ensure access to affordable, reliable,
sustainable and modern energy for all’ by 2030 [1].
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However, according to the International Energy
Agency (IEA)’s World Energy Outlook 2022 [2], 770
million people worldwide still live without access to
electricity, and more than 2.5 billion lack access to
clean cooking. The figures suggest that energy poverty
will persist beyond 2030 [3]. The lowest growth rates
for energy access are registered in SSA, where almost
500million and 1 billion people still lack both electri-
city and clean cooking services [4]. Lack of access to
energy hinders the transition towards productive uses
of energy and the local development of modern soci-
eties in which economic development is sustained by
energy services [5]. Energy access is not solely about
the availability of energy resources; instead, it involves
providing adequate energy services with attributes
such as quality, reliability, and affordability [6].

Technologies for granting and upscaling access
to energy constitute already a mature market [7,
8], with solutions being promoted and deployed
by governments, private players, and international
organizations [9]. Several energy solution planning
approaches have been developed for the uptake
and deployment of these technologies to support
the least-cost optimal choice based on traditional
engineering-oriented methodologies. Nevertheless,
these approaches have been criticized for not neces-
sarily leading to long-term sustainability in the spe-
cific local context [10, 11] due to their inability to
capture the socio-economic causalities of the energy-
development nexus [12] beyond the technical and
economic dimensions [13]. Recent literature dis-
cusses how the just energy transition planning in
DCs needs to account for social nuances [14], spacing
from community consultation and involvement [13]
to social acceptance [15], and behavioral dynamics
[16, 17].

Both in the scientific and grey literature, as well
as deriving from field experience, many scholars
and practitioners have advocated for a new standard
for energy access planning, encompassing a robust
connection with social aspects and implications.
This standard needs to account for the most recent
advancements in affordable and sustainable techno-
logical solutions, with a neutral approach that evalu-
ates the competition across different solutions based
on their final impact on the economic, social, and
environmental dimensions of the specific community
[18]. Indeed, these three dimensions are strictly inter-
connected when the sustainability of off-grid energy
solutions is claimed [19]. Integrated approaches
between social and natural sciencesmust consider the
relation between human and natural environments
[20], supporting the project from conceptualization
to planning, implementation, and impact evaluation.

Based on the above considerations, the
paper introduces a structured novel framework
named Comprehensive Energy Solution Planning
(CESP). It complements a set of traditional

engineering-oriented actions (representing the
current standard for energy solution planning) with
social sciences-based actions, which allow to embed
holistic aspects in the project planning. In line with
the literature, CESP presents an iterative structure
that underlines the cyclic perspective of the two dis-
ciplines: the social analysis feeds the engineering ana-
lysis, which, as a feedback loop, provides back to the
former a set of quantitative information.

The remainder of the work is structured as fol-
lows. Section 2 outlines the methodology, explaining
the rationale behind the combined research method
used in this study. In section 3, the results of the
interdisciplinary literature review are shown. The
state-of-the-art energy solution planning framework
is presented, summarizing findings from techno-
economic literature and leading to some techno-
economic actions. Then, it shows the results of the
counterfactual analysis that lead to key socio-technical
actions, identifying and coding common reasons for
the failure of energy access projects. Section 4 intro-
duces CESP as the outcome of the work, organizing
the techno-economic and socio-technical actions into
phases, sorting them in a planning logic, and charac-
terizing the actions performed in each phase through
an interdisciplinary and practice-oriented literature
review. Finally, section 5 contains the conclusions,
discussing possible improvements to the proposed
framework and recognizing the limitations of the
work.

2. Methodology

The methodology adopted in this work, shown in
figure 1, builds upon an interdisciplinary literature
review, that is used to feed a combined approach
between an engineering-based methodology, the
energy solution planning, and a social sciences-based
approach, the counterfactual analysis.

In the context of our study, this term refers
to ‘a comparison between what actually happened
and what would have happened in the absence of
the intervention’ (e.g. Kremer et al [21], WB [22]).
Similar approaches can be found in energy research
literature. For instance, Sovacool et al [23] selec-
ted and studied ten case studies of energy access
projects in the Asia–Pacific, analyzing the determin-
ant factors for success. Ikejemba et al [24, 25] spe-
cifically focused on the failure of renewable energy
projects in SSA and provided recommendations for
future projects. An empirical quantitative analysis
of the factors determining the success of mini-grid
projects has also been provided in 2020 by Duran
and Sahinyazan [26], who collected information in
an open-access database. More recently, Perros et al
[27] worked to push forward the notion of product-
ive failure in energy and development research, both
through a literature review oriented to the Global
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Figure 1.Workflow of the methodology.

South and informal interviews. Building upon such
an approach, we enclose the consideration of ‘fail-
ure as salient as success’ as defined by Turnheim &
Sovacool [28] and Sovacool [29].

More in detail, the interdisciplinary literat-
ure review is performed on three different sets of
literature:

• The first set analyzed, feeding energy solution
planning, concerns techno-economic background
knowledge that this paper only aims to distill,
basing on previous meta-analyses. These are col-
lected from existing standards proposed by inter-
national organizations and in the scientific literat-
ure. The state-of-art energy solution planning res-
ults from this set of literature, providing some
must-have techno-economic actions derived from
the engineering practice.

• The second set of literature, feeding the counterfac-
tual analysis, derives from two sources;
∗ scientific literature of counterfactual cases collec-
ted through a systematic and replicable review;

∗ case studies of failure taken from grey literat-
ure of on-field experiences of rural electrification
programs.

• The counterfactual analysis is used to understand
the reasons for the failure in energy projects by
identifying some must-have actions to prevent the
failure of energy access interventions in DCs. The
analysis is built on counterfactual cases found in
scientific and grey literature through a systematic
and replicable literature review. Based on the miss-
ing actions derived, a list of social-oriented actions
originates from the paper, representing its fore-
ground knowledge.

Finally, the CESP originates as an evidence-based
output, aggregating the must-have actions derived

from the energy solution planning and counterfactual
analysismethodologies in phases. The researchmeth-
odology adopted provides inputs to CESP as a
new energy planning framework aimed to support
comprehensive strategies for energy access planning
(i.e. able to complement the traditional engineering-
based energy solutions planning tools with relevant
inputs from social sciences’ approaches).

3. Interdisciplinary literature review and
results

3.1. Energy solution planning
This section consolidates some techno-economic
elements that form the state-of-art energy solu-
tion planning approach. The reviewed technical-
orientedmethodologies arewidely acknowledged and
recognized as best practices in energy engineering.
Therefore, the derived actions are considered back-
ground knowledge for the scope of this work.

Existing standards for the management and plan-
ning of energy access projects can be found in recent
grey and scientific literature. International organ-
izations majorly contributed to the definition of
energy access frameworks. For instance, in 2008 a
report by (the ESMAP of the WB) evidenced the
lack of an approach for fostering productive uses of
energy within electrification projects and advanced
a possible systematic and pragmatic solution [11].
Moreover, the ADB published in 2015 a sustainable
energy access planning framework [30]. The elements
included in the framework are: energy poverty assess-
ment, demand assessment, resource assessment, cost-
benefit assessment, sustainability assessment, and
affordability assessment.

From the scientific literature, Bengo and Arena
[31] provided cases of successful integration of the
social dimension, within different BMs for providing
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energy access. Electricity supply per-se is, indeed,
not sufficient for generating effective social impact
local business, requiring the adoption of holistic
approaches beyond the technical design [32]. A
needs-driven and participative planning, as claimed
by Herington et al [13], is essential to improve the
social sustainability of a specific intervention: com-
munity needs to be engaged [33] and decision-
making power need to be spread across multiple
groups (polycentricity, as reported by Sovacool [29]).
This approach helps both to understand the needs of
the beneficiaries and to foster recognition between
stakeholders [34]. Similar considerations have been
made by Akyniele et al [35], who introduced a sus-
tainable planning framework for mini grid develop-
ment inWest Africa, suggesting qualitativemust-have
actions under multiple dimensions.

The pioneering work by Kumar et al [10] pro-
posed a first standard decision support tool for
the planning and formulation of off-grid electrific-
ation projects, introducing a three-stage procedure:
project development/planning and pre-installation;
detailed designing, installation and commissioning;
and post-commissioning, including capacity build-
ing and monitoring and evaluation. From a system-
atic literature review, in 2012 Schillebeeckx et al [36]
proposed a user-centric toolkit for solution and BM
design. More recently, Bacchetti [37] presented a
design-based approach applying sustainable product-
service systems to the commercialization of distrib-
uted renewable energy solutions by small–medium
enterprises in low-income contexts, providing tools
and actions across the different dimensions of sus-
tainability. Gambino et al [38] developed and tested a
methodology for energy need assessment to provide
reliable input data for mini-grid sizing. The method-
ology mentions site selection, energy resource assess-
ment, energy need assessment, BM design, demand
forecast, and sizing as crucial actions for the design
of an off-grid mini-grid. A similar on-field contribu-
tion comes from Barbieri [39], who applied a hol-
istic framework for the deployment of the SET4Food
(sustainable energy technologies for food security)
project for energy access in humanitarian settings.
More recently, Matthey-Junod et al [18] expanded
the notion of sustainable energy interventions in dis-
placement settings, proposing an integrated frame-
work for their planning also in terms of BM and tariff
design.

As main result, deriving from the above literat-
ure and reports, the state-of-the-art of energy access
project planning is recognized to encompass a defined
set of actions, confirmed in the engineering practice.
These are:

• Resource assessment: this action involves a thor-
ough assessment of the local energy resources avail-
able in the project area. This evaluation enables
project planners to understand the potential energy

sources at their disposal, such as solar, wind, hydro,
or biomass.

• Demand assessment: an evaluation of the cur-
rent energy demand in the community is conduc-
ted while considering its future evolution through
estimation or modeling techniques.

• Technical solution identification: based on the out-
comes of the resource and demand assessment, this
action identifies the most suitable technical solu-
tion (e.g.: solar-hybrid mini-grid, solar-home sys-
tem, etc.),

• Technical sizing: this action sizes the identified tech-
nical solution, aiming at its cost-optimality.

• Business model identification: once the technical
solution is set, a suitable BM to ensure the finan-
cial sustainability of the project is identified.

• Business model formulation: within this action, the
financial strategy for energy service provision is
established and the tariff is set.

3.2. Counterfactual analysis
This section aims to distill from scientific literature
the common reasons that caused energy interven-
tions to fail. The reasons are linked to some must-
have actions that were not included in the traditional
energy solution planning approach. The literature will
be here systematically analyzed, providing the ori-
ginal contribution of the work.

A first set of scientific papers is systematically
extracted from the Scopus database with the follow-
ing research query in the TITLE-ABS-KEY fields:

– (‘case study’ OR ‘project’ OR ‘programme’ OR
‘country’ OR ‘local case’): limits the research to
real-life projects or context-specific cases of study

– W/20 (‘failure’ OR ‘failed’ OR ‘failures’ OR ‘inac-
curacy’ OR ‘error’ OR ‘errors’ OR ‘follow-up’ OR
‘lesson learnt’ OR ‘learning from’): this piece of
string allows to search for cases of failure linked
with the specific context

– AND (‘energy-use’ OR ‘mini-grid’ OR ‘mini grid’
OR ‘micro-grid’ OR ‘micro grid’ OR ‘electrifica-
tion’ OR ‘hybrid mini grid’ OR ‘hybrid mini-grid’
OR ‘small scale renewable energy system’ OR ‘solar
mini-grid’ OR ‘local energy system’ OR ‘off-grid
energy system’ OR ‘off-grid system’ OR ‘household
energy transition’ OR ‘local energy transition’):
this more generic piece of string limits the research
tomeaningful cases of electrification, whether with
generic off-grid solutions or mini grids or for the
residential sector perspective.

The screening process was conducted in three steps

i. An initial set of 369 papers was obtained through
the research query. To refine the selection, papers
were considered when meeting the following
criteria: publication in the English language,
publication date between 2000 and 2022, and
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Figure 2. Counterfactual analysis process.

published in journals, books, or conference pro-
ceedings. After applying this initial filter, 299
papers remained.

ii. With a second step, the sample was further
reduced excluding articles concerning topics out
of scope for the present work such as residential
consumption (18 papers), hydrogen (6 papers),
nuclear energy (7 papers), and global decarbon-
ization issues (57 papers). A total of 212 papers
resulted from this second filter.

iii. As a third and final step, a screening was per-
formed on the title and abstract of the papers
in the sample. Papers have been automatically
excluded if they concerned developed countries
(including China), panel or aggregated data ana-
lyzes at national or regional scale and experi-
mental or utility scale energy systems. In this
round, papers regarding technology-specific fail-
ures have also been excluded (e.g. papers regard-
ing sensor or automation failures not due to
external factors). Papers were also excluded from
the analysis if they simply derived generic lessons
learnt from existing literature, with no analysis of
the reasons for failure of specific interventions.
Finally, a total of 25 items remained.

A review of grey literature has complemented the
set of 25 papers from the systematic review. The
grey literature has been sourced directly from the
WB’s Projects & Operations database (two end-of-
project reports [40, 41]) and WB’s Open Knowledge
Repository (WB-OKR, with two book chapters,
namely [42, 43], and one technical report [44]). By
doing this, the scientific backbone of the work bene-
fits from experiences of real rural electrification pro-
grams. The final shortlist of 30 publications has been
studied in detail, following the process in figure 2.

The case studies, summarized as a supplement-
arymaterial to this work, have been processed accord-
ing to the workflow depicted in figure 2. After an in-
depth analysis, the key reasons for failure reported in
each case study are identified; then, the counterfac-
tual is formulated turning the key reasons for failure
into positive key reasons for success; then, coded into
must-have actions. Two examples of the application
of the process follow:

– the case study in Dutt andMacGill [45] claims that
the program of electrification through mini-grids
in Fiji failed for several reasons, among which the

lack of ex-ante consultation of the local energy
needs and aspirations; the counterfactual (pos-
itive) reason for this correspond to the identi-
fication of the local energy needs. This failure
could have been prevented by including: needs
and priorities identification. The action is therefore
coded and listed in the socio-technical actions of
CESP.

– Brooks and Urmee [46] investigated the failure
of a SHS distribution program in the Philippines.
Primary issues included insufficient training for
users and local technicians, resulting in the system
relying on external support and ultimately lead-
ing to its abandonment. The study emphasizes the
importance of addressing local gaps in skills and
capacities when designing energy interventions. An
associated action: local gaps identification and tack-
ling is therefore coded and listed in the socio-
technical actions of CESP.

Table 1 depicts the result of this process on each of the
30 key studies. The first column highlights the must-
have actions that should have been taken into consid-
eration to ensure the success of the intervention.

Overall, the counterfactual analysis, as main res-
ult, suggested a total of four socio-technical actions:

• Regulatory framework assessment: the regulatory
boundaries for the intervention are identified to
understand which technical solutions and BMs can
take place legally in the context.

• Needs and priorities identification: the local energy
needs are identified and prioritized according to a
specified metric or framework.

• Local gaps identification and tackling: the exist-
ing local gaps, in terms of capacity or financial
resources, are identified and tackled by means of
complementary social activities.

• Impact assessment: the impacts produced by the
intervention are monitored and evaluated, under
different dimensions and considering the energy
needs targeted by the project.

It is noteworthy that: (i) the four newly identified
socio-technical actions are directly derived from the
counterfactual analysis, and (ii) the already identified
techno-economic actions are also confirmed to be
relevant in the context of the counterfactual analysis.
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Table 1. Application of the counterfactual analysis on each case selected. Specific missing actions are associated with each case study.

They are marked with if they emerged from the counterfactual analysis, and with 3 if the counterfactual analysis confirmed actions
from the state-of-art energy solution planning.

Action [45] [47] [48] [49] [50] [42] [44] [43] [41] [40] [51] [52] [53] [54] [35]

Regulatory framework assessment
Needs and priorities identification

Local gaps identification and tackling

Impact assessment

Resource assessment 3 3 3

Demand assessment 3 3 3 3 3

Technical solution identification 3 3

Technical sizing 3 3 3 3 3 3 3

Business model identification 3 3 3

Business model formulation 3 3 3 3

Action [55] [56] [57] [58] [59] [46] [60] [61, 62] [63] [64] [65] [66] [67] [68]

Regulatory framework assessment
Needs and priorities identification

Local gaps identification and tackling

Impact assessment

Resource assessment 3 3 3

Demand assessment 3 3 3

Technical solution identification 3 3 3 3 3 3 3

Technical sizing 3 3

Business model identification 3 3 3

Business model formulation 3 3 3

This confirms that successful energy access planning
strategies need to encompass both techno-economic
and socio-technical actions, that are deeply inter-
twined in the practice [18].

4. CESP

In line with a project planning and management
logic and wording used in international standards
such as the Logical Framework Approach [69] or the
decision-making theory [70], the must-have actions
listed in the previous section are sorted in sequen-
tial and iterative phases. The phases are created by
connecting some similar actions and temporally sort-
ing, according to the two dimensions of the ana-
lysis: techno-economic and socio-technical phases, as
depicted in figure 3.

The proposed list of phases is as follows:

(1) Context analysis, analyzing the context of the
action in terms of regulatory framework and
local energy needs;

(2) Resource and Demand Assessment, group-
ing available resource and energy demand
assessments;

(3) Technical solution design, supporting the iden-
tification and the sizing of adequate technical
solutions;

(4) Business model design, aiming to identify and for-
mulate a consistent BM;

(5) Complementary activities: introducing comple-
mentary activities to support the success of the
intervention;

(6) Impact analysis: providing the evaluation of the
impact produced feeding it back to Context
analysis to reevaluate the targeted local energy
needs based on the impact achieved and ensure
the effectiveness of the whole project.

The next sub-sections are used to consolidate each
of the six phases as a part of the CESP, providing state-
of-art tools and strategies to perform each action, tak-
ing references from various disciplines. This narrat-
ive literature review is presented in practical terms for
each phase and action of CESP, to better detail the
actions to be performed.

4.1. CESP1—context analysis
In the initial stage of the CESP, two actions focused
on context analysis need to be performed. The first

6
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Figure 3. Layout of CESP, divided into techno-economic and socio-technical phases.

action aims at assessing the regulatory framework and
local rules, a critical component of project design
[71]. The second action identifies the needs of the
beneficiaries and determines the priorities for the
project to maximize policy [72] and project [73]
outcomes.

4.1.1. Regulatory framework assessment
The lack of understanding of the specific regulat-
ory framework can hinder the successful implement-
ation of any energy access projects in DCs [74].
Typically, there are three types of regulations in
these countries [42]: technical (establishing stand-
ards for grid connections), procedural (authoriz-
ation processes, bidding mechanisms), and eco-
nomic (direct subsidies, cross-subsidies). Economic
regulation’s significance lies in incentivizing last-
mile electrification, enabling communities to afford
connection fees [75], and attracting private sector
investment [44, 45]. Although an all-encompassing
database of electrification regulatory frameworks and
incentives in DCs is lacking, two reports are sug-
gested to the energy planner in this action: 2018
International Renewable Energy Agency (IRENA)’s
report [76] which offers insightful case studies,
and ESMAP’s Regulatory Indicators for Sustainable
Energy (RISE) initiative which evaluates policy and
regulatory support for access to clean cooking, energy
efficiency, and renewable energy [77]. These tools can
provide first indications to the project planner on the
local regulatory framework.

4.1.2. Needs and priorities identification
Energy is not an end in itself but may be considered
as an instrumental right, a necessary yet not sufficient
condition, supporting access to additional services

and enabling development. Therefore, energy needs
must first be understood from this perspective and
then measured and targeted according to a proper
metric, able to go beyond a binary approach to energy
access. For instance, in the last decade, the GTF
[78] has already introduced tiered measurements,
considering attributes of energy access like max-
imum load (kW), energy quantity (kWh), affordabil-
ity, and reliability. However, more recently, Pachauri
and Rao [79] have challenged the MTF approach,
suggesting it overlooks energy service diversity and
practical value, thus confirming the relevance of
measuring relative service gaps rather than achieved
attributes [80].

Going further, a possible normative approach to
unveil the use of energy for human development pur-
poses is the capability approach (CA) [81–83]: this
theory is founded on the functionings (doings and
beings) and capabilities (opportunities for realizing
the functionings) of the individual. CA advocates the
realization of the spaces of freedom (i.e. the capab-
ilities) to engage or not in a certain functioning: pro-
moting capabilities instead of functionings enables an
individual’s freedom and self-determination. In the
context of energy access, CA has been already adopted
by various authors for different scopes [84–87] and
to already underpin a new rationale for energy inter-
ventions, applied for on-field priority assessment by
Wang et al [88].

As previously discussed, given the challenges
faced in rural areas, energy access needs to lever-
age local income generating activities (also known as
productive uses of energy) which can have the win–
win effect to benefit from the energy services while
contributing to pay back its investment (via tariff
payment) [31]. Given the variety of needs that can
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span from domestic uses to productive activities,
different approaches and tools may be developed for
this specific phase, and different theories come to
hand [89]. At any rate, two factors play a crucial role:

– The stakeholder’s analysis which can employ
different tools such as stakeholder matrixes or
power-interest diagrams, as suggested by sectorial
literature [90];

– The problem analysis, which is necessary to high-
light cause-effect relationships to properly identify
and then formulate the main activities of the
intervention. Theorists [91] have observed that
causal representations improve how evidence is
sought andutilizedwhen alternative hypotheses are
evaluated.

Both the above factors are for instance well included
in the Logical Framework approach to project
management [69]

4.2. CESP2—resource and demand assessment
The second phase of CESP delves into technical
data to tailor the intervention to the local con-
text as described in CESP1. The phase comprises
two actions: assessing the local availability of energy
resources and the local energy demand.

4.2.1. Resource assessment
Small scale, off grid system as referred to in [92]
offers the opportunity to better exploit local renew-
able energy. Precise deployment and sizing first neces-
sitate local resource evaluation. Direct assessments,
such as solar irradiation and wind speed measure-
ments, require significant resources. Indirect meth-
ods, like web-based tools, offer reliable data for
solar and wind availability [93, 94]. Tools like the
Global Solar1 and Wind Atlas2 by the WB, photo-
voltaic geographical information system (PVGIS)3

by the European Commission Joint Research Centre
and Renewables.Ninja4 provide information on vari-
ous available renewable energy sources for specific
locations. Notably, Korkovelos et al [95] released a
geographic information system (GIS) layer mapping
small hydropower potential in Africa. The derived
availability of resources, at the desired temporal res-
olution, informs supply strategy and technological
solution sizing.

4.2.2. Demand assessment
The assessment of the current energy usage is a start-
ing point to quantify the local energy demand and
associate it with the need expressed in the previous
phase of the CESP. The on-field assessment entails

1 https://globalsolaratlas.info/map.
2 https://globalwindatlas.info/en.
3 https://re.jrc.ec.europa.eu/pvg_tools/en/.
4 www.renewables.ninja/.

detailed data collection. Visual tools such as Sankey
diagrams can help to depict the assessment, clustering
users by energy carriers and revealing key energy
requirements.

Shifting from current energy needs to estimate
future load demand is crucial to allow long-term pro-
ject’s success. This demand analysis covers diverse
energy services and time resolutions, balancing data
availability and precision. Formulating load curves
aids system modeling [96] and aligns it with the local
need and the resource assessment already completed,
facilitating the upcoming phase of the sizing for the
technical solution.

In general, two families of approaches for estim-
ating current energy demand exist [97], including its
long term evolution [98]:

– Top–down approaches: these set hypothetical
power and energy tiers for user categories, aligning
with frameworks like ESMAP’s MTF [6], being in
this way exposed to the criticalities highlighted in
the previous section. They can also rely on stand-
ard parameters and wealth tiers and are usually
adopted in large-scale applications [99] or expert-
based methods [48]. It is, furthermore, likely that
a successful project pushes new residential users,
additional services for the community, or new pro-
ductive activities to flourish and require additional
energy or appliances [32, 100]. To account for this
phenomenon, top-down methods can investigate
the correlation of improved access with explanat-
ory variables and forecast their evolution over time
[101];

– Bottom–up approaches: these approaches build the
load curve by characterizing the energy behavior
of every single user and summing up the effects at
the community level. Tools like LoadProGen [102]
and RAMP [103] or agent-based approaches [104]
aim to capture households’ habit variability. Such
approaches require extensive input data, obtained
through on-field surveys but at the same time align
with the analysis of needs performed in CESP 1, the
identified needs can in fact be translated into load
demand curves. In order to account for load evol-
ution or bottom–up methods, adopting surveys
and hybridizing with top–down methods to valid-
ate the on-field information collected [105, 106].
Hybrid approaches finally investigate the mech-
anisms of technology diffusion, adopting, among
others, System Dynamics [107].

4.3. CESP3—technical solution design
Upon assessing resource availability and local
demand, the process enters its initial planning phase.
The first action involves identifying suitable technical
solutions, chosen based on local resource availab-
ility and their capacity to meet assessed demand.
Subsequently, the second action focuses on sizing the
identified solution.
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4.3.1. Technical solution identification
As Mandelli et al [7] summarized, off-grid system
(distributed or decentralized) solutions are gaining
interest in DCs, where financial constraints and
incomplete grid extensions persist. Various factors
contribute to their appeal, spanning environmental,
economic, technical, political, and social considera-
tions. The choice of the exploited resource for energy
generation (fuel-based, renewable-based, or hybrid)
can influence reliability and costs [7], while the choice
of the configuration of the system (stand-alone or
minigrid) can have impacts on the outcomes in
terms of development opportunities [108]. Several
tools to support the selection of an adequate tech-
nical solution are already available. These space from
GIS-based tools, which optimize the achievement of
a fixed tier with the economic and spatial character-
istics of a population [99, 109, 110], to multi-criteria
analysis tools [73, 111, 112].

4.3.2. Technical sizing
The sizing of off-grid systems has been performed
for years on expert-based methods. More recently,
even in DCs, a scientifically sound approach towards
optimized solutions is offered by energy system
modeling [113].

The energy system modeling optimization
approach involves numerical methods, referring
to the Operations Research discipline, to determ-
ine the optimal size of electricity supply, dispatch,
and storage components of the system to meet a
given demand. These approaches include linear pro-
gramming (LP), mixed-integer linear programming
(MILP), heuristic, and metaheuristic methods [114].
LP constrained optimization, adopted in tools like
HOMER® [115] and MicrogridsPy [106, 116, 117],
employs linear or integer-linear constraints along
with a linear objective function. This function is the
overall target of the optimization and usually tar-
gets objectives like minimization of NPC or LCOE.
Emergingmodels incorporate non-monetary, such as
GHG emissions or social externalities [118].

Given the limited resources available in the
African continent to be devolved to energy plan-
ning, the high cost of proprietary software can be
a burden or even a limit that prevents them from
being adopted. In this regard open energy modeling
[63] grants free access to modeling tools, enhancing
local ownership andmaximizing possibility for awide
spread of capacity building activities. Energy model-
ing in the continent is experiencing great momentum
in the last decade and has led to large communities of
practice [119] and several African-led publications.

4.4. CESP4—BM design
Following the design of the technical solution, atten-
tion turns to the design of the corresponding BM.
This phase involves understanding viable options in
compliance with the local context (CESP1) and the

technical design (CESP3). The synergy between BM
selection and design, technical solution, and com-
plementary activities ensures the project’s long-term
sustainability.

4.4.1. BM identification
Literature and case studies emphasize the relevance
of a well-structured BM for energy access projects
designed for continuous service provision, scalabil-
ity, and long-term sustainability of the technological
solutions proposed in CESP 4.

Peréz-Arriaga [71] outlines two pivotal BM char-
acteristics: viability (successful functioning) and sus-
tainability (self-sufficiency in the long run) and
underlines the need for an effective regulatory frame-
work to support these traits, enabling private sec-
tor involvement while upholding service quality for
beneficiary communities.

From a practical point of view, Sovacool [29]
compiled a comprehensive list of potential BMs for
energy access projects, offering insights and potential
references for BM selection, reported in table 2.

4.4.2. BM formulation
One of the most adopted tools for BM design is the
BM Canvas [120], adapted for off-grid projects by
the African Development Bank [121]. Some further
adaptations may also be introduced to keep into con-
sideration the peculiar situation of those who are
living at the ‘base of the pyramid’. For instance, the
‘4As Framework’ requiring Availability, Affordability,
Awareness and Acceptance as reported in [92] can be
considered a useful tool to check the main features of
the BM in the local context.

Energy solutions for off-grid electrification may
be funded through different schemes like loans, equit-
ies, grants, and subsidies depending on the techno-
logical choice and the main stakeholders involved
(private like independent power producer, public
or public-private partnership). A thorough view is
provided in [122], where the authors also offer a prac-
tical evidence-based perspective on five potential tar-
iffs structures (uniform, cost-reflective, bid, willing
buyer, willing seller, and hybrid) designed by balan-
cing the needs of governments, developers, and cus-
tomers that may represent an updated guidelines for
energy planner.

4.5. CESP5—complementary activities for long
term sustainability
This phase complements CESP 3 and 4 and aims
at enhancing the long term sustainability of the
project through complementary activities [123]. As
already mentioned, energy access alone does not
guarantee local development, as highlighted by the
PRODUSE initiative [124]. This is also confirmed
by a WB report [125] which suggests four categor-
ies of complementary factors to increase the eco-
nomic impact of electricity access in SSA: Enhancing

9
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Table 2. Summary of viable BMs for rural electrification in DCs.

Business model Description

Technology improvement and market
development

A ‘supply push’ structure where the partnership
develops a renewable energy technology to reduce costs

End-user microfinance A ‘demand pull’ gives loans to energy users so that they
can purchase renewable energy equipment

Project finance Small and medium-scale projects supported with loans
and financial assistance from commercial banks

Cooperative The community owns the renewable energy system
itself

Community mobilization fund Revenues from renewable electricity or energy
production are invested back into local communities

Energy services company (ESCO)
‘fee-for-service’

Private sector enterprises purchase technology and
then charge consumers only for the renewable energy
‘service’ that results

Cross-subsidization Tariffs on one type of electricity are funneled into a
fund to support renewable energy

Hybrid (e.g. end-user microfinance and ESCO
‘fee-for-service’)

Private sector enterprises provide technology and then
charge consumers only for the renewable energy
‘service’ that results

access to markets, facilitating access to microcre-
dit, building usable skills (capacity building), and
improving access to public services. Based on this
report, Tonini et al [123] bring evidence based on a
real case field study and an associated system dynamic
model that confirms that themost impacting comple-
mentary activities should:

• Be identified and operate in relevant sectors for the
local context (connected to CESP1).

• Be managed at local level (exogenous interven-
tion on the contrary seems to be controversial),
for instance by local cooperatives that reinvest the
revenues from electricity fees provides a threefold
advantage linked to CESP2:
∗ Positive market dynamics since it can increase
the local demand’ for goods and services in the
local market which then increases the consump-
tion of energy and therefore the need for supply;

∗ Allow demand side management and therefore a
better operation of the energy supplywith special
attention to the optimization of variable renew-
able energy sources;

∗ Offer a potential realistic implementation for
the CA by aligning individual energy needs
with community requirements and project
boundaries [107].

• Provide productive factors for new businesses and
technology management:
∗ capital at a low interest rate (i.e. microcredits),
connected to CESP4

∗ technical workforce on productive use of elec-
tricity (i.e. via capacity building), connected to
CESP 3

The development of complementary activities with
the three above-mentioned characteristics connects

this phase within the CESP cycle. Moreover, it assures
that long-term sustainability encompasses the eco-
nomic, environmental, and social dimensions.

4.6. CESP6—impact analysis
The final phase of CESP consists in assessing the
expected impact of the energy project. Impact eval-
uation is a systematic and final examination of a
completed project, useful to judge the overall value
of an intervention and supply lessons to improve
future actions. The ability of a project to monitor,
review, and evaluate its impact is envisaged with the
Logical Framework approach via the Result Chain
(Input-Activities-Output-Outcome-Impact) [69]
and it allows stakeholders to account for its suc-
cess or failure. Due to the cyclical nature of CESP,
it feeds back to the context analysis in CESP1 to
improve future program design or to adjust the
current one.

As already anticipated, energy can be seen as an
‘intermediate good’, influencing a range of economic,
social, and environmental outcomes through poten-
tially long causal chains as reported by the ADB [126].
In energy access, White and Raitzer [127] claim that
the majority of impact analysis techniques adopted
in the field tend to assume rather than verify the
causal relationships between inputs and impact, often
self-selecting successful results, only. To investigate
the logic of these relationships, it is important to
identify and formulate a specific framework of refer-
ence, such as the theory of change [128] or the same
Sustainable Development Goals, which are envis-
aged to be transformed into real applicative stand-
ards and not to remain only theoretical approaches,
as suggested by Castor et al [129] and Tenenbaum
et al [42]. For this reason, further investigation and
testing are needed to provide energy access impact
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analysis with scientifically sound tools, such as the
impact evaluation framework proposed in [130] or
the evidence-based set of tools collected in [126].

Among themany challenges to impact evaluation,
three are the most relevant: lack of quality data (or
data at all); counterfactual and attributional effect.
The lack of data [21] and or quality data can be today
mitigated by the large data sets derived from admin-
istrative and commercial sources (i.e.: via metering
system). The attribution gap and the counterfac-
tual applied to energy projects for local development
would require more high quality evidence [131] to be
brought into the analysis, for instance, via empirical
evidence, control trials or randomized control trials.
At any rate, the space of research here is still very wide
and calls for multidisciplinary approaches that can
encompass different disciplines from social sciences
to engineering.

5. Conclusions and future work

This article has proposed an innovative framework
under the name of CESP, where three engineer-
ing phases are complemented by other three social
sciences-based phases. Each phase has been charac-
terized by specific tools to offer an informed decision
framework for the local planner. CESP encompasses
a set of techno-economic and socio-technical actions
aiming at preventing potential failure, based on a
counterfactual analysis used to identify the reasons
behind past project failures.

The CESP framework, presenting a sequential but
iterative structure that underlines the cyclic perspect-
ive of the two disciplines that it integrates, is divided
into six consequential phases and constitutes a novel
output. The original methodology of counterfactual
analysis complements and expands traditional energy
solutions planning methodologies. The CESP frame-
work is arranged in a ready-to-use structure that
emphasizes the importance of a deep context analysis,
complete resource and demand assessment, and thor-
ough design for the technical solution and the associ-
ated BMs. Complementary activities are then imple-
mented to ensure the long-term sustainability of the
project and increase its impact beyond the provision
of energy per se. Each of the six phases is enriched
in the final section with state-of-art tools to perform
themust-have actions, taking references from various
disciplines.

The research gap identified in the introduction,
which called formultidisciplinary andneeds-oriented
standards to support energy access projects, has been
addressed throughout this work. The CESP frame-
work encourages the application and harmoniza-
tion of socio-techno-economic approaches in energy
access planning.

Future research in this field would benefit from
continuous and systematic monitoring and review of
the literature, and additional field case analysis to test

the applicability of the CESP. Moreover, the possibil-
ity of investigating quantitatively the counterfactual
case studies using regression analyzes, checking for
causal correlations between variables (i.e. the pres-
ence or not of a certain action within a certain phase
of CESP) and evidence of failure, would also provide
additional evidence to revise and update the CESP to
improve the success rate for energy access projects.
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