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Nonlinear optical frequency conversion, observed more than half a century ago, is a corner stone
in modern applications of nonlinear and quantum optics. It is well known that frequency conver-
sion processes are constrained by conservation laws, such as momentum conservation that requires
phase matching conditions for efficient conversion. However, conservation laws alone could not fully
capture the features of nonlinear frequency conversion. Here it is shown that topology can provide
additional constraints in nonlinear multi-frequency conversion processes. Unlike conservation laws,
a topological constraint concerns with the conserved properties under continuous deformation, and
can be regarded as a new indispensable degree of freedom to describe multi-frequency processes. We
illustrate such a paradigm by considering sum frequency generation under a multi-frequency pump
wave, showing that, akin topological phases in topological insulators, topological phase transitions
can be observed in the frequency conversion process both at classical and quantum level.

I. INTODUCTION

Since the first observation of optical harmonics more
than half a century ago [1], frequency conversion and
wave mixing processes in nonlinear optical media [2–5]
have enabled the manipulation and control of the elec-
tromagnetic radiation to a great extent, with a variety of
applications ranging from coherent harmonic generation
[4–8] to ultrafast optics and nonlinear spectroscopy
[9–11], quantum optics [12–18], nonlinear imaging and
biological microscopy [19, 20], to mention a few.
Modern nonlinear optics has borrowed many concepts
from quantum mechanics and condensed-matter physics,
and in return, enriched the variety of theoretical and
experimental platforms where quantum phenomena can
be studied (see e.g. [21–31] and references therein).
Prominent examples include the geometric (Berry)
phase accompanying nonlinear frequency mixing [22],
adiabatic processes in frequency conversion [21, 27, 28],
and the design of novel photonic structures which
combine topological phases of light with appreciable
nonlinear response [22], thus extending to the nonlinear
realm the recent developments in the area of topological
photonics [32–36]. Recently, it has been suggested that
various nonlinear optical effects can be described in a
unified fashion by topological quantities involving the
Berry connection and Berry curvature [37].
Frequency conversion processes in nonlinear χ(2) media,
such as sum/difference frequency generation and para-
metric down-conversion, are constrained by conservation
laws: energy, flux, momentum and angular momentum
of photons should be conserved during the nonlinear
interaction [2, 3, 38, 40]. Such conservation laws are
expressed by well-known conditions, such as the Manley-
Rowe relations and the phase matching requirement for
momentum conservation. However, conservation laws
alone could not fully capture the properties of nonlinear
frequency conversion. In this work we unravel that,
akin to topological phases in condensed matter physics
[41–43], topology can provide additional constraints to

nonlinear multi-frequency conversion processes, which
can undergo topological phase transitions. Unlike
conservation laws, topology concerns with the conserved
properties under continuous deformation, and can be
regarded as a new indispensable degree of freedom to
describe nonlinear frequency conversion processes.

To unveil the topological aspects underlying fre-
quency conversion, let us consider the process of sum
frequency generation (SFG), where two input photons
at frequencies ω1 (signal wave) and ω2 (pump wave) an-
nihilate while, simultaneously, one photon at frequency
ω3 = ω1 + ω2 (SFG wave) is created under perfect
phase matching in the nonlinear crystal. The process is
quite simple when we deal with single-frequency fields,
while topological features emerge when we consider
multi-frequency waves. Let us assume that we inject
one signal photon at frequency ω1 and a stream of N2

and N ′2 pump photons at slightly different frequencies
ω2 and ω′2 = ω2 + Ω, respectively [Fig.1(a)]. Clearly,
the signal photon can annihilate with one pump photon
of either frequency ω2 or ω′2, so that the frequency
of the SFG photon can be either ω3 = ω1 + ω2 or
ω′3 = ω1 + ω′2 = ω3 + Ω with probabilities N2/(N2 +N ′2)
and N ′2/(N2 + N ′2), respectively. In repeated measure-
ments, on average the frequency of the SFG photon is
thus 〈ω3〉 = ω3 + νΩ, with ν = N ′2/(N2 +N ′2). Clearly, ν
is not quantized, i.e. it not an integer number, and could
be any real number depending on the values of N2 and
N ′2. However, this result holds for a short interaction
length z: further interaction in the nonlinear crystal
makes it possible the backward process, i.e. the newly
generated SFG photon can annihilate and generate a
pair of signal and pump photons. Energy conservation
imposes that the frequency of the created signal photon
should belong to the set {ω1, ω1 − Ω, ω1 + Ω}. Such a
newly created signal photon can then annihilate with one
pump photon to generate a SFG photon at a frequency
that must belong to the set {ω3−Ω, ω3, ω3 + Ω, ω3 + 2Ω}
for energy conservation. This reasoning can be iterated
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FIG. 1. Multi-frequency SFG. (a) A weak monochro-
matic signal wave at frequency ω1 interacts with a strong
bi-chromatic pump wave, at frequencies ω2 and ω′

2 = ω2 + Ω,
in a nonlinear crystal to generate a SFG wave. (b) The signal
and SFG photons describe in tandem a quantum walk in a
synthetic binary lattice in frequency space. The probability
distribution of the photon frequency, depicted on a pseudo-
color map, broadens as the interaction length z increases. The
topology of the synthetic lattice provides a constraint on the
mean frequency of signal and SFG photons.

and the frequency of both signal and SFG photons
basically undergo a diffusion process in frequency space.
Hence, as the interaction length z in the nonlinear crystal
increases, we have an evolving probability distribution
for the frequency of the created SFG photon. Energy
conservation requires that such a frequency should
belong to the set ω3 + nΩ (n integer), but does not
pose any constraint about the mean value 〈ω3〉 of such
a distribution, which in principle could take any value
ω3 + νΩ with ν a real number. Here topology comes into
play: as we show in this work, in the multi-frequency
conversion process the signal and SFG photons describe
in tandem a quantum walk on a topological lattice
in synthetic (frequency) space [Fig.1(b)], resulting
in the quantization of ν for long interaction lengths.
Specifically, the integer ν turns out to be a topological
invariant (winding number) associated to the synthetic
lattice and determined by the multi-frequency properties
of the injected strong pump wave. This is the main
message of this work, which is developed and presented
with the due mathematical details in the next sections.

II. TOPOLOGICAL SIGNATURE IN
SUM-FREQUENCY GENERATION WITH A

MULTI-FREQUENCY PERIODIC PUMP WAVE

A. Classical analysis

The quantization of ν can be readily proved in the
framework of a classical analysis of three-wave frequency
mixing in a non-linear χ(2) crystal. In the plane-wave
approximation, the electric field propagating along the

longitudinal z direction of the crystal can be written as

E(z, t) =
1

2

{
3∑
l=1

√
2~ωl
ε0c0nl

ψl exp(−iωlt+ iklz) + c.c.

}
,

where ω1, ω2 and ω3 are the carrier frequencies of signal,
pump and SFG waves, respectively, kl = (ωl/c0)nl are
the wave numbers and nl = n(ωl) the (linear) refractive
indices. Under perfect phase matching, the three coupled
equations governing the evolution of the field envelopes
ψl(z, t) read (see e.g. [2, 3, 15, 27, 38, 39])

i

(
∂

∂z
+

1

vg1,2

∂

∂t

)
ψ1,2 = −σψ3ψ

∗
2,1 (1)

i

(
∂

∂z
+

1

vg3

∂

∂t

)
ψ3 = −σψ1ψ2, (2)

where σ ≡ [de/(n1n2n3)]
√

2~k1k2k3/ε0, de is the ef-
fective nonlinear interaction coefficient, and vgl =
1/(dk/dω)ωl

is the group velocity at carrier frequency
ωl. In the above equations, the field envelopes have been
normalized such that |ψl|2 is the photon flux of the e.m.
wave at frequency ωl. As usual in problems of sum and
difference frequency generation [2, 21, 27, 44], we assume
that the crystal is excited by a strong pump field, not nec-
essarily monochromatic, and by a monochromatic weak
signal at frequency ω1. In the undepleted pump approx-
imation and after letting ξ = z and η = t − z/vg3, one
has ψ2(ξ, η) ' ψ2(ξ = 0, η), and Eqs.(1,2) reduce to the
linear two-level equations

i
∂ψ1

∂ξ
= i

(
1

vg2
− 1

vg1

)
∂ψ1

∂η
+ h(η)ψ3 (3)

i
∂ψ3

∂ξ
= i

(
1

vg2
− 1

vg3

)
∂ψ3

∂η
+ h∗(η)ψ1 (4)

where h(η) ≡ −σψ∗2(ξ = 0, η) describes the temporal
shape of the injected strong pump wave. As shown in Ap-
pendix A, for a sufficiently spectrally-narrow pump wave
the group velocity mismatch terms can be neglected, so
that Eqs.(3,4) can be readily integrated with the initial
condition ψ1(ξ = 0, η) = 1 and ψ3(ξ = 0, η) = 0, yielding

ψ1(ξ, η) = cos[∆(η)ξ]

ψ3(ξ, η) = −i sin[∆(η)ξ] exp[−iϕ(η)],

where we have set h(η) ≡ ∆(η) exp[iϕ(η)], i.e. ∆(η)
and ϕ(η) are the amplitude and phase of the normal-
ized pump wave. Let us now assume that h(η) is peri-
odic with period T = 2π/Ω, i.e. that the pump wave
carries a stream of photons at frequencies ω2 + nΩ, and
let us set k = Ωη. Correspondingly, the signal and SFG
wave ψ1,3(ξ, k) are periodic with respect to k with pe-
riod 2π and can be thus written as a Fourier series,
ψ1,3(ξ, k) =

∑
l(al, bl)(ξ) exp(−ilk) with ξ-dependent

amplitudes al(ξ), bl(ξ). At the propagation distance ξ,
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the mean of the frequency of the signal wave, given by
〈ω1〉 = ω1 +

∑
l lΩ|al(ξ)|2/

∑
l |al(ξ)|2, reads 〈ω1〉 = ω1,

whereas the mean frequency of the SFG wave, given by
〈ω3〉 = ω3 +

∑
l lΩ|bl(ξ)|2/

∑
l |bl(ξ)|2, can be written as

〈ω3〉 = ω3 + νΩ, where we have set (technical details are
given in Appendix A)

ν =

∫ π
−π dk sin2[∆(k)ξ]∂ϕ∂k∫ π
−π dk sin2[∆(k)ξ]

(5)

If we assume that ∆(k) 6= 0 for any k, i.e. that the pump
wave is non-vanishing at any time instant, for long inter-
action lengths ξ we can set sin2[∆(k)ξ] ' 1/2 in Eq.(5),
yielding ν ' (1/2π)

∫ π
−π dk(dϕ/dk) ≡ ν∞. This relation

clearly shows that the index ν is quantized and equals
the phase spanned by the pump wave in one oscillation
cycle, normalized to 2π. For example, for an injected
bichromatic pump at frequencies ω2 and ω′2 = ω2 + Ω,
h(k) = h0 +h1 exp(ik) and thus ν = 0 for |h0| > |h1| and
ν = 1 for |h0| < |h1|, the case |h0| = |h1| corresponding
to a topological phase transition.
To illustrate the quantization of ν in a realistic setting,
let us consider SFG in a periodically-poled lithium nio-
bate (PPLN) crystal with a strong pump at the wave-
length λ2 = 810 nm and a weak signal at λ1 = 1.55 µm.
The SFG wave corresponds to λ3 = 532 nm. We as-
sume extraordinary wave propagation, with a nonlinear
coefficient d33 ' 27 pm/V. Phase matching is realized
by a first-order QPM grating (7.38 µm period), so that
de = (2/π)d33 [45]. Figure 2 shows the behavior of
the index ν versus propagation distance z in the crys-
tal for a bichromatic pump wave with a frequency offset
Ω = 2π × 1 GHz and with two different values of the ra-
tio h1/h0 =

√
(I1/I0) between the two harmonic pump

amplitudes. The simulations take into account group ve-
locity mismatch, as calculated using Sellmeier equations
for n(ω) [46]. The figure clearly illustrates the asymp-
totic quantization of ν for long interaction lengths and
the topological phase transition as the ratio of pump in-
tensities I1/I0 varies from below to above one.

B. Quantum analysis

The quantization of the index ν predicted by the clas-
sical analysis can be at best captured in the second-
quantization framework of SFG [44, 47–51]. Here, the
signal and SFG photons undergo in tandem a quantum
walk on a synthetic lattice with nontrivial topology in fre-
quency space, the index ν corresponding to a topological
invariant of the lattice. The second-quantization analysis
shows that the topological origin of ν-quantization holds
for an arbitrary non-classical state of the injected signal
wave, i.e. not necessarily for classical (coherent) states.
As in the classical analysis, we assume a multi-frequency
pump with frequencies ω2 + nΩ, centered at around the
carrier ω2, and neglect group-velocity mismatch effects.
The second-quantization Hamiltonian of the photon field

FIG. 2. Quantization of index ν. (a,b) Behavior of the
index ν versus propagation distance in the process of SFG in
a PPLN crystal. The pump wave is bichromatic with pump
intensities I0 and I1 at frequencies ωp and ωp + Ω. In (a)
I0 = 800 MW/cm2, I1 = 400 MW/cm2; in (b) I0 = 400
MW/cm2, I1 = 800 MW/cm2. The insets show the behavior
of h(k) = h0 + h1 exp(ik) in complex plane, parametrized
in the scaled time k = ηΩ. Parameter values are given in
the text. (c) Synthetic SSH lattice in frequency space along
which the signal and SFG photons undergo a quantum walk
in tandem.

then reads [44, 47]

Ĥ = Ĥ0 + ĤI ,

where

Ĥ0 =
∑
n

~(ω1 + nΩ)â†nân +
∑
n

~(ω3 + nΩ)b̂†nb̂n+

+
∑
n

~(ω2 + nΩ)ĉ†nĉn

is the Hamiltonian of the free field,

ĤI = −~σvg
∑
n,l

(b̂n+lâ
†
l ĉ
†
n +H.c.)

is the interaction Hamiltonian, ân, b̂n and ĉn are the
bosonic annihilation operators of photon modes at fre-
quencies ω1 +nΩ, ω3 +nΩ and ω2 +nΩ, respectively. As-
suming a strong and classical pump wave, the operators
ĉn can be considered as c-numbers [44], and the Heisen-
berg equations of motion of the destruction operators ân,

b̂n, after the transformation ân → ân exp[−i(ω1 + nΩ)t],

b̂n → b̂n exp[−i(ω3 + nΩ)t], read (see Appendix B for
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details)

i
dân
dt

= −σvg
∑
l

C∗l b̂n+l, i
db̂n
dt

= −σvg
∑
l

Clân−l (6)

where Cn = 〈cn〉 and the interaction time t is related
to the interaction length ξ by the relation t = ξ/vg.
Equation (6) indicates that the signal and SFG photons
undergo in tandem a continuous-time quantum walk on
the sublattices A and B of a one-dimensional (1D) lat-
tice with chiral symmetry and long-range hopping am-
plitudes σvgC

∗
l , which provides an extension of the fa-

mous Su-Schrieffer-Heeger (SSH) 1D topological insula-
tor [41, 52]. Note the the c-numbers Cl are basically the
Fourier amplitudes of the classical strong pump wave-
form, namely ψ2(k) =

∑
l Cl exp(−ikl), with k = Ωη.

After letting ψ̂1(k, t) =
∑
n ân exp(−ikn) and ψ̂3(k, t) =∑

n b̂n exp−(ikn), the evolution equations for the oper-

ators ψ̂1,3(k, t) read i(d/dt)(ψ̂1, ψ̂3)T = vgH(k)(ψ̂1, ψ̂3)T

with matrix Hamiltonian

H(k) =

(
0 h(k)

h∗(k) 0

)
= ∆(k) {cos[ϕ(k)]σx − sin[ϕ(k)]σy} (7)

where we have set

h(k) = −σψ∗2(k) ≡ ∆(k) exp[iϕ(k)]

and σx,y are the Pauli matrices. Note that the Heisen-

berg equations for the ψ̂13 operators are analogous to the
classical ones [Eqs.(3) and (4)] with vg1 = vg2 = vg3 = vg
after the substitution t→ z/vg and considering ψ̂1,3(k, t)
as c-numbers.

Let us assume that the crystal is excited with a
monochromatic signal field at frequency ω1 in an arbi-
trary quantum state, given by a superposition of Fock

states |ψ(0)〉 =
∑∞
l=1(αl/

√
l!)â†l0 |0〉 with arbitrary am-

plitudes αl and
∑
l |αl|2 = 1. Note that excitation

with a single-photon Fock state corresponds to αl =
δl,1, whereas excitation with a classical field (a coher-
ent state) corresponds to a Poisson distribution αl =

αl exp(−|α|2/2)/
√
l!, with α = ψ1(0). After a propa-

gation distance ξ = vgt, the mean value of the frequency
of the signal and SFG photon fields can be readily calcu-
lated and read (details are given in Appendix B)

〈ω1〉 = ω1 , 〈ω3〉 = ω3 + νΩ,

where the value of ν is the same as the one obtained
from the classical analysis [Eq.(5)], regardless of the ini-
tial state |ψ(0)〉 of the signal photon field.

C. Frequency conversion and winding number

The main result, that unravels the topological as-
pects in the SFG process, is that for long interaction

lengths ξ the index ν converges to the topological invari-
ant (winding number) ν∞ of the 1D gapped topologi-
cal insulator. For example, if we assume a bichromatic
pump as in the simulations of Fig.2, corresponding to
h(k) = h0 + h1 exp(ik), the signal and SFG photons un-
dergo a quantum walk on a synthetic SSH lattice in fre-
quency space with alternating hopping amplitudes h0 and
h1 [see Fig.2(c)], the two sublattices A and B correspond-
ing to the various frequency components ω1,3 +nΩ of the
two fields. The topological invariant of a 1D gapped topo-
logical insulator with chiral symmetry is provided by the
Zak phase γ± of the two lattice bands, given by [41]

γ± = i

∫ π

−π
dk〈u±|

∂

∂k
u±〉 =

1

2

∫ π

−π
dk
∂ϕ

∂k
= πν∞

where

u± =
1√
2

(
1

± exp[−iϕ(k)]

)
are the two eigenstates of the Bloch Hamiltonian H(k)
[Eq.(7)] corresponding to the eigen-energies ±|h(k)|, and

ν∞ =
1

2π

∫ π

−π
dk
∂ϕ

∂k

is the winding number. Note that the Zak phase in the
two bands takes and same value, related to the winding
number ν∞, and that ν∞ is the asymptotic value of ν(ξ)
[Eq.(5)] as ξ → ∞. The quantization of ν as ξ → ∞,
such as the one observed in Fig.2(a,b), can be explained
in terms of the asymptotic quantization of the mean
displacement that the signal and SFG photons undergo
in the tandem quantum walk in the synthetic frequency
space. In fact, as shown in previous works [53–58]
for a gapped 1D topological insulator such a mean
displacement is asymptotically quantized and equals the
winding number ν∞ of the topological lattice. According
to the bulk-boundary correspondence [41, 52, 59],
|ν∞| measures the number of topologically-protected
zero-energy edge states, and the quantum walk provides
a bulk probing method to measure |ν| [53].

III. TOPOLOGICAL SIGNATURES UNDER A
MULTIFREQUENCY APERIODIC PUMP

The previous analysis can be extended to the case
where the envelope ψ2(η) of the strong pump wave is
aperiodic in time and given by the superposition of N
mutually-incommensurate frequencies Ω1, Ω2,..., ΩN . In
this case, the signal and SFG photons undergo a quantum
walk on a high-dimensional synthetic lattice in frequency
space [60], which can display nontrivial topological fea-
tures.
Let us consider the simplest case of N = 2 incommen-
surate frequencies Ω1 and Ω2, and let k1 = Ω1η and
k2 = Ω2η. The temporal pump waveform ψ2(η) can be
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considered as a periodic function of the two variables k1,
k2 and expanded in double Fourier series as

ψ2(k1, k2) =
∑
n,m

Cn,m exp(−ik1n− ik2m).

In the classical model of SFG, neglecting group velocity
mismatch effects and assuming a monochromatic injected
signal field at the entrance of the crystal, the solution to
Eqs.(3) and (4) is given by

ψ1(ξ, k1, k2) = cos[∆(k1, k2)ξ]

ψ3(ξ, k1, k2) = −i sin[∆(k1, k2)ξ] exp[−iϕ(k1, k2)],

where h(k1, k2) ≡ −σψ∗2(k1, k2) is written in
terms of amplitude and phase as h(k1, k2) ≡
∆(k1, k2) exp[iϕ(k1, k2)]. The mean frequencies of the
signal and SFG photons read 〈ω1〉 = ω1 and 〈ω3〉 =
ω3 + ν1Ω1 + ν2Ω2, where we have set (technical details
are given in Appendix C)

ν1,2 =

∫∫ π
−π dk1dk2 sin2[∆(k1, k2)ξ]

(
∂ϕ
∂k1,2

)
∫∫ π
−π dk1dk2 sin2[∆(k1, k2)ξ]

(8)

Assuming that ∆(k1, k2) 6= 0, i.e. that the pump
wave ψ2(η) does not vanish for any time instant η,
for long enough propagation distances we may set
sin2[∆(k1, k2)ξ] ' 1/2 in Eq.(8), yielding

ν1,2 = (1/2π)

∫ ‘π

−π
dk1,2(∂ϕ/∂k1,2). (9)

The values of ν1,2 turn out to be independent of k1,2 and
are integer indices (winding numbers). The same result
holds in the second-quantization framework of SFG, and
the indices ν1,2 correspond to the topological numbers of
a weak 2D topological insulator, along which correlated
signal and SFG photons undergo a tandem quantum
walk. In fact, in the second-quantization framework the
photon fields of signal and idler waves are given in terms

of the bosonic operators ân,m(t), â†n,m(t) and b̂n,m(t),

b̂†n,m(t), respectively, that annihilate and create photons
at frequencies ω1 +nΩ1 +mΩ2 and ω3 +nΩ1 +mΩ2, re-
spectively. In the limit of a strong classical pump wave,
the Heisenberg equations of motion of the destruction
operators are a 2D extension of Eq.(6) (see Sec.2 of Ap-
pendix C), and formally describe a quantum walk in two
sublattices A and B of a 2D lattice in synthetic frequency
space [60] with an Hamiltonian in Bloch space given by
Eq.(7), with the replacement k → (k1, k2). Such a lat-
tice is a 2D extension of the SSH model [61–64] and
provides an important example of a 2D weak topolog-
ical insulator [63, 64] sustaining flat-band edge states
[61, 62]. The Hamiltonian H(k) shows chiral and parity-
time reversal symmetries, namely H(k)σz = −σzH(k)
and PT H(k) = H(k)PT , where P = σx and T = K

FIG. 3. Topological indices with a multifrequency ape-
riodic pump. (a) Schematic of the 2D synthetic topological
lattice in frequency domain corresponding to a pump wave
comprising four harmonic terms at frequencies ω2, ω2 − Ω1,
ω2 +Ω2, and ω2−Ω1−Ω2 with amplitudes h0, h1, h2 and h3,
respectively. (b,c) Behavior of the indices ν1,2 versus propa-
gation distance in a PPLN crystal; parameter values are given
in the text.

(complex conjugation) are the parity and time reversal
operators. Moreover, provided that the Fourier coeffi-
cients Cn,m of the pump wave are real, H(k) also displays
inversion symmetry [65], namely H(−k)P = PH(k). For
such a 2D lattice, the Berry curvature identically vanishes
and the topological phases can be identified by the strong
Z2 index ν0 and by two weak Z2 indices ν̄1,2 [63, 64],
or equivalently by the vectorized Zak phase in 2D [66–
68]. Technical details are given in Sec.3 of Appendix C.
The strong index ν0 = 0 corresponds to the insulating
(i.e. gapped) phase, which is equivalent to the condition
ψ2(η) 6= 0, whereas the 2D vectorized Zak phase can be
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mapped into the quantized indices ν1,2 [Eq.(9) mod 2].
Therefore, the mean frequency 〈ω3〉 of the SFG wave in
the gapped phase ψ2(η) 6= 0 is constrained by topological
properties of the 2D weak topological insulator.
As an illustrative example, let us assume

h(k1, k2) = h0 + h1 exp(−ik1) + h2 exp(ik2) +

+ h3 exp(−ik1 − ik2), (10)

which corresponds to a pump envelope ψ2(η) =
−(1/σ)h∗(k1, k2) comprising the four frequencies ω2,
ω2 −Ω1, ω2 + Ω2, and ω2 −Ω1 −Ω2 with amplitudes h0,
h1, h2 and h3, respectively. The topological 2D synthetic
lattice, along which the SFG and signal photons undergo
a tandem quantum walk, is shown in Fig.3(a). Note that
the amplitudes of the four pump waves correspond to
the hopping amplitudes in the synthetic 2D lattice. The
value of the strong topological index ν0 can be computed
from the parity eigenvalue of the Bloch eigenstates at the
four time-reversal invariant momenta (k1, k2) = π(n1, n2)
(n1,2 = 0, 1) [see Eq.(C16) in Appendix C], and reads

(−1)νo = sign {(h0 + h1 + h2 + h3)(h0 − h1 + h2 − h3)}
× sign {(h0 + h1 − h2 − h3)(h0 − h1 − h2 + h3)} .

In the insulating phase, i.e. for ν0 = 0, the winding num-
bers ν1,2 can be calculated from Eq.(C21) of Appendix
C along the lines k2,1 = 0, i.e. they are the winding
numbers of the two reduced 1D Hamiltonians

h1(k1) = h0 + h2 + (h1 + h3) exp(−ik1) (11)

for ν1, and

h2(k2) = h0 + h1 + h2 exp(ik2) + h3 exp(−ik2) (12)

for ν2. For example, assuming h0 = h1 = h3 and
h2/h0 = 2, the system is in the gapped (insulating)
phase, i.e. ν0 = 0, and the winding numbers ν1,2 are
given by ν1 = 0 and ν2 = 1. Figures 3(b) and (c)
shows the numerically-computed evolution of the indices
ν1,2(ξ) versus propagation distance ξ, as obtained using
Eq.(8) (i.e. neglecting GVM), in a 6-cm-long PPLN crys-
tal with intensities I0 = I1 = I3 = 200 MW/cm2 and
I2 = 4I0 = 800 MW/cm2 of the four pump harmonics
(Il ∝ h2l , l = 0, 1, 2, 3). Note the asymptotic conver-
gence of ν1(ξ) and ν2(ξ) to the topological indices 0 and
1, respectively.
The above results suggest that SFG under a multi-
frequency strong pump wave with incommensurate fre-
quency comp’onents could provide a fascinating setup to
emulate in photonics weak topological insulators in high
dimensions.

IV. CONCLUSION

In conclusion, we unveiled that frequency conversion
processes in nonlinear optical media, besides of obeying
well-known conservation laws, are restricted by topolog-
ical constraints and, alike topological insulators, can dis-
play topological phase transitions. We illustrated such
a paradigm by considering sum frequency generation in
second-order nonlinear media under a multi-frequency
pump wave, showing that topological phase transitions
can arise both at classical and quantum level. Our re-
sults shed new light on the foundations of nonlinear op-
tics and the consequences of topological behaviors in non-
linear optics could be far-reaching for future applications
of modern nonlinear and quantum optics.

Appendix A: Topology with a time-periodic pump: classical analysis

In this appendix we provide some technical details on the topological features of sum-frequency generation (SFG)
when the strong pump wave is a periodic function of time. We use here a classical description of the frequency
conversion process using standard coupled-mode equations. In particular we discuss the effects of group velocity
mismatch, which is not considered in the main text.

1. Coupled-mode equations

We assume that the nonlinear χ(2) crystal is excited by a strong pump field, at carrier frequency ω2, and by a weak
signal at carrier frequency ω1. In the undepleted pump approximation and after letting ξ = z and η = t − z/vg3 (ξ
describes the interaction distance in the crystal while η is a retarded time in the reference frame of the pump wave),
the evolution equations for the signal and SFG envelopes ψ1,3(ξ, η) are given by [Eqs.(3) and (4) in the main text]

i
∂ψ1

∂ξ
= i

(
1

vg2
− 1

vg1

)
∂ψ1

∂η
+ h(η)ψ3 (A1)

i
∂ψ3

∂ξ
= i

(
1

vg2
− 1

vg3

)
∂ψ3

∂η
+ h∗(η)ψ1 (A2)
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where h(η) ≡ −σψ∗2(η) and ψ2(η) is the temporal profile of the undepleted pump envelope. The solution to Eqs.(A1)
and (A2) cannot be given in an exact closed form rather generally (see [39] and Sec.3 of Appendix A). However, when
the group velocity mismatch between the waves is negligible, i.e. vg1 = vg2 = vg3, the retarded time η enters in the
equations as a parameter, and the most general solution displays Rabi-like oscillations along the ξ coordinate, i.e.
oscillation cycles alternating SFG (ω1 + ω2 → ω3) and difference frequency generation (ω3 − ω2 → ω1), namely one
has (

ψ1(ξ, η)
ψ3(ξ, η)

)
=

(
cos[∆(η)ξ] −i sin[∆(η)ξ] exp[iϕ(η)]

−i sin[∆(η)ξ] exp[−iϕ(η)] cos[∆(η)ξ]ψ3(ξ, η)

)
=

(
ψ1(0, η)
ψ3(0, η)

)
(A3)

where we have set h(η) ≡ ∆(η) exp[iϕ(η)]. Let us assume that the crystal is excited at the entrance plane by
a monochromatic signal wave, ψ1(ξ = 0, η) independent of η, and ψ3(ξ = 0, η) = 0. Assuming, without loss of
generality, ψ1(ξ = 0, η) = 1, one obtains

ψ1(ξ, η) = cos[∆(η)ξ] , ψ3(ξ, η) = −i sin[∆(η)ξ] exp[−iϕ(η)]. (A4)

2. Calculation of the mean frequencies of signal and SFG waves

Let us assume that the pump wave is periodic in time with period T = 2π/Ω. After introduction of the scaled time
k = ηΩ, the solutions ψ1(ξ, η) and ψ3(ξ, η), given by Eq.(A4), are periodic in k with 2π period, and can be therefore
expanded in Fourier series with ξ-dependent coefficients, i.e.

ψ1(ξ, k) =
∑
l

al(ξ) exp(−ikl) , ψ3(ξ, k) =
∑
l

bl(ξ) exp(−ikl). (A5)

Clearly, the spectral amplitude |al(ξ)|2 is the (non-normalized) probability that, after an interaction distance ξ in the
nonlinear crystal, the signal photon has a frequency ω1 + lΩ. Likewise, |bl(ξ)|2 is the (non-normalized) probability
that, after an interaction distance ξ, the SFG photon has a frequency ω3 + lΩ. The mean frequencies of signal and
SFG waves are thus given by

〈ω1〉 = ω1 + Ω

∑
l l|al(ξ)|2∑
l |al(ξ)|2

, 〈ω3〉 = ω3 + Ω

∑
l l|bl(ξ)|2∑
l |bl(ξ)|2

. (A6)

To calculate the series on the right hand sides of Eq.(A6), let us use the following property of Fourier series, that
can be readily proven: for any given function f(k) = R(k) exp[−iθ(k)], periodic in k with 2π period, after letting
f(k) =

∑
l fl exp(−ikl), one has ∑

l

|fl|2 =
1

2π

∫ π

−π
dk|f(k)|2 =

1

2π

∫ π

−π
dkR2(k) (A7)

∑
l

l|fl|2 =
i

2π

∫ π

−π
dkf∗(k)

df

dk
=

1

2π

∫ π

−π
dkR2(k)

dθ

dk
. (A8)

From Eqs.(A4), (A6), (A7) and (A8) one then obtains

〈ω1〉 = ω1 , 〈ω3〉 = ω3 + Ω

∫ π
−π dk sin2[∆(k)ξ]∂ϕ∂k∫ π
−π dk sin2[∆(k)ξ]

, (A9)

i.e. 〈ω1〉 = ω1 and 〈ω3〉 = ω3 + νΩ, where ν is given by Eq.(5) in the main text.

3. Effects of group velocity mismatch (GVM)

Let us assume that the group velocities of signal and SFG waves are not exactly matched with the one of the
pump wave. In this case the initial-value problem of Eqs.(A1) and (A2) can be solved rather generally using inverse
scattering methods [39]. When the pump wave is periodic in time with period T = 2π/Ω, we can however look for a
solution to Eqs.(A1) and (A2) as a Fourier series in η, with ξ-dependent coefficients. After letting

ψ1(ξ, k) =
∑
l

al(ξ) exp(−ikl) , ψ3(ξ, k) =
∑
l

bl(ξ) exp(−ikl) (A10)
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with k = ηΩ, from Eqs.(A1), (A2) and (A10) one readily obtains

i
dal
dξ

= lδ1al +
∑
ρ

hρbl−ρ (A11)

i
dbl
dξ

= lδ3bl +
∑
ρ

h∗ρal+ρ (A12)

where we have set δ1 ≡ Ω(1/vg2 − 1/vg1), δ3 ≡ Ω(1/vg2 − 1/vg3) and h(k) ≡
∑
l hl exp(−ikl). Equations (A11)

and (A12) basically describe at the classical level the coupled signal and SFG spectral component dynamics on a
synthetic binary lattice, discussed in the main text [Fig.1(b) and 2(c)], with initial excitation of the site l = 0 of
sublattice A (the injected monochromatic signal wave). As it can be seen, the GVM (i.e. δ1,3 6= 0) introduces uniform
gradients in the two sublattices, which spoil out the discrete translation invariance of the lattice and are responsible
for Bloch-Zener-type dynamics. However, when the spectral extent of the strong pump wave is sufficiently narrow,
i.e. in the limit Ω → 0, the GVM terms can be neglected for not too long interaction lengths ξ in the crystal. The
strength of the pump wave is measured, for example, by its Fourier terms h0 ∼ h1, and thus in the absence of the
GVM the spreading in the lattice occurs at a speed of the order ∼ h0. After an interaction length ξ, the excitation
has diffused to about h0ξ sites in the lattice, so that GVM effects are negligible provided that |δ1,3ξh0| � |h0|, i.e.
provided that the propagation length ξ satisfies the condition

ξ � 1

Ω
mink=1,3

∣∣∣∣ 1

vg2
− 1

vgk

∣∣∣∣−1 . (A13)

To illustrate the effects of GVM, let us consider SFG in a periodically-poled lithium niobate (PPLN) crystal with a
strong pump at the wavelength λ2 = 810 nm and a weak signal at λ1 = 1.55 µm, as in the example discussed in the
main text (Fig.2). The SFG wave corresponds to λ3 = 532 nm. We assume extraordinary wave propagation, with a
nonlinear coefficient d33 ' 27 pm/V. Phase matching is realized by a first-order QPM grating (7.38 µm period), so
that the effective nonlinear coefficient of the interaction is de = (2/π)d33. The group velocities of signal, pump and
SFG waves, as calculated using Sellmeier equations [46], are vg1 = 0.4581c0, vg2 = 0.4422c0 and vg3 = 0.4069c0, where
c0 is the speed of light in vacuum. For a frequency Ω = 2π× 1 GHz, from Eq.(A13) it follows that GVM is negligible
for propagation lengths satisfying the condition ξ � 24 cm. Since the typical lengths of as nonlinear crystal are
smaller than 5-10 cm, neglecting GVM is a justified assumption. Clearly, GVM effects can become important as the
strong pump wave is spectrally broadened. As an example, in Fig.4 we depict the numerically-computed evolution of
the index ν versus interaction length ξ for a bichromatic pump, carrying the intensities I0 = 400 MW/cm2, I1 = 800
MW/cm2 at the frequencies ω2 and ω2 +Ω, for a few increasing values of Ω. Note that the quantization of ν is spoiled
out at high frequencies Ω as a consequence of GVM.

FIG. 4. Effects of GVM. Numerically-computed of the index ν versus propagation distance in the process of SFG in a PPLN
crystal (crystal length 6 cm). The pump wave is bichromatic with pump intensities I0 = 400 MW/cm2, I1 = 800 MW/cm2 at
frequencies ωp and ωp + Ω. (a) Ω = 2π × 100 MHz, (b) Ω = 2π × 1 GHz, (c) Ω = 2π × 2 GHz, and (d) Ω = 2π × 5 GHz.
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Appendix B: Topology with a time-periodic pump: quantum analysis

1. Heisenberg equations of motion and quantum walk on a synthetic frequency lattice

The second-quantization Hamiltonian of the photon field in the nonlinear χ(2) crystal under perfect phase matching
and neglecting GVM is given by Ĥ = Ĥ0 + ĤI , where

Ĥ0 =
∑
n

~(ω1 + nΩ)â†nân +
∑
n

~(ω3 + nΩ)b̂†nb̂n +
∑
n

~(ω2 + nΩ)ĉ†nĉn (B1)

is the Hamiltonian of the free photon field, and the trilinear Hamiltonian

ĤI = −~σvg
∑
n,l

(b̂n+lâ
†
l ĉ
†
n +H.c.) (B2)

is the interaction Hamiltonian. In the above equations ân, â†n, b̂n, b̂†n and ĉn, ĉ†n are the annihilation and creation
operators of the photon modes at frequencies ω1 + nΩ, ω3 + nΩ and ω2 + nΩ, respectively, which satisfy the usual
bosonic commutation relations, and vg = vg1 = vg2 = vg3 is the common group velocity of the three fields. The
Heisenberg equations of motion of the destruction operators read

i
dân
dt

=
1

~
[ân, Ĥ] = (ω1 + nΩ)ân − σvg

∑
l

ĉ†l b̂n+l (B3)

i
db̂n
dt

=
1

~
[b̂n, Ĥ] = (ω3 + nΩ)ân − σvg

∑
l

âlĉn−l (B4)

i
dĉn
dt

=
1

~
[ĉn, Ĥ] = (ω2 + nΩ)ân − σvg

∑
l

â†l b̂n+l. (B5)

After the gauge transformation ân → ân exp[−i(ω1+nΩ)t], b̂n → b̂n exp[−i(ω3+nΩ)t] , and ĉn → ĉn exp[−i(ω2+nΩ)t],
the above equations take the form

i
dân
dt

= −σvg
∑
l

ĉ†l b̂n+l (B6)

i
db̂n
dt

= −σvg
∑
l

âlĉn−l (B7)

i
dĉn
dt

= −σvg
∑
l

â†l b̂n+l (B8)

where the interaction time t is related to the propagation distance z = ξ in the crystal by the relation

t = ξ/vg. (B9)

Assuming a strong and classical (coherent) pump wave, the operators ĉl can be regarded as c-numbers, i.e. we can
assume ĉl ' 〈ĉl〉 ≡ Cl. In the undepleted pump approximation, such terms are constant and related to the incident
pump wave profile ψ2(η) by the Fourier expansion

ψ2(η) =
∑
l

Cl exp(−ilΩη). (B10)

Therefore, for a strong classical pump and in the undepleted pump approximation, the Heisenberg equations for the
destruction operators of signal and SFG photon fields read

i
dân
dt

= −σvg
∑
l

C∗l b̂n+l , i
db̂n
dt

= −σvg
∑
l

Clân−l (B11)

which are Eqs.(6) given in the main text. Equations (B11) indicate that the signal and SFG photons undergo in tandem
a continuous-time quantum walk on the sublattices A and B of a one-dimensional synthetic lattice in frequency space.
In Bloch space, the Hamiltonian of the binary lattice is given by

H(k) =

(
0 h(k)

h∗(k) 0

)
= ∆(k) cos[ϕ(k)]σx −∆(k) sin[ϕ(k)]σy (B12)
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where we have set h(k) = ∆(k) exp[iϕ(k)] = −σψ∗2(k) and where σx,y are the Pauli matrices. The formal solution to
Eq.(B11) can be written as

ân(t) =
∑
l

(
An,lâl(0) + Bn,lb̂l(0)

)
(B13)

b̂n(t) =
∑
l

(
Cn,lâl(0) +Dn,lb̂l(0)

)
. (B14)

where the t-dependent matrices A, B, C and D are determined by the propagator of the linear system and describe
how an initial single-site excitation of the system, in either sublattice A or B, spreads in the lattice.

2. Calculation of the mean frequency of signal and SFG photons

Let us assume that the crystal is excited at the entrance plane ξ = 0 by a monochromatic signal field at frequency
ω1 in an arbitrary quantum state, given by a superposition of Fock states, namely let us assume

|ψ(0)〉 =

∞∑
l=1

αl√
l!
â†l0 |0〉 (B15)

with arbitrary amplitudes αl and
∑
l |αl|2 = 1. Note that excitation with a single-photon Fock state corresponds

to αl = δl,1, whereas excitation with a classical field (a coherent state) corresponds to a Poisson distribution

αl = αl exp(−|α|2/2)/
√
l!, with α = ψ1(0). The mean number of photons carried by the input signal wave is

〈ψ(0)|â†0â0|ψ(0)〉 =
∑
l l|αl|2.

After a propagation distance ξ = vgt, the mean value of the frequency of the signal and SFG photon fields can be
calculated as

〈ω1〉 = ω1 + Ω

∑
n n〈ψ(0)|â†n(t)ân(t)|ψ(0)〉∑
n〈ψ(0)|â†n(t)ân(t)|ψ(0)〉

(B16)

〈ω3〉 = ω3 + Ω

∑
n n〈ψ(0)|b̂†n(t)b̂n(t)|ψ(0)〉∑
n〈ψ(0)|b̂†n(t)b̂n(t)|ψ(0)〉

(B17)

The mean values entering in Eqs.(B16) and (B17) can be readily computed using Eqs.(B13), (B14) and (B15). For
example, one has

〈ψ(0)|â†n(t)ân(t)|ψ(0)〉 =
∑
ρ,σ

〈ψ(0)|
(
A∗n,σâ†σ(0) + B∗n,σ b̂†σ(0)

)(
An,ρâρ(0) + Bn,ρb̂ρ(0)

)
|ψ(0)〉

=
∑
ρ

|An,ρ|2〈ψ(0)|â†ρ(0)âρ(0)|ψ(0)〉 = |An,0|2〈ψ(0)|â†0(0)â0(0)|ψ(0)〉. (B18)

Similarly, one has

〈ψ(0)|b̂†n(t)b̂n(t)|ψ(0)〉 = |Cn,0|2〈ψ(0)|â†0(0)â0(0)|ψ(0)〉 (B19)

and thus

〈ω1〉 = ω1 + Ω

∑
n n|An,0|2∑
n |An,0|2

, 〈ω3〉 = ω1 + Ω

∑
n n|Cn,0|2∑
n |Cn,0|2

. (B20)

Equation (B20) clearly shows that the mean frequencies of signal and SFG photons do not depend on the initial
quantum state |ψ(0)〉, and thus they should reproduce the result obtained by the classical analysis. In fact, the sums∑
n |An,0|2,

∑
n n|An,0|2,

∑
n |Cn,0|2 and

∑
n n|Cn,0|2 entering in Eq.(B20) and associated to the quantum walk on the

binary lattice with chiral symmetry can be calculated in terms of h(k) = ∆(k) exp[iϕ(k)] using the method described
in Refs. [53, 55], and read ∑

n

|An,0|2 =
1

2π

∫ π

−π
dk cos2[∆(k)ξ] ,

∑
n

n|An,0|2 = 0 (B21)
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∑
n

|Cn,0|2 =
1

2π

∫ π

−π
dk sin2[∆(k)ξ] ,

∑
n

n|Cn,0|2 =
1

2π

∫ π

−π
dk sin2[∆(k)ξ]

(
dϕ

dk

)
. (B22)

Therefore, one obtains 〈ω1〉 = ω1 and 〈ω3〉 = ω3 + νΩ, where

ν =

∫ π
−π dk sin2[∆(k)ξ]

(
dϕ
dk

)
∫ π
−π dk sin2[∆(k)ξ]

. (B23)

Equation (B23) exactly reproduces the result obtained by the classical analysis (Sec.2 of Appendix A).

Appendix C: Topology with a multifrequency aperiodic pump

Let us assume that the strong pump wave envelope ψ2(η) is aperiodic in time and given by the superposition of N
mutually-incommensurate frequencies Ω1, Ω2,..., ΩN . In this case, the signal and SFG photons undergo a quantum
walk on a high-dimensional synthetic lattice in frequency space [60], which can display nontrivial topological features.
For the sake of simplicity, we will consider the case of N = 2 incommensurate frequencies Ω1 and Ω2, however the
analysis can be readily extended to an arbitrary number of mutually incommensurate frequencies.

1. Classical analysis

In the classical analysis of SFG with two incommensurate frequencies Ω1 and Ω2 of the pump wave, it is worth
introducing the two dimensionless variables k1 = Ω1η and k2 = Ω2η, and considering the pump waveform ψ2(η) as a
periodic function of the two independent variables k1, k2, i.e. ψ2 = ψ2(k1, k2). We can thus expand ψ2(η) in double
Fourier series as

ψ2(k1, k2) =
∑
n,m

Cn,m exp(−ik1n− ik2m). (C1)

Neglecting group velocity mismatch effects and assuming a monochromatic injected signal field at the entrance of the
crystal, the envelopes of signal and SFG waves at the propagation distance ξ are given by

ψ1(ξ, k1, k2) = cos[∆(k1, k2)ξ] , ψ3(ξ, k1, k2) = −i sin[∆(k1, k2)ξ] exp[−iϕ(k1, k2)] (C2)

where h(k1, k2) ≡ −σψ∗2(k1, k2) is written in terms of amplitude and phase as h(k1, k2) ≡ ∆(k1, k2) exp[iϕ(k1, k2)].
Let us introduce the Fourier expansions for the two fields, with ξ-dependent coefficients, by letting

ψ1(ξ, k1, k2) =
∑
l,n

al,n(ξ) exp(−ik1l − ik2n) , ψ3(ξ, k1, k2) =
∑
l,n

bl,n(ξ) exp(−ik1l − ik2n) (C3)

Clearly, the spectral amplitude |al,n(ξ)|2 is the (non-normalized) probability that, after an interaction distance ξ in
the nonlinear crystal, the signal photon has a frequency ω1 + lΩ1 + nΩ2. Likewise, |bl,n(ξ)|2 is the (non-normalized)
probability that, after an interaction distance ξ, the SFG photon has a frequency ω3+lΩ1+nΩ2. The mean frequencies
of signal and SFG waves are thus given by

〈ω1〉 = ω1 +

∑
l,n(lΩ1 + nΩ2)|al,n(ξ)|2∑

l,n |al,n(ξ)|2
, 〈ω3〉 = ω3 +

∑
l,n(lΩ1 + nΩ2)|bl,n(ξ)|2∑

l,n |bl,n(ξ)|2
(C4)

To calculate the series on the right hand sides of Eq.(C4), let us use the following property of double Fourier series:
for any two-dimensional function of the form f(k1, k2) =

∑
l.n fl,n exp(−ik1l − ik2n), i.e. periodic in k1 and k2 with

period 2π, after letting f(k1, k2) = R(k1, k2) exp[−iθ(k1, k2)], one has∑
l,n

|fl,n|2 =
1

(2π)2

∫∫ π

−π
dk1dk2|f(k1, k2)|2 =

1

(2π)2

∫∫ π

−π
dk1dk2R

2(k1, k2) (C5)

∑
l,n

l|fl,n|2 =
i

(2π)2

∫∫ π

−π
dk1dk2f

∗(k1, k2)
∂f

∂k1
=

1

(2π)2

∫∫ π

−π
dk1dk2R

2(k1, k2)
∂θ

∂k1
(C6)

∑
l,n

n|fl,n|2 =
i

(2π)2

∫∫ π

−π
dk1dk2f

∗(k1, k2)
∂f

∂k2
=

1

(2π)2

∫∫ π

−π
dk1dk2R

2(k1, k2)
∂θ

∂k2
. (C7)
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Using such identities, from Es.(C2), (C3) and Eq.(C4) one finally obtains

〈ω1〉 = ω1 , 〈ω3〉 = ω3 + ν1Ω1 + ν2Ω2 (C8)

where we have set

ν1,2 =

∫∫ π
−π dk1dk2 sin2[∆(k1, k2)ξ]

(
∂ϕ
∂k1,2

)
∫∫ π
−π dk1dk2 sin2[∆(k1, k2)ξ]

. (C9)

2. Quantum analysis

The second-quantization Hamiltonian of the photon field in the nonlinear χ(2) crystal under perfect phase matching
and neglecting GVM is given by Ĥ = Ĥ0 + ĤI , where

Ĥ0 =
∑
n.m

~(ω1 + nΩ1 +mΩ2)â†n,mân,m +
∑
n,m

~(ω3 + nΩ1 +mΩ2)b̂†n,mb̂n,m +
∑
n,m

~(ω2 + nΩ1 +mΩ2)ĉ†n,mĉn,m (C10)

is the Hamiltonian of the free photon field, and

ĤI = −~σvg
∑

n1,n2,l1,l2

(b̂n1+l1,n2+l2 â
†
l1,l2

ĉ†n1,n2
+H.c.) (C11)

is the interaction Hamiltonian. In the above equations ân,m, â†n.m, b̂n,m, b̂†n,m and ĉn,m, ĉ†n,m are the annihilation
and creation operators of the photon modes at frequencies ω1 + nΩ1 +mΩ2, ω3 + nΩ1 +mΩ2 and ω2 + nΩ1 +mΩ2,
respectively, which satisfy the usual bosonic commutation relations. Proceeding as in Sec.1 of Appendix B, assuming a
strong and classical pump field and in the rotating-wave frame, the Heisenberg equations of motion of the destruction

operators ân,m and b̂n,m read

i
dân,m
dt

= −σvg
∑
l1,l2

C∗l1,l2 b̂n+l1,m+l2 , i
db̂n,m
dt

= −σvg
∑
l1,l2

Cl1,l2 ân−l1,m−l2 (C12)

where Cl1,l2 are the Fourier coefficients of the classical pump envelope ψ2(η), namely

ψ2(η) =
∑
l1,l2

Cl1,l2 exp(−il1Ω1η − il2Ω2η) (C13)

and where in Eq.(C12) the interaction time t is related to the interaction length ξ in the crystal by the relation
t = ξ/vg. Let us assume that the crystal is excited at the entrance plane ξ = 0 by a monochromatic signal field at
frequency ω1 in an arbitrary quantum state, given by a superposition of Fock states, namely let us assume

|ψ(0)〉 =

∞∑
l=1

αl√
l!
â†l0,0|0〉 (C14)

with arbitrary amplitudes αl and
∑
l |αl|2 = 1. Proceeding as in Sec.2 of Appendix B, it can be shown that, after

an interaction length ξ, the mean frequencies of signal and SFG photons do not depend on the initial quantum state
|ψ(0)〉 and reproduce the classical result, given by Eqs.(C8) and (C9).

3. Topological properties

Equations (C12) indicate that the signal and SFG photons undergo in tandem a continuous-time quantum walk on
the sublattices A and B of a two-dimensional synthetic lattice in frequency space. In Bloch space, the Hamiltonian
of the 2D lattice reads

H(k1, k2) =

(
0 h(k1, k2)

h∗(k1, k2) 0

)
= ∆(k1, k2) cos[ϕ(k1.k2)]σx −∆(k1, k2) sin[ϕ(k1, k2)]σy (C15)
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where we have set h(k1, k2) = ∆(k1, k2) exp[iϕ(k1, k2)] = −σψ∗2(k1, k2) and where σx,y,z are the Pauli matrices. Such
a synthetic lattice in frequency space provides a 2D extension of the SSH model introduced in recent works [61–64]
and represents an important example of a 2D weak topological insulator [63, 64] sustaining flat-band edge states
[61, 62]. Here we briefly illustrate the topological properties of this model (for details see [63, 64]). The Hamiltonian
H(k1, k2) ≡ H(k) displays the following symmetries:
(i) Chiral symmetry, namely H(k)σz = −σzH(k).
(ii) PT symmetry, namely PT H(k) = H(k)PT with parity operator P = σx and time reversal operator T = K (K
is the element-wise complex conjugation operation).
(iii) Inversion symmetry. Provided that the Fourier amplitudes Cn,m of the pump wave are real, H(k) also shows
inversion symmetry, namely H(−k)P = PH(k).
For such a 2D weak topological insulator, the Berry curvature identically vanishes in the entire Brillouin zone and
non-trivial topological phases can be identified by the strong Z2 index ν0 [65] and by two weak Z2 indices ν̄1,2 [61, 62]
or equivalently by the vectorized Zak phase θ = (θ1, θ2) in 2D [61, 66–68].

The strong index ν0 is given by the relation

(−1)ν0 =

4∏
i=1

δi (C16)

where δi = ±1 is the parity eigenvalue of the Bloch eigenstates at the four time-reversal invariant momenta
(k1, k2) = π(n1, n2), with n1,2 = 0, 1. One has ν0 = 0 if and only if the two lattice bands are gapped, i.e. h(k) 6= 0
over the entire Brillouin zone: ν0 = 0 thus corresponds to an insulating phase [63].

The 2D vectorized Zak phase is defined by [68]

θ = − 1

2π

∫∫ π

−π
dk1dk2Tr[A(k1, k2)] (C17)

where An,m = 〈un|i∇k|um〉 (n,m = ±) is the Berry connection, un(k1, k2) is the periodic part of the Bloch wave
function in the n-th band, and the trace is taken over the occupied bands of the lattice. For the Hamiltonian (C15),
the periodic part of the Bloch functions in the two bands is given by

u±(k1, k2) =
1√
2

(
exp[iϕ(k1, k2)]

±1

)
(C18)

so that one readily obtains A+,+ = A−,− = −(1/2)∇kϕ and thus

θ =
1

4π

∫∫ π

−π
dk1dk2∇kϕ. (C19)

Note that, in the gapped phase (ν0 = 0), for any line k2 the integral (winding number)

1

2π

∫ π

−π
dk1

∂ϕ

∂k1

does not depend on k2: in fact, it is an integer and its value cannot change as we adiabatically vary k2, unless the
gap closes. Likewise, the integral

1

2π

∫ π

−π
dk2

∂ϕ

∂k2

does not depend on the line k1 in the insulating phase. Therefore, when ν0 = 0 one obtains θ = (θ1, θ2) for the 2D
quantized Zak phase, with

θ1,2 =
1

2

∫ π

−π
dk1,2

∂ϕ

∂k1,2
. (C20)

We remark that, since the Berry connection is gauge dependent, the Zak phase components θ1 and θ2 are uniquely
defined mod 2π, i.e. they can uniquely take the two possible values 0 and π. The vectorized Zak phase can be readily
associated to the indices ν1,2, given by Eq.(C9) and determining the mean frequency of the SHG photons. In fact,
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in the topological insulating phase ∆(k1, k2) does not vanish in the entire Brillouin zone, and thus for large enough
interaction length ξ we may set sin2[∆(k1, k2)ξ] ' 1/2 in Eq.(C9), yielding

ν1,2 '
1

4π2

∫∫ π

−π
dk1dk2

∂ϕ

∂k1,2
=

1

2π

∫ π

−π
dk1,2

∂ϕ

∂k1,2
. (C21)

A comparison of Eqs.(C20) and (C21) yields

θ1,2 = πν1,2 (mod 2π). (C22)

As an illustrative example, let us assume

h(k1, k2) = h0 + h1 exp(−ik1) + h2 exp(ik2) + h3 exp(−ik1 − ik2), (C23)

which corresponds to a pump envelope ψ2(η) = −(1/σ)h∗(k1, k2) comprising the four frequencies ω2, ω2−Ω1, ω2+Ω2,
and ω2 − Ω1 − Ω2 with amplitudes h0, h1, h2 and h3, respectively. The value of the strong topological index ν0
can be computed from the parity eigenvalue of the Bloch eigenstates at the four time-reversal invariant momenta
(k1, k2) = π(n1, n2) (n1,2 = 0, 1) according to Eq.(C16), and reads

(−1)νo = sign {(h0 + h1 + h2 + h3)(h0 − h1 + h2 − h3)(h0 + h1 − h2 − h3)(h0 − h1 − h2 + h3)} . (C24)

In the insulating phase, i.e. for ν0 = 0, the winding numbers ν1,2 can be calculated from Eq.(C21) along the lines
k2,1 = 0, i.e. they are the winding numbers of the two reduced 1D Hamiltonians

h1(k1) = h0 + h2 + (h1 + h3) exp(−ik1) (C25)

for ν1, and

h2(k2) = h0 + h1 + h2 exp(ik2) + h3 exp(−ik2) (C26)

for ν2. The 2D weak topological insulator associated to this model is illustrated in Fig.3(a) of the main text. Depending
on the values of the pump amplitudes h0, h1, h2 and h3, different topological phases, corresponding to different values
of the topological numbers, can be obtained.
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