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DYNAMICS-BASED UNCERTAINTY PROPAGATION WITH
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In recent years low-thrust propulsion has become a credible alternative to standard chemical
propulsion for many different applications, ranging from orbital transfers to maintenance of
small satellites in LEO. Despite the extensive effort that has been put into development of
guidance algorithms for low-thrust systems, only few works have considered the implications
that such systems may have on Space Situational Awareness. In fact, the stability of thruster
performance must be factored-in when computing state uncertainties. These quantities are
paramount to characterize conjunction events and ultimately impact operations in terms of
acceptable risks and timeliness of collision avoidance maneuver execution. In light of these
considerations it becomes a pressing issue to accurately quantify state uncertainties under the
effect of low-thrust noise in a timely manner. Hence, it is paramount to select an uncertainty
propagation strategy that can deal with high-frequency thrust variations, thrust interruptions,
and uncertain command execution times. In fact, these effects, coupled with the nonlinear
dynamics and the orbital uncertainties mapping, sway the validity of the standard Gaussian-
ity assumption which is commonly adopted. To face this challenge, this work proposes two
separate methods which combine accurate nonlinear techniques with their computationally
light linearized counterparts. These approaches have been developed in the framework of the
ESA funded ELECTROCAM contract, awarded to the consortium formed by GMV, Politec-
nico di Milano, and Universidad Carlos III de Madrid. The first technique is called Adaptive
Differential Algebraic Gaussian Mixture Model (A-DAGMMo), and it constitutes a DA-
based propagation scheme that automatically determines the number of elements necessary
to capture the behaviour of the uncertainty during propagation. The second proposed method
is the Stochastic Taylor Model (STyMo): an extension of Differential Algebra that provides
an expansion of the covariance inflation term linked to the process noise. The results of the
application of the presented methods to the uncertainty propagation of several test cases on
different orbital regimes is presented in this work.

INTRODUCTION

In recent years low-thrust propulsion has become a credible alternative to standard chemical propulsion
for many different applications, ranging from orbital transfers to day-to-day operations of small satellites
in LEO.1 Indeed, this latter case is gaining a growing interest owed to the advent of mega-constellations
endowed with a miniaturized propulsion system capable of granting control authority to such a class of satel-
lites.2 Despite the extensive effort that has been put into development of guidance algorithms relying on
low-thrust propulsion, only few works have focused on the analysis of collision avoidance for such mis-
sions.3, 4 This task is not only impacted by the standard uncertainty in the orbital dynamics model, but also
by the stability of thruster performance. Actually, this aspect must be factored-in when computing state un-
certainties in order to adequately estimate the collision probability. Besides, the adoption of low-thrust also
affects the time needed for corrective actions due to the reduced control authority that leads to longer thrust-
ing arcs. This in turn impacts the achievable risk reduction or the selection of a suitable threshold in terms
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of accepted collision probability level.5 Moreover, the accuracy of the computed Probability of collision
(PoC) strongly impacts decision making by mitigating collision risk or by avoiding unnecessary Collision
Avoidance Maneuvers (CAM) execution.

In light of these considerations it becomes a pressing issue to accurately quantify state uncertainties under
the effect of low-thrust noise in a timely manner. In particular, the adoption of continuous thrust for long
arcs may strongly affect the propagation of the statistics with respect to a pure ballistic motion. Hence, it
is paramount to select an uncertainty propagation strategy that can deal with the actual performance of the
thrusters, managing high-frequency thrust variations, thrust interruptions, and uncertain command execution
times. In fact, these effects, coupled with the nonlinear dynamics and the orbital uncertainties mapping, sway
the validity of the standard Gaussianity assumption adopted by state-of-the-art methods. In order to address
the most general and accurate case of uncertainty propagation, one can solve the problem that stems from the
Itô stochastic differential equation6

dx(t) = f(x, t)dt+G(t)dβ (1)

where x ∈ Rn is the random state vector, β (t) ∈ Rm is an m-dimensional Brownian motion process with
zero mean and covariance Q(t). The vector function f(x, t) captures the deterministic part of the dynamics,
and G(t) is an n × m matrix characterizing the diffusion. For a given dynamical system that satisfies the
Itô stochastic differential equation, the probability density function time evolution can be described by the
Fokker–Planck partial differential equation (FPE).7 However, solving a FPE in orbital mechanics is a difficult
task, due to its high dimensional state–space and its underlying highly nonlinear dynamics.8 Alternatively, to
retrieve a complete statistical description, one may carry out computationally expensive particle-type studies
such as Monte Carlo (MC) simulation.9 However both methods have a considerable computational cost, ow-
ing to the entire statistical description of a trajectory. To address this issue, many analytical or semi-analytical
techniques for orbital uncertainty propagation have been developed in recent years.10

By assuming Gaussian uncertainties and by further performing a local linearization of the dynamics (Lin-
Cov)11 or a linearization in an “average” sense (CADET),12 linear methods can completely characterize the
propagated distributions. While these formulations are simple and efficient, their accuracy drops off for
highly nonlinear systems, long-duration uncertainty simulations, or large initial uncertainty.
Several nonlinear techniques have been proposed in literature to refine the uncertainty realism. Probabilistic
methods infer statistical properties from the propagation of a deterministically selected (small) number of
samples (e.g., Unscented Transform,13 Cubature methods,14 Polynomial Chaos expansion15). On the other
hand, dynamics-based procedures such as the state transition tensors (STTs)16 were designed for motion
approximation through higher order Taylor series expansion.17 However, this method may require a sig-
nificant computational effort to extract the required partials for high-fidelity dynamic systems. Thanks to
automatic differentiation provided by differential algebra (DA),18 the disadvantages of STTs methods can be
overcome.19 Indeed, DA provides a flexible tool that can be leveraged in many different ways to propagate
uncertainties with lessened computational burden: polynomial evaluations initial distributions (i.e., MC-like),
Isserlis’ formula (i.e., STT-like approach without the computational effort), linear propagation (i.e., LinCov-
like).19 Nonetheless, none of the described strategies can deal with the high-order uncertainty propagation
with low-thrust noise in a timely manner. This is indeed a particularly daunting task as the introduction of
process noise results in a massive (in principle infinite) increase in the number of uncertain variables and the
need to assess their effect along the trajectory with ad-hoc methods.20 Typically, thrust noise is accounted
for a covariance inflation term after propagation. However, this approach disregards any effect of noise on
higher order moments of the statistics, as well as any coupling between uncertainty in the initial state and in
the thrust. In addition, even by assuming perfect propagation of the uncertainty, any nonlinear transformation
warps the Gaussian shape of a distribution; hence, it becomes necessary to provide a different description
of the uncertainty. A possible solution is to describe the final uncertainty with Gaussian mixture models
(GMM).21–23 The key concept behind GMM is to separate a large domain into many smaller subdomains,
represented with Gaussian mixture elements (GMEs), on which the dynamics can be linearized. The weights
combining GMEs can then be determined both statically22 as well as dynamically during propagation.21
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To tackle all of these challenging aspects while providing a computationally efficient approach, this work
proposes two separate methods which combine accurate nonlinear techniques with their computationally light
linearized counterparts. Namely, the envisioned approaches rely on carefully mixing GMM with DA. Indeed,
the bounty of the combination of DA with GMM methods has also been exploited in the past for problems
without low-thrust.24, 25 The particular choice of GMM can also be explained by looking at its adaptability
to PoC computation in long-term encounters23 without requiring additional computational effort. The first
technique is called Adaptive Differential Algebraic Gaussian Mixture Model (A-DAGMMo), and it consti-
tutes a DA-based propagation scheme that describes the uncertainty evolution with a GMM. The peculiarity
of this technique is that a nonlinearity index is computed during the propagation of each GME, effective to
understand whether it is necessary to adaptively split the element to avoid the onset of nonlinearity. Besides
providing automatic partials (which are useful for nonlinearity and split computations), DA also provides the
state transition maps necessary to include the thrust noise during propagation. The second proposed method
is the Stochastic Taylor Model (STyMo): a DA extension that endows the ODE flow expansion of the final
state with an expansion of the embedded covariance inflation linked to the process noise. After propagating
these two polynomial maps the final distribution of states can be retrieved. A GMM can then be fit to this
distribution and the polynomial map of the covariance inflation is evaluated at the location of the GMM’s
means to retrieve the covariance correction term. By combining these two components, the final probability
distribution is obtained as a GMM.

After a brief introduction on the mathematical tools provided by Differential Algebra, the next section will
be dedicated to a thorough description of the developed methods. Subsequently, a following section will be
dedicated to the description of the study cases. Furthermore, this work will present a numerical assessment of
STyMo and A-DAGMMo in terms of both accuracy of the uncertainty propagation as well as on their usage
and effect on PoC computation. To conclude, a final section will be dedicated to the discussion of results and
to propose a way forward.

DYNAMICS-BASED UNCERTAINTY PROPAGATION

This section presents the description of the two dynamics-based UP advanced methods proposed in this
work. Such methods combine the benefits of automatic differentiation native to DA techniques with the
capability to deal with simplified linearized models typical of GMM. Before diving into the specifics of each
method, it is necessary to provide a brief introduction to DA and its benefits.

Expansion of ODE flow with DA

DA brings the treatment of functions and the operations on them to the computer environment in a similar
way as the treatment of real numbers as presented in.18 The implementation of DA in a computer allows
to compute the Taylor coefficients of a function up to a specified order k in a fixed amount of effort, and
it can be used to perform composition of functions, to invert them, to solve nonlinear systems explicitly, to
differentiate, and to integrate.
Given a general set of ODEs described by:

ẋ = f(t,x,u) (2)

The main advantage of DA is that, by setting the initial state as a DA variable and by carrying out all the
evaluations in the DA environment, it is possible to retrieve the arbitrary order expansion of the flow of such
set of ODEs with respect to variations of the initial condition as

[xf ] = xf + T N
xf

(δx0) (3)

After integrating the ODEs, the result of the final step of integration is a constant coefficient of the nominal
propagated state xf plus a N -th order Taylor expansion of the flow expressed in terms of variation of the
initial state δx0 at the final time tf : T k

xf
(δx0). DA techniques were developed for the ESA in the C++ DACE

library by Dinamica Srl.26
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Adaptive Differential Algebraic Gaussian Mixture Model

This approach assumes that a Gaussian distribution remains Gaussian under a linear transformation and that
any regular nonlinear transformation behaves almost linearly if the domain of interest is sufficiently small.
Suppose to have a Gaussian distribution at an initial time t0, owing to a non-linear dynamics propagation the
covariance is inflated and distorted over time. To overcome this issue, the A-DAGMMo method is conceived
to split the original GME into an increasing number of GMMs as the dynamics are forwardly propagated
through a DA based nonlinearity index. The routine is organized in this way:

1. Initialization of the GMM at time instant t0, this case also includes the simple one of a single GME
with weight 1 for the initial distribution, but also allows to propagate GMMs directly.

2. Each GME is added to a list of elements that need to be propagated until tf and the propagation module
starts to propagate each of them.

3. The propagation of mean and covariance is carried out both at first and at second order and at each
step a nonlinearity metric is computed to detect the onset of nonlinearity (i.e., the need to further split
uncertainty).

4. If the propagation threshold is not violated, the element is propagated until the end of the time window.
Otherwise, a univariate splitting library23 is applied to split the element in a set of new GMEs which
are added to the list of elements that still need propagation, and the algorithm goes back to step 2.

As an additional safeguard, the algorithm is endowed with a minimum weight threshold for the covariances
of the GMEs. If a single GME has a weight lower than this threshold it is not split anymore even if it violates
the nonlinearity condition. When the propagation finishes for all GMEs, the final GMM can be assembled.
The following subsections provide additional details on some of the key steps of this method, while a scheme
of A-DAGMMo is reported in Figure 1.
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Figure 1. Schematics of the A-DAGMMo approach.
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Multi-Order Mean and Covariance Propagation By calling t0 the initial propagation time of a given
GME, it is possible to characterize this distribution through an initial mean x0, covariance P0, and weight
w0. If the mean state is initialized as a DA variable and if the numerical integration of the ODEs in Eq. (2)
are carried out in a DA environment, then the ODE flow expansion as in Eq. (3)) at each time instant can
be obtained. For the purpose of this study, the ODE integration is carried out with a 7th order Runge Kutta
numerical scheme with 8th order error control to adapt the step size during propagation. Moreover, the max-
imum order of the polynomial expansion for this method is set to N = 2. Indeed, this number should be
enough to capture the incipient nonlinearity during propagation while not being too computationally demand-
ing. After integration of these equations, a DA polynomial map for the final state will therefore be available
up to second order. By truncating this polynomial expansion to first order the state transition matrix up to a
certain time step tk (i.e., Φ(tk)) is retrieved and the noiseless covariance can be propagated by adopting the
LinCov technique11 as in Eqs. (4 – 6):

T 1
xk
(δx0) = Φ(tk) (4)

x̂k = Φ(tk)x0 (5)

P̂k = Φ(tk)P0Φ
⊤(tk) (6)

with the superscript 1 indicating the truncation order of the polynomial map, whereas the accentˆhas been
used to characterize means and covariances obtained with a linear propagation. On the other hand, the second-
order propagation19 leverages the Isserlis’ formula with maximum order N = 2, and is instead indicated with
the˜accent:

x̃k,i =
∑

p0+p1+···+pn−1≤N

cx̃k,i(p0,p1,...,pn−1)E
{
δxp0

0,0, δx
p1

0,1, . . . , δx
pn−1

0,n−1

}
(7)

P̃k,i,j =
∑

p0+p1+···+pn−1≤2N

cP̃k,i,j(p0,p1,...,pn−1)
E
{
δxp0

0,0, δx
p1

0,1, . . . , δx
pn−1

0,n−1

}
(8)

Where i and j stand for the corresponding components of the arrays for the mean x̃k and the covariance P̃k at
time tk. In these expressions, the coefficients cAk,i,j(p0,p1,...,pn−1) indicate the coefficient of the expansion of
the i, j component of the generic quantity A at time tk corresponding to the ordered combination of variable
exponents for the n dimensional state space [p0, p1, p2, . . . , pn−1].
The two distributions are compared at tk according to the Hellinger Distance to determine the need to split
the current Gaussian distribution:27

H2 = 1−
det
(
P̂k

) 1
4

det
(
P̃k

) 1
4

det
(

P̂k+P̃k

2

) 1
2

exp

−1

8
(x̂k − x̃k)

⊤

(
P̂k + P̃k

2

)−1

(x̂k − x̃k)

 (9)

This quantity expresses the distance between the two distributions and can therefore inform about the onset
of nonlinearity during propagation. Moreover, it has the interesting property of being bounded between 0 and
1, which allows setting nonlinearity thresholds that should hold true for varying test cases.
This metric only accounts for the bulk of the nonlinearity coming from the deterministic part of the dynamics.
Therefore, A-DAGMMo needs to be further adapted to account for the covariance inflation term owed to the
presence of thrust noise. This is done as a one step correction of the covariance when the GME reaches
its final propagation time: this can happen if the nonlinearity threshold is violated as well as if the final
propagation time is reached. Indeed, if H2 is less than a given threshold H2

th there is no need to further
split the GME. In this case, the propagation continues to time step tk+1 and the procedure is repeated until
eventually the final time of the propagation is reached. The final mean and covariance of the GME are then
computed with the second-order expansion of the DA and they are inflated with a term accounting for thrust
noise. The computation of this inflation term from the initial time of the propagation t0 until the final time tf
can be obtained as:12

∆P =

∫ tf

t0

Φ(τ)G(τ)QG⊤(τ)Φ⊤(τ)dτ (10)
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In this equation the term Q is adopted to describe the covariance of the process noise w. Moreover, the
state transition matrix Φ(τ) is retrieved automatically from the DA expansion of the flow. Similarly, G(τ) is
given by the gradient of the dynamics with respect to the input perturbation G(τ) = ∂f/∂w evaluated about
the nominal trajectory. Also in this case the computation comes easy thanks to automatic differentiation. To
conclude, the integration is performed through a simple numerical scheme (trapezoidal integration). The final
covariance for each propagated GME will be therefore given as:

Pf = P̃f +∆P (11)

On the other hand, if during the propagation the Hellinger distance threshold is violated, the propagation of
the GME is stopped, the GME is split in a GMM, and each of the new components is corrected for covariance
inflation from the beginning of their propagation up to the achieved splitting instant. More details on this
approach are provided in the following subsection.

Adaptive Split Procedure This subsection describes the procedure that is carried out for each GME once
the nonlinearity threshold becomes breached during propagation at timestep t∗. Before proceeding any fur-
ther, another check is made in order to limit the number of total splits. In fact, a minimum weight wth is
imposed on the GMM, and should a GME with a weight lower than this threshold violate the nonlinearity
constraint, it would still be propagated without further split. On the contrary, if it is possible to split the
current GME, the direction in which this has to be split is determined thanks to a state-of-the-art algorithm.28

First of all the eigenvectors of the covariance at the beginning of the propagation of the current GME P0 are
determined and here reported with the notation zi0 to indicate the i-th eigenvector of the matrix at initial time.
For each of these eigenvectors, the nonlinearity of the ODE flow is computed as

ϕi =
∥J(zi0)− J(x0)∥

∥J(x0)∥
(12)

J(x) =
∂ [x∗]

∂δx0

∣∣∣∣
x

(13)

The nonlinearity index ϕi simply quantifies the variation of the Jacobian of the ODE flow J from the center of
the initial distribution and it clearly goes to 0 in case of a linear propagation. In particular, the Jacobian J(x)
expresses the variation of the ODE flow at time t∗ for a variation of the initial state of the propagation. This
quantity can be evaluated easily thanks to automatic differentiation available in DA. Once the eigenvector
with the largest index ϕi has been determined, it is used as a split direction d. By knowing the number of
desired splits ns, a univariate splitting library23 is applied in the d direction. The outcome of this sub-routine
is a new set of ns means

[
x0
0, . . . ,x

ns−1
0

]
, covariances

[
P0

0, . . . ,P
ns−1
0

]
, and weights

[
w0

0, . . . , w
ns−1
0

]
at

the initial time of the propagation t0 for the current GME that needed splitting. Thanks to the polynomial
map [x∗] (δx0) it is also possible to propagate each of the newly generated GMEs directly up to t∗ without
having to integrate each one of them numerically. To do so, the map is re-expanded about each new mean
obtained from the split by substituting [x∗] (x

s
0 − x0 + δxs

0) for each s = 0, . . . , ns−1. The newly expanded
maps can be used with Eqs. (7 – 8) to retrieve the propagated means and covariances. Moreover, these new
expansions can also be exploited in Eq. (11) to compute the covariance inflation terms appropriately for each
of the new GMEs going from t0 to t∗. At the end of the split procedure, the new set of GMEs at t∗ is added
to the list of GMEs that need to be propagated and their starting time is set to be t0 for the next propagation.
The total number of GMEs cumulated during the automatic split procedure will grow exponentially with the
number of splits, hence, the computational effort can be limited by bounded by tuning the number of GMEs
for each split and the split threshold.

Stochastic Taylor Model

The second method proposed extends DA to include the possibility of handling process noise in uncertainty
propagation. The key idea of the STyMo approach is to obtain a polynomial expansion of the ODE flow for
the state which is endowed with a linearized correction term for the covariance to account for the thrust noise.
The overall procedure can be summed up as a sequence of steps:
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1. The initial state is set as a DA variable and its ODEs are propagated to retrieve an higher-order ex-
pansion of the flow with respect to the initial state variation. This system of ODEs is coupled with
additional equations accounting for the linearized correction of the covariance. This coupling allows
to retrieve the covariance inflation term as an expansion of the initial condition, therefore it can be
used to re-expand this correction term about any trajectory stemming from an initial condition in the
neighborhood of the initial state.

2. After propagating these two polynomial maps a DA Monte Carlo simulation is performed on the state
map to retrieve the final distribution of states.

3. A GMM is then fit to this point cloud so that a set of means, weights, and covariances can be used to
summarize the final distribution.

4. The initial state that generates each mean of the final GMM is obtained through a polynomial map
inversion of the ODE flow of the state.

5. Then, these initial conditions can be used to evaluate the polynomial map of the covariance inflation.
This term is simply summed to the final covariance of each GME without modifying its weight.

An overall description of the STyMo process is provided in Figure 2 whereas additional details on the
covariance inflation flow expansion and its exploitation are better detailed in the following subsections.

GMM fit
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Figure 2. Schematics of the STyMo approach.

Covariance Inflation Expansion The initial state is hence set as a DA variable and the following set of
equations is propagated from the initial conditions [x0] = x0 + δx0 and ∆P0 = 0:

ẋ = f (t,x,u) (14)

∆̇P = F∆P+∆PF⊤ +GQG⊤ (15)
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Having adopted the notation G and F to characterize the following partial derivatives about the nominal
trajectory given by:

F =
∂f

x
(16)

G =
∂f

u
(17)

Since the nominal trajectory is a polynomial expansion in δx0, through the dependency from F and G also
∆P is retrieved as a polynomial expansion about the initial state. Therefore, at the desired final time of the
propagation two polynomial expansions will be available, one for the state such as in Eq. (3) and one for the
covariance inflation:

[∆Pf ] = ∆Pf + T∆Pf
(δx0) (18)

The reasoning behind this approach is to propagate only the covariance inflation term owed to the presence
of thrust noise in the region neighbouring the nominal trajectory. By adopting a polynomial expansion of
the ODE flow, it becomes possible to re-expand the covariance inflation term about any trajectory sampled
from the state transition map. Eq. (15) can be retrieved according to the following procedure that relies on
propagating covariance with and without process noise:12

Ṗ = FP+PF⊤ +GQG⊤ (19)

Ṗ = FP+PF⊤ (20)

By making the assumptions of local linearization,12 the presence of thrust noise does not influence the nomi-
nal trajectory. As a consequence F and G will be the same for both set of ODEs. This consideration allows
to directly propagate the inflation term owed to the presence of thrust noise by taking their difference while
defining ∆P = P−P. These assumptions imply that the bulk of nonlinearity in the uncertainty propagation
will depend on the unperturbed nonlinear motion and will be captured by the high-order expansion of the
flow of ODEs for the mean. On the other hand, they also entail that the process noise will be account for a
term that can be obtained via local linearization and that does not significantly impact the propagation of the
mean state.

Evaluation of final Distribution The realization of the final state ODE flow expansion allows to exploit
the DA Monte Carlo approach to propagate a large number of samples. These samples are drawn from the
initial distribution and propagated through the polynomial map without having to numerically integrate each
trajectory individually:19, 29

xn
f = xf + Txf

(xn
0 − x0) (21)

with xn
0 and xn

f being the initial and final state of the n-th sample.
This procedure produces a point cloud at tf , which can be fitted with an arbitrary ns number of GME ele-
ments*. Each GME has a specific mean xs

f , covariance Ps
f and weight ws

f . The higher the weight, the more
the linked GME contributes to the Probability Density Function (PDF) at tf . Up to this point, the GMEs do
not take into account thrust noise covariance. To include this contribution, the polynomial map is exploited
a second time. In particular, by exploiting polynomial map inversion and evaluating it for each mean of the
final GME

δxs
0 = T −1

xf

(
xs
f − xf

)
(22)

it becomes possible to retrieve the variation from the initial condition that generated the mean of the current
GME under investigation. This initial variation can be used in the evaluation of the covariance inflation
term for each mean of the GME by evaluating Eq. (18). Once ∆Ps

f has been evaluated for every GME, the
covariance inflation term is simply summed to the final covariance of the mixand Ps

f .

*https://scikit-learn.org/0.17/modules/generated/sklearn.mixture.GMM.html
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NUMERICAL SIMULATIONS

This section provides a description of the analyzed test cases. For both proposed methods, the dynamics
of the systems are assumed to be defined by:

ẋ = f(t,x,u+w) =

{
ṙ = v

v̇ = − µ
r3 r+

1
2ρ(r)

(
CdA
m

)
v2 + u+w

(23)

The state is here represented by position and velocity x = [r;v], and it is further assumed that any given
control history can be parametrized with a function of time u plus additive process noise w. In this work the
dynamics is assumed to be constituted by Keplerian acceleration with gravitational parameter µ, a simplified
drag model, and the thruster acceleration (with its noise). Concerning the drag model, the ballistic coefficient
is given by the ratio of front area A times the drag coefficient Cd and it is divided by the mass of the object
m. To conclude, the atmospheric density ρ is assumed to be a function of the altitude only. The following
subsections will briefly introduce additional details on how the atmospheric density and process noise are
modelled, before introducing the analyzed orbital test cases.

Density Model

The implemented atmospheric density model needs to cover altitudes of at least 1300 km to provide drag
values for all envisioned test cases in LEO. Since a simple exponential model would not accurately account
for molecular dissociation happening above 80 km, the implemented simplified model relies on the Jacchia77
empirical model,30 which provides density profiles up to 2500 km. However, this model requires thermo-
spheric temperatures as an input, which would mean having a different value depending on magnetic indexes
and by the solar flux: all quantities which are influenced by the time of day, the day of the year, and year in
the solar cycle. To simplify this estimate by reducing it to only a dependence on altitude, this input thermo-
spheric temperature is estimated with the NRLMSISE-0031 atmospheric model at the 2022 spring equinox,
while using magnetic flux indices which are commonly adopted for long term predictions of space weather.
Since the temperature distribution for a given altitude is not uniform (i.e. it depends on the relative position
to the sun), also the atmospheric density at different latitudes and longitudes will be different depending on
the location. To solve this final issue, these densities are averaged at different altitudes levels. The average
values and their variation from the lower and upper bounds at each altitude are reported on the left of Figure
3. The averaged values can finally be interpolated with a function ρ(r) that causes an estimation error always
less than 2% for the altitude ranges achieved in the envisioned scenarios as illustrated on the right of Figure
3.

Process Noise Physical Model

To determine a physical model of the thrust noise covariance (i.e., the process noise covariance Q) it is
assumed that this can be modelled as a pointing and amplitude error. The process of determining this quantity
starts by calling the reference thruster acceleration at time t as ur = urτ r, where ur indicates the desired
amplitude while τ r represents the reference direction. This latter can be expressed in spherical coordinates
thanks to the angles α and β:

τ r = cosα cosβi+ sinα sinβj+ sinβk (24)

By further assuming that error on pointing are small and Gaussian, we will have a perturbed pointing direction
as τ = τ r +∆τ . This perturbation is linear in the small angle variation ∆y = [δα, δβ]

⊤ as:

∆τ = R∆y =

 − cosβ sinα cosα sinβ
cosα cosβ − sinα sinβ

0 cosβ

[ δα
δβ

]
(25)

Moreover, by assuming a small Gaussian perturbation on the amplitude, both effects can be superimposed.

u = ur + δuτ r + urR∆y (26)
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Figure 3. On the left, density estimation and upper/lower bounds at each altitude, on
the right the error caused by interpolation.

To conclude, by assuming that the errors on amplitude and pointing are uncorrelated and have null mean, the
covariance Q of the process noise disturbance w = δuτ r + urR∆y can be expressed as a combination of
the covariances of amplitude error (σ2

u) and pointing error (Σy).

Q = σ2
uτ rτ

⊤
r + u2

rRΣyR
⊤ (27)

For the envisioned test cases, 4 different combination of increasing uncertainties are adopted and their values
are reported in Table 1.

Table 1. Summary of noise levels studied for the presented test cases

Noise Level Amplitude error [%] Angular error [deg]

Accurate 0.5 1.0
Average 1.0 2.0
Low 2.5 5.0
Inaccurate 5.0 10.0

Test Cases Description

The test cases have been provided with the collaboration of GMV. they include significant scenarios for
long-thrusting (e.g., Orbit Raising) and orbit maintenance. Among the operational scenarios involving long
thrusting, at least the following ones are considered:

• Low-LEO-to-LEO electric orbit raising, as currently carried out for instance by One-web satellites
from around 500 km to around 1200 km following a spiral-like trajectory lasting months.

• GTO-to-GEO electric orbit raising, as currently carried out by GEO satellites equipped with low-thrust
devices in order to raise the satellite from GTO orbit to the final GEO orbit.

• LEO disposal, where a LEO satellite orbit is lowered with low-thrust means at its end-of-life in order
to comply with the guideline of 25 years maximum orbital lifetime.
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• LEO Station Keeping (SK), as currently done by various types of satellites (communications, Earth-
observation, etc.) following different strategies (ground-track control, constellation control).

• GEO orbit maintenance, where GEO satellites with electric propulsion carry out daily low-thrust ma-
noeuvres to compensate the orbital disturbances caused by Sun and Moon and the Earth geopotential.

For each of these scenarios, a reference orbit is generated, considering the typical constraints affecting low-
thrust devices (e.g. eclipses, maximum slew rates, etc.). These reference orbits are then used to simulate
an operational-like situation where measurements are available from the sensors being used, through the
simulation of the observations and the subsequent orbit determination process, throughout different phases
of the reference orbit. This allows to generate realistic orbital states and covariances, at the time of the last
observation. The following sensor networks are considered for the observation simulation process, together
with the expected visibility windows:

• On-board GNSS receivers, both below and above GNSS altitude, considering the typical size of primary
and secondary lobes of the GNSS signal.

• Ranging stations, used to measure the slant range of the satellite with respect to a network of stations,
whose number depends on the orbital regime considered (e.g. two in GEO).

• Space surveillance networks, composed of survey and tracking radars (typically for LEO) and tele-
scopes (typically for MEO and GEO).

The a-posteriori realistic covariances are then used as input to perform the uncertainty propagation using
the different approaches to be compared, including the uncertainty of the low-thrust propulsion system. A
summary of the study cases is reported in Table 2.

Table 2. Operational scenarios investigated.

Scenario Orbital Propagation Time NotesRegime [days]

LEO to LEO LEO (500 km) 7 Earth Orbit Raising
with continuous thrust

LEO DISPOSAL Low LEO (Starlink) 7 End of disposal for Starlink-like
satellite with continuous thrust

LEO SK Low LEO (Starlink) 3 Daily along-track short maneuvers
GTO to GEO GTO 15 Beginning of Orbit Raising

(i.e., near GTO) with continuous thrust
GEO SK GEO 15 Daily maneuvers of long duration

Additionally, in order to assess the suitability of the selected approach for characterizing conjunctions,
collisions are also simulated as part of this process with the estimated orbits of the operational satellites
(i.e. primary object) and a background population of space debris objects. The simulated conjunctions are
reported in Table 3.

Table 3. Analyzed Conjunctions.

Scenario Relative Speed (m/s) Conjunction Angle [deg] Time to Conjunction [days]

LEO to LEO 1000 90 3
LEO DISPOSAL 15000 179 2
LEO SK 5000 40 4
GTO to GEO 16000 178 4
GEO SK 500 70 5

11



RESULTS

The accuracy of each scenario will be compared against a Monte Carlo simulation of 50000 samples, the
metrics adopted will be:

• Runtime normalized with respect to benchmark MC (500 samples)

• L2 norm of final mean position and velocity errors

• L2 norm (i.e., Frobenius norm) of final position and velocity covariance errors

• Maximum Total Variation Distance (TVD) among all states

• Maximum Mean Integrated Square Error (MISE) among all states

These two latter measures have been introduced to account for the non-Gaussianity of the distribution. First,
the MISE will be evaluated per each dimension and normalized with the distribution obtained for each di-
mension by the Monte Carlo analysis. Secondly, also the TVD will be analysed per each dimension. To
conclude, only the maximum MISE and maximum TVD will be provided. While these latter metrics should
provide some insight into the description of the non-Gaussianity, they only tell part of the story. Indeed,
by considering each dimension on its own, all information related to the coupling between variables is lost.
When looking at the computational time, each of the reported times have been normalized with the runtime
of the corresponding Monte Carlo simulation of 500 samples to reduce the computational effort.

Hyperparameters Tuning

Both presented methods have hyperparameters that need to be tuned for proper execution. The STyMo
has been run at expansion orders 2 and 3 for all scenarios. This choice has been dictated by the compromise
between accuracy and computational time. In fact, despite the upgrade of the expansion order from 2 to 3
producing an average increase of ∼ 6 times in the computational time, some cases benefit from the higher-
order. Indeed, changing from order 2 to 3 produced an average improvement of ∼ 10% across all accuracy
metrics in some of the tested cases (e.g., GTO to GEO). While moving to even higher orders has been
taken into consideration, it has ultimately been decided to adopt order 3 for all simulations in light of the
limited benefits and considering the high penalty in computational time in which the algorithm would incur.
Moreover, the results obtained with order 3 proved to be sufficiently accurate for all the envisioned test cases.
As a consequence, the only hyperparameter that will need to be defined for the STyMo is the number of
GMEs chosen to represent the final distribution. To determine this number, an analysis can be carried out to
determine the last number of splits that provides a significant improvement to the performance metrics. This
analysis has been performed for all scenarios for the lowest level of thruster uncertainty reported in Table
1. Once selected, this number is also used for all other levels of process noise. In this paper only the LEO
to LEO case is reported for conciseness. Notice how Figure 4 does not include the mean error as the mean
is basically unchanged by the splitting procedure. It is clear that using more than 9 GMEs in this scenario
would not provide any significant benefit. By repeating this analysis for all test cases one can fix the number
of splits to be used.

Concerning the A-DAGMMo method, the hyperparameters that need to be set are the number of splits
to be performed when the nonlinearity is detected and the nonlinearity threshold at which to perform said
split. The number of splits at each splitting step does not affect accuracy as observed from several trial runs
of this code. Therefore, it has been decided to set it to 3 for all simulations. This choice only implies that
if the nonlinearity is larger, there will be a need for more splitting steps, producing a similar computational
time penalty as using a higher number of splits per step and fewer splitting steps. In the application of this
method, selecting a lower split produced a delay in the accumulation of the GMEs which granted a practical
speed-up of the code in its current implementation. The approach for tuning the splitting threshold (i.e., the
only remaining parameter) is to gradually decreasing this value trying to balance the computational effort and
the accuracy. Also in this case the tuning is performed on the lowest level of thruster noise and the thusly
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Figure 4. Improvement obtained across performance metrics for increasing number
of splits in the LEO to LEO scenario.

obtained parameters are kept constant for each scenario. For the LEO to LEO scenario the best values of
splitting threshold were found to be in [0.01, 0.05].

Comparison of Uncertainty Propagation Approaches

As expected, both propagation methods show degrading performances for increasing duration of the prop-
agation across all metrics as illustrated for the specific LEO to LEO case in Figure 5.

To account for this behaviour, while also considering the varying level of thruster error in Table 1, a cumu-
lative index called Process Noise Index (PNI) is used to compare performances of different scenarios and
algorithms. This PNI is computed as the ratio between initial and final sizes of the state covariances obtained
from the benchmark MC analysis.

PNI =
det (Pf )

det (P0)
(28)

The results are reported in a series of summary graphs considering all combination of scenarios (i.e., with
different markers) and algorithm (i.e., with different colors) when propagated at their final time as reported
in Table 2. Each of these combinations will have a 4 different levels of PNI which are determined by the
thruster noise performance.
A preliminary analysis of the results obtained after hyperparameter tuning evidenced some important results.
In particular, it was observed that the hyperparameters of both methods can be fixed for similar scenarios.
LEO to LEO and LEO DISPOSAL showed the same best value of GMEs for STyMo to be of 9 and a best
nonlinearity threshold for A-DAGMMo in the range [0.01, 0.05]. However, these parameters may vary even
for the same orbital regime if the propagation is particularly different, as in the case of the LEO SK where
only a few, short maneuvers are taken: this case required 27 GMEs for STyMo and consistently retrieved a
larger number of mixands (i.e., 17) for A-DAGMMo even though the threshold was set in the same range as
the other LEO scenarios. GEO cases behave similarly with higher number of splits for STyMo (i.e., 15 for
both) but with nonlinearity thresholds for A-DAGMMo of 1 order of magnitude (or lower for the GEO SK)
smaller to obtain the same level of splits: this is also in line with the idea that GEO scenarios show overall
lower nonlinearity levels.

Going into further details, Figure 6 reports the computational time for all combination of methods, scenar-
ios, and thruster performance. It is possible to observe that STyMo is more costly in terms of computational
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Figure 5. Performance degradation with duration of propagation in LEO to LEO scenario.

time, being it on average ∼ 0.7 times the benchmark MC with 500 samples. However, its cost is not de-
pendent on the accuracy of the thruster, nor with the level of nonlinearities: both of which contribute to an
increase of PNI. On the contrary, A-DAGMMo shows a dependency of the computational time with PNI
which is particularly relevant for some scenarios (e.g., LEO to LEO and LEO DISPOSAL). Despite this,
it still is the faster method between the two, with an average normalized time across all PNI and scenarios
of about 0.1. The increase of time for this method is to be expected for some challenging cases where the
increasing nonlinearity makes the number of GMEs (adaptively determined) grow very rapidly for the hyper-
parameters selected with the lowest PNI. In this case in fact for the highest PNI the LEO to LEO required
∼ 1000 GMEs, whereas the LEO DISPOSAL ended with 35 mixands.

Figure 6. Normalized computational time for all combinations of scenario, method,
and thruster uncertainty (i.e., increase in PNI).

Figure 7 shows the effect of PNI on the error of estimation of the mean. Both subfigures shows the same
trends, with the estimation performed by either STyMo and A-DAGMMo not significantly influenced by an
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increase of PNI for each scenario. In addition, it can also be noticed how STyMo outperforms A-DAGMMo in
the estimation of the mean. Nonetheless, both methods are affected by an increase in PNI for each scenarios
when looking at the covariance error in Figure 8. In this case it is A-DAGMMo that takes the upper hand
against STyMo in most scenarios.

Figure 7. Error in the final mean position (left) and velocity (right) for all combina-
tions of scenario, method, and thruster uncertainty (i.e., increase in PNI).

Figure 8. Error in the final covariance for position (left) and velocity (right) for all
combinations of scenario, method, and thruster uncertainty (i.e., increase in PNI).

Since both methods are basically unchanged in terms of position but they accumulate a growing error in co-
variance, also the metrics capturing the non-Gaussian behaviours reflect similar trends in Figure 9. However,
as explained during hyperparameter tuning, STyMo has the number of GMEs determined from a tradeoff
analysis performed at the lowest level of PNI for each scenario. On the contrary, A-DAGMMo can still adapt
it autonomously even if the parameters are fixed. This trend is clearly visible in the LEO to LEO and LEO
DISPOSAL scenarios where the number of GMEs grow but they allow for a better representation of the un-
certainty.
It is also worth mentioning that the LEO SK has very little variation of the PNI because it has the shorter
propagation but also very short and few maneuvers. In this case as well as the GEO ones there is substantially
no difference between the two approaches.
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Figure 9. MISE (left) and TVD (right) for all combinations of scenario, method, and
thruster uncertainty (i.e., increase in PNI).

Conjunction Analysis

Five conjunction scenarios described Table 3 have been analysed with the proposed uncertainty propagation
methods. Each of the approaches produces two final GMMs to represent the final distributions at the estimated
Time of Closest Approach (TCA) for primary and secondary objects. When both GMMs are available, the
following method is adopted to compute the PoC:23

• Selecting a combination of a GME from the primary’s GMM and a GME from the secondary’s GMM.

• Searching for the correct TCA of the combination.

• Propagating locally the mean and covariance of both GMEs to the real TCA.

• Computing the PoC of the combination with a short-term encounter model such as Chan’s model.32

• Summing all contributions from all possible combinations of GMEs according to Eq. (29).

PoCGMM =

np∑
i=1

ns∑
j=1

wp
iw

s
jPoCChan

(
xp
i (TCAi,j) ,x

s
j (TCAi,j) ,P

p
i (TCAi,j) ,P

s
j (TCAi,j)

)
(29)

This equation accounts for the weighted sum of np GMEs of the primary and ns GMEs of the secondary. The
weights of the GMEs are expressed as wp, i for the i-th GME of the primary and ws, j for the j-th GME of the
secondary. Then, after computing the correct TCA of the combination of i and j mixands (i.e., TCAi,j), the
new means and covariances of the GMEs can be propagated from the nominal TCA to the new value and they
are reported as xp

i (TCAi,j) and Pp
i (TCAi,j) for the primary and as as xs

j (TCAi,j) and Ps
j (TCAi,j) for the

secondary. This method implicitly assumes that PoC can be computed as a weighted sum of all contributions
given by all combinations of GMEs for primary and secondary while assuming short term encounter. The
summary of results is reported in Table 4.

The number of splits for STyMo has been selected after a trade-off analysis carried out on all scenarios. It
was shown that (similarly to Figure 10) no significant change to the PoC happens after selecting 15 splits for
both primary and secondary. In addition, the reference linear propagation case has always 1 GME for both
primary and secondary by definition. On the other hand, A-DAGMMo determines this number automatically
during propagation.
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Table 4. PoC results for all scenarios given together with the number of GMEs for the primary (i.e.,
Np) and secondary (i.e, Ns) objects.

Scenario Linear Propagation STyMo A-DAGMMo
(Np,Ns) (Np,Ns) (Np,Ns)

LEO to LEO 7.8984E-05 7.9897E-05 7.8235E-05
(1,1) (3,5) (15,15)

LEO DISPOSAL 6.1197E-04 6.0673E-04 5.9741E-04
(1,1) (3,7) (15,15)

LEO SK 3.7338E-04 3.7008E-04 3.6334E-04
(1,1) (9,3) (15,15)

GTO to GEO 1.9472E-04 1.8967E-04 1.6375E-04
(1,1) (9,3) (15,15)

GEO SK 5.5866E-03 5.5866E-03 5.4691E-03
(1,1) (1,1) (15,15)

It is worth noticing how the number of splits of the secondary is the one that determines the largest varia-
tions of PoC for STyMo in the LEO to LEO scenario and that this behaviour is automatically captured by
A-DAGMMo which uses a higher number of GMEs for the secondary object as illustrated in Table 4. More-
over, in the GEO SK scenarios nonlinearities are so small that no splits were determined by A-DAGMMo so
that the same results as a local linearization are retrieved. Indeed, in this scenario the uncertainties are propa-
gated for only 5 days. Conversely, in the previous uncertainty propagation assessment results were obtained
after 15 days, which are enough to introduce enough nonlinearity to cause a split. For the same reasons, also
STyMo retrieved very small variations of PoC for varying number of GMEs.
As Table 2 demonstrates, the PoC obtained with dynamics-based methods is always close to the value ob-
tained through a linear propagation. This behaviour is expected as all the methods presented treat process
noise with local linearizations built upon higher order information extracted from the flow of the dynamics.
Across all scenarios it is possible to observe an overall dilution of the PoC. This behavior however depends
on many factors such as the weight of the particular pair of GMEs as well as the modification of the con-
junction geometry and covariances owed to the local adjustment of the TCA. In any case, both STyMo and
A-DAGMM provide consistent results across scenarios.

CONCLUSIONS

Both A-DAGMMo and STyMo methods retrieve consistent results. Different ways of including a covari-
ance correction term based on local linearization output similar results. Despite being much faster than a MC
analysis, the accuracy of these methods is not always excellent. One hypothesis is that this behavior is to be
imputed to the process noise modelling. Indeed, the presented methods seem to miss the effect of the coupling
between initial state uncertainty and thruster noise, resulting in an underestimation of the covariance when
compared to the results of the MC analysis. In support of this hypothesis, test results showed that the final
covariances without the inflation terms are close to the ones obtained only by considering the initial state un-
certainty of the Monte Carlo analysis. On the other hand, by considering these inflation terms, the final error
is partially mitigated, which is particularly evident in the estimation of the position covariance. Moreover, as
highlighted in the introductory section, the mono-dimensional comparison metrics selected (i.e., MISE and
TVD) may be penalizing these dynamics-based methods that retrieve a full PDF description even considering
coupling terms, whose contribution is completely discarded by these criteria.
Despite these limitations, the results clearly show that the hyperparameters of both methods can be fixed for
similar scenarios (i.e., LEO to LEO and LEO DISPOSAL). However, they may vary even for the same orbital
regime if the propagation is particularly different, as in the case of SK. In addition, these generalizations
seem to be applicable for various orbital regimes: LEO and GEO cases clearly display different ranges of
hyperparameters for the A-DAGMMo method. When applied to PoC computation, both methods proved to
be effective in capturing the conjunction scenario and the results were always consistent to the reference PoC
computed with linearly propagated uncertainties.
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Figure 10. PoC for varying number of GMEs of primary (i.e., Np) and secondary
(i.e., Ns) objects in LEO to LEO scenario.
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