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Abstract. High-Level Synthesis (HLS) tools simplify the design of hard-
ware accelerators by automatically generating Verilog/VHDL code start-
ing from a general-purpose software programming language. Because of
the mismatch between the requirements of hardware descriptions and
the characteristics of input languages, HLS tools still require hardware
design knowledge and non-trivial design space exploration, which might
be an obstacle for domain scientists seeking to accelerate applications
written, for example, in Python-based programming frameworks. This
research proposes a modern approach based on multi-level compiler tech-
nologies to bridge the gap between HLS and high-level frameworks, and
to use domain-specific abstractions to solve domain-specific problems.
The key enabling technology is the Multi-Level Intermediate Represen-
tation (MLIR), a framework that supports building reusable compiler
infrastructure. The proposed approach uses MLIR to introduce new op-
timizations at appropriate levels of abstraction outside the HLS tool
while still relying on years of HLS research in the low-level hardware
generation steps; users and developers of HLS tools can thus increase
their productivity, obtain accelerators with higher performance, and not
be limited by the features of a specific (possibly closed-source) backend.
The presented tools and techniques were designed, implemented, and
tested to synthesize machine learning algorithms, but they are broadly
applicable to any input specification written in a language that has a
translation to MLIR. Generated accelerators can be deployed on Field
Programmable Gate Arrays or Application-Specific Integrated Circuits,
and they can reach high energy efficiency without any manual optimiza-
tion of the code.
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1 Introduction

The exponential growth of data science and machine learning (ML), coupled
with the diminishing performance returns of silicon at the end of Moore’s law
and Dennard scaling, is leading to widespread interest in domain-specific archi-
tectures and accelerators [16]. Field Programmable Gate Arrays (FPGAs) and
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Application-Specific Integrated Circuits (ASICs) can provide the necessary hard-
ware specialization with higher performance and energy efficiency than multi-
core processors or Graphic Processing Units (GPUs). ASICs are the best solution
in terms of performance, but they incur higher development costs; FPGAs are
more accessible and can be quickly reconfigured, allowing to update accelerators
according to the requirements of new applications or to try multiple configura-
tions in a prototyping phase before committing to ASIC manufacturing.

ASICs and FPGAs are designed and programmed through hardware descrip-
tion languages (HDLs) such as Verilog or VHDL, which require developers to
identify critical kernels, build specialized functional units and memory compo-
nents, and explicitly manage low-level concerns such as clock and reset signals or
wiring delays. The distance between traditional software programming and HDLs
creates significant productivity and time-to-market gaps [19, 20] and tradition-
ally required manual coding from expert hardware developers. The introduction
of High-Level Synthesis (HLS) simplified this process, as HLS tools allow to auto-
matically translate general-purpose software specifications, primarily written in
C/C++, into an HDL description ready for logic synthesis and implementation
[8, 7]. Thanks to HLS, developers can describe the kernels they want to accel-
erate at a high level of abstraction and obtain efficient designs without being
experts in low-level circuit design.

Due to the mismatch between the levels of abstraction of hardware descrip-
tions and general-purpose programming languages, HLS tools often require users
to augment their input code through pragma annotations (i.e., compiler direc-
tives) and configuration options that guide the synthesis process, for example,
towards a specific performance-area trade-off. Different combinations of pragmas
and options result in accelerator designs with different latency, resource utiliza-
tion, or power consumption. An exhaustive exploration of the design space re-
quires few modifications to the input code, and it does not change the functional
correctness of the algorithm, but it is still not a trivial process: the effect of
combining multiple optimization directives can be unpredictable, and the HLS
user needs a good understanding of their impact on the generated hardware.

Data scientists who develop and test algorithms in high-level, Python-based
programming frameworks (e.g., TensorFlow [1] or PyTorch [18]) typically do not
have any hardware design expertise: therefore, the abstraction gap that needs to
be overcome is not anymore from C/C++ software to HDL (covered by mature
commercial and academic HLS tools), but from Python to annotated C/C++
for HLS. The issue is exacerbated by the rapid evolution of data science and ML,
as no accelerator can be general enough to support new methods efficiently, and
a manual translation of each algorithm into HLS code is highly impractical.

The aim of this research is to bridge the gap between high-level frame-
works and HLS through a multi-level, compiler-based approach. The key en-
abling technology is the Multi-Level Intermediate Representation (MLIR) [17],
a reusable and extensible infrastructure in the LLVM project for the develop-
ment of domain-specific compilers. MLIR allows defining specialized intermedi-
ate representations (IRs) called dialects to implement analysis and transforma-
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tion passes at different levels of abstraction, and it can interface with multiple
software programming frameworks. An MLIR-based approach is a “modern”
solution to automate the design of hardware accelerators for high-level applica-
tions through HLS, as opposed to “classic” approaches that rely on hand-written
template libraries [11, 14, 4].

A practical realization of the proposed approach is the SOftware Defined Ar-
chitectures (SODA) Synthesizer [6, 2], an open-source hardware compiler com-
posed of an MLIR frontend [5] and an HLS backend [15]. SODA provides an end-
to-end agile development path from high-level software frameworks to FPGA
and ASIC accelerators, supports the design of complex systems, and allows
to introduce and explore optimizations at many different levels of abstraction,
from high-level algorithmic transformations to low-level hardware-oriented ones.
Translation across different levels of abstraction is performed through progres-
sive lowering between IRs, allowing each step to leverage information gathered in
other phases of the compilation. In the frontend, domain-specific MLIR dialects
allow developers to work on specialized abstractions to address system-level con-
cerns and pre-optimize the code. The integration of an open-source tool in the
backend allows to exploit years of HLS research and to introduce new features
in the low-level hardware generation steps when necessary. The rest of the paper
will focus on the main features of SODA (Section 2) and describe the results it
allowed to obtain (Section 3).

2 The SODA Synthesizer

The SODA Synthesizer (Figure 1) is an open-source, modular, compiler-based
toolchain that uses a multi-level approach, able to generate optimized FPGA
and ASIC accelerators for ML through MLIR and HLS. It can accept as inputs
pre-trained ML models developed in a high-level framework such as TensorFlow
or PyTorch and translated into an MLIR representation. The SODA frontend
(SODA-OPT) provides a search and outlining methodology to automatically
extract accelerator kernels and their data dependencies from the input specifica-
tion; the kernels are then optimized through a set of compiler passes that can be
tuned to explore different design points, while host code containing calls to the
kernel functions can be compiled by a standard LLVM compiler. SODA-OPT
provides a default optimization pipeline that privileges passes resulting in faster
accelerators (e.g., passes that increase instruction- and data-level parallelism or
remove unnecessary operations), but many others exist that can be individually
enabled or disabled, such as the ones listed in Table 1. Optimized kernels are
synthesized by the backend HLS tool to generate FSMD accelerators and later
composed in multi-accelerator systems; when using the Bambu HLS backend,
the SODA Synthesizer is fully open-source from the algorithm to the HDL de-
scription. The outputs of SODA-OPT are fully tool-agnostic LLVM IRs that do
not contain anything specific to Bambu, so they can also be synthesized through
recent versions of Vitis HLS [3].
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Fig. 1: The SODA Synthesizer: and end-to-end toolchain from ML algorithms to
hardware accelerators through MLIR and HLS.

Table 1: Partial list of high-level optimizations available in SODA-OPT.

Optimization pass Effect Default

Loop unrolling Expose instruction-level parallelism yes
Loop tiling Balance computation and memory transfer no
Loop pipelining Parallelize loop iterations no
If-conversion Speculative execution of if-else blocks yes
Results forwarding Remove unnecessary memory transfers yes
Temporary buffer allocation Reduce accesses to external memory yes
Common sub-expression elimination Remove unnecessary operations yes

The multi-level, MLIR-based structure of the SODA Synthesizer provides
ample opportunities to explore high-level compiler transformations that can im-
prove the quality of HLS results without needing to modify the HLS tool itself
[12]. Such “higher-level” optimizations can improve the performance of the gen-
erated accelerators, the portability across HLS tools (since they do not introduce
tool-specific annotations or code patterns), and the productivity of users and de-
velopers: optimizations can be explored more easily and safely through compiler
passes than through manual code rewriting, and there is no need to access the
backend HLS code nor to be expert in low-level synthesis techniques. Moreover,
dedicated MLIR dialects can be built and exploited to solve domain-specific
optimization problems: for example, the soda dialect has been introduced to
support the outlining process for accelerator kernels, and many SODA-OPT
passes exploit the affine dialect to apply loop optimizations.
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Following this approach, a new loop pipelining pass has been introduced
in SODA-OPT leveraging the MLIR affine dialect, implementing high-level
code optimizations that provide a pre-scheduled input description to HLS [13].
The affine dialect provides structures and methods to analyze and transform
loops (in fact, it was initially introduced to support polyhedral optimizations
for ML frameworks), and the higher level of abstraction allows to identify more
complex dependencies than what is possible on an LLVM IR or low-level HLS
IR. The proposed implementation can analyze dependencies between operations
in the loop body of an affine.for operation and schedule them to overlap the
execution of loop iterations, following standard software pipelining techniques; it
can forward results from one iteration to the other, support loops with variable
bounds, and speculate execution of if-else blocks.

The SODA Synthesizer also integrates a low-level synthesis methodology for
the generation of complex system-on-chip (SoC) architectures composed of mul-
tiple kernels, either connected to a central microcontroller, or directly to each
other in a custom dataflow architecture [9]. In fact, large and compute-intensive
deep neural networks frequently represent a challenge for HLS tools, and they
need to be manually broken down into smaller kernels; the issue is especially evi-
dent when the model needs to process streaming inputs in a pipelined fashion, as
the complexity of the finite state machine (FSM) driving the execution becomes
unmanageable. In a SoC with a central general-purpose microcontroller driving
multiple accelerators, the data movement between the host microcontroller, the
accelerators, and memory quickly becomes a performance bottleneck. For this
reason, the SODA Synthesizer has been extended to support the generation of
a second type of system: a dynamically scheduled architecture where custom
accelerators are composed in a dataflow system and are driven by a distributed
controller. In this architecture, multiple accelerators can perform computations
in parallel on different portions of streaming input data without requiring or-
chestration from the host microcontroller, and can communicate with each other
without going through external memory. Analysis and transformation passes in
the MLIR frontend have access to high-level representations that explicitly de-
scribe the flow of data through operators and memory in a computational graph,
removing the need for complex alias analysis in the HLS backend and thus sim-
plifying the low-level generation steps.

3 Experimental results

A multi-level approach to HLS improves productivity, portability, and perfor-
mance for users that want to accelerate high-level applications and do not have
hardware design expertise. While productivity is not a feature that can be pre-
cisely measured, there are evident advantages when comparing the SODA Syn-
thesizer with other state-of-the-art design flows based on HLS: unlike hls4ml [14]
and FINN [4], SODA does not require to maintain a library of templated oper-
ators, so it is more easily adapted to new classes of input applications; SODA
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Table 2: Execution times of accelerators optimized with different synthesis tools.
Kernel Backend Frontend 2x2 4x4 8x8 16x16 Avg. speedup

2mm

Bambu
none 176 1375 11218 87842
SODA-OPT 25 43 98 784

66.38x

Vitis HLS
none 43 115 599 4239
SODA-OPT 26 48 106 848

3.67x

Vivado HLS
none 162 1138 9698 75586
ScaleHLS 38 63 114 410

72.94x

3mm

Bambu
none 220 1743 14042 111410
SODA-OPT 22 40 320 2560

35.24x

Vitis HLS
none 37 109 593 4233
SODA-OPT 23 45 103 824

3.73x

Vivado HLS
none 207 1467 12723 99939
ScaleHLS 57 97 169 797

54.86x

gemm

Bambu
none 103 794 6538 42514
SODA-OPT 16 28 71 568

50.43x

Vitis HLS
none 24 52 140 5635
SODA-OPT 15 29 71 259

6.78x

Vivado HLS
none 99 669 5593 42801
ScaleHLS 19 27 56 Error

43.29x

syr2k

Bambu
none 99 706 4834 35650
SODA-OPT 19 270 1417 8835

3.82x

Vitis HLS
none 97 367 2627 18179
SODA-OPT 50 159 509 1785

4.90x

Vivado HLS
none 73 265 1089 4225
ScaleHLS 93 353 1665 Error

0.73x

also generates backend-agnostic low-level code, while ScaleHLS [21] focuses on
extracting performance from one specific HLS tool.

Table 2 presents execution times obtained with SODA and ScaleHLS on Poly-
Bench kernels1, highlighting for every kernel and every input size which is the
frontend/backend combination that resulted in the lowest number of clock cycles
(more results are available in [5]). To avoid focusing on performance differences
that derive solely from capabilities of different HLS backends, the table also re-
ports separate baselines that are obtained without frontend optimizations. The
experiments were run targeting a Xilinx Virtex7 FPGA with 100 MHz frequency;
errors sometimes occurred when Verilog code generated by ScaleHLS required
more resources than the ones available in the target FPGA.

Looking at absolute numbers of clock cycles, SODA outperforms ScaleHLS
in 12 kernels out of 16, through either the Bambu or the Vitis HLS backend.
The SODA-OPT optimization pipeline is particularly well suited to kernels with
dot product or matrix multiplication structures (providing 66.38x performance
increase on 2mm and 50.43x on gemm); its effect is more limited, instead, on

1 http://web.cse.ohio-state.edu/ pouchet.2/software/polybench/
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ResNet50 - 100 inputs stream
Architecture Computation Memory

Centralized 114,610,199,200 715,263,486
Dataflow 34,677,385,627 656,320
Speedup 3.3 1089.8

MobileNetV2 - 100 inputs stream
Architecture Computation Memory

Centralized 1,951,706,600 372,630,149
Dataflow 625,392,266 64,345
Speedup 3.1 5,791.2

Fig. 2: Comparison between the performance of a centralized and a dataflow
architecture generated by SODA for convolutional neural network models.

kernels that contain irregular loop structures such as syr2k. The performance
improvement is generally smaller when comparing SODA-OPT for Vitis HLS
against the Vitis HLS baseline, because Vitis HLS applies loop optimizations
even in absence of user directives, and the optimizations introduced by SODA-
OPT can provide only a slight improvement over the default ones. The op-
timizations introduced by ScaleHLS greatly improve accelerator performance
with respect to baseline designs synthesized by Vivado HLS; however, the anno-
tated C++ code it produces is not portable, while the MLIR-based approach of
SODA does not rely on pragma annotations and generates designs that can be
synthesized with different HLS backends.

The SODA Synthesizer can generate complex multi-accelerator SoC for neu-
ral networks following either a centralized or a dataflow architecture, as presented
in [9]. In a centralized architecture individual accelerators are attached to a cen-
tral bus and a microcontroller drives their execution; all data is stored in and
retrieved from external memory. The dataflow architecture, instead, is a system
that uses a distributed controller to orchestrate the execution of accelerators
accessing shared memory.

Figure 2 shows, on the right, part of the computational graph of a con-
volutional neural network (CNN) divided into four accelerator kernels. In the
centralized architecture, every accelerator communicates with its producers and
consumers through external memory, so accelerator execution and memory ac-
cess are serialized. In the dataflow architecture, instead, only input arguments
to the first kernel and output arguments of the last one go through external
memory, while intermediate results are kept in a shared on-chip memory with as
many ports as there are accelerators in the system, so that the architecture can
support conflict-free concurrent accelerator execution, allowing pipelined execu-
tion of streaming inputs. The table on the left of Figure 2 reports the execution
time of the two architectures in terms of clock cycles, highlighting the benefits of
the dataflow architecture for streaming execution of CNN models. The high cost



8 Serena Curzel

of communicating between accelerators and external memory is reduced when
accelerators can send data to each other through shared memory, and concur-
rent pipelined execution provides further improvements as the overall latency for
streaming inputs is mostly determined by the initiation interval, i.e., the execu-
tion of the critical path. Although the accelerators could execute in parallel on
different inputs also in the centralized architecture, SODA-OPT currently does
not support the generation of host code with non-blocking function calls.

4 Conclusion

In the last few years, High-Level Synthesis has become an invaluable tool to sim-
plify the development of hardware accelerators on FPGA and ASIC, providing
higher and higher quality of results to users with little expertise in low-level RTL
design. State-of-the-art HLS tools still expect some hardware design knowledge
from users, especially when the accelerator needs to be optimized to meet tight
application requirements or when different configurations need to be evaluated
looking for a specific trade-off between quality metrics.

This requirement prevents widespread adoption of HLS by domain scien-
tists that develop data science and artificial intelligence algorithms in high-level,
Python-based programming frameworks. Moreover, research that aims at im-
proving the efficiency of the HLS process itself or the quality of generated ac-
celerators is typically limited by the expressiveness of C/C++ code and by the
annotations supported by a specific, closed-source backend tool. This paper pro-
posed to solve the two issues by coupling established HLS tools with the modern
compiler infrastructure provided by the MLIR framework, in order to improve
the automated synthesis process of accelerators for high-level applications. Such
an approach allows seamless integration with high-level ML frameworks, encour-
ages the introduction of innovative optimization techniques at specific levels of
abstraction, and can exploit multiple state-of-the-art HLS tools in the backend.

The proposed design flow allows to implement and apply high-level optimiza-
tions before HLS, as compiler passes supported by dedicated MLIR abstractions
(dialects); such an approach can improve productivity, performance, and porta-
bility of optimizations. Loop pipelining has been used as an example of the
intrinsic optimization potential in a multi-level design and optimization flow,
and it has been seamlessly integrated into the SODA Synthesizer frontend. The
availability of multiple levels of abstraction and domain-specific representations
opens the door to new possibilities to study and implement innovative design
automation methods, ranging from the exploration of techniques that can ben-
efit HLS when applied at a high level of abstraction to the introduction of new
synthesis methodologies and architectural models.

The proposed multi-level approach is modular and extensible by design, so
different parts can be easily reused and adapted to the needs of different in-
put applications, requirements, and research scenarios. A multi-level compiler-
based framework can also adapt more easily to innovative input algorithms and
hardware targets. For example, spiking neural networks are built of biologically-
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inspired integrate-and-fire neurons, and they are usually mapped on analog neu-
romorphic hardware; a new MLIR dialect has been designed to support the syn-
thesis of SNN models into neuromorphic components [10]. The dialect models
concepts from the analog domain of spiking neurons through new types and op-
erations that describe sequences of current spikes as lists of timestamps signaling
their arrival.

Experimental results showed strengths and weaknesses of the approach, indi-
cating possible next steps to improve the QoR of generated accelerators and the
applicability of the proposed tools and techniques. Code for the tools developed
in this research has been released in open-source to foster collaboration2; parts
of them can be easily reused or integrated with future research efforts.
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